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Abstract. In this paper, we will present a strong (or pathwise) approximation of standard
Brownian motion by a class of orthogonal polynomials. The coefficients that are obtained from the
expansion of Brownian motion in this polynomial basis are independent Gaussian random variables.
Therefore it is practical (requires N independent Gaussian coefficients) to generate an approximate
sample path of Brownian motion that respects integration of polynomials with degree less than N .
Moreover, since these orthogonal polynomials appear naturally as eigenfunctions of the Brownian
bridge covariance function, the proposed approximation is optimal in a certain weighted L2(P) sense.
In addition, discretizing Brownian paths as piecewise parabolas gives a locally higher order numerical
method for stochastic differential equations (SDEs) when compared to the piecewise linear approach.
We shall demonstrate these ideas by simulating Inhomogeneous Geometric Brownian Motion (IGBM).
This numerical example will also illustrate the deficiencies of the piecewise parabola approximation
when compared to a new version of the asymptotically efficient log-ODE (or Castell-Gaines) method.
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1. Introduction. Brownian motion is a central object for modelling real-world
systems that evolve under the influence of random perturbations [1]. In applications
where methods discretize Brownian motion, usually only increments of the path are
generated [2]. In this setting, the best L2(P) approximation of Brownian motion that
is measurable with respect to these increments is given by the piecewise linear path
that agrees on discretization points [3]. This motivates the following natural question:

Are there better discrete approximations of Brownian motion than piecewise linear?

The next simplest approximant would be a piecewise polynomial, though it is not clear
whether this would be advantageous for tackling problems such as SDE simulation.
This paper can be viewed as a logical continuation of [4], where a polynomial wavelet
representation of Brownian motion was proposed. These wavelets were constructed
to capture certain “geometrical features” of the path, namely the integrals of the
Brownian motion against monomials. We shall investigate the practical applications
of these polynomials and their geometrical features in the numerical analysis of SDEs.

 

Fig. 1.1. Sample paths of Brownian motion with corresponding polynomial approximations.
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The paper is organised as follows. In Section 2, we shall state and prove the main result
of the paper (Theorem 2.2). This will be a Karhunen-Loève theorem for the Brownian
bridge, where the orthogonal functions used in the approximation are polynomials.
Furthermore, we shall explicitly show that each basis function is proportional to a
shifted (α, β)-Jacobi polynomial but with the nonstandard exponents α = β = −1.
This enables us to construct these orthogonal polynomials using recurrence relations,
or as the difference of two shifted Legendre polynomials whose degrees differ by two.
The resulting polynomial expansion of Brownian motion was independently discovered
by Habermann in [5], where a sharp L2(P) convergence rate of O

(
1√
n

)
is established1.

In Section 3, we shall investigate some significant consequences of the main theorem.

Theorem 1.1. Let W denote a standard real-valued Brownian motion on [0, 1].
Let Wn be the unique n-th degree random polynomial with a root at 0 and satisfying∫ 1

0

uk dWn
u =

∫ 1

0

uk dWu , for k = 0, 1, · · · , n− 1. (1.1)

Then W = Wn + Zn , where Zn is a centered Gaussian process independent of Wn.

The above theorem has a simple yet striking conclusion, namely that polynomials can
be unbiased approximants of Brownian motion. In addition, the first non-trivial case
(n = 2) already has interesting applications within the numerical analysis of SDEs.
One reason is that parabolas can capture the “space-time area” of Brownian motion.

 

Fig. 1.2. Brownian motion can be expressed as a (random) parabola plus independent noise.
Moreover, the approximating parabola has the same increment and time integral as the original path.

Therefore discretizing Brownian motion using a piecewise parabola gives a locally high
order methodology for numerically solving one-dimensional SDEs. However, since
certain triple iterated integrals of Brownian motion and time are partially matched
by these parabolas, we expect this method to have only an O(h) rate of convergence
(where h denotes the step size used). This gives motivation for the following theorem:

Theorem 1.2. Let ıW be the (unique) quadratic polynomial with a root at 0 andıW1 = W1 ,

∫ 1

0

ıWu du =

∫ 1

0

Wu du.

Then the following third order iterated integral of Brownian motion can be estimated:

E
ñ∫ 1

0

W 2
u du

∣∣∣W1 ,

∫ 1

0

Wu du

ô
=

∫ 1

0

ıW 2
u du+

1

15
. (1.2)

The above theorem can be directly incorporated into the stochastic Taylor method
as well as the log-ODE or Castell-Gaines method (see [6], [7]). We will show that by
estimating this non-trivial iterated integral with its conditional expectation, we can
design numerical methods that enjoy high orders of both strong and weak convergence.
Specifically, for a general SDE that is driven by a one-dimensional Brownian motion
and governed by sufficiently regular vector fields (smooth with bounded derivatives),
the numerical methods that correctly utilize the above conditional expectation will
have a strong convergence rate of O(h

3
2 ) as well as a weak convergence rate of O(h2).

1A Matlab demonstration can be found at chebfun.org/examples/stats/RandomPolynomials.html

https://www.chebfun.org/examples/stats/RandomPolynomials.html
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These high orders of convergence can also be achieved in the multidimensional setting
provided the vector fields governing the SDE satisfy certain commutativity conditions.
For example, this estimator has applications for simulating SDEs with additive noise:

dyt = f(yt) dt+ σdWt ,

where f is a smooth vector field on Rd, σ > 0 is constant and W is now d-dimensional.
By considering Theorem 1.2, we expect that yt is well approximated (for small t) byÛyt +

1

30
t2σ2∆f(y0),

where Ûy denotes the solution of the below ODE driven by a “Brownian parabola” ıW ,

dÛyt = f(Ûyt) dt+ σdıWt ,Ûy0 = y0 .

This parabola-driven ODE can then be discretized using a three-stage Runge-Kutta
method and the resulting SDE approximation shall be investigated in a future work.

Since these methods are based on the conditional expectation given by Theorem 1.2,
they are designed to minimize the leading error term within local Taylor expansions.
This sense of optimality is conceptually similar to that of the asymptotically efficient
SDE approximations developed by Clark [8], Newton [9, 10] and Castell & Gaines [6].
The key difference is that we are employing additional integral information about W .
Hence, this line of research could provide a further insight into the approximation
of Itô integrals using linear path information, where there already are a number of
results concerning the computational complexity of methods (see [11], [12] and [13]).
Most notably, Tang and Xiao [11] consider the same triple iterated integral as in
(1.2) and present an asymptotically optimal approximation that performs well when
a limited number of random variables are used (see Table 2 for these numerical results).
Whilst there are other senses of optimality (such as those discussed in [14] and [15])
that could be used when analysing the proposed approximations of Brownian motion
and SDE solutions, we shall estimate errors in an L2(P) sense throughout the paper.
In particular, we can apply the main result to quantify the error of the new estimator.

Theorem 1.3. Using the same notation as before, we have the following variance:

Var

Ç∫ 1

0

W 2
u du

∣∣∣W1 ,

∫ 1

0

Wu du

å
=

11

6300
+

1

180
W 2

1 +
1

175

Ç∫ 1

0

Wu du−
1

2
W1

å2

.

In Section 4, we demonstrate the applicability of these ideas to SDE simulation
through various discretizations of Inhomogeneous Geometric Brownian Motion (IGBM)

dyt = a(b− yt) dt+ σyt dWt ,

where a ≥ 0 and b ∈ R are the mean reversion parameters and σ ≥ 0 is the volatility.

In mathematical finance, IGBM is an example of a short rate model that can be both
mean-reverting and non-negative. It is therefore suitable for modelling interest rates,
stochastic volatilities and default intensities [16]. From a mathematical viewpoint,
IGBM is one of the simplest SDEs that has no known method of exact simulation [17].
By incorporating the ideas provided by the main theorem into the log-ODE method,
we will produce a state-of-the-art numerical approximation of IGBM. Although the
vector fields for IGBM are not bounded, our numerical evidence indicates that the
method has a strong convergence rate of O(h

3
2 ) and a weak convergence rate of O(h2).
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1.1. Notation. Below is some of the notation that is used throughout the paper.

Symbol Meaning Page

W a standard real-valued Brownian motion. 2

B a standard real-valued Brownian bridge on [0, 1]. 5

µ a Borel measure on [0, 1] defined by a singular weight function. 5

µ(a, b) =

∫ b

a

1

x(1− x)
dx,

for all open intervals (a, b) ⊂ [0, 1].

{ek}k≥1 a family of Jacobi-like polynomials with deg (ek) = k + 1 that
are orthogonal with respect to weight function w(x) := 1

x(1−x) .
5

Ik a time integral of B times the polynomial ek(t)w(t) over [0, 1], 5

Ik =

∫ 1

0

Bt ·
ek (t)

t(1− t)
dt.

KB the covariance function of B, that is KB(s, t) = min(s, t)− st. 5

P
(α,β)
k the k-th order (α, β)-Jacobi polynomial on [−1, 1] (α, β > −1). 11

Qk the k-th order Legendre polynomial on [−1, 1], i.e. Qk = P
(0,0)
k . 13

y a solution of the Stratonovich SDE on the finite interval [0, T ], 14

dyt = f0(yt) dt+ f1(yt) ◦ dWt ,

y0 = ξ,

where y, ξ ∈ Re, and fi : Re → Re denote smooth vector fields.

(Itô SDEs will be defined on fixed intervals with the same form)

[s, t] a general closed subinterval of [0, T ], usually considered small. 14

h the step size that a numerical method uses, typically h = t− s. 14

Ws,t the increment of Brownian motion over [s, t], Ws,t := Wt−Ws. 14ıW the Brownian parabola corresponding to W over some interval. 15ıWu = Ws +
u− s
h

Ws,t +
6(u− s)(t− u)

h2
Hs,t , ∀u ∈ [s, t].

Z the Brownian arch corresponding to W defined as Z := W−ıW . 15

Hs,t the rescaled space-time Lévy area of Brownian motion on [s, t], 15

Hs,t =
1

h

∫ t

s

Ws,u −
u− s
h

Ws,t du.

Ls,t the space-space-time Lévy area of Brownian motion over [s, t], 17

Ls,t =
1

6

Ç∫ t

s

∫ u

s

∫ v

s

◦ dWr ◦ dWv du− 2

∫ t

s

∫ u

s

∫ v

s

◦ dWr dv ◦ dWu

+

∫ t

s

∫ u

s

∫ v

s

dr ◦ dWv ◦ dWu

å
,

Y an approximation for the true solution y of a Stratonovich SDE. 19

[ · , · ] the standard Lie bracket of vector fields, [f0, f1] = f ′1f0− f ′0f1. 19
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2. Main result. It was shown in [4] that Brownian motion can be generated
using Alpert-Rokhlin multiwavelets (see [18]). The mother functions that generate
this wavelet basis are supported on [0, 1] and are defined using polynomials as follows:

Definition 2.1 (Alpert-Rokhlin wavelets). For q ≥ 1, define the q functions
φq,1, · · · , φq,q : [0, 1] → R as piecewise polynomials of degree q − 1 with pieces on
[0, 12 ], [ 12 , 1] that satisfy the following conditions for all p ∈ {1, · · · , q} and t ∈ [0, 12 ):

φq,p(t) = (−1)q+p−1φq,p(1− t), (2.1)∫ 1

0

φq,p(t)φq,r(t) dt = δqr , for 1 ≤ r ≤ q, (2.2)∫ 1

0

tkφq,p(t) dt = 0, for 0 ≤ k ≤ q − 1. (2.3)

The Alpert-Rokhlin multiwavelets of order q can now be generated by translating and
scaling the mother functions φq,p.

φq,pnk (t) :=
1√
2n

φq,p(2nt− k),

for n ≥ 0 and k ∈ {0, · · · , 2n − 1}.

Whilst our results will not be presented in terms of the above wavelets, we shall see
that the polynomials of interest are directly related to conditions (2.1), (2.2) and (2.3).
The main result of this paper gives an effective method for approximating sample
paths of Brownian motion by a class of Jacobi-like polynomials. The proof is based
on the interpretation of these polynomials as eigenfunctions of an integral operator
defined by the Brownian bridge covariance function2. These orthogonal polynomials,
which lie at the heart of this paper, will also help us interpret the geometrical features
that certain normally distributed iterated integrals encode about the Brownian path.

Theorem 2.2 (A polynomial Karhunen-Loève theorem for the Brownian bridge).
Let B denote a Brownian bridge on [0, 1] and consider the Borel measure µ given by

µ(a, b) :=

∫ b

a

1

x(1− x)
dx, for all open intervals (a, b) ⊂ [0, 1].

Then there exists a family of orthogonal polynomials {ek}k≥1 with deg (ek) = k + 1
and ∫ 1

0

ei ej dµ = δij ,

with δij denoting the Kronecker delta, such that B admits the following representation

B =
∞∑
k=1

Ikek , (2.4)

where {Ik} is the collection of independent centered Gaussian random variables with

Ik :=

∫ 1

0

Bt ·
ek (t)

t(1− t)
dt, (2.5)

2The Brownian bridge is the centered Gaussian process with covariance KB(s, t) = min(s, t)−st.
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and

Var(Ik) =
1

k(k + 1)
.

Furthermore, {ek} is an optimal orthonormal basis of L2([0, 1], µ) for approximating
B by truncated series expansions with respect to the following weighted L2(P) norm

‖X‖L2
µ(P)

:=

√
E
ñ∫ 1

0

(Xs)
2
dµ(s)

ô
,

where X is a square µ-integrable process.

Proof. Our argument is that of the Karhunen-Loève theorem in general L2 spaces.
Note that B is a square µ-integrable process as

E
ñ∫ 1

0

(Bs)
2 dµ(s)

ô
=

∫ 1

0

E
[
(Bs)

2
]
dµ(s) =

∫ 1

0

s(1− s) · 1

s(1− s)
ds = 1 <∞.

Let KB denote the covariance function for the standard Brownian bridge on [0, 1].
Since KB(s, t) = min(s, t)−st, it can be shown by direct calculation that KB satisfies

‖KB‖2L2([0,1]2, µ2) =

∫ 1

0

∫ 1

0

(min(s, t)− st)2 dµ(s)dµ(t) =
1

3
π2 − 3 <∞.

Hence, it follows that the integral operator TK : L2([0, 1], µ)→ L2([0, 1], µ) given by

(TKf)(t) :=

∫ 1

0

KB(s, t)f(s) dµ(s),

is well-defined and continuous. In addition, the variance function kB(x) := KB(x, x)
for x ∈ [0, 1] is µ-integrable as∫ 1

0

|kB(x)| dµ(x) =

∫ 1

0

x(1− x) · 1

x(1− x)
dx = 1 <∞.

Therefore, we can apply Mercer’s theorem for kernels on general L2 spaces (see [19]).
It then follows from Mercer’s theorem that there exists an orthonormal set {ek}k≥1 of
L2([0, 1], µ) consisting of eigenfunctions of TK such that the corresponding sequence
of eigenvalues {λk}k≥1 is non-negative. Moreover, the eigenfunctions corresponding to
non-zero eigenvalues are continuous on [0, 1] and the kernel KB has the representation

KB(s, t) =
∞∑
k=1

λkek(s)ek(t), (2.6)

where the series (2.6) converges absolutely and uniformly on compact subsets of [0, 1].

In the next part of the proof, we will see that each ek is a polynomial of degree k+ 1.
As each ek is an eigenfunction of TK , we have∫ 1

0

min(s, t)− st
s(1− s)

ek(s) ds = λkek(t). (2.7)
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Since ek ∈ L2([0, 1], µ), it follows that ek(0) = 0 and ek(1) = 0 for each k ≥ 1.
Therefore by using the Leibniz integral rule to twice differentiate both sides of (2.7)
and then multiplying by t(1− t), we observe that ek satisfies the differential equation

t(1− t)λke′′k(t) + ek(t) = 0. (2.8)

Since ek 6= 0, we have that λk 6= 0. Differentiating the LHS of the ODE (2.8) produces

t(1− t) d
2

dt2
(e′k) + (1− 2t)

d

dt
(e′k) +

1

λk
e′k = 0.

For x ∈ [−1, 1], we define the function

yk(x) := e′k

Å
1

2
(1 + x)

ã
.

Thus yk satisfies the following differential equation

(1− x2)y′′k (x)− 2xy′k(x) +
1

λk
yk(x) = 0. (2.9)

Remarkably, this is the Legendre differential equation [20]. It then follows using
classical Sturm-Liouville theory that 1

λk
= k(k+ 1) and yk is proportional to the k-th

Legendre polynomial. Therefore, the derivative e′k will be a constant multiple of the
k-th shifted Legendre polynomial and hence each ek is a polynomial of degree k + 1.

We can now define the following integrals for k ≥ 1,

Ik :=

∫ 1

0

Bt ·
ek (t)

t(1− t)
dt.

It follows from Fubini’s theorem that

E[Ik] = 0,

E[IiIj ] = E
ñ∫ 1

0

∫ 1

0

BsBt ei(s) ej(t) dµ(s) dµ(t)

ô
=

∫ 1

0

∫ 1

0

E[BsBt] ei(s) ej(t) dµ(s) dµ(t)

=

∫ 1

0

ej(t)

Ç∫ 1

0

KB(s, t) ei(s) dµ(s)

å
dµ(t)

= λiδij .

Since each Ik is defined by a linear functional on the same Gaussian process B, we see
from the above that {Ik} is a collection of uncorrelated (and therefore independent)
Gaussian random variables with

E[Ik] = 0,

Var(Ik) =
1

k(k + 1)
.
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Finally, the L2(P) convergence we require follows as

E

(Bt − N∑
k=1

Ikek(t)

)2
 = kB(t) + E

[
N∑

i,j=1

IiIj ei(t)ej(t)

]
− 2E

[
Bt

N∑
k=1

Ikek(t)

]

= kB(t) +
N∑
i=1

λie
2
i (t)− 2E

[
N∑
i=1

∫ 1

0

BsBt ei(s)ei(t) dµ(s)

]

= kB(t)−
N∑
i=1

λie
2
i (t),

which converges to 0 by Mercer’s theorem (2.6).

All that remains is to prove optimality for the truncated series expansions of (2.4).
Let {fk}k≥1 denote an orthonormal basis of L2([0, 1], µ) such that

B =
∞∑
k=1

Jkfk, where Jk :=

∫ 1

0

Bt fk(t) dµ(t), ∀k ≥ 1.

For n ≥ 1, we consider an error process associated with the above: rn :=
∞∑

k=n+1
Jkfk .

Then the square L2(P) norm of the n-th error process admits the following expansion,

‖rn(t)‖2L2(P) = E

[ ∞∑
i=n+1

∞∑
j=n+1

JiJjfi(t)fj(t)

]

=
∞∑

i=n+1

∞∑
j=n+1

E
ñ∫ 1

0

∫ 1

0

BsBt fi(s)fj(t) dµ(s) dµ(t)

ô
fi(t)fj(t)

=
∞∑

i=n+1

∞∑
j=n+1

Ç∫ 1

0

∫ 1

0

KB(s, t) fi(s)fj(t) dµ(s) dµ(t)

å
fi(t)fj(t).

Integrating the above with respect to µ and using the orthogonality of {fk}k≥1 gives

‖rn‖2L2
µ(P)

=

∫ 1

0

‖r(t)‖2L2(P) dµ(t) =
∞∑

k=n+1

∫ 1

0

∫ 1

0

KB(s, t)fk(s)fk(t) dµ(s) dµ(t).

Note that any optimal orthonormal basis of L2([0, 1], µ) solves the following problem:

min
fk
‖rn‖2L2

µ(P)
subject to ‖fk‖L2([0,1],µ) = 1.

By introducing Lagrange multipliers νk, we wish to find functions {fk} that minimize

En[{fk}] :=
∞∑

k=n+1

∫ 1

0

∫ 1

0

KB(s, t)fk(s)fk(t)dµ(s)dµ(t)− νk

Ç∫ 1

0

(
fk(s)

)2
dµ(s)− 1

å
.

We will now consider the following square integrable functions, defined for s, t ∈ (0, 1):

f̃k(t) := fk(t) · 1√
t(1− t)

, K̃B(s, t) := KB(s, t) · 1√
s(1− s)

· 1√
t(1− t)

.
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Therefore it is enough to find a family of functions {f̃k} in L2([0, 1]) which minimizes

Ẽn[{f̃k}] :=
∞∑

k=n+1

∫ 1

0

∫ 1

0

K̃B(s, t)f̃k(s)f̃k(t) ds dt− νk

Ç∫ 1

0

(
f̃k(s)

)2
ds− 1

å
.

To find a minimizer, we set the functional derivative of Ẽn with respect to f̃k to zero.

∂Ẽn

∂f̃k(t)
= 2

∫ 1

0

K̃B(s, t)f̃k(s) ds− 2νkf̃k(t) = 0.

By using the definitions of f̃k and K̃B , it is trivial to show the above is equivalent to∫ 1

0

KB(s, t)fk(s) dµ(s) = νkfk(t),

which is satisfied if and only if fk are eigenfunctions of TK .

This result can naturally be extended to express Brownian motion using polynomials.

Theorem 2.3. If W is a standard Brownian motion and B is the associated
bridge process on [0, 1], then by Theorem 2.2, we have the below representation of W :

W = W1e0 +
∞∑
k=1

Ikek , (2.10)

where e0(t) := t for t ∈ [0, 1], and the random variables {Ik} are independent of W1.

 

Fig. 2.1. Brownian motion can be expressed as a sum of polynomials with independent weights.
Moreover, these polynomials are orthogonal and capture different time integrals of the original path.

In the rest of this section, we shall study the key objects introduced in Theorem 2.2.
Since each orthogonal polynomial lies in L2([0, 1], µ), it must have roots at 0 and 1.
Therefore ek · 1

t(1−t) is itself a polynomial but with degree k−1, and one can repeatedly

apply the integration by parts formula to the stochastic integrals {Ik} defined by (2.5).
This enables us to express each Ik in terms of iterated integrals of Brownian motion.
Moreover, as ek · 1

t(1−t) has precisely k − 2 non-zero derivatives, the highest order

iterated integral that is required to fully describe Ik is
∫
0<s1<···<sk<1

Bs1 ds1 · · · dsk .

So by applying the integration by parts formula as above, we can construct a lower
triangular n × n matrix Mn with non-zero diagonal entries that characterizes the
relationship between {Ik}1≤k≤n and a set of n iterated integrals of Brownian motion.
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Hence, for n ≥ 1, we can express the n independent Gaussian integrals {Ik}1≤k≤n asÖ
I1
...
In

è
= Mn

Ö ∫
0<s1<1

Bs1 ds1
...∫

0<s1<···<sn<1
Bs1 ds1 · · · dsn

è
. (2.11)

Since Mn is an invertible matrix, it follows that the column vectors appearing in (2.11)
both encode the same information about the Brownian bridge. This enables us to
establish a connection between Brownian motion, iterated integrals and polynomials.

Theorem 2.4. Consider the below conditional expectation of Brownian motion,

Wn
t := E

ñ
Wt

∣∣∣W1 ,

∫
0<s1<1

Ws1 ds1 , · · · ,
∫
0<s1<···<sn−1<1

Ws1 ds1 · · · dsn−1

ô
. (2.12)

where t ∈ [0, 1]. Then Wn is the unique polynomial of degree n with a root at 0 that
matches the increment W1 and n− 1 iterated time integrals of the path W given by:∫

0<s1<1

Ws1 ds1 , · · · ,
∫
0<s1<···<sn−1<1

Ws1 ds1 · · · dsn−1 . (2.13)

Proof. It is a direct consequence of (2.11) that Wn
t = E[Wt |W1, I1, · · · , In−1].

Hence by (2.10) and independence of the random variables {W1, I1, · · · }, we have that

Wn = W1e0 +
n−1∑
k=1

Ikek . (2.14)

Thus Wn is indeed a polynomial of degree n with a root at 0 and that matches the
increment of the Brownian path. Without loss of generality we can now assume n ≥ 2.
All that remains is to argue Wn matches the n− 1 iterated integrals given in (2.13).
Using the orthogonality of {ek}, it follows directly from (2.14) that for 1 ≤ k ≤ n− 1:

Ik =

∫ 1

0

(
Wt −W1e0(t)

)
· ek (t)

t(1− t)
dt

=

∫ 1

0

Ç
Wn
t +

∞∑
m=n

Imem(t)−W1e0(t)

å
· ek (t)

t(1− t)
dt

=

∫ 1

0

(
Wn
t −W1e0(t)

)
· ek (t)

t(1− t)
dt+

∞∑
m=n

Im

∫ 1

0

em (t) ek (t)

t(1− t)
dt︸ ︷︷ ︸

=0.

.

Hence Wn matches the integrals of Brownian motion against polynomials with degree
at most n− 1. By the same argument used in the derivation of (2.11), it follows that
Wn matches the various iterated time integrals given in the statement of the theorem.
The uniqueness of Wn is now a consequence of having n+ 1 different constraints.

2.1. Properties of orthogonal polynomials. Although Theorem 2.2 and
Theorem 2.3 are interesting results from a theoretical point of view, both lack an
explicit construction of the polynomials {ek} that could be implemented in practice.
On the other hand, it was shown that the defining eigenfunction property of each ek
implies that its derivative e′k is proportional to the k-th shifted Legendre polynomial.
Hence the family {ek} is the (normalized) shifted (α, β)-Jacobi polynomials but with
α = β = −1. Since Jacobi polynomials are typically studied with α, β > −1, it is
necessary to show there exists a well-defined limit when the parameters approach −1.
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Fig. 2.2. Sample paths of Brownian motion with corresponding polynomial approximations.

Definition 2.5. For k ≥ 2, the k-th degree (-1, -1)-Jacobi polynomial P
(-1,-1)
k is

P
(-1,-1)
k := lim

α,β→−1+
P

(α,β)
k .

Naturally, for this definition to be unambiguous, we will require the following lemma.

Lemma 2.6. Let P
(α,β)
k denote the k-th degree (α, β)-Jacobi polynomial on [−1, 1].

Then for k ≥ 2, there exists a real-valued polynomial Pk such that
∥∥Pk−P (α,β)

k

∥∥
∞ → 0

as α, β → −1+.

Proof. Below is an identity for Jacobi polynomials, with α, β > −1, given in [21].

P
(α,β)
k (x) =

k + α+ β + 1

2

∫ x

−1
P

(α+1,β+1)
k−1 (u) du, for all k ≥ 2. (2.15)

Therefore, we shall define the k-th degree polynomial Pk over the interval [−1, 1] by

Pk(x) :=
k − 1

2

∫ x

−1
P

(0,0)
k−1 (u) du, for all k ≥ 2. (2.16)

It is straightforward to verify that limα,β→ 0 ‖P (α,β)
n − P

(0,0)
n ‖∞ = 0 for n ∈ {0, 1}.

So by induction and the recurrence relation for Jacobi polynomials (see [21]), we have:∥∥P (α,β)
n − P (0,0)

n

∥∥
∞ → 0 as α, β → 0,

for all n ≥ 0. Hence by the dominated convergence theorem with (2.15) and (2.16),

it follows that P
(α,β)
k will converge pointwise to Pk as α, β → −1 for each k ≥ 1.

Finally, the result follows as P
(α,β)
k and Pk are always polynomials with degree k.

Using the above definition for (-1, -1)-Jacobi polynomials, we can give an explicit
formula for the orthonormal polynomials {ek}k≥1 appearing in Theorems 2.2 and 2.3.

Theorem 2.7. Suppose each ek has a positive leading coefficient. Then for k ≥ 1,

ek(t) =
1

k

»
k(k + 1)(2k + 1)P

(-1,-1)
k+1 (2t− 1), ∀t ∈ [0, 1]. (2.17)

Proof. The following identity for (α, β)-Jacobi polynomials is stated in [21]:∫ 1

−1
(1− x)α(1 + x)β

(
P (α,β)
n (x)

)2
dx =

2α+β+1

2n+ α+ β + 1

Γ(n+ α+ 1) Γ(n+ β + 1)

Γ(n+ α+ β + 1)n!
,
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for n ≥ 1 and α, β > −1. Applying the change of variables, t := 1
2 (x+ 1), we have∫ 1

0

tβ(1− t)α
(
P (α,β)
n (2t− 1)

)2
dt =

1

2n+ α+ β + 1

Γ(n+ α+ 1) Γ(n+ β + 1)

Γ(n+ α+ β + 1)n!
,

for n ≥ 1 and α, β > −1. By definition 2.5, taking the limit α, β → −1+ will yield∫ 1

0

1

t(1− t)
Ä
P (-1,-1)
n (2t− 1)

ä2
dt =

1

2n− 1

(n− 1)! (n− 1)!

n! (n− 2)!

=
1

2n− 1

n− 1

n
, for all n ≥ 2.

Therefore by setting k := n− 1, we have∫ 1

0

1

t(1− t)

Å
1

k

»
k(k + 1)(2k + 1)P (-1,-1)

n (2t− 1)

ã2
dt = 1, for all k ≥ 1.

Recall that e′k is proportional to the k-th shifted Legendre polynomial P
(0,0)
k (2t− 1).

Similarly, we saw in the proof of Lemma 2.6 that the derivative of P
(-1,-1)
k+1 is k

2 P
(0,0)
k .

As ek and P
(-1,-1)
k+1 are zero at their respective endpoints, we have that each ek must be

proportional to P
(-1,-1)
k+1 (2t− 1). The result now follows from the above calculations.

Having identified an explicit formula for the eigenfunctions {ek} in (2.17), we shall

now describe two methodologies for computing the Jacobi-like polynomials
{
P

(-1,-1)
k

}
.

The first approach is to use the three-term recurrence relation in the theorem below.

Theorem 2.8 (Recurrence relation for (-1, -1)-Jacobi polynomials). For n ≥ 2,

n(n+ 2)P
(-1,-1)
n+2 (x) = (n+ 1)(2n+ 1)xP

(-1,-1)
n+1 (x)− n(n+ 1)P (-1,-1)

n (x), (2.18)

where the initial polynomials are given by

P
(-1,-1)
2 (x) =

1

4
(x− 1)(x+ 1),

P
(-1,-1)
3 (x) =

1

2
x(x− 1)(x+ 1).

Proof. The below recurrence relation for Jacobi polynomials is presented in [21],

2(k + 1)(k + α+ β + 1)(2k + α+ β)P
(α,β)
k+1 (x)

= (2k + α+ β + 1)
(
(2k + α+ β)(2k + α+ β + 2)x+ α2 − β2

)
P

(α,β)
k (x)

− 2(k + α)(k + β)(2k + α+ β + 2)P
(α,β)
k−1 (x),

for k ≥ 1 and α, β > −1. By definition 2.5, it is possible to take the limit α, β → 1+

provided that k ≥ 3. Therefore, taking this limit and setting n = k − 1 ≥ 2 produces

4n2(n+ 2)P
(-1,-1)
n+2 (x) = 4n(n+ 1)(2n+ 1)xP

(-1,-1)
n+1 (x)− 4n2(n+ 1)P (-1,-1)

n (x),

for n ≥ 2. Dividing the above by 4n gives the required recurrence relation (2.18).

Finally the below formula, stated in [21], can be used to compute P
(-1,-1)
2 and P

(-1,-1)
3 :

P (α,β)
n (x) =

(−1)n

2nn!
(1− x)

−α
(1 + x)

−β dn

dxn

Ä
(1− x)

α+n
(1 + x)

β+n
ä
, for n ≥ 2.

As before we take α, β → 1+ in the above to obtain an explicit formula for P
(-1,-1)
n .
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In addition to computing these polynomials via a recurrence relation, it is also possible

to represent each P
(-1,-1)
n as the difference of two (rescaled) Legendre polynomials.

Since the Legendre polynomials already have efficient implementations in the majority
of high-level programming languages, this second approach is particularly appealing.

Theorem 2.9 (Relationship between the Jacobi-like and Legendre polynomials).
For n ≥ 1, we have

P
(-1,-1)
n+1 (x) =

n

4n+ 2

(
Qn+1(x)−Qn−1(x)

)
,

where Qk denotes the k-th degree Legendre polynomial defined on [−1, 1].

Proof. Recall that d
dx

(
P

(-1,-1)
n+1

)
= n

2P
(0,0)
n for n ≥ 1, where P

(0,0)
n (= Qn) is the

n-th degree Legendre polynomial. Therefore differentiating both sides of (2.18) yields

1

2
n(n+ 1)(n+ 2)Qn+1(x) = (n+ 1)(2n+ 1)P

(-1,-1)
n+1 (x) +

1

2
n(n+ 1)(2n+ 1)xQn(x)

− 1

2
n(n− 1)(n+ 1)Qn−1(x).

Hence by simplifying and rearranging the above, we have that for n ≥ 1,

(2n+ 1)P
(-1,-1)
n+1 (x) =

1

2
n
(
Qn+1(x)−Qn−1(x)

)
+

1

2
n
(
(n+ 1)Qn+1(x)− (2n+ 1)xQn(x) + nQn−1(x)

)
.

We see the last term is zero by a recurrence relation for Legendre polynomials [20].

In addition to viewing the polynomials {ek} as orthogonal with respect to the weight
function w(x) := 1

x(1−x) , we can characterize them via their iterated time integrals.

In particular, for 1 ≤ k ≤ n− 1, it follows from the integration by parts formula that∫
0<s1<···<sk<1

en(s1) ds1 · · · dsk =

∫ 1

0

en(s) d

Å
1

k!
sk
ã

=
1

(k − 1)!

∫ 1

0

sk−1en(s) ds

= − 1

k!

∫ 1

0

ske′n(s) ds

= 0, (by the orthogonality of e′n).

Hence for k ≥ 1, ek is a polynomial with degree k + 1 that has roots at 0 and 1 as
well as k − 1 trivial iterated integrals against time. By additionally specifying the
k-th iterated time integral, it is then possible to characterize the k-th polynomial ek.

To conclude this section, we will address the relationship between the orthogonal
Jacobi-like polynomials {ek} and the Alpert-Rokhlin wavelets given in definition 2.1.
Since each e′k is proportional to the k-th shifted Legendre polynomial, the family of
polynomials {e′k} is orthogonal with respect to the standard L2([0, 1]) inner product.
This orthogonality is exactly what is needed to satisfy the conditions (2.2) and (2.3).
Hence for any q ≥ 1 there exists an Alpert-Rokhlin mother function of order q that is
a piecewise polynomial where both pieces can be rescaled and translated to give e′q−1.
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3. Applications to SDEs. Consider the Stratonovich SDE on the interval [0, T ]

dyt = f0(yt) dt+ f1(yt) ◦ dWt , (3.1)

y0 = ξ,

where ξ ∈ Re and fi denote bounded C∞ vector fields on Re with bounded derivatives.
It then follows from the standard Picard iteration argument that there exists a unique
strong solution y to (3.1). An important tool in the numerical analysis of this solution
is the stochastic Taylor expansion (see chapter 5 of [22] for a comprehensive review).
For the purposes of this paper, we only require the following specific Taylor expansion.

Theorem 3.1 (High order Stratonovich-Taylor expansion). Let y denote the
unique strong solution to (3.1) and let 0 ≤ s ≤ t. Then yt can be expanded as follows:

yt = ys + f0(ys)h+ f1(ys)Ws,t +
1

2
f ′1(ys)f1(ys)W

2
s,t +

1

2
f ′0(ys)f0(ys)h

2 (3.2)

+ f ′0(ys)f1(ys)

∫ t

s

∫ u

s

◦ dWv du+ f ′1(ys)f0(ys)

∫ t

s

∫ u

s

dv ◦ dWu

+
1

6

(
f ′1(ys)f

′
1(ys)f1(ys) + f ′′1 (ys)(f1(ys), f1(ys))

)
W 3
s,t

+
(
f ′0(ys)f

′
1(ys)f1(ys) + f ′′0 (ys)(f1(ys), f1(ys))

) ∫ t

s

∫ u

s

∫ v

s

◦ dWr ◦ dWv du

+
(
f ′1(ys)f

′
0(ys)f1(ys) + f ′′1 (ys)(f0(ys), f1(ys))

) ∫ t

s

∫ u

s

∫ v

s

◦ dWr dv ◦ dWu

+
(
f ′1(ys)f

′
1(ys)f0(ys) + f ′′1 (ys)(f1(ys), f0(ys))

) ∫ t

s

∫ u

s

∫ v

s

dr ◦ dWv ◦ dWu

+
1

24

(
f ′1(ys)f

′
1(ys)f

′
1(ys)f1(ys) + f ′1(ys)f

′′
1 (ys)(f1(ys), f1(ys))

+ 3f ′′1 (ys)(f
′
1(ys)f1(ys), f1(ys)) + f ′′′1 (ys)(f1(ys), f1(ys), f1(ys))

)
W 4
s,t

+R(h, ys),

where h := t−s and the remainder term has the following uniform estimate for h < 1,

sup
ys∈Re

‖R(h, ys)‖L2(P) ≤ C h
5
2 , (3.3)

where the constant C > 0 depends only on the vector fields of the differential equation.

From a numerical perspective, the most challenging terms presented in (3.2) are those
that involve non-trivial third order iterated integrals of Brownian motion and time.
Moreover, the most significant source of discretization error that high order numerical
methods will experience is generally due to approximating these stochastic integrals.
By representing Brownian motion as a (random) polynomial plus independent noise,
we shall derive a new optimal and unbiased estimator for these third order integrals.

Theorem 3.2. Let W denote a standard real-valued Brownian motion on [0, 1].
Let Wn be the unique n-th degree random polynomial with a root at 0 and satisfying∫ 1

0

uk dWn
u =

∫ 1

0

uk dWu , for k = 0, 1, · · · , n− 1.

Then W = Wn + Zn , where Zn is a centered Gaussian process independent of Wn.
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Furthermore, Zn has the following covariance function:

cov(Zns , Z
n
t ) = KB(s, t)−

n−1∑
k=1

λkek(s)ek(t), for s, t ∈ [0, 1],

where KB denotes the standard Brownian bridge covariance function and {λk}, {ek}
are the eigenvalues and eigenfunctions that were defined in the proof of Theorem 2.2.

Proof. It follows from the integration by parts formula that Wn matches the
increment and n−1 iterated time integrals of Brownian motion that appear in (2.13).
Hence Wn is also the polynomial defined in Theorem 2.4 and W = Wn + Zn where

Wn = W1e0 +
n−1∑
k=1

Ikek ,

Zn =
∞∑
k=n

Ikek .

Then by Theorem 2.2, Zn is a centered Gaussian process that is independent of Wn.
In addition, the covariance function defining Zn can be directly computed as follows:

cov(Zns , Z
n
t ) = cov

( ∞∑
i=n

Iiei(s),
∞∑
j=n

Ijej(t)

)

=
∞∑
k=n

λkek(s)ek(t)

= KB(s, t)−
n−1∑
k=1

λkek(s)ek(t), for s, t ∈ [0, 1].

Note that the final line is achieved using the representation of KB given by (2.6).

The above theorem has an interesting conclusion, namely that there exist unbiased
polynomial approximants of Brownian motion for which the error process can be
independently estimated in an L2(P) sense. In particular, this theorem already has
numerical applications in the case when n = 2 and motivates the following definitions:

Definition 3.3. The standard Brownian parabola ıW is the unique quadratic
polynomial on [0, 1] with a root at 0 and satisfyingıW1 = W1 ,

∫ 1

0

ıWu du =

∫ 1

0

Wu du.

Definition 3.4. The standard Brownian arch Z is the process Z := W −ıW .
By Theorem 3.2, Z is the centered Gaussian process on [0, 1] with covariance function

KZ (s, t) = min(s, t)− st− 3st(1− s)(1− t), for s, t ∈ [0, 1].

Definition 3.5. The rescaled space-time Lévy area of Brownian motion over
an interval [s, t] with length h encodes the signed area of the associated bridge process,

Hs,t :=
1

h

∫ t

s

Ws,u −
u− s
h

Ws,t du.

Remark 3.6. Since e1(t) =
√

6 t(1 − t), we have that H0,1 corresponds to
√
6
6 I1

as defined in Theorem 2.2. Thus, Hs,t ∼ N
(
0, 1

12h
)

and Hs,t is independent of Ws,t .
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By applying the natural scaling of Brownian motion, one can define the Brownian
parabola and Brownian arch processes over any interval [s, t] with finite size h = t−s.
Whilst the Brownian arch can be viewed in a similar light to the Brownian bridge,
there are clear qualitative and quantitative differences in their covariance functions.
In particular, the Brownian arch has less variance at its midpoint compared to most
points in [s, t]

(
by which we mean that |{u ∈ [s, t] : Var(Zu) ≤ Var(Z 1

2 (s+t)
)}| < 1

2h
)
.

This is in contrast to the Brownian bridge, which has most variance at its midpoint.
In fact, the Brownian parabola gives a relatively uniform estimate of the original path.

 

Fig. 3.1. Variance profile of the standard Brownian arch.

Using these new definitions, we can study the high order integrals appearing in (3.2).

Theorem 3.7 (Conditional expectation of a non-trivial Brownian time integral).

E
ñ∫ t

s

W 2
s,u du

∣∣∣Ws,t , Hs,t

ô
=

1

3
hW 2

s,t + hWs,tHs,t +
6

5
hH2

s,t +
1

15
h2. (3.4)

Proof. By the natural Brownian scaling it is enough to prove the result on [0, 1].

Recall that W = ıW +Z where the parabola ıW is completely determined by (W1, H1)
and Z is independent of (W1, H1). This leads to a decomposition for the LHS of (3.4).

E
ñ∫ 1

0

W 2
u du

∣∣∣W1, H1

ô
= E
ñ∫ 1

0

ÄıWu + Zu
ä2

du
∣∣∣W1, H1

ô
= E
ñ∫ 1

0

ıW 2
u du+ 2

∫ 1

0

ıWuZu du+

∫ 1

0

Z2
u du

∣∣∣W1, H1

ô
=

∫ 1

0

ıW 2
u du+ 2

∫ 1

0

ıWu E [Zu] du+

∫ 1

0

E
[
Z2
u

]
du

=

∫ 1

0

(
uW1 + 6u(1− u)H1

)2
du+

∫ 1

0

u− u2 − 3u2(1− u)2 du.

The result now follows by evaluating the above integrals.

The above theorem has practical applications for SDE simulation as Ws,t and Hs,t are
independent Gaussian random variables and can be easily generated or approximated.
That said, we should first discuss how the iterated integrals within (3.2) are connected.
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Definition 3.8. The space-space-time Lévy area of Brownian motion over
an interval [s, t] is defined as

Ls,t :=
1

6

Ç∫ t

s

∫ u

s

∫ v

s

◦ dWr ◦ dWv du− 2

∫ t

s

∫ u

s

∫ v

s

◦ dWr dv ◦ dWu

+

∫ t

s

∫ u

s

∫ v

s

dr ◦ dWv ◦ dWu

å
.

We can interpret Ls,t as an area between the processes {Ws,u}u∈[s,t] and {Hs,u}u∈[s,t].
Moreover, rough path theory provides an algebraic structure (called the log-signature)
that relates (Ws,t, Hs,t, Ls,t) to the iterated integrals of space-time Brownian motion
and ultimately to SDE solutions via the log-ODE method (see [23] for an overview).
For our purposes, it is enough to give formulae relating these Lévy areas to integrals.

Theorem 3.9. Let Hs,t and Ls,t denote the Lévy areas of Brownian motion given
by definitions 3.5 and 3.8 respectively. Then the following integral relationships hold,∫ t

s

∫ u

s

◦ dWv du =
1

2
hWs,t + hHs,t ,∫ t

s

∫ u

s

dv ◦ dWu =
1

2
hWs,t − hHs,t ,∫ t

s

∫ u

s

∫ v

s

◦ dWr ◦ dWv du =
1

6
hW 2

s,t +
1

2
hWs,tHs,t + Ls,t ,∫ t

s

∫ u

s

∫ v

s

◦ dWr dv ◦ dWu =
1

6
hW 2

s,t − 2Ls,t ,∫ t

s

∫ u

s

∫ v

s

dr ◦ dWv ◦ dWu =
1

6
hW 2

s,t −
1

2
hWs,tHs,t + Ls,t .

Proof. The result follows from numerous applications of integration by parts.

We can now present the new unbiased estimator for third order iterated integrals of
Brownian motion and time. The proposed estimator is fast to compute and the best
L2(P) approximation of these integrals that is measurable with respect to (Ws,t, Hs,t).

Theorem 3.10 (Conditional moments of Brownian space-space-time Lévy area).

E
[
Ls,t

∣∣Ws,t , Hs,t

]
=

1

30
h2 +

3

5
hH2

s,t , (3.5)

Var
(
Ls,t

∣∣Ws,t , Hs,t

)
=

11

25200
h4 + h3

Å
1

720
W 2
s,t +

1

700
H2
s,t

ã
. (3.6)

Proof. The expectation (3.5) is simply a consequence of Theorems 3.7 and 3.9.
Without loss of generality, we will consider the above conditional variance on [0, 1].

Since ıW is determined using the increment W1 and space-time Lévy area H1, we have

Var

Ç∫ 1

0

W 2
u du

∣∣∣W1, H1

å
= Var

Ç∫ 1

0

ıW 2
u du+ 2

∫ 1

0

ıWuZu du+

∫ 1

0

Z2
u du

∣∣∣W1, H1

å
= 4 Var

Ç∫ 1

0

ıWuZu du
∣∣∣W1, H1

å
+ Var

Ç∫ 1

0

Z2
u du

å
+ 4 cov

Ç∫ 1

0

ıWu Zu du,

∫ 1

0

Z2
u du

∣∣∣W1 , H1

å
.
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Recall Z =
∞∑
k=2

Ikek where {Ik} are independent centered Gaussian random variables.

In particular, this means that Z and −Z have the same law. Therefore, we have that

E
ñ∫ 1

0

ıWuZu du
∣∣∣W1 , H1

ô
= 0,

cov

Ç∫ 1

0

ıWuZu du,

∫ 1

0

Z2
u du

∣∣∣W1 , H1

å
= 0.

The remaining two terms were resolved with assistance from Wolfram Mathematica.

Var

Ç∫ 1

0

ıWuZu du
∣∣∣W1 , H1

å
=

∫ 1

0

∫ 1

0

ıWu
ıWv E [ZuZv |W1 , H1] du dv

=

∫ 1

0

∫ 1

0

ıWu
ıWv

(
min(u, v)− uv − 3uv(1− u)(1− v)

)
du dv

= 2

∫ 1

0

ıWv

∫ v

0

uıWu du dv −
Ç∫ 1

0

uıWu du

å2

− 3

Ç∫ 1

0

u(1− u)ıWu du

å2

= 2

Å
1

15
W 2

1 +
13

60
W1H1 +

13

70
H2

1

ã
−
Å

1

3
W1 +

1

2
H1

ã2
− 3

Å
1

12
W1 +

1

5
H1

ã2
=

1

720
W 2

1 +
1

700
H2

1 .

Var

Ç∫ 1

0

Z2
u du

å
= E

[Ç∫ 1

0

Z2
u du

å2
]
−
Ç
E
ñ∫ 1

0

Z2
u du

ôå2

=

∫ 1

0

∫ 1

0

E
[
Z2
uZ

2
v

]
du dv −

Ç
E
ñ∫ 1

0

Z2
u du

ôå2

=

∫ 1

0

∫ 1

0

E
[
Z2
u

]
E
[
Z2
v

]
+ 2
(
E[ZuZv]

)2
du dv −

Ç
E
ñ∫ 1

0

Z2
u du

ôå2

= 4

∫ 1

0

∫ v

0

(
u− uv − 3uv(1− u)(1− v)

)2
du dv

=
11

6300
.

By Theorem 3.9, the above gives an explicit formula for the conditional variance (3.6).

Var
(
L1

∣∣W1 , H1

)
= Var

Ç
1

2

∫ 1

0

W 2
u du

∣∣∣W1 , H1

å
=

11

25200
+

1

720
W 2

1 +
1

700
H2

1 .

By the natural Brownian scaling, the result on the interval [s, t] directly follows.

Remark 3.11. The conditional variance (3.6) allows one to estimate local L2(P)
errors for certain numerical methods and thus may be useful when choosing step sizes.

Therefore in order to propagate a numerical solution of (3.1) over an interval [s, t],
one can generate (Ws,t, Hs,t) exactly and then approximate Ls,t using Theorem 3.10.
However, there are many numerical methods that could be used to solve a given SDE.
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3.1. Examples of ODE methods. We will consider the following two methods:

Definition 3.12 (High order log-ODE method). For a fixed number of steps N
we can construct a numerical solution {Yk}0≤k≤N of (3.1) by setting Y0 := ξ and for
each k ∈ [0 . . N − 1], defining Yk+1 to be the solution at u = 1 of the following ODE:

dz

du
= f0(z)h+ f1(z)Wtk,tk+1

+ [f1, f0](z) · hHtk,tk+1
(3.7)

+ [f1, [f1, f0]](z) · E
[
Ltk,tk+1

∣∣Wtk,tk+1
, Htk,tk+1

]
,

z0 = Yk ,

where h := T
N , tk := kh and [ · , · ] denotes the standard Lie bracket of vector fields.

Definition 3.13 (The parabola-ODE method). For a fixed number of steps N
we can construct a numerical solution {Yk}0≤k≤N of (3.1) by setting Y0 := ξ and for
each k ∈ [0 . . N − 1], defining Yk+1 to be the solution at u = 1 of the following ODE:

dz

du
= f0(z)h+ f1(z)

(
Wtk,tk+1

+ (6− 12u)Htk,tk+1

)
, (3.8)

z0 = Yk ,

where h := T
N and tk := kh.

In both numerical methods the true solution y at time tk can be approximated by Yk.
Whilst there are different ways of interpolating between the successive approximations
Yk and Yk+1, for this paper we will simply interpolate between such points linearly.
To analyse the above methods, we shall first note the key differences between them.
The first important distinction between the two methods is a purely practical one.
Although both of these methods involve computing a numerical solution of an ODE,
the parabola method does not require one to explicitly resolve vector field derivatives.
The second significant difference can be seen in the Taylor expansions of the methods.

Theorem 3.14. Let Y log be the one-step approximation defined by the log-ODE
method on the interval [s, t] with initial value Y log

0 = ys. Then for sufficiently small h

Y log
1 = yt − [f1, [f1, f0]](ys)

(
Ls,t − E

[
Ls,t

∣∣Ws,t , Hs,t

])
+O(h

5
2 ). (3.9)

Similarly, let Y para denote the one-step approximation given by the parabola-ODE
method on the interval [s, t] with the same initial value. Then for sufficiently small h

Y para
1 = yt − [f1, [f1, f0]](ys)

Å
Ls,t −

3

5
H2
s,t

ã
+O(h

5
2 ). (3.10)

Note that O(h
5
2 ) denotes terms which can be estimated in an L2(P) sense as in (3.3).

Proof. In order to derive (3.9), we must compute the Taylor expansion of (3.7).
Let F denote the vector field defined in (3.7) that was constructed from f0 and f1.
Then F is smooth, and it follows from the classical Taylor’s theorem for ODEs that

Y log
1 = ys + F (ys) +

1

2
F ′(ys)F (ys) +

1

6
F ′′(ys)(F (ys), F (ys)) +

1

6
F ′(ys)F

′(ys)F (ys)

+
1

24
F ′(ys)F

′(ys)F
′(ys)F (ys) +

1

24
F ′(ys)F

′′(ys)(F (ys), F (ys))

+
1

8
F ′′(ys)(F

′(ys)F (ys), F (ys)) +
1

24
F ′′′(ys)(F (ys), F (ys), F (ys))

+
1

24

∫ 1

0

(1− u)4
d5

du5
(
Y log

)
(u) du.
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We shall first consider the remainder term, which can be directly estimated as follows:∥∥∥∥∥
∫ 1

0

(1− u)4
d5

du5
(
Y log

)
(u) du

∥∥∥∥∥
L2(P)

≤ sup
u∈[0,1]

∥∥∥∥ d5du5 (Y log(u)
)∥∥∥∥
L2(P)

.

One can define the degree of each term in the above Taylor expansion by counting the
number of times functions from {F, F ′, F ′′, · · · } appear. Therefore, after expanding
the fifth derivative of Y log we can see that the remainder term has a degree of five.
Since the largest component of F is f1(·)Ws,t, both F and its derivatives are O(h

1
2 ).

Hence the remainder term in the above Taylor expansion will be O(h
5
2 ) as in (3.3).

Moreover, the only terms of degree four that are not O(h
5
2 ) are those involving W 4

s,t.
It is now enough to analyse just the terms appearing in the first line of the expansion.
By substituting the formula for F given by (3.7) into the first line and then rearranging

the resulting terms, we can obtain a Taylor expansion for Y log
1 that resembles (3.2) as

F (ys) = f0(ys)h+ f1(ys)Ws,t +
(
f ′0(ys)f1(ys)− f ′1(ys)f0(ys)

)
hHs,t

+
(
f ′0(ys)f

′
1(ys)f1(ys) + f ′′0 (ys)(f1(ys), f1(ys))

− 2f ′1(ys)f
′
0(ys)f1(ys)− 2f ′′1 (ys)(f0(ys), f1(ys))

+ f ′1(ys)f
′
1(ys)f0(ys) + f ′′1 (ys)(f1(ys), f0(ys))

)Å 1

30
h2 +

3

5
hH2

s,t

ã
,

F ′(ys)F (ys) = f ′1(ys)f1(ys)W
2
s,t +

(
f ′0(ys)f1(ys) + f ′1(ys)f0(ys)

)
hWs,t

+
(
f ′0(ys)f

′
1(ys)f1(ys)− f ′1(ys)f

′
1(ys)f0(ys)

+ f ′′0 (ys)(f1(ys), f1(ys))− f ′′1 (ys)(f0(ys), f1(ys))
)
hWs,tHs,t

+ f ′0(ys)f0(ys)h
2 +O

(
h

5
2

)
,

F ′(ys)F
′(ys)F (ys) = f ′1(ys)f

′
1(ys)f1(ys)W

3
s,t + f ′0(ys)f

′
1(ys)f1(ys)hW

2
s,t

+
(
f ′1(ys)f

′
0(ys)f1(ys) + f ′1(ys)f

′
1(ys)f0(ys)

)
hW 2

s,t +O
(
h

5
2

)
,

F ′′(ys)
(
F (ys), F (ys)

)
= f ′′1 (ys)(f1(ys), f1(ys))W

3
s,t + 2f ′′1 (ys)(f0(ys), f1(ys))hW

2
s,t

+ f ′′0 (ys)(f1(ys), f1(ys))hW
2
s,t +O

(
h

5
2

)
.

Therefore, by summing the above formulae for F (and its derivatives) we can derive an

expansion of Y log
1 in terms of f0, f1 and

(
h,Ws,t, Hs,t

)
that has an O

(
h

5
2

)
remainder.

By comparing this with the stochastic Taylor expansion (3.2), the result (3.9) follows.

Arguing (3.10) is fairly straightforward and does not require extensive computations.

Using the substitution ÙYu = z 1
h (u−s)

for u ∈ [s, t], the ODE (3.8) can be rewritten as

dÙYu = f0
(ÙYu)du+ f1

(ÙYu)dıWu , (3.11)ÙYs = ys ,

where ıW denotes the Brownian parabola defined by (Ws,t, Hs,t) on the interval [s, t].

By emulating the derivation of the Stratonovich-Taylor expansion (3.2), it is possible
to Taylor expand (3.11) in the same fashion. The only difference is that Stratonovich

integrals with respect to W are replaced with Riemann-Stieltjes integrals against ıW .
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In particular, by the change-of-variable formula for ODEs (exercise 3.17) given in [24],
we see that the remainder term of such a Taylor expansion will have the below form:ÛR =

∑
i1,··· ,in∈{0,1}

i1+···+in=2n−4

∫
s<r1<···<rn<t

fi1,··· ,in
(ÙYr1)− fi1,··· ,in(ÙYs) dıW i1

r1 · · · dıW in
rn ,

where we have identified an additional “zero” coordinate of ıW with time, ıW 0
t := t,

and for each index (i1, · · · in), the function fi1,··· ,in : Rd → Rd consists of finitely many
compositions of f0, f1 along with their derivatives (and thus is Lipschitz continuous).

Therefore each term in the expansion of (3.11) can be estimated in L2(P) by applying

the natural Brownian scaling to the corresponding iterated integral of ıW with time.
As before, the largest differences are the O(h2) terms involving third order integrals.
Fortunately, iterated integrals of the Brownian parabola can be computed explicitly:∫ t

s

∫ u

s

∫ v

s

◦ dWr ◦ dWv du−
∫ t

s

∫ u

s

∫ v

s

dıWr dıWv du = Ls,t −
3

5
H2
s,t .

The result (3.10) is now a direct consequence of Theorem 3.9 along with the above.

Theorem 3.14 shows that both methods give a one-step approximation error of O(h2).
This means that the log-ODE and parabola-ODE methods are both locally high order;
however there is a significant difference in how these methods propagate local errors.
The reason is that theO(h2) components of the log-ODE local errors give a martingale,
whilst the O(h2) part for each parabola-ODE local error has non-zero expectation.
Thus the log-ODE method is globally high order whilst the parabola method is not.
However, since the parabola-ODE method is straightforward to implement and locally
high order, one could expect it to perform well compared to other low order methods.
In the numerical example, we shall see that the parabola method has the same order
of convergence as the piecewise linear approach but gives significantly smaller errors.
To conclude this section, we will present the orders of convergence for both methods.

Definition 3.15 (Strong convergence). A numerical solution Y for (3.1) is said
to converge in a strong sense with order α if there exists a constant C > 0 such that

‖YN − yT ‖L2(P) ≤ Ch
α,

for all sufficiently small step sizes h = T
N .

Definition 3.16 (Weak convergence). A numerical solution Y for (3.1) is said
to converge in a weak sense with order β if for any polynomial p there exists Cp > 0
such that ∣∣E [ p(YN )]− E [ p(yT )]

∣∣ ≤ Cp hβ ,
for all sufficiently small step sizes h = T

N .

Theorem 3.17 (Orders of convergence). For a general SDE (3.1), the log-ODE
method converges in a strong sense with order 1.5 and a weak sense with order 2.0.
The parabola-ODE method converges in both a strong and weak sense with order 1.0.

Proof. Note that Theorem 3.14 establishes the Taylor expansions of both methods.
The strong convergence can then be shown as in the proof of Theorem 11.5.1 in [22].
Moreover, the proof of Theorem 11.5.1 also provides the orders of strong convergence.
Similarly weak convergence follows directly from the Taylor expansions (3.9) & (3.10),
and the rate of convergence can be shown as in the proof of Theorem 14.5.2 in [22].
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4. A numerical example. We shall demonstrate the ideas presented so far
using various discretizations of Inhomogeneous Geometric Brownian Motion (IGBM)

dyt = a(b− yt) dt+ σyt dWt , (4.1)

where a ≥ 0 and b ∈ R are the mean reversion parameters and σ ≥ 0 is the volatility.
As the vector fields are smooth, the SDE (4.1) can be expressed in Stratonovich form:

dyt = ã(b̃− yt) dt+ σyt ◦ dWt , (4.2)

where ã := a+ 1
2σ

2 and b̃ := 2ab
2a+σ2 denote the “adjusted” mean reversion parameters.

IGBM is an example of a one-factor short rate model and has seen recent attention
in the mathematical finance literature as an alternative to popular models [16, 17].
IGBM is also one of the simplest SDEs that has no known method of exact simulation.
We will investigate the strong and weak convergence rates of the following methods:

1. Log-ODE method (see definition 3.12)

Since the vector fields of (4.2) give constant Lie brackets, this method becomes

Y log
k+1 := Y log

k e−ãh+σWtk,tk+1

+ abh

Å
1− σHtk,tk+1

+ σ2

Å
3

5
H2
tk,tk+1

+
1

30
h

ãã
e−ãh+σWtk,tk+1 − 1

−ãh+ σWtk,tk+1

,

Y log
0 := y0 .

2. Parabola-ODE method (see definition 3.13)

As the SDE (4.2) is quite analytically tractable, this method is expressible as

Y para
k+1 := e−ãh+σWtk,tk+1

Ç
Y para
k + ab

∫ tk+1

tk

eã(s−tk)−σÙWtk,s ds

å
,

Y para
0 := y0 .

The integral above will be computed by 3-point Gauss-Legendre quadrature.

3. Piecewise linear method (see [25] for definition and proof of convergence)

Just as above, this method can be simplified to give a straightforward formula.

Y lin
k+1 := Y lin

k e−ãh+σWtk,tk+1 + abh
e−ãh+σWtk,tk+1 − 1

−ãh+ σWtk,tk+1

,

Y lin
0 := y0 .

4. Milstein method (see section 6 of [2] and section 10.3 of [22] for overviews)

For this method, we shall take the positive part to guarantee non-negativity.

Y mil
k+1 :=

(
Y mil
k + ã(b̃− Y mil

k )h+ σ Y mil
k Wtk,tk+1

+
1

2
σ2 Y mil

k W 2
tk,tk+1

)+
,

Y mil
0 := y0 .

5. Euler-Maruyama method (see sections 4, 5 of [2] and section 10.2 of [22])

Just as above, we take the positive part of each step to ensure non-negativity.

Y eul
k+1 :=

(
Y eul
k + a(b− Y eul

k )h+ σ Y eul
k Wtk,tk+1

)+
,

Y eul
0 := y0 .
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Note that the explicit formula for the log-ODE method comes from the Lie brackets:

[f1, f0](y) = f ′0(y)f1(y)− f ′1(y)f0(y)

= −ãσy − ãσ(b̃− y)

= −abσ,

[f1, [f1, f0]](y) = f ′0(y)f ′1(y)f1(y)− 2f ′1(y)f ′0(y)f1(y) + f ′1(y)f ′1(y)f0(y)

+ f ′′0 (y)(f1(y), f1(y))− 2f ′′1 (y)(f0(y), f1(y)) + f ′′1 (y)(f1(y), f0(y))

= −ãσ2y + 2ãσ2y + ãσ2(b̃− y)

= abσ2 ,

and the formula for the parabola-ODE method was derived using a change of variable.

The Euler-Maruyama and Milstein methods are included in the numerical experiment
as benchmarks to test how the proposed methods compare to well-known methods.
As before, we will be discretizing the SDE over a uniform partition with mesh size h.

 

Fig. 4.1. Log-ODE sample paths of IGBM where a = 0.1, b = 0.04, σ = 0.6 and y0 = 0.06.
The above sample paths experience larger fluctuations the further away from zero they are.

Below is the definition of the error estimators used to analyse the numerical methods.

Definition 4.1 (Strong and weak error estimators). For each N ≥ 1, let YN
denote a numerical solution of (4.1) computed at time T using a fixed step size h = T

N .
We can define the following estimators for quantifying strong and weak convergence:

SN :=

…
E
[Ä
YN − Y fineT

ä2 ]
, (4.3)

EN :=
∣∣∣E[(YN − b)+]− E

[(
Y fineT − b

)+]∣∣∣ , (4.4)

where the above expectations are approximated by standard Monte-Carlo simulation
and Y fineT is the numerical solution of (4.1) obtained at time T using the log-ODE
method with a “ fine” step size of min

(
h
10 ,

T
1000

)
. The fine step size is chosen so that

the L2(P) error between Y fineT and the true solution y is negligible compared to SN .

Note that YN and Y fineT are both computed with respect to the same Brownian paths.
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In this numerical example, we shall use the same parameter values as in [16], namely
a = 0.1, b = 0.04, σ = 0.6 and y0 = 0.06. We will also fix the time horizon at T = 5.

We will now present our results for the numerical experiment that is described above.
(Code for this example can be found at github.com/james-m-foster/igbm-simulation)

 

Fig. 4.2. SN computed with 100,000 sample paths as a function of step size h = T
N

.

From the above graph we see that the log-ODE method is by far the most accurate.
This is epitomized by the fact that the numerical error produced by 100 steps of the
log-ODE method is comparable to the error of the parabola method with 1000 steps.
In addition, whilst there are three methods that share the same order of convergence
it is evident there are magnitudes of difference between their respective accuracies.
For example, the parabola method is seven times more accurate than piecewise linear.
As one might expect, the Euler-Maruyama and Milstein schemes both perform poorly.

Nevertheless, in order to truly measure the performance of these numerical methods,
we should consider the computational costs required for achieving a specified accuracy.

Table 4.1
Estimated simulation times for computing 100,000 sample paths that achieve a
given accuracy using a single-threaded C++ program on a desktop computer.

Log-ODE Parabola Linear Milstein Euler

Estimated time to achieve 0.179 0.405 1.47 15.4 0.437

an accuracy of SN = 10−4 (s) (s) (s) (s) (days)

Estimated time to achieve 0.827 3.90 14.9 157 61.2

an accuracy of SN = 10−5 (s) (s) (s) (s) (days)

The above times are estimated by the graph shown in Fig 4.2 and the following table:

https://github.com/james-m-foster/igbm-simulation
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Table 4.2
Simulation times for computing 100,000 sample paths with 100 steps per path

using a single-threaded C++ program on a desktop computer.

Log-ODE Parabola Linear Milstein Euler

Computation time (s) 2.44 2.95 1.48 1.18 1.17

Finally, we will investigate the rates of weak convergence for these numerical methods.

 

Fig. 4.3. EN computed with 500,000 sample paths as a function of step size h = T
N

.

The above graph demonstrates that the log-ODE method is especially well-suited for
weak approximation as it achieves a second order convergence rate in this example.
Surprisingly, the middle three methods exhibit almost identical convergence profiles.
As before, we can estimate the computational time needed to achieve given accuracies.

Table 4.3
Estimated simulation times for computing 100,000 sample paths that achieve a
given accuracy using a single-threaded C++ program on a desktop computer.

Log-ODE Parabola Linear Milstein Euler

Estimated time to achieve < 0.240 1.69 2.15 2.78 25.5

an accuracy of EN = 10−5 (s) (s) (s) (s) (s)

Estimated time to achieve 0.240 16.9 21.6 24.1 252

an accuracy of EN = 10−6 (s) (s) (s) (s) (s)

We expect the log-ODE and parabola methods to have about twice the computational
cost as the other methods because each step requires generating two random variables.
Table 4.2 confirms this and thus sampling may be a bottleneck for these methods.
So overall, the numerical evidence supports our claim that the high order log-ODE
method is currently a state-of-the-art method for the pathwise discretization of IGBM.
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5. Conclusion. There are primarily three new results established in this paper:

• An efficient strong polynomial approximation of Brownian motion

The main result allows one to construct a “smoother” Brownian motion as a
finite sum of (-1, -1)-Jacobi polynomials with independent Gaussian weights.
Moreover, it was shown that the approximation is optimal in a weighted L2(P)
sense and the surrounding noise is an independent centered Gaussian process.

• Unbiased approximation of third order Brownian iterated integrals

Iterated integrals of Brownian motion and time are important objects in the
study of SDEs as they appear naturally within stochastic Taylor expansions.
We have derived the L2(P)-optimal estimator for a class of such integrals that
is measurable with respect to the path’s increment and space-time Lévy area.

• Simulation of Inhomogeneous Geometric Brownian Motion (IGBM)

IGBM is a mean-reverting short rate model used in mathematical finance and
also one of the simplest SDEs that has no known method of exact simulation.
By incorporating the new iterated integral estimator into the log-ODE method
we have developed a high order state-of-the-art numerical method for IGBM.

Furthermore, the results of this paper naturally lead to the following open questions:

• Which weight functions give “explicit eigenfunctions” for Brownian motion?
(For example, we could try w(x) = x or w(x) = 1

x with KW (s, t) = min(s, t))

• Is it possible to generalize the main theorem to fractional Brownian motion?

• What are the most efficient Runge-Kutta methods for general one-dimensional
SDEs that correctly use the new estimator for third order iterated integrals?

• Is this polynomial expansion optimal for approximating Lévy area? (see [13])

• Which conditional moments can be computed for a given stochastic integral?

• How might we construct a piecewise linear path γ with the below properties?

1. γs = Ws , γt = Wt .

2.

∫ t

s

γs,u du =

∫ t

s

Ws,u du.

3.

∫ t

s

γ2s,u du = E
ñ∫ t

s

W 2
s,u du

∣∣∣ · · · ô.
• Would this method of construction lead to effective cubature paths? (see [26])

Given such a path, we can approximate (3.1) with a “piecewise linear” ODE.

dY

du
= f0(Y ) + f1(Y )

dγ

du
. (5.1)

(Along each piece of γ, we would discretize (5.1) using an appropriate solver)

• How effective is the above piecewise linear ODE method for simulating SDEs?

• Can we extend the approximations given in this paper to the SPDE setting?
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