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Abstract

We describe a spectrally-filtered discrete-in-time downscaling data assimilation al-
gorithm and prove, in the context of the two-dimensional Navier–Stokes equations,
that this algorithm works for a general class of interpolants, such as those based on
local spatial averages as well as point measurements of the velocity. Our algorithm is
based on the classical technique of inserting new observational data directly into the
dynamical model as it is being evolved over time, rather than nudging, and extends
previous results in which the observations were defined directly in terms of an orthog-
onal projection onto the large-scale (lower) Fourier modes. In particular, our analysis
does not require the interpolant to be represented by an orthogonal projection, but
requires only the interpolant to satisfy a natural approximation of the identity.

Keywords: Discrete-in-time data assimilation, Downscaling algorithm, two-dimensional
Navier-Stokes equations.
AMS subject classifications: 35Q30, 37C50, 76B75, 93C20.

1 Introduction

The goal of data assimilation is to optimally combine known information about the dynamics
of a solution with low-resolution observational measurements of that solution over time to
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create better and better approximations of the current state. While model error in the dy-
namics and measurement error in the observations are significant issues with practical data
assimilation, we consider here the error-free case in order to study the role played by spatial
filtering. In particular, even if the observations are error free, in certain geophysical models
they can contain high-frequency spillover and gravity waves which need to be controlled in
order for the data assimilation to perform well. Additional issues arise because commonly
used filtering techniques can lead to non-orthogonal interpolants. These issues are the fo-
cus of the current paper. Our results extend the work of Hayden, Olson and Titi [17] on
discrete-in-time data assimilation from the case where the low-resolution observations are
given by projection onto the low Fourier modes to both the first and second type of general
interpolant observables that appear in Azouani, Olson and Titi [3], see also Bessaih, Olson
and Titi [4]. To make this extension, we apply a spectral filter based on the Stokes operator
to the interpolant observables and call the new method spectrally-filtered discrete-in-time
downscaling data assimilation. It is worth noting that much of advances in the accuracy of
present day weather forecasting have come from better filtering techniques, see for example
Budd, Freitag and Nichols [5]. From this point of view, the analytic results presented here for
spectral filtering may be seen as a first step towards a rigorous analysis of more complicated
methods.

An alternative algorithm for discrete-in-time data assimilation based on nudging was
recently studied by Foias, Mondaini and Titi in [15]. In that work it was shown that nudging
works for interpolants of what is known by now as type-I, such as those which are based on
local coarse spatial scale volume elements measurements without any additional filtering—
the dissipation provided by the Navier–Stokes equations themselves is sufficient; however,
a similar treatment for type-II interpolant observables is missing. The algorithm studied
here is based on the classical technique of inserting the observational data directly into the
model as it is evolved forward in time, see for example Daley [10] and references therein.
When inserting the data directly into the model, the need for filtering becomes more evident.
Moreover, by developing a spectrally-filtered algorithm we are also able to handle type-II
interpolant observable. Although it is likely a similar technique could be applied to a nudging
algorithm to handle type-II interpolant observables, we do not pursue that line of analysis
here, but will be reported in future work.

The two-dimensional incompressible Navier–Stokes equations are given by

∂U

∂t
− ν∆U +∇P + (U · ∇)U = f, ∇ · U = 0. (1.1)

Following Constantin and Foias [9], Foias, Manley, Rosa and Temam [13], Robinson [19] and
Temam [20], and in order to simplifying our presentation and fix ideas, we consider flows
on the domain Ω = [0, L]2 equipped with periodic boundary conditions. Let V be the set
of all divergence-free L-periodic trigonometric polynomials with zero spatial averages, V be
the closure of V in H1(Ω,R2), V ∗ be the dual of V , and Pσ be the orthogonal projection
of L2(Ω;R2) onto H , where H is the closure of V in L2(Ω,R2). Define A : V → V ∗ and
B : V × V → V ∗ to be the unique continuous extensions for u, v ∈ V of the operators given
by

Au = −Pσ∆u and B(u, v) = Pσ(u · ∇v).
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Remark that in periodic case A = −∆, thus, the two-dimensional incompressible Navier–
Stokes equations may be written as

dU

dt
+ νAU +B(U, U) = f (1.2)

with initial condition U0 ∈ V , at time t = t0. Here ν > 0 is the kinematic viscosity, and the
body force f ∈ L∞([t0,∞);H) is taken to be divergence free, but possibly time dependent.

When the force is time independent, as shown in any of the aforementioned references,
equations (1.2) are well posed with unique regular solutions depending continuously on the
initial conditions and which exist for all time, t ≥ t0. The case when the force depends on
time is somewhat more delicate and we shall place further assumptions on f in Section 2, see
also Appendix A, to ensure the resulting solutions have enough regularity for the subsequent
analysis. In either case, we define the semi-process S as the solution operator that maps
initial conditions into their subsequent time evolution by S(t, t0;U0) = U(t) for all t ≥ t0.

We now describe the general interpolant observables to which our results will apply.
These interpolants are inspired by the modes, nodes and volume elements of Jones and
Titi [18], see also Foias and Titi [12], and are equivalent to the first and second types of
general interpolant observables that appear in [3], see also [4] and the general framework
presented in Cockburn, Jones and Titi [7]. In particular, we state

Definition 1.1. A linear operator Ih : V → L2 is said to be a type-I interpolant observable
if there exists c1 > 0 such that

‖U − IhU‖2L2 ≤ c1h
2‖U‖2 for all U ∈ V. (1.3)

A linear operator Ih : D(A) → L2 is said to be a type-II interpolant observable if

‖U − IhU‖2L2 ≤ c1h
2
(
‖U‖2 + h2|AU |2

)
for all U ∈ D(A). (1.4)

Here D(A) = H2(Ω) ∩ V is the domain of A viewed as an operator into L2. Specifically,
in terms of Fourier modes, let

H =

{
∑

k∈J

Ûke
ik·x : Ûk ∈ C2, Û∗

k = Û−k, k · Ûk = 0 and
∑

k∈J

|Ûk|2 < ∞
}
,

where

J =

{
2π

L
(n1, n2) : n = (n1, n2) ∈ Z

2\{(0, 0)}
}
.

For notational convenience assume Û0 = 0 even though this coefficient doesn’t enter into the
above characterization of H . We employ the notations

|U | = ‖U‖0, ‖U‖ = ‖U‖1 and |AU | = ‖U‖2

where
‖U‖2α = L2

∑

k∈J

|k|2α|Ûk|2 when U =
∑

k∈J

Ûke
ik·x. (1.5)
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Further define Vα = {U ∈ H : ‖U‖α < ∞}. Consequently D(A) = V2 and V = V1.
In Definition 1.1 we note that h is a length scale corresponding to the observation reso-

lution and c1 is a dimensionless constant. For example, suppose nodal measurements of the
velocity are given by (

U(x1), U(x2), . . . , U(xd)
)
,

where xi ∈ Ω have been chosen in such a way that

sup
x∈Ω

inf
{
‖x− xj‖ : j = 1, 2, . . . , d

}
≤ h.

Then

Ih(U)(x) =
d∑

j=1

U(xi)χ̃j(x) where χ̃j(x) = χj(x)−
1

|Ω|

∫

Ω

χj

with

χj(x) =
{
1 if ‖x− xj‖ < ‖x− xi‖ for all i 6= j
0 otherwise

is a type-II interpolant observable.
It is worth reflecting that the type-II interpolant observable described above naturally

results in a piecewise constant vector field which is discontinuous. Although Ih(U) ∈ L2

as required, the Fourier transform of the resulting vector field possesses a significant high-
frequency component due to the discontinuities. A similar interpolant was considered in [16]
for numerical simulations of a data-assimilation method based on nudging. Those compu-
tations show that the adverse effects of the high-frequency spill over which result from the
spatial discontinuities can be mitigated by appropriate convolution with a smoothing kernel.
The spectral filtering considered in this work also removes the high-frequency component in
spatial Fourier representation while enjoying additional approximation properties useful for
the analysis of the resulting data assimilation algorithm.

We now introduce the spectrally-filtered discrete-in-time data assimilation algorithm
which forms the focus of our study. Let Pλ : H → H be the orthogonal projection onto
the Fourier modes with wave numbers k such that |k|2 ≤ λ given by

PλU =
∑

|k|2≤λ

Ûke
ik·x.

and let Qλ = I − Pλ be the orthogonal complement of Pλ. Now, given λ > 0 and Ih define

J = PλPσIh and E = I − J. (1.6)

Note, although no additional orthogonality or regularity properties other than those
appearing in Definition 1.1 have been assumed on Ih, the above spectral filtering yields an
operator J which is nearly orthogonal and has a range contained in D(A). The downscaling
data assimilation algorithm studied in this paper may now be stated as

Definition 1.2. Let U be an exact solution of (1.2) which evolves according to dynamics
given by the semi-process S. Let tn = t0 + nδ be a sequence of times for which partial

4



observations of U are interpolated by Ih. Then the approximating solution u given by




u0 = JU(t0)

un+1 = ES(tn+1, tn; un) + JU(tn+1)

u(t) = S(t, tn; un) for t ∈ [tn, tn+1)

is what we shall call spectrally-filtered discrete-in-time downscaling data assimilation.

We stress that only the spectrally filtered low-resolution observations of the exact solution
represented by JU(tn) for tn ≤ t are used to construct the approximating solution u at
time t. Since we assume the dynamics governing the evolution of U to be known, then exact
knowledge of the initial condition U(t0) = U0 would, in theory, obviate the need for data
assimilation at subsequent times. Of course, knowing the exact dynamics and being able
to practically compute with them are two different things. Although not the focus of the
present research, the algorithm stated above may also be used to stabilize the growth of
numerical error. Putting such numerical considerations aside, we view the data assimilation
algorithm given in Definition 1.2 as a way of improving estimates of the unknown state of U
at time t by means of known dynamics and a time-series of low-resolution observations.

Intuitively, at each time tn+1 a new measurement is used to kick the approximating
solution towards the exact solution by constructing of an improved approximation of the
current state un+1 which may be seen as a combination of a prediction based on the previous
approximation and a correction based on the observation. This improved approximation
then serves as an initial condition from which to further evolve the approximating solution.
Since JU(tn+1) is supported on a finite number of Fourier modes, the regularity of un+1 is
determined by ES(tn+1, tn; un). For type-I interpolant observables our working assumptions
described after Proposition 2.2 in Section 1 shall imply that un+1 ∈ V and for type-II that
un+1 ∈ D(A).

Although we have taken the sequence of observation times tn to be equally spaced, intu-
itively one might imagine for a suitably small value of δ that it would be sufficient for

0 < tn+1 − tn ≤ δ, with tn → ∞, as n → ∞. (1.7)

Our analysis, however, makes use of a minimum distance between tn+1 and tn as well as the
maximum. Measurements need to be inserted frequently enough to overcome the tendency
for two nearby solutions to drift apart, while at the same time the possible lack of orthog-
onality in our general interpolant observables means measurements should not be inserted
too frequently. Specifically, we need to have enough time to elapse between each insertion to
allow enough time for the use of the dynamics of the equation, i.e. integrating the Navier-
Stokes equations for long enough time to correct the high modes. Our algorithm consists of
two steps: Step 1. Inserting the coarse spatial scale measurements. Step 2. Integrating the
Navier-Stokes equations for short time, but not too short, to recover and correct the missing
high modes, i.e. the fine spatial scales of the solutions. Preliminary numerical simulations
further indicate this requirement is likely physical and not merely a technical condition used
by our analysis. Given times tn that satisfy (1.7) it would be straightforward to construct a
subsequence of observations t′n such that δ/2 < t′n+1 − t′n ≤ 2δ and obtain results similar to
the ones presented here. We leave such a refinement to the reader.
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Note that the algorithm described above reduces to the discrete data assimilation method
studied in [17] by taking Ih = Pλ. In particular, when the interpolant observable itself is
given by an orthogonal projection onto the large-scale Fourier modes. In this work Ih can
by any interpolant operator satisfying Definition 1.1. Carefully adjusting the relationship
between h and λ then allows us to prove our main result, stated as

Theorem 1.3. Let U be a solution to the two-dimensional incompressible Navier–Stokes
equations (1.2) and u(t), for t ≥ t0 be the process given by Definition 1.2. Then, for every
δ > 0 there exists h > 0 and λ > 0 depending only on c1, f , ν such that

|u(t)− U(t)| → 0, exponentially in time, as t → ∞.

Here c1 is the constant in Definition 1.1 given by the general interpolant observables.

Since we have assumed the observational measurements to be noise-free and that the
exact solution evolves according to known dynamics, it is natural to obtain a result in which
the difference between the exact solution U and the approximation u converges to zero over
time. We further remark that if by chance u(tn) = U(tn) at any of the data assimilation
steps, then u(t) = U(t) for all t ≥ tn. In particular, if somehow U0 is known exactly and we
take u0 = U0 as the first step of Definition 1.2, then u(t) = U(t) for all t ≥ t0.

This paper is organized as follows. In section 2 we set our notation, recall some facts about
the Navier–Stokes equations and prove some preliminary results regarding the spectrally-
filtered interpolant observables that will be used in our subsequent analysis. Section 3 proves
our main result for type-I interpolant observables while section 4 treats the case of type-II
interpolant observables. We finish with some concluding remarks concerning the dependency
of h and λ on δ and the other physical parameters in the system.

2 Preliminaries

We begin by recalling some inequalities. Writing the smallest eigenvalue of the Stokes oper-
ator A as λ1 = (2π/L)2 we have the Poincaré inequalities

λ1|U |2 ≤ ‖U‖2 for U ∈ V (2.1)

and

λ2
1|U |2 ≤ λ1‖U‖2 ≤ |AU |2 for U ∈ D(A). (2.2)

An advantage of using the projection Pλ in our data assimilation algorithm, rather than a
different type of spatial filtering, is that this directly leads to improved Poincaré inequalities
and reverse inequalities which are, respectively, given by

λ|QλU |2 ≤ ‖QλU‖2 and λ2|QλU |2 ≤ λ‖QλU‖2 ≤ |AQλU |2 (2.3)

and

‖PλU‖2 ≤ λ|PλU |2 and |APλU |2 ≤ λ2|PλU |2. (2.4)
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All of the inequalities given in (2.1), (2.2), (2.3) and (2.4) may easily be verified via Fourier
series. We also recall Agmon’s inequality [1] (see also [9]) as

‖U‖L∞ ≤ C|U |1/2|AU |1/2. (2.5)

Here C is a dimensionless constant depending only on the domain Ω.
As mentioned in the introduction, the spectrally filtered interpolation operator J given

by (1.6) possesses approximate orthogonality and regularity properties that the original
interpolant observable Ih may fail to have. We summarize these properties in

Proposition 2.1. Let c1 be the dimensionless constant appearing in Definition 1.1. For
type-I interpolant observables setting ε = c1λh

2 yields

|EU |2 ≤ λ−1(1 + ε)‖U‖2 and ‖EU‖2 ≤ (1 + ε)‖U‖2, for every U ∈ V.

For type-II interpolant observables setting ε = c1λ
−1
1 λ2h2(1 + λ1h

2) yields

|EU |2 ≤ (λλ1)
−1(1 + ε)|AU |2, ‖EU‖2 ≤ λ−1

1 (1 + ε)|AU |2

and
|AEU |2 ≤ (1 + ε)|AU |2 for every U ∈ D(A).

Proof of Proposition 2.1. Estimate |EU | for type-I interpolant observables as

|EU |2 = |U − JU |2 = |U − PλU + PλU − PλPσIhU |2
≤ |QλU |2 + |Pλ(U − PσIhU)|2 ≤ λ−1‖U‖2 + |U − PσIhU |2

= λ−1‖U‖2 + |Pσ(U − IhU)|2 ≤ λ−1‖U‖2 + ‖U − IhU‖2L2

≤ λ−1‖U‖2 + c1h
2‖U‖2 =

(
λ−1 + c1h

2
)
‖U‖2.

From the definition of ε it follows that

|EU |2 ≤ λ−1
(
1 + ε

)
‖U‖2. (2.6)

Similarly bound ‖EU‖ as

‖EU‖2 = ‖U − JU‖2 = ‖QλU‖2 + ‖Pλ(U − PσIhU)‖2
≤ ‖U‖2 + λ|U − PσIhU |2 ≤ ‖U‖2 + λc1h

2‖U‖2 ≤ (1 + ε)‖U‖2.

Now, estimate |EU | for type-II interpolant observables as

|EU |2 = |U − PλPσIhU |2 = |U − PλU + PλU − PλPσIhU |2
= |U − PλU |2 + |PλPσ(U − IhU)|2 ≤ |QλU |2 + ‖U − IhU‖2L2

≤ |QλU |2 + c1h
2
(
‖U‖2 + h2|AU |2

)

≤
(
1

λ
+ c1h

2

)
‖U‖2 + c1h

4|AU |2

≤
[
1

λ1

(
1

λ
+ c1h

2

)
+ c1h

4

]
|AU |2.

(2.7)
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Setting ε = c1λ
−1
1 λ2h2(1 + λ1h

2) yields that

|EU |2 ≤ (λλ1)
−1(1 + ε)|AU |2.

Next, estimate ‖EU‖ as

‖EU‖2 = ‖U − PλPσIhU‖2 = ‖U − PλU + PλU − PλPσIhU‖2
= ‖U − PλU‖2 + ‖PλPσ(U − IhU)‖2

= ‖QλU‖2 + λ|Pσ(U − IhU)|2
≤ ‖QλU‖2 + λ‖U − IhU‖2L2

≤ λ−1|AU |2 + c1λh
2
(
‖U‖2 + h2|AU |2

)

≤ λ−1|AU |2 + c1λh
2
(
λ−1
1 |AU |2 + h2|AU |2

)

≤
(
λ−1 + c1λ

−1
1 λh2(1 + λ1h

2)
)
|AU |2

≤ λ−1
1

(
1 + c1λh

2(1 + λ1h
2)
)
|AU |2 ≤ λ−1

1 (1 + ε)|AU |2,

(2.8)

and finally |AEU | as

|AEU |2 = |QλAU |2 + |APλ(U − PσIhU)|2
≤ |AU |2 + λ2|Pσ(U − IhU)|2
≤ |AU |2 + λ2‖U − IhU‖2L2

≤ |AU |2 + c1λ
2h2

(
‖U‖2 + h2|AU |2

)

≤
(
1 + c1λ

−1
1 λ2h2(1 + λ1h

2)
)
|AU |2 = (1 + ε)|AU |2.

(2.9)

This completes the proof of the proposition.

Our analysis will make use of a priori bounds on the solution U of (1.2). If f ∈ H is
time independent, such bounds can be inferred from bounds on the global attractor. For
example, Propositions 12.2 and 12.4 in Robinson [19] may be stated as

Proposition 2.2. If f ∈ H is time independent, then there are absorbing sets in H, V and
D(A) of radiuses ρH , ρV and ρA, respectively, depending only on |f |, Ω and ν such that for
every U0 ∈ H there is a time tA depending only on |U0| for which

|U(t)| ≤ ρH , ‖U(t)‖ ≤ ρV and |AU(t)| ≤ ρA for all t ≥ tA. (2.10)

Moreover, ∫ t+δ

t

|AU |2 ≤
(1
ν
+

δλ1

2

)
ρ2V for all t ≥ tA. (2.11)

Similar bounds may be found in Temam [20] and Constantin and Foias [9]. The best estimate
of ρA to date appears in [14]. Before considering the case when f depends on time, we further
note when f ∈ V is time independent that the bounds in (2.10) are finite for t > t0. Moreover,
(2.11) is finite and ∫ t+δ

t

‖AU‖2 < ∞ for all t ≥ t0. (2.12)
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We remark that estimate (2.12) follows as a particular case of the proof presented in Appendix
A for the time-dependent forcing term, see discussion below.

When f ∈ L∞([t0,∞), H) depends on time, the resulting solution U does not auto-
matically satisfy the ρA bound in (2.10) nor the finiteness condition (2.12). In the case of
type-I interpolant observables the remaining bounds given by ρH and ρV are sufficient for
our analysis. However, for type-II interpolant observables we need ρA as well as the finite-
ness condition (2.12). These bounds may be obtained in a number of different ways. For
example, one could assume that f ∈ L∞([t0,∞), V ) and df/dt ∈ L∞([t0,∞), V ∗). For details
see Appendix A.

Our analysis shall be made under the working assumption that ρH , ρV and ρA are known
when needed and that the unknown initial condition U0 in (1.2) comes from a long-time
evolution prior to time t0. Thus, we assume t0 ≥ tA and in particular that the bounds
(2.10), (2.11) and (2.12) hold, in fact, for t ≥ t0 regardless of whether f depends on time
or not. For other initial conditions we further suppose that the norms and time integrals
appearing in all the above bounds are at least finite when t > t0. We now state a standard
result concerning the finite-time continuous dependence on initial conditions for solutions to
the two-dimensional incompressible Navier-Stokes equations.

Theorem 2.3. Under the working assumptions given above, there exists β > 0 depending
only on |f |, L and ν such that the free-running solution satisfies

|U(t)− S(t, t∗; u∗)|2 ≤ eβ(t−t∗)|U(t∗)− u∗|2 for t ≥ t∗ and u∗ ∈ V. (2.13)

We remark that the above continuity result is obtained from the first Lyapunov exponent,
which reflects the instability in turbulent flows. Thus, the constant β in Theorem 2.3 is very
large but uniform for u∗ ∈ V . The fact that β does not depend on u∗ is a fact we shall make
salient use of in our subsequent analysis.

We recall that the bilinear term B has the algebraic property that

〈
B(u, v), w

〉
= −

〈
B(u, w), v

〉
(2.14)

for u, v, w ∈ V , and consequently the orthogonality property that

〈
B(u, w), w

〉
= 0. (2.15)

Here the pairing 〈·, ·〉 denotes the dual action of V ∗ on V . Details may be found, e.g.,
in [9], [13], [19] and [20]. In the case of periodic boundary conditions the bilinear term
possesses the additional orthogonality property

(
B(w,w), Aw

)
= 0, for every w ∈ D(A); (2.16)

and consequently one has

(
B(u, w), Aw

)
+
(
B(w, u), Aw

)
= −

(
B(w,w), Au

)
, for every u, w ∈ D(A). (2.17)

We further recall some well-known bounds on the non-linear term which appear in [9],
[20], [21] and specifically as Proposition 9.2 in [19].
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Proposition 2.4. One has

|(B(u, v), w)| ≤ ‖u‖L∞‖v‖|w|, (2.18)

where u ∈ L∞, v ∈ V and w ∈ H. If u, v, w ∈ V then

|(B(u, v), w)| ≤ c|u|1/2‖u‖1/2‖v‖|w|1/2‖w‖1/2, (2.19)

and if u ∈ V v ∈ D(A), and w ∈ H,

|(B(u, v), w)| ≤ c|u|1/2‖u‖1/2‖v‖1/2|Av|1/2|w|. (2.20)

Here c is an absolute non-dimensional constant.

3 Type-I Interpolant Observables

In this section we treat the case when Ih is a type-I interpolant observable. While type-I
interpolant observables are also of type II, the bounds we obtain in treating these two cases
separately are sharper. In addition, the proof for in the type-I case is simpler and serves as
a framework to help understand the more complicated type-II case teated in the subsequent
section. From Definition 1.2 it follows that the approximating solution u satisfies

du

dt
+ νAu+B(u, u) = f for t ∈ (tn, tn+1), (3.1)

where u(tn) = un is the initial condition given by

u0 = JU0 and un+1 = ES(tn+1, tn; un) + JU(tn+1).

Note that un ∈ D(A) ⊆ V , for n = 0, 1, 2, . . . . Consequently, the solution of (3.1) with initial
data u(tn) = un on the interval (tn, tn+1) is a strong solution of the Navier–Stokes equations.
Moreover, because of our working assumptions on f we further obtain that u(t) ∈ D(A) for
t ∈ [tn, tn+1]. It follows that the estimates we make in the proof of Proposition 3.1 below,
and in the results which follow, are rigorous; in particular, v = U − u exists, is unique and
Av makes sense at all times t ≥ t0.

The equations governing the evolution of v may be written as

dv

dt
+ νAv +B(v, U) +B(U, v) +B(v, v) = 0 (3.2)

for t ∈ (tn, tn+1), with v(tn) = U(tn)− un, for n = 0, 1, 2, . . . ..

Proposition 3.1. Let ṽn = U(tn) − S(tn, tn−1; un−1). For every δ > 0 there are λ, large
enough, and h, small enough, for which there exists γ ∈ (0, 1) such that

‖ṽn+1‖2 ≤ γ‖ṽn‖2, for all n = 1, 2, . . . .
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Proof. Multiplying (3.2) by Av and then integrating over Ω we have

1

2

d

dt
‖v‖2 + ν|Av|2 + (B(v, U), Av) + (B(U, v), Av) + (B(v, v), Av) = 0.

By (2.16) and (2.17), we have

1

2

d

dt
‖v‖2 + ν|Av|2 = (B(v, v), AU). (3.3)

Estimate the term on the right of the previous equation. Using (2.20) and then the interpo-
lation inequality ‖v‖ ≤ |v|1/2|Av|1/2 yields

|(B(v, v), AU)| ≤ c|v|1/2‖v‖1/2‖v‖1/2|Av|1/2|AU |
= c|v|1/2‖v‖|Av|1/2|AU |
≤ c|v|1/2|v|1/2|Av|1/2|Av|1/2|AU |
= c|v||Av||AU |.

Combining this with (3.3), we have

1

2

d

dt
‖v‖2 + ν|Av|2 ≤ c|v||Av||AU |. (3.4)

Now, apply Young’s inequality to obtain

d

dt
‖v‖2 + ν|Av|2 ≤ c2

ν
|v|2|AU |2. (3.5)

From Poincaré’s inequality (2.2) followed by (2.13), we get

d

dt
‖v‖2 + λ1ν‖v‖2 ≤

c2

ν
|AU |2eβ(t−tn)|vn|2 ≤

c2

ν
|AU |2eβδ|vn|2, (3.6)

where we have assumed t ∈ [tn, tn+1). Multiply equation (3.6) by eλ1νt and then integrate in
time from tn to t. Thus,

‖v(t)‖2 ≤ e−λ1ν(t−tn)‖vn‖2 +
c2

ν
e−λ1ν(t−tn)+(β+λ1ν)δ|vn|2

∫ t

tn

|AU(s)|2ds (3.7)

for t ∈ [tn, tn+1). Combining (3.7) with the a priori estimate (2.11), we have

‖v(t)‖2 ≤ e−λ1ν(t−tn)‖vn‖2 +
c2ρ2V
ν

(
1

ν
+

δλ1

2

)
e−λ1ν(t−tn)+(β+λ1ν)δ|vn|2. (3.8)

Since n ≥ 1 then

vn = U(tn)− un = U(tn)− ES(tn, tn−1; un−1)− JU(tn)

= E
(
U(tn)− S(tn, tn−1; un−1)

)
= E(ṽn),

11



and by Proposition 2.1, we can estimate

|vn|2 ≤ λ−1(1 + ε)‖ṽn‖2 and ‖vn‖2 ≤ (1 + ε)‖ṽn‖2.

Hence (3.8) becomes

‖v(t)‖2 ≤ (1 + ε)e−λ1ν(t−tn)

[
1 +

c2ρ2V
λν

(
1

ν
+

δλ1

2

)
e(β+λ1ν)δ

]
‖ṽn‖2, (3.9)

for t ∈ [tn, tn+1). Taking the limit as t ր tn+1 results in ‖ṽn+1‖2 ≤ γ‖ṽn‖2, where

γ = (1 + ε)

[
e−λ1νδ +

c2ρ2V
λν

(
1

ν
+

δλ1

2

)
eβδ

]
.

We now show for every δ > 0 that there exists λ and h such that γ ∈ (0, 1). First, since

e−λ1νδ < 1 and
c2ρ2V
λν

(
1

ν
+

δλ1

2

)
eβδ → 0 as λ → ∞,

then there is λ large enough such that

e−λ1νδ +
c2ρ2V
λν

(
1

ν
+

δλ1

2

)
eβδ < 1.

Finally, since ε → 0, as h → 0, while holding λ fixed, then there is h small enough such that
1 + ε is small enough to ensure that γ < 1.

Observe that by a more careful analysis one could find explicit choices for λ and h in
terms of β, δ, λ1, ν and ρV . Note also that there is a dependency between λ and h. Since
h is a physical parameter related to the resolution of the observations while λ is an easily-
adjusted parameter related to our spectral filter, it would be reasonable to further choose λ
to minimize h. The resulting estimate on h could then be used to compare the sharpness of
the above theoretical bounds to alternative approaches to the analysis, to numerical results
obtained from simulation and to similar analysis for different data assimilation schemes.
Such comparisons, while interesting, are outside the scope of the present work. We end this
section with our main result on type-I interpolant observables.

Theorem 3.2. If δ, h and λ are chosen appropriately as in Proposition (3.1), then ‖U(t)−
u(t)‖ → 0, as t → ∞. Moreover, the rate of convergence is exponential in time.

Proof. Choose δ, h and λ as in Proposition 3.1. In reference to equation (3.9), let

M = (1 + ε)

[
1 +

c2ρ2V
λν

(
1

ν
+

δλ1

2

)
e(β+λ1ν)δ

]
.

We first bound ṽ1 in terms of v0. Since

v0 = U0 − u0 = U0 − JU0 = EU0,

12



then Proposition 2.1 and the working assumptions which follow Proposition 2.2 yield that

|v0|2 = |EU0|2 ≤ λ−1(1 + ε)‖U0‖2 ≤ λ−1(1 + ε)ρ2V ,

and similarly that ‖v0‖2 ≤ (1 + ε)ρ2V . These two bounds substituted into (3.8) for n = 0
imply

‖v(t)‖2 ≤ (1 + ε)e−λ1ν(t−t0)

[
1 +

c2ρ2V
λν

(
1

ν
+

δλ1

2

)
e(β+λ1ν)δ

]
ρ2V . (3.10)

for t ∈ [t0, t1). Taking the limit as t ր t1 results in ‖ṽ1‖2 ≤ γρ2V where γ ∈ (0, 1).
Now, given t > 0 choose n such that t ∈ [tn, tn+1). Since n > (t − t0)/δ − 1, it follows

from (3.9) that

‖U(t)− u(t)‖2 = ‖v(t)‖2 ≤ M‖ṽn‖2 ≤ Mγnρ2V ≤ Mγ−1ρ2V e
−α(t−t0),

where α = δ−1 log(γ−1). Note that γ ∈ (0, 1) implies α > 0. It follows that ‖U(t) − u(t)‖
converges to zero at an exponential rate.

4 Type-II Interpolant Observables

In this section we treat the case when Ih is a type-II interpolant observable. As before
let v = U − u where U is the exact solution to (1.2) about which we know only limited
information through the observables and u is the approximating process obtained by the
spectrally-filtered discrete data assimilation algorithm given in Definition 1.2. The proof
that the difference between u and U decays to zero over time is complicated by the fact
that the |Av| norm enters into the bounds given by Proposition 2.1 and therefore needs to
be controlled. To do so, we shall employ an equation similar to (3.3) which governs the
evolution of |Av|2. While such an equation could be obtained by formally multiplying (3.2)
by A2u and integrating over Ω, it is easier to work with the vorticity in two-dimensions.

Let W = curlU , w = curl u, and g = curl f where curl has been defined such that

curl Φ =
∂Φ2(x1, x2)

∂x1

− ∂Φ1(x1, x2)

∂x2

when Φ(x) =
(
Φ1(x1, x2),Φ2(x1, x2)

)
.

Since u is the approximating solution described in Definition 1.2, then w is the resulting
vorticity approximation of W . Written in terms of vorticity, the corresponding version of
Theorem 3.2 for type-II interpolant observables is given by

Theorem 4.1. If δ, h and λ are chosen appropriately, then ‖W − w‖ → 0, as t → ∞.
Moreover, the rate of convergence is exponential in time.

Before proving Theorem 4.1 we fix our notation by stating a few facts about the vorticity
and proving a lemma containing bounds for non-linear terms that will be used later. First
note, after taking the curl of (1.1), that Definition 1.2 implies W and w satisfy

∂W

∂t
− ν∆W + (U · ∇)W = g and

∂w

∂t
− ν∆w + (u · ∇)w = g (4.1)

13



on each interval (tn, tn+1). Our working assumptions in the case of type-II interpolant ob-
servables ensure that the equations (4.1) hold in the strong sense. In particular, W = curlU
and w = curl u exist and |∆W | = |A3/2U | and |∆w| = |A3/2u| are finite almost every-
where. Therefore, the equations governing the evolution through the vorticity of the differ-
ence ξ = W − w may be written as

∂ξ

∂t
− ν∆ξ + (v · ∇)W + (v · ∇)ξ + (U · ∇)ξ = 0, (4.2)

where ξ(tn) = W (tn)− curl un and v = curl−1 ξ.
Since v is divergence-free with zero average, then curl−1 ξ is well defined and may be

written in terms of Fourier series as

curl−1 ξ =
∑

k∈J

i(k2,−k1)

|k|2 ξ̂ke
ik·x when ξ =

∑

k∈J

ξ̂ke
ik·x.

Recall that the divergence-free condition k · v̂k = 0 implies

|ξ̂k|2 = |ik1v̂k,2 − ik2v̂k,1|2 = k2
1|v̂k,2|2 + k2

2|v̂k,1|2 − k1k2v̂k,1v̂
∗
k,2 − k1k2v̂

∗
k,1v̂k,2

= k2
1|v̂k,2|2 + k2

2|v̂k,1|2 + k2
2|v̂k,2|2 + k2

1|v̂k,1|2 = |k|2|v̂k|2.

Therefore

|ξ|2 = L2
∑

k∈J

|ξ̂k|2 = ‖v‖2 and ‖ξ‖2 = L2
∑

k∈J

|k|2|ξ̂k|2 = |Av|2.

To keep the notation in the present section similar to the notation appearing in the
previous section, we abuse it by extending the definitions of B and A to the vorticity as

B(v, ξ) = (v · ∇)ξ and Aξ = −∆ξ.

Thus, equation (4.2) may be written as

dξ

dt
+ νAξ +B(v,W ) +B(v, ξ) +B(U, ξ) = 0. (4.3)

Equations (4.3) are similar to (3.2) in structure; however, there are no cancellations when
multiplying by Aξ and integrating over Ω. To bound the resulting terms we prove

Lemma 4.2. Let U , W , v and ξ be defined as above. The following bounds hold

|(B(v,W ), Aξ)| ≤ C
42

3ν2
|v|2‖W‖3 + ν

6
|Aξ|2,

|(B(v, ξ), Aξ)| ≤ C
42

3ν2
|v|2‖ξ‖3 + ν

6
|Aξ|2,

and

|(B(U, ξ), Aξ)| ≤ C
55

ν5
‖U‖6L∞ |v|2 + ν

6
|Aξ|2

for almost every t ≥ t0.

14



Proof. The condition (2.12) applied to both U and u implies that ‖Av‖ = |Aξ| is finite for
almost every t ≥ t0. Our working assumptions further imply that the other norms appearing
in the above bounds exist everywhere. For convenience denote

I1 = |(B(v,W ), Aξ)|, I2 = |(B(v, ξ), Aξ)| and I3 = |(B(U, ξ), Aξ)|.

We now estimate I1, I2 and I3 in turn. First, estimate I1 using (2.18) followed by Agmon’s
inequality to obtain

I1 ≤ ‖v‖L∞‖W‖|Aξ| ≤ C|v|1/2|Av|1/2‖W‖|Aξ| = C|v|1/2|Av|1/2−θ|Av|θ‖W‖|Aξ|.

Since |Av| = ‖ξ‖, we have

I1 ≤ C|v|1/2‖ξ‖1/2−θ|Av|θ‖W‖|Aξ|.

We now use interpolation inequality on |Av|θ and have |Av|θ ≤ |v|θ/3|Aξ|2θ/3. This yields

I1 ≤ C|v|1/2+θ/3‖ξ‖1/2−θ|Aξ|1+2θ/3‖W‖.

Using Young’s inequality with powers 3 and 3/2, we have

I1 ≤ C
16

3ν2
|v|3/2+θ‖ξ‖3/2−3θ‖W‖3 + ν

6
|Aξ|3/2+θ.

Choose θ = 1
2
, then we have

I1 ≤ C
16

3ν2
|v|2‖W‖3 + ν

6
|Aξ|2. (4.4)

Next, estimate I2 using (2.18) and then Agmon’s inequality. We have

I2 ≤ C|v|1/2|Av|1/2‖ξ‖|Aξ| = C|v|1/2|Av|3/2−θ|Av|θ|Aξ|.

Using interpolation on |Av|θ it follows that

I2 ≤ C|v|1/2+θ/3|Av|3/2−θ|Aξ|1+2θ/3.

Choosing θ = 1
2
and then by Young’s inequality with powers 3 and 3/2, we have

I2 ≤ C|v|4/6|Av||Aξ|4/3 ≤ C
42

3ν2
|v|2‖ξ‖3 + ν

6
|Aξ|2. (4.5)

Finally, estimate I3 using (2.18). We have

I3 ≤ ‖U‖L∞‖ξ‖|Aξ| = ‖U‖L∞ |Av||Aξ|
≤ ‖U‖L∞|v|1/3|Aξ|5/3.

Using Young’s inequality with powers 6 and 6/5 it follows that

I3 ≤ C
55

ν5
‖U‖6L∞ |v|2 + ν

6
|Aξ|2. (4.6)
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Proof of Theorem 4.1. Multiplying equations (4.3) by Aξ and integrating over Ω yields

1

2

d

dt
‖ξ‖2 + ν|Aξ|2 + (B(v,W ), Aξ) + (B(v, ξ), Aξ) + (B(U, ξ), Aξ) = 0. (4.7)

We remark that the working assumptions for type-II interpolant observables imply both U
and u and consequently their difference has the needed regularity for the above equation to
make sense. These assumptions further provide a priori bounds on U which are uniform in
time. Although the corresponding norms of u are finite, we cannot at this point assume they
are uniformly bounded in time. Under the hypotheses of this theorem, however, uniform
bounds on u can be inferred as a consequence of this proof

Now, plug the estimates given by Lemma 4.2 into (4.7) to obtain

d

dt
‖ξ‖2 + ν|Aξ|2 ≤ C

(
1

ν2
‖W‖3 + 1

ν2
‖ξ‖3 + 1

ν5
‖U‖6L∞

)
|v|2. (4.8)

We again point out that C is a non-dimensional constant independent of δ, λ and h. By
Poincaré’s inequality (2.2) we have

d

dt
‖ξ‖2 + λ1ν‖ξ‖2 ≤

C

ν2

(
‖ξ‖3 +K

)
|v|2, (4.9)

where the assumption ‖W‖ ≤ ρA combined with Agmon’s inequality (2.5) allows us to take

K = ρ3A(1 + cν−3ρ3H).

Alternatively, one could write K ′ = ρA(1 + cν−3ρ3H) to obtain

d

dt
‖ξ‖2 + λ1ν‖ξ‖2 ≤

C

ν2

(
‖ξ‖3 +K ′|AU |2

)
|v|2,

and then estimate the integral of |AU |2 using (2.11) as we did in (3.8). Unfortunately, this
improvement is dominated by subsequent estimates on ‖ξ‖ which are proportional to ρA.
Therefore, as the differences are minimal, we continue with (4.9) for simplicity.

By (2.13), we have

d

dt
‖ξ‖2 + λ1ν‖ξ‖2 ≤

C

ν2

(
‖ξ‖3 +K

)
eβ(t−tn)|vn|2. (4.10)

Note that equation (4.10) is similar to (3.6) except for the additional term involving ‖ξ‖3 on
the right. Fortunately, this term can be controlled for times of size δ by our choosing h small
and λ large. This complicates the proof and is the main reason why the type-I interpolant
observables were treated separately in the previous section.

Continue as in the type-I case. First, multiply (4.10) by eλ1νt, integrate from tn to t and
simplify as in (3.7) to obtain

‖ξ‖2 ≤ ‖ξn‖2e−λ1ν(t−tn) +
C

ν2β

(
sup

s∈[tn,t)

‖ξ(s)‖3 +K
)
eβ(t−tn)|vn|2.
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When n = 0 it follows from Proposition 2.1 that

|v0|2 = |EU0|2 ≤ (λλ1)
−1(1 + ε)|AU0|2 ≤ (λλ1)

−1(1 + ε)ρ2A,

and
‖ξ0‖2 = |Av0|2 = |AEU0|2 ≤ (1 + ε)|AU0|2 ≤ (1 + ε)ρ2A.

Therefore when t ∈ [t0, t1) we have

‖ξ‖2 ≤ (1 + ε)

{
e−λ1ν(t−t0) +

C

λλ1ν2β

(
sup

s∈[t0,t)

‖ξ(s)‖3 +K
)
eβ(t−t0)

}
ρ2A. (4.11)

Let δ > 0 be arbitrary and define

γ = (1 + ε)

{
e−λ1νδ +

C

λλ1ν2β

(
8ρ3A +K

)
eβδ

}
.

As in the the proof of Proposition 3.1, since

e−λ1νδ < 1 and
C

λλ1ν2β

(
8ρ3A +K

)
eβδ → 0 as λ → ∞,

then there is λ large enough such that

e−λ1νδ +
C

λλ1ν2β

(
8ρ3A +K

)
eβδ < 1. (4.12)

Furthermore, since ε → 0 as h → 0 while holding λ fixed, then there is h small enough such
that 1 + ε < 2 and moreover small enough to ensure that γ < 1.

For the choice of δ, h and λ given above, let

M = sup
s∈[0,δ]

(1 + ε)

{
e−λ1νs +

C

λλ1ν2β

(
8ρ3A +K

)
eβs

}
,

and note (4.12) along with the fact that 1+ε < 2 impliesM < 4. We claim that ‖ξ(s)‖ < 2ρA
for s ∈ [t0, t1). For contradiction, suppose not. Since ‖ξ‖ is continuous on [t0, t1) and

‖ξ(t0)‖ = ‖ξ0‖ ≤ (1 + ε)1/2ρA < 21/2ρA < 2ρA,

then this would imply the existence of t∗ ∈ (t0, t1) such that

‖ξ(t∗)‖ = 2ρA and ‖ξ(s)‖ < 2ρA for s ∈ [t0, t∗).

However, if this were true, then inequality (4.11) would imply

‖ξ(t∗)‖2 ≤ (1 + ε)

{
e−λ1ν(t∗−t0) +

C

λλ1ν2β

(
8ρ3A +K

)
eβ(t∗−t0)

}
ρ2A ≤ Mρ2A < 4ρ2A,

which is a contradiction. Therefore ‖ξ(s)‖ < 2ρA for s ∈ [t0, t1). Consequently

sup
s∈[t0,t1)

‖ξ(s)‖3 ≤ 8ρ3A,
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and taking the limit of (4.11) as t → t1 results in ‖ξ̃1‖2 ≤ γρ2A.
We proceed by induction. Let n ≥ 1 and suppose

‖ξ̃n‖2 ≤ γnρ2A.

By Proposition 2.1 it follows that

|vn|2 = |Eṽn|2 ≤ (λλ1)
−1(1 + ε)|Aṽn|2 = (λλ1)

−1(1 + ε)‖ξ̃n‖2,

and
‖ξn‖2 = |Avn|2 = |AEṽn|2 ≤ (1 + ε)|Aṽn|2 = (1 + ε)‖ξ̃n‖2,

where ξ̃n = curl ṽn. Since 1 + ε < 2 we obtain

‖ξ(tn)‖ = ‖ξn‖ ≤ (1 + ε)1/2‖ξ̃n‖ ≤ 21/2γn/2ρA < 2ρA.

Following the same arguments as before, we obtain that

sup
s∈[tn,tn+1)

‖ξ(s)‖3 ≤ 8ρ3A,

and taking limits as t ր tn+1 conclude that

‖ξ̃n+1‖2 ≤ γ‖ξ̃n‖2 ≤ γn+1ρ2A,

which completes the induction.
Given t > 0 choose n such that t ∈ [tn, tn+1). It follows that

‖W − w‖2 = ‖ξ‖2 ≤ M‖ξ̃n‖2 ≤ Mγnρ2A → 0 as t → ∞.

Therefore, the same argument used in the proof of Theorem 3.2 now implies

‖W − w‖ → 0 exponentially as t → ∞,

and finishes the proof of Theorem 4.1.

5 Conclusions

In this paper we have shown that spectrally-filtered discrete data assimilation as described in
Definition 1.2 results in an approximating solution u that converges to the reference solution
U over time for any general interpolant observable of type-I or type-II when δ, λ and h are
chosen appropriately. In particular, when observations of U are made using nodal points of
the velocity field, we obtain a type-II interpolant observable which our analysis is able to
handle. We note that this analysis relies crucially on properties of the spectral filter and
would not have been possible if the unfiltered interpolants were used instead. Specifically,
our analysis makes use of the fact that the filtered interpolant E can be made to have norm
near unity when viewed as linear operator on the functional space implied by the bounds on
the original interpolant. This fact is characterized by the respective inequalities

‖EU‖2 ≤ (1 + ε)‖U‖2 and |AEU |2 ≤ (1 + ε)|AU |2,
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for the type-I and type-II interpolant observables given in Proposition 2.1. Different filtering
methods which satisfy similar inequalities should also be effective. As a number of advances
in practical data assimilation have resulted from improved filtering, we find these analytic
results to be interesting and relevant.

While it may seem anticlimactic that the technique crucial for our analysis relies on
spectrally projecting the interpolant observable in Fourier space, since the linear term is
responsible for the dissipation, it is natural that a spectral basis with respect to that linearity
provides a convenient framework in which to analyze the synchronization properties of our
data assimilation algorithm. Furthermore, using this basis as a means of spatial filtering not
only has the advantage of being simple, but is intrinsically compatible with the reliance of
our analysis on the dissipation.

Note that the functional dependency of h and λ on δ and the other physical parameters
in the system appearing in Theorem 1.3 depend on knowing an a priori bound ρA on the
norm |AU | in terms of those other parameters. While suitable theoretical bounds appear
in the literature, these bounds are, in general, not sharp compared to a posteriori bounds
obtained through numerical simulation. Moreover, the algorithm may continue to work
with values of h much larger and values of λ much smaller than required by our analysis.
For example, computational experiments performed by [16] for a different spatially filtered
continuous data assimilation method based on nudging show that the method performs far
better than the analytical estimates suggest. We conjecture similar numerical effectiveness
for the discrete data assimilation method described in the present paper. Therefore, we
refrain from determining an explicit theoretical relation between h and the Grashof number
in this work, though such could be obtained from our analysis, and save such comparisons
for the context of a future numerical study.
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A Estimates for Time Dependent Forcing

In this appendix we present a priori estimates on the solution U to the two-dimensional
incompressible Navier–Stokes equations (1.2) in the case where the body force f depends
on time. While these results are straight forward, we could not find suitable references in
the literature and have therefore included them here for completeness of our presentation.
Note that the first bound, stated as Theorem A.2 below, will be sufficient for our analysis
in the case of type-I interpolant operators. The second bound, Theorem A.3, will be used
for type-II interpolant operators.

In addition to the facts and inequalities from Section 2 this appendix makes use of
Ladyzhenskaya’s inequality, which in two-dimensions interpolates L4 as

‖U‖L4 ≤ C0|U |1/2‖U‖1/2, (A.1)

where C0 is a non-dimensional constant depending only on Ω. We also make use of the
following L2 and H1 bounds on the nonlinear term.

Lemma A.1. If U ∈ V then

|B(U, U)| ≤ C2
0 |U |1/2‖U‖|AU |1/2. (A.2)

Furthermore, if U ∈ D(A) then

‖B(U, U)‖ ≤ C1‖U‖|AU |+ C2|U |1/2|AU |3/2. (A.3)

Here C0, C1 and C2 are non-dimensional constants depending only on Ω.

Proof. Given U ∈ V apply (A.1) to obtain

|B(U, U)| ≤ ‖U‖L4‖∇U‖L4 ≤ C2
0 |U |1/2‖U‖|AU |1/2,

which is the first inequality.

Now suppose that U ∈ D(A). Define

Ψα =
∑

k∈J

|k|α|Ûk|eik·x where U =
∑

k∈J

Ûke
ik·x.

Further define J0 = J ∪ {(0, 0)} and recall the notational convention that Û0 = 0. Note
that ‖Ψα‖L2 = ‖U‖α for all α ≤ 2. Moreover, (2.5) and (A.1) imply that

‖Ψ0‖L∞ ≤ C‖Ψ0‖1/2L2 ‖Ψ2‖1/2L2 and ‖Ψ1‖L4 ≤ C0‖Ψ1‖1/2L2 ‖Ψ2‖1/2L2 .

Since

U · ∇U = i
∑

k,ℓ∈J

(Ûk · ℓ)Ûℓ e
i(k+ℓ)·x = i

∑

ℓ,m∈J0

(
Ûm−ℓ · ℓ

)
Ûℓ e

im·x,
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it follows that

‖B(U, U)‖2 ≤ L2
∑

m∈J0

|m|2
∣∣∣
∑

ℓ∈J0

(
Ûm−ℓ · ℓ

)
Ûℓ

∣∣∣
2

≤ L2
∑

m∈J0

∣∣∣
∑

ℓ∈J0

|m||Ûm−ℓ||ℓ||Ûℓ|
∣∣∣
2

≤ 2L2
∑

m∈J0

∣∣∣
∑

ℓ∈J0

|m− ℓ||Ûm−ℓ||ℓ||Ûℓ|
∣∣∣
2

+ 2L2
∑

m∈J0

∣∣∣
∑

ℓ∈J0

|Ûm−ℓ||ℓ|2|Ûℓ|
∣∣∣
2

= 2‖Ψ2
1‖2L2 + 2‖Ψ0Ψ2‖2L2 ≤ 2‖Ψ1‖4L4 + 2‖Ψ0‖2L∞‖Ψ2‖2L2

≤ 2C4
0‖Ψ1‖2L2‖Ψ2‖2L2 + 2C2‖Ψ0‖L2‖Ψ2‖L2‖Ψ2‖2L2

= 2C4
0‖U‖2|AU |2 + 2C2|U ||AU |3.

Taking C1 =
√
2C2

0 and C2 =
√
2C finishes the proof of the lemma.

Theorem A.2. Suppose f ∈ L∞([t0,∞);H) is time-dependent and define

F = ess sup
{
|f(t)|2 : t ∈ [t0,∞)

}
.

Then there are absorbing sets in H and V of radiuses ρH and ρV , respectively, depending
only on F , Ω and ν such that for every U0 ∈ H there is a time tV depending further on |U0|
and t0 for which

|U(t)| ≤ ρH and ‖U(t)‖ ≤ ρV for all t ≥ tV .

Moreover, ∫ t+δ

t

|AU(s)|2ds ≤
(1
ν
+

δλ1

2

)
ρ2V for all t ≥ tV .

Proof. The proof is essentially the same as the time-independent case appearing in [20], [9]
or [19] with F is substituted for |f | throughout. For sake of brevity we present formal
estimates which could be rigorously justified by means of the Galerkin method if desired.

First, take inner product of (1.2) with U and apply Cauchy’s inequality followed by
Young’s inequality to obtain

1

2

d

dt
|U |2 + ν‖U‖2 ≤ |f ||U | ≤ λ1ν

2
|U |2 + 1

2λ1ν
|f |2.

Collecting terms and applying the Poincaré inequality (2.1) gives

d

dt
|U |2 + ν‖U‖2 ≤ F

λ1ν
. (A.4)

Again applying (2.1), multiplying by eλ1νt and integrating in time from t0 to t yields

|U(t)|2 ≤ e−λ1ν(t−t0)|U0|2 +
F

λ2
1ν

2

(
1− e−λ1ν(t−t0)

)
.

Upon taking tH so large that

e−λ1ν(tH−t0)|U0|2 ≤
F

λ2
1ν

2
,
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it follows that

|U(t)| ≤ ρH for t ≥ tH where ρ2H =
2F

λ2
1ν

2
.

Returning to (A.4) for t ≥ tH and simply integrating both sides from t to t + δ gives

|U(t+ δ)|2 − |U(t)|2 + ν

∫ t+δ

t

‖U(s)‖2ds ≤ δF

λ1ν
.

Consequently,
∫ t+δ

t

‖U(s)‖2ds ≤ 1

ν
|U(t)|2 + δ

λ1ν2
F ≤

(1
ν
+

δλ1

2

)
ρ2H . (A.5)

Second, take inner product of (1.2) with AU and apply Cauchy’s inequality followed by
Young’s inequality to obtain

1

2

d

dt
‖U‖2 + ν|AU |2 ≤ |f ||AU | ≤ ν

2
|AU |2 + 1

2ν
|f |2.

Collecting terms gives
d

dt
‖U‖2 + ν|AU |2 ≤ F

ν
. (A.6)

Again applying (2.2), multiplying by eλ1νt and integrating in time from s to t yields

‖U(t)‖2 ≤ e−λ1ν(t−s)‖U(s)‖2 + F

λ1ν2

(
1− e−λ1ν(t−s)

)
.

Integrate with respect to s from tH to tH + δ using the fact that e−λ1ν(t−s) ≤ e−λ1ν(t−tH−δ)

to obtain

δ‖U(t)‖2 ≤ e−λ1ν(t−tH−δ)
(1
ν
+

δλ1

2

)
ρ2H +

Fδ

λ1ν2
.

Setting δ = 1/(λ1ν) yields

‖U(t)‖2 ≤ 3λ1

2
e−λ1ν(t−tH )+1ρ2H +

F

λ1ν2
.

Upon taking tV ≥ tH so large that

3λ1

2
e−λ1ν(tV −tH )+1ρ2H ≤ F

λ1ν2
,

it follows that

‖U(t)‖ ≤ ρV for t ≥ tV where ρ2V =
2F

λ1ν2
.

Returning to (A.6) for t ≥ tV and simply integrating both sides from t to t+ δ gives

‖U(t+ δ)‖2 − ‖U(t)‖2 + ν

∫ t+δ

t

|AU(s)|2ds ≤ Fδ

ν
.

Consequently, ∫ t+δ

t

|AU(s)|2ds ≤ 1

ν
‖U(t)‖2 + Fδ

ν2
≤

(1
ν
+

δλ1

2

)
ρ2V .

This completes the proof.
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Theorem A.3. Suppose f ∈ L∞([t0,∞), V ) and df/dt ∈ L∞([t0,∞), V ∗) and define

G = ess sup
{
‖f(t)‖2 : t ∈ [t0,∞)

}
and F∗ = ess sup

{
‖df/dt‖2−1 : t ∈ [t0,∞)

}
.

Then there is an absorbing set in D(A) of radius ρA depending only on G, F ∗, Ω and ν such
that for every U0 ∈ H there is a time tA depending further on |U0| and t0 for which

|AU(t)| ≤ ρA for all t ≥ tA.

Moreover ∫ t+1/(λ1ν)

t

‖AU(s)‖2ds < ∞ for all t ≥ tA.

Proof. For convenience write Ut = dU/dt and f ′ = df/dt. We again present our estimates in
a formal manner with the remark that they could be rigorously justified if desired.

First, take inner product of (1.2) with Ut and apply Agmon’s inequality (2.5) followed
by Young’s inequality to obtain

|Ut|2 +
1

2

d

dt
‖U‖2 = −

(
B(U, U), Ut

)
+ (f, Ut) ≤ ‖U‖L∞‖U‖|Ut|+ |f ||Ut|

≤ C|U |1/2‖U‖|AU |1/2|Ut|+ F 1/2|Ut| ≤
1

2
|Ut|2 + C2|U |‖U‖2|AU |+ F.

Collecting terms, assuming t ≥ tV and applying the results of Theorem A.2 yields

|Ut|2 +
d

dt
‖U‖2 ≤ 2C2ρHρ

2
V |AU |+ 2F.

Integrate from t to t+ δ and apply the Cauchy-Schwartz inequality to obtain

∫ t+δ

t

|Ut|2 + ‖U(t + δ)‖2 ≤ ‖U(t)‖2 + 2C2ρHρ
2
V

∫ t+δ

t

|AU(s)|ds+ 2δF

≤ ρ2V + 2C2δ1/2ρHρ
3
V

(1
ν
+

δλ1

2

)1/2

+ 2δF.

Setting δ = 1/(λ1ν) yields

∫ t+1/(λ1ν)

t

|Ut(s)|2ds ≤ σ2
H where σ2

H = ρ2V +
1

λ1ν

(
61/2C2λ

1/2
1 ρHρ

3
V + 2F

)
.

Second, differentiate (1.2) with respect to t to get

Utt + νAUt + B(Ut, U) +B(U, Ut) = f ′.

Take inner product with Ut, note the orthogonality
(
B(U, Ut), Ut

)
= 0 and apply Ladyzhen-

skaya’s inequality (A.1) followed by Young’s inequality to obtain

1

2

d

dt
|Ut|2 + ν‖Ut‖2 = −

(
B(Ut, U), Ut

)
+ (f ′, Ut) ≤ ‖Ut‖2L4‖U‖ + ‖f ′‖−1‖Ut‖

≤ C2
0 |Ut|‖Ut‖‖U‖+ F 1/2

∗ ‖Ut‖ ≤ ν

2
‖Ut‖2 +

C4
0

ν
‖U‖2|Ut|2 +

F∗

ν
.
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Collecting terms yields

d

dt
|Ut|2 + ν‖Ut‖2 ≤ κ‖U‖2|Ut|2 +

2F∗

ν
where κ =

2C4
0

ν
. (A.7)

Multiply by

Φ(t) = exp
(
− κ

∫ t

s

‖U(τ)‖2dτ
)
,

and integrate from s to t+ δ to obtain

Φ(t + δ)|Ut(t + δ)|2 − |Ut(s)|2 ≤
2F∗

ν

∫ t+δ

s

Φ(σ)dσ,

or equivalently

|Ut(t+ δ)|2 ≤ |Ut(s)|2 exp
(
κ

∫ t+δ

s

‖U(τ)‖2dτ
)

+
2F∗

ν

∫ t+δ

s

exp
(
κ

∫ t+δ

σ

‖U(τ)‖2dτ
)
dσ.

Integrate with respect to s from t to t + δ. Since t ≥ tV ≥ tH inequality (A.5) implies

δ|Ut(t+ δ)|2 ≤
∫ t+δ

t

{
|Ut(s)|2 exp

(
κ

∫ t+δ

s

‖U(τ)‖2dτ
)

+
2F∗

ν

∫ t+δ

s

exp
(
κ

∫ t+δ

σ

‖U(τ)‖2dτ
)
dσ

}
ds

≤
∫ t+δ

t

{
|Ut(s)|2 exp

(
κ

∫ t+δ

t

‖U(τ)‖2dτ
)

+
2F∗

ν

∫ t+δ

t

exp
(
κ

∫ t+δ

t

‖U(τ)‖2dτ
)
dσ

}
ds

≤
(∫ t+δ

t

|Ut(s)|2ds+
2F∗δ

2

ν

)
exp

{
κ
(1
ν
+

δλ1

2

)
ρ2H

}
.

Setting tA = tV + δ with δ = 1/(λ1ν) yields

|Ut(t)| ≤ RH for t ≥ tA where R2
H =

(
λ1νσ

2
H +

2F∗

λ1ν2

)
exp

(3C4
0ρ

2
H

ν2

)
.

We are now ready to estimate |AU |. Upon taking L2 norms of (1.2) and applying (A.2)
from Lemma A.1 followed by Young’s inequality we obtain

ν|AU | ≤ |Ut|+ |B(U, U)|+ |f | ≤ |Ut|+ C2
0 |U |1/2‖U‖|AU |1/2 + |f |

≤ |Ut|+
C4

0

2ν
|U |‖U‖2 + ν

2
|AU |1/2 + |f |.

Therefore,

|AU | ≤ ρA for t ≥ tA where ρA =
2

ν
RH +

C4
0

ν2
ρHρ

2
V +

2F 1/2

ν
.
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To finish the proof, return to (A.7) for t ≥ tA and simply integrate both sides from t to
t+ δ to obtain

|Ut(t+ δ)|2 + ν

∫ t+δ

t

‖Ut‖2 ≤ |Ut(t)|2 + κ

∫ t+δ

t

‖U‖2|Ut|2 +
2δF∗

ν
.

Setting δ = 1/(λ1ν) and applying the previous bounds for t ≥ tA yields

∫ t+1/(λ1ν)

t

‖Ut‖2 ≤ σ2
V where σ2

V =
R2

H

ν
+

3C4
0ρ

2
HR

2
H

ν3
+

2F∗

λ1ν3
.

Now, upon takingH1 norms of (1.2) and applying (A.3) from Lemma A.1 followed by Young’s
inequality we obtain

ν‖AU‖ ≤ ‖Ut‖+ ‖B(u, u)‖+ ‖f‖
≤ ‖Ut‖+ C1‖U‖|AU |+ C2|U |1/2|AU |3/2 +G1/2.

Consequently

‖AU‖2 ≤ 4ν−2
(
‖Ut‖2 + C2

1‖U‖2|AU |2 + C2
2 |U ||AU |3 +G

)

implies ∫ t+1/(λ1ν)

t

‖AU‖2 ≤ 4σ2
V

ν2
+ 4C2

1

(3ρ2V
2ν3

)
ρ2V + 4C2

2ρHρA

(3ρ2V
2ν3

)
+

4G

λ1ν3
.

Since the above bound is finite, this finishes the proof.
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