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Abstract. Finite difference schemes are the method of choice for solving non-
linear, degenerate elliptic PDEs, because the Barles-Sougandis convergence

framework [BS91] provides sufficient conditions for convergence to the unique

viscosity solution [CIL92]. For anisotropic operators, such as the Monge-
Ampere equation, wide stencil schemes are needed [Obe06]. The accuracy

of these schemes depends on both the distances to neighbors, R, and the an-

gular resolution, dθ. On uniform grids, the accuracy is O(R2 + dθ). On point
clouds, the most accurate schemes are of O(R + dθ), by Froese [Fro18]. In

this work, we construct geometrically motivated schemes of higher accuracy in

both cases: order O(R + dθ2) on point clouds, and O(R2 + dθ2) on uniform
grids.

1. Introduction

The goal of this paper is to build more accurate convergent discretizations for the
class of nonlinear elliptic partial differential equations [CIL92]. Our schemes are are
implemented in both two and three dimensions for a class of PDEs, which include
the convex envelope operator and the Pucci operator, as well as the Monge-Ampere
operator. Convergent discretizations for these operators are available on uniform
grids [Obe08b], but the accuracy of these schemes depends on both the distances
to neighbors, R, and the angular resolution, dθ. On uniform grids, the accuracy is
O(R2 + dθ). More recently, [Fro18] developed methods on point clouds of accuracy
O(R + dθ). These schemes were used for freeform optical design to shape laser
beams [FFL+17], an application which required nonuniform grids. In this work, we
construct geometrically motivated schemes of higher accuracy in both cases: order
O(R+ dθ2) on point clouds, and O(R2 + dθ2) on uniform grids.

Even higher accuracy is possible when the operator is uniformly elliptic. For
example, in the set of papers [BCM16, FM14, Mir14a, Mir14b], Mirebeau and coau-
thors developed a framework for constructing O(h2) monotone and stable schemes
for several functions of the eigenvalues of the Hessian on uniform grids, in two di-
mensions. Related work for discretization of convex functions is studied in [Mir16].
Mirebeau studied monotone discretization of first order (Eikonal type) equations
on triangulated grids [Mir14a] as well as second order Monge-Ampere type opera-
tors [Mir14b]. In the latter case, he obtains nearly optimal accuracy, but his con-
struction is most effective when the operator is uniformly elliptic: as the operator
degenerates, the width of the stencil increases. Moreover, the elegant construction
based on the Stern-Brocot tree is particular to two dimensions.
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Figure 1. A stencil for a first derivative at x0 in the direction of
w uses barycentric coordinates of the simplex S formed by x1 and
x2.

Higher accuracy is also possible using filtered schemes [FO13, OS15, BPR16]
Filtered schemes combine a base monotone scheme with a higher accuracy schemes:
however increases accuracy of the base scheme is beneficial to the filtered scheme,
since it allows for a smaller filter parameter.

The challenge of building monotone convergent finite difference schemes is il-
lustrated in [CWL16] and [CW17], discretizing the Monge-Ampere equation in
two dimensions. In [CWL16], a mixture of a 7-point stencil for the cross and a
semi-Lagrangian wide stencil was used. The 7-point stencil was used for the cross
derivative when it is monotone; otherwise the wide stencil was employed. This
approach was later extended to a multigrid in [CW17], but does not fully solve
the problem of building narrow monotone stencils, and has not been generalized to
higher dimensions.

Another approach lies between the wide stencil finite difference approach, and
the finite element approach. In [NNZ17] a convergent method on an unstructured
mesh is constructed on two separate scales. They prove a rate of convergence (which
is stronger than our results, which concern the accuracy of the discretization). How-
ever, there is a large gap between the rate of convergence, and the accuracy, which
is more consistent with computational results. For a recent review, see [NSZ17].

The need for wide stencils arise from the anisotropy of the operators. For
isotropic operators, such as the Laplacian, or for operators whose second order
anisotropy happens to align with the grid (essentially combinations of uxx and uyy
terms) an adaptive quadtree grid discretization was developed in [OZ16]. An adap-
tive quadtree grid was combined with the O(R + dθ2) meshfree method of Froese
[Fro18] and filtered schemes [OS15, FO13] in [FS17].

The main idea of this work is based on locating the reference point within two
triangles (in two dimensions) or simplices (in three or higher dimensions), and using
barycentric coordinates [DB08, §5.4 p.595] to write down the discretization. For
first order derivates, only one simplex is needed. It is standard to write a gradient
of a function based on linear interpolation, extending this to a directional derivative
amounts to computing a dot product. However, for second directional derivatives,
it is possible to use two simplices to compute a monotone discretization of the
second directional derivative, with accuracy which depends on the relative sizes of
the simplices.
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Scheme Order Optimal
dθ

Formal
accuracy

Comments

Nearest grid direc-
tion [Obe08b]

O(r2 + dθ) O(h
2
3 ) O(h

2
3 ) Uniform grids. Difficulty

at boundaries.

Froese [Fro18] O(r + dθ) O(h
1
2 ) O(h

1
2 ) 2d, mesh free. No problem

at boundary.

Linear interpolant,
symmetric

O(r2 + dθ2) O(h
1
2 ) O(h) n-d, uniform grids. No

problem at boundary.

Linear interpolant,
non symmetric

O(r + dθ2) O(h
1
3 ) O(h

2
3 ) n-d, mesh free. No prob-

lem at boundary.

Table 1. Comparison of the discretizations.

1.1. Off-directional discretizations. When the direction w does not align with
the grid, the dθ term appears in the expression for the finite difference accuracy.
If u is discretized on a regular grid, then one common approach is to choose the
nearest grid direction vh to w, and take the finite difference along this approximate
direction, as in [Obe08b]. In the symmetric case for the second derivative, the
finite difference remains O(h2), but picks up a directional resolution error dθ. This
directional resolution error is first order, and is given as dθ = arccos〈w, vh/ ‖vh‖〉.
Overall this approach is O(dθ +R2) accurate. On a grid with spatial resolution h,
one can show that for a desired angular resolution dθ, R is O( hdθ ). With optimal

choice dθ =
(
2h2
) 1

3 , this scheme is therefore formally O(h
2
3 ). Although appealing

due to its simplicity, this scheme suffers some drawbacks. It is only appropriate
on uniform finite difference grids, and encounters difficulties discretizing u near the
boundary of the domain.

Recent work by Froese [Fro18] treats the more general case where u is discretized
on a cloud of point G. Froese presents a monotone finite difference scheme for the
second derivative which is O(R + dθ). The parameter R is a search radius, which
will be defined more precisely later. Set h = supx∈Ω minxj∈G ‖x− xj‖. Then (as in

the previous method) for a desired angular resolution, R is O
(
h
dθ

)
, and so with the

optimal choice of dθ =
√
h, the method is formally O

(√
h
)

. Unfortunately this

scheme does not generalize easily to higher dimensions.
In what follows, we present a monotone and consistent finite difference scheme

for the first and second derivatives which overcomes the deficiencies of the preceding
two methods. For the second derivative, if the grid is not symmetric, our scheme
has accuracy O(R + dθ2), or formally O(h

2
3 ). Further in the symmetric case, the

scheme is O(R2 + dθ2), and is formally O(h). The method works in dimension
two and higher, and can be used on any set of discretization points, uniform or
otherwise. It can easily be used near the boundary of a domains. In particular, the
scheme easily handles Neumann boundary conditions on non rectangular domains.

Using these schemes as building blocks, we build monotone, stable and consistent
schemes for non linear degenerate elliptic equations on arbitrary meshes.

Table 1 presents a summary of the second derivative schemes discussed in this
paper.
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1.2. Directional discretizations. The basic building block of our discretization
are first and second order directional derivatives. This is in contrast to the work of
Mirebeau, where two dimensional shapes built up of triangles are chosen to match
the ellipticity of the operator.

Write the first and second directional derivatives of a function u in the direction
w (with ||w|| = 1) as

uw = 〈w,Du〉, uww = wTD2uw.

where Du and D2u are the gradient and Hessian of u, respectively.
Define the forward difference in the direction v by

Dvu(x) =
u(x+ v)− u(x)

|v|
The first order monotone finite difference schemes for uw in the directions tw and
−tw are given by

Dtwu(x) = uw(x) +O(t)(1)

D−twu(x) = uw(x) +O(t)

The simplest finite difference scheme for uww is the centred finite differences

u(x+ tw)− 2u(x) + u(x− tw)

t2
=

1

t
[Dtwu(x) +D−twu(x)](2)

= uww(x) +O(t2)(3)

The generalization to unequally spaced points is clear from (2)

2

tp + tm

[
Dtpwu(x) +D−tmwu(x)

]
= uww(x) +O(t+).(4)

where t+ = max{tp, tm} (in general, the scheme is first order accurate, unless
tp = tm).

1.3. Directional finite differences using barycentric coordinates. Suppose
we want to compute uw(x0) using values u(xi) which determine a simplex. Using
linear interpolation, we can approximate the value of u(x+ tpw) on the boundary
of the simplex. A convenient expression for this value is given by using barycentric
coordinates, (see, for example, [DB08, §5.4 p.595]), which allows us to generalize (2).

Suppose Sm and Sp are the vertices of an (n− 1)-dimensional simplex. Suppose
further that

r ≤ ‖x0 − xi‖ ≤ R, for all xi ∈ {Sm,Sp}
Suppose further that

xp = x0 + tpw is in the simplex determined by Sp
xm = x0 − tmw is in the simplex determined by Sn

for tm, tp ∈ [r,R]. Construct the corresponding linear interpolants Lm and Lp

Lp(x) =
∑
i∈Sp

λip(x)u(xi)(5)

Lm(x) =
∑
i∈Sm

λim(x)u(xi).(6)

Here λp(x) and λm(x) are the barycentric coordinates in Sp and Sm respectively.
The barycentric coordinates are easily constructed. Let vpi = xi − x0, i ∈ Sp, and



FINITE DIFFERENCE SCHEMES 5

similarly define vmi . By assumption all vi’s satisfy r ≤ ||vi|| ≤ R. Let Vp be the
matrix

(7) Vp =
[
vp1 vp2 . . . vpn

]
.

Then λp is given by solving

(8) Vpλp = x.

The barycentric coordinates λm for Sm are defined analogously. By virtue of con-
vexity, if x lies in the (relative) interior of a simplex, its barycentric coordinates are
positive and sum to one.

Barycentric coordinates allow us to define the finite difference schemes for the
first and second directional derivatives as follows.

Definition 1 (First derivative schemes). The first derivative scheme takes two forms,
respectively upwind and downwind:

Dwu(x0) :=
1

tp
(Lp(x0 + tpw)− u(x0)) , tp =

1

1TV −1
p w

(9)

D−wu(x0) :=
1

tm
(Lp(x0 − tmw)− u(x0)) , tm =

−1

1TV −1
m w

(10)

Definition 2 (Second derivative scheme). The second derivative scheme is defined
as

(11) Dwwu(x0) =
2 (Dwu(x0) +D−wu(x0))

tp + tm
.

with tp and tm given above.

Lemma 1 (Monotone and stable). The finite difference schemes of Definitions 1 and
2 are monotone and stable.

Proof. By convexity, we are guaranteed that 0 ≤ λip,m ≤ 1. Further, we have that

both
∑
λip =

∑
λim = 1. This corresponds to a monotone discretization of the

operator [Obe06]. �

In the application below, we will use long, slender simplices, which are oriented
near the directions ±w, and control the interior and exterior radii, in order to
establish the accuracy of the schemes.

2. The framework

In this section we introduce a framework for constructing monotone finite dif-
ference operators on a point cloud, in dimensions two or three. To implement the
method, we require finding triangles (in two dimensions) or simplices (in three di-
mensions) which contain the reference point. The configuration of these simplices
determines the accuracy of the scheme.
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w
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w⊥
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S

(a) C2 = 2

PxiPxj

Pxk

S
hC3h Pw

(b) C3 = 1 + 2√
3

Figure 2. There exists an n−1 simplex S enclosing w, contained
within ball of radius Cnh. In Fig 2b, projections onto a plane
perpendicular to w are shown.

2.1. Notation. We use the following notation.

• Ω ⊂ Rn, an open convex bounded domain with Lipshitz boundary ∂Ω. We
focus on the cases n = 2 and n = 3.
• G ⊂ Ω̄ is a point cloud with points xi, i = 1 . . . N .
• If G is given as the undirected graph of a triangulation, then A is the

corresponding adjacency matrix of the graph.
• h = supx∈Ω miny∈G ‖x− y‖, the spatial resolution of the graph. Every ball

of radius h in Ω̄ contains at least one grid point.
• hB = supx∈∂Ω miny∈G∩∂Ω ‖x− y‖ is the spatial resolution of the graph on

the boundary.
• δ = minx∈G∩Ω miny∈G∩∂Ω ‖x− y‖ is minimum distance between an interior

point and a boundary point.
• ` is the minmum length of all edges in the graph G.
• dθ is the desired angular resolution. We shall require at least dθ < π.
• R = Cnh

(
1 + cosec(dθ2 )

)
is the maximal search radius, and depends only on

the angular resolution, the spatial resolution, and a constant Cn determined
by the dimension.
• r = Cnh

(
−1 + cosec(dθ2 )

)
is the minimal search radius. We will see that the

minimal search radius is necessary to guarantee convergence of the schemes.
Further, to guarantee the convergence of schemes near the boundary, it will
be necessary to require δ ≥ r.
• Cn is a constant determined by the dimension. In R2, C2 = 2; in R3,
C3 = 1 + 2√

3
.

The construction of the schemes above require the existence of simplices which
intersect the vector w. For accuracy, we further require that angular resolution of
the simplices diameter relative to the point x0 is less than dθ. The following three
lemmas show that for given angular and spatial resolutions, such schemes exist.
Refer to Figure 2.
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Cnh

w

S xi

xj

x0

R

K ∩ B̄(x0, R)

b
a

cdθ
2

dθ
2

a = Cnh sin(dθ/2)

b = Cnh cos(dθ/2)

c = b cot(dθ/2)
R = Cnh+ a+ c

= Cnh(1 + cosec(dθ/2))

(a) Interior simplex

x0

∂Ω

xi

xk
S

2δ tan(dθ2 )
δ

w

dθ
2

(b) Boundary simplex

Lemma 2 (Existence of scheme away from boundary). Take x0 ∈ G with dist(x0, ∂Ω) ≥
R. Then it is possible to construct the simplices used in Definition 1.

Proof. We must show that Sp and Sm exist. We first show the existence of the
simplex Sp; Sm follows similarly. Define the cone

(12) K :=

{
x | 〈v, w〉

‖v‖
≥ 1− cos(

dθ

2
), v = x− x0

}
.

Any two points in K have angular resolution (relative to x0) less than dθ. Therefore
choosing points in this cone ensures the angular resolution is satisfied.

We must now show that the set G ∩K contains points defining Sp. By construc-
tion, any ball in the interior of Ω with radius h contains at least one interior point.
Therefore, we may construct a simplex intersecting the line x0 + tw, t ∈ R, by plac-
ing n kissing balls on a plane w⊥ perpendicular to w, and choosing a point from
within each ball. Using simple geometrical arguments (cf Apollonius’ problem), it
can be shown that these n balls of radius h are all contained within a larger ball of
radius Cnh (with C2 = 2 and C3 = 1 + 2√

3
). Refer to Figure 2. Thus, a candidate

simplex is guaranteed to exist within every ball of radius Cnh with center on the
line x0 + tw.

Let this larger ball be B̄(x0 + (R−Cnh)w,Cnh). See Figure 3a. Simple trigono-
metric arguments show that this ball is contained within the cone K. Therefore
the cone K contains the desired simplex Sp.

Similar reasoning gives the existence of Sm. Taken together, this allows for the
construction of the schemes. �

Lemma 3 (Existence of interior scheme near boundary). Take x0 ∈ G ∩ Ω with
dist(x0, ∂Ω) < R. If the spatial resolution of G on the boundary is such that
CnhB ≤ δ tan(dθ2 ) and the angular resolution is small enough (dependent on the
regularity of the boundary) then the schemes given by Definition 1 exists.
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Proof. We first will show Sp exists; the existence of Sm follows analogously. With
the cone K defined as in the previous lemma, we must show that G ∩K contains
points defining Sp.

Suppose first that B̄(x0, R) ∩ K ⊂ Ω. Then the existence of Sp follows from
Lemma 2.

Suppose instead that B̄(x0, R) ∩K is not entirely contained within Ω. If dθ is
small enough, then the boundary is contained within B̄(x0, R) ∩K,

‖x0 − y‖ < R if y ∈ ∂Ω ∩K.(13)

By construction, dist(x0, ∂Ω) ≥ δ. Therefore the diameter of this portion of the
boundary is at least δ tan(dθ2 ) ≥ Cnh. Using similar geometrical reasoning as in the
previous lemma (see Figure 3b), there must be n points on the boundary defining
the simplex Sp. �

The previous two lemmas guarantee the first and second derivative schemes exist
on the interior of the domain. The existence of the first derivative scheme on the
boundary is, in general, not a simple exercise: existence depends on the regularity
of the domain, the angle formed by w and the boundary normal n, h, hB , and δ.
For our purposes, we guarantee the existence of a scheme for the normal derivative
with the following lemma.

Lemma 4 (Existence of normal derivative scheme on the boundary). Define the
set Ωδ := {x ∈ Ω | dist(x, ∂Ω) ≥ δ}. Suppose Ωδ is such that for every x ∈ Ωδ,
x ∈ B̄(y, Cdh) ⊂ Ωδ for some y ∈ Ωδ. Suppose further that minimum distance
between interior points and boundary points is less than the minimum search radius,
δ ≤ r. Then the scheme Dnu(x0) for the inward pointing normal derivative exists
for all boundary points.

Proof. Let x0 be a boundary point. If δ < r then the search ball B̄(x0 + (R −
Cnh)n,R) is contained entirely within Ω. Thus, by the same arguments as in the
proof of Lemma 2, the simplex Sp exists and has angular resolution less than dθ.
This allows for the construction of (9) for the normal derivative. �

Combining these three lemmas guarantees existence of the schemes.

Theorem 1 (Existence of schemes). Suppose G is a point cloud in Ω with boundary
resolution Cbh ≤ δ tan(dθ2 ). With small enough dθ, the first and second derivative
schemes defined respectively by Definitions 1 and 2 exist for all interior points
x0 ∈ G ∩ Ω. If in addition every x ∈ Ωδ lies within a ball B̄Cdh ⊂ Ωδ and δ < r,
the scheme Dnu(x0) for the inward normal derivative exists for all boundary points
x0 ∈ G ∩ ∂Ω.

2.2. Consistency & Accuracy. We now derive bounds on the error of the schemes,
and show that the schemes are consistent with an appropriate choice of dθ in terms
of h. First, recall the fact that the first term for the error of a linear interpolant is
given by

(14) u(x)− L(x) ≈ 1

2

∑
λj(x)(x− xj)TD2u(xj)(x− xj).
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Therefore the interpolation error at x0 + tpw is

E[Lp] :=u(x0 + tpw)− Lp(x0 + tpw)(15)

≈1

2

∑
i∈Sp

λip (vpi − tpw)
T
D2u(xi) (vpi − tpw)(16)

≤1

2
||D2u||∞

∑
i∈Sp

λip||v
p
i − tpw||

2.(17)

The interpolation error at x0 − tmw is bounded above in a similar fashion.

Lemma 5 (Consistency of first derivative scheme). The first derivative schemes of
Definition 1 are consistent with a formal discretization error of O(h).

Proof. The angular resolution error of the upwind first derivative scheme is

E[Dwu, dθ] =
E[Lp]

tp
(18)

≤ 1

2

∥∥D2u
∥∥
∞

∑
i∈Sp

λpi
‖vpi − tpw‖

2

tp
(19)

≤ 1

2

∥∥D2u
∥∥
∞

maxi,j∈Sp
∥∥vpi − vpj ∥∥2

mink∈Sp ‖vk‖
.(20)

By construction, the maximum distance between any two points in a simplex of the
scheme is 2Cnh, and so the numerator here is bounded above by (2Cnh)2. Further,
the minimum distance of a vector in the scheme is bounded below by the minimum
search radius r. That is

min
k∈Sp,Sm

‖vk‖ ≥ r = Cnh

(
−1 + cosec(

dθ

2
)

)
(21)

= O
(
h

dθ

)
.(22)

With this in mind, (20) is bounded by

E[Dwu, dθ] ≤
1

2

∥∥D2u
∥∥
∞

(2Cnh)2

r
(23)

= O(hdθ)(24)

Fixing dθ constant as h→ 0 gives that the scheme is O(h). �

Lemma 6 (Consistency of second derivative schemes). Using a non symmetric sten-

cil, with the optimal choice dθ =
(
h
2

) 1
3 , the second derivative scheme Dwwu of

Definition 2 is consistent, with a formal accuracy of O(h
2
3 ). Moreover on a sym-

metric stencil, with the optimal choice dθ = h
1
2 , Dwwu is consistent, with a formal

accuracy of O(h).

Proof. The angular resolution error of the second derivative scheme is

E[Dwwu, dθ] = 2

(
E[Lp]

t2p + tptm
+

E[Lm]

t2m + tptm

)
(25)

≤ 1

t2−

(
E[Lp] + E[Lm]

)
(26)
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where t− = min{tp, tm}. Arguing in a similar fashion as in the first derivative,

E[Dwwu, dθ] ≤ ||D2u||∞
maxS∈Sp,Sm maxi,j∈S ||vi − vj ||2

mink∈Sp,Sm ||vk||2
(27)

≤ ||D2u||∞
(2Cnh)2

r2
(28)

= O(dθ2).(29)

since dθ = O(hr ) when dθ is small.
The total error of the scheme is the sum of angular and spatial resolution errors.

For the second derivative, in the non symmetric case, the error of the scheme is

E[uww] = O(R+ dθ2)(30)

= O(
h

dθ
+ dθ2),(31)

because R = O( hdθ ) when dθ is small. In the symmetric case the error is

E[Dwwu] = O(R2 + dθ2)(32)

= O

((
h

dθ

)2

+ dθ2

)
(33)

To ensure the scheme is consistent, dθ must be chosen in terms of h such that the
error of the scheme goes to zero as the point cloud is refined. In the non symmetric

case, the best choice is dθ =
(
h
2

) 1
3 , which gives a formal accuracy of O(h

2
3 ). When

the discretization is symmetric, the best choice of dθ is
√
h, and the scheme is

formally O(h). �

Remark. To guarantee the accuracy of the first order scheme, dθ must remain
constant as h→ 0. In contrast, for the second order scheme to converge as h→ 0,

it must be that dθ ∼
(
h
2

) 1
3 (on a non symmetric grid). Thus, for the remainder

of the paper, when we speak of the angular resolution error, we mean the angular
resolution error for the second derivative scheme. We assume that the angular
resolution error for the first derivative scheme has been fixed to some reasonable
constant, say π

4 .

Remark. To ensure the existence of consistent schemes near the boundary, we re-
quire that the minimal distance between interior and boundary points is greater
than the minimal search radius, δ ≥ r.

2.3. Practical considerations. We now outline a procedure for preprocessing the
point cloud G, which will greatly speed the construction of elliptic schemes. The
algorithm takes a point cloud xi ∈ G, i ∈ I and returns a set Li of candidate
simplices for each point. Each simplex Sk ∈ Li, k = 1, . . . ,mi, is contained within
the annulus formed by the minimum and maximum search radii. Further, projecting
Li onto the sphere forms a covering of the sphere. Thus all possible directions are
available.

The pseudocode of the algorithm is given in Algorithm 1. Note that we assume
the set of normalized neighbour points, denoted by V , is unique. If not, for each
set of non unique points, keep only the smallest in norm.
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Algorithm 1: Algorithm for preprocessing the point cloud

Input : A point cloud xi ∈ G in Rn, i ∈ I, and resolution error dθ
Output: A list of sets of simplices Li, i ∈ I, where Li = {S1, . . . ,Smi

}
1 T ← triangulation(G) ; // triangulation of G
2 A← adj(T ) ; // Adjacency matrix of T
3 `← minimum length of all edges in T ;

4 h← supx∈Ω miny∈G ‖x− y‖ ; // spatial resolution of point cloud

5 R← Cnh
(
1 + cosec

(
dθ
2

))
; // maximum search radius

6 r ← Cnh
(
−1 + cosec

(
dθ
2

))
; // minimum search radius

7 p←
⌈
R
`

⌉
; // maximum neighbour graph distance

8 P ←
∑p
k=1A

k ;

9 foreach i ∈ I do
10 N ← {j | Pij 6= 0, i 6= j, r ≤ ‖xi − xj‖ ≤ R} ; // Neighbour indices

11 V ←
{

xi−xj

‖xi−xj‖ | j ∈ N
}

; // assume elements of V are unique

12 C ← Convex hull of V ;

13 Li ← ∅ ;

14 foreach Facet F of C do
// F is a set of indices of the points in V

15 S ← {xk | k = Nj , j ∈ F} ;

16 Li = Li ∪ {S} ;

17 end

18 end

19 return {Li} , i ∈ I

Now suppose the list of simplices

Li = {Sk} , k = 1, . . . ,mi

have been generated for a point xi. Given a direction w it is straight forward to
choose Sp and Sm from Li. Define

Vk =
[
v1 v2 . . . vn

]
, with vk = xj − xi, j ∈ Sk.

Then by Farkas’ lemma,

Sp =
{
Sk ∈ Li | V −1

k w ≥ 0
}

and
Sm =

{
Sk ∈ Li | V −1

k w ≤ 0
}
.

If these sets are not singletons (when w aligns with a grid direction), then choose
one representative element.

Remark. The proofs of Section 2 relied on choosing the maximal and minimal
search radii to respectively be R, r = Cnh(±1 + cosec(dθ2 )). This choice makes the
proofs relatively straightforward. However, it is possible to still guarantee existence
and accuracy of the finite difference scheme with the narrower band of search radii
R, r = h(±1+Cn cosec(dθ2 ). In practice this set of search radii limits the appearance
of ‘spikey’ stencils. We have found that it is best to choose a set set of simplices
whose boundary has minimal surface area, thus limiting the amount of interpolation
error.
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3. Application: Eigenvalues of the Hessian

It is relatively straight forward to employ Dwwu to find maximal and minimal
eigenvalues of the Hessian about a point xi ∈ G. We will illustrate the procedure for
the maximal eigenvalue, but the procedure is analogous for the minimal eigenvalue.

Define the finite difference operator Λh,dθ+ u(xi) := sup‖w‖=1Dwwu(xi) as the
approximation of the maximum eigenvalue of the Hessian.

Actually computing Λh,dθ+ u(xi) reduces to an optimization problem. Define K(S)
as the cone generated by a set S. We say that two cones overlap if their intersection
is non empty. For each pair {Sp,Sm} of overlapping antipodal simplices in Li (with
K(Sp) ∩K(−Sm) 6= ∅), one computes

P [Sm,Sp] =maximize
λp,λm

2

[∑
i∈Sp λ

i
pu(xi)− u(x0)

t2p + tptm
+

∑
i∈Sm λimu(xi)− u(x0)

t2m + tptm

]
subject to 0 ≤ λp, λm ≤ 1

1Tλp = 1

1Tλm = 1

tp = ||Vpλp||
tm = ||Vmλm||

The variables tp and tm are dummy variables. On a two dimensional uniform grid,
this simplifies to a straightforward optimization problem over one variable, which
can be solved analytically.

To find the maximal eigenvalue, one takes the maximal value computed over all
antipodal pairs:

Λh,dθ+ u(xi) = max
Sm,Sp∈Li

K(Sm)∩K(−Sp)6=∅

P [Sm,Sp](34)

The error of the scheme is

E[Λh,dθ+ ] =

∣∣∣∣max
‖v‖=1

vTD2u(xi)v − max
‖w‖=1

Dwwu(xi)

∣∣∣∣(35)

≤ max
‖w‖=1

wTD2u(xi)w −Dwwu(xi)(36)

= O(R+ dθ2),(37)

on a non symmetric grid. As before, on a symmetric grid the error is O(R2 + dθ2).

Remark. In cases other than on a symmetric grid in two dimensions, the optimiza-
tion problem (34) is difficult to implement. As a compromise, one may instead
compute finitely many directional derivative Dwiwiu, i = 1, . . . , k. Define the effec-
tive angular resolution through

cos dθe = max
i

min
j 6=i
〈wi, wj〉.(38)

Because the directional derivative may be taken off grid, one may choose suffi-
ciently many directions {wi} such that dθe ≤ dθ2. With this choice of directional
derivatives, the maximal eigenvalue of the Hessian can be defined as

(39) Λh,dθe+ u(xi) = max
i
Dwiwiu(xi).
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A simple computation shows that Λh,dθe+ also has accuracy O(R+ dθ2).

4. Solvers

Before continuing with specific numerical examples, we first detail the numerical
solver used. All solutions in Section 5 were computed with a global semi-smooth
Newton method. Without modification, the Newton method fails, because the
Newton method is guaranteed to be only a local method. However, the Newton
method is achieves supralinear rates of convergence when the starting condition is
close enough to the true solution.

Thus to guarantee convergence, we use a global semi-smooth Newton method
[FP07, Chapter 8]. Let Fh[u] be a finite difference approximation of an elliptic
operator F [u]. After each Newton step, we check for a sufficient decrease in the

energy
∥∥Fh[u]

∥∥2
. If the Newton step does not decrease, the method switches to

performing Euler steps, which is a guaranteed descent direction. We perform Eu-
ler steps for the same amount of CPU time as one Newton step, which was first
proposed in [Car17]. Because the Euler step is a guaranteed descent direction, the
method is globally convergent [FP07].

5. Numerical Examples

Here we test our meshfree finite difference method on two examples. We demon-
strate the convergence rates of the method, and compare our method with that of
[Fro18].

Our code, written in Python, is publicly available at https://github.com/

cfinlay/pyellipticfd.

5.1. Convex envelope. Our first example is the convex envelope of a function g(x)
on a convex domain Ω. The convex envelope has been well studied. In [Obe07] it
was shown that the convex envelope solves the partial differential equation

(40)

{
max{u(x)− g(x),−Λ−u(x)} = 0 x ∈ Ω

u(x) = g(x) x ∈ ∂Ω,

where Λ−u(x) is the minimal eigenvalue of the Hessian. A stable, monotone con-
vergent finite difference scheme for computing the convex envelope was presented
in [Obe08a].

In what follows, we take g(x) to be the Euclidian distance to two points p1 and
p2,

(41) g(x) = min
i=1,2
{‖x− pi‖},

or in otherwords, a double cone.
We start by computing the solution on the square [−1, 1]2, with p1,2 = (± 3

7 , 0).
We discretize Λ−u(x) using our symmetric linear interpolation finite difference
scheme for eigenvalues of the Hessian, presented in Section 3, and using the wide
stencil method developed in [Obe08a]. We call the latter a nearest neighbour
scheme. For both methods, we solved the equation using stencils with radius two
and three. Figure 4b and Table 2 present convergence rates in the max norm. We
can see that for stencil radius two, angular resolution error arises quickly as h is
decreased, and the error plateaus. However, with stencil radius three, we get a bet-
ter handle on the convergence rate of the error. The standard wide stencil method

https://github.com/cfinlay/pyellipticfd
https://github.com/cfinlay/pyellipticfd
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achieves roughly O(h
2
3 ), while the symmetric linear interpolation method achieves

O(h), as expected.
Although the convergence rate of the linear interpolation method is better than

the nearest neighbour method, for the values of h we studied, the linear interpo-
lation method has higher absolute error. This is because in order to guarantee
convergence, the linear interpolation method must choice points greater than the
minimum search radius, whereas the standard wide stencil finite difference scheme
may choose its nearest neighbours. Thus the spatial resolution error of the linear
interpolation scheme is generally higher than the nearest neighbour scheme.

We are also interested in the error of the schemes as a function of the angular
resolution. To this end, for fixed h, we compare the error of the schemes when
the grid has been rotated off axis. Our results are presented in Figure 5. The
mean of the error of the linear interpolation scheme is higher than the nearest
neighbour scheme, due to the fact that the linear interpolation scheme chooses
points further from the stencil centre. However, the variance of the error for the
linear interpolation scheme nearest neighbour scheme is much less than that of the
nearest neighbour scheme. That is, the linear interpolation scheme depends less on
the angular resolution of the stencil relative to the rotation of the grid.

Finally, we compare the linear interpolation scheme with Froese’s scheme on the
unit disc, using an irregular triangulation of points. We generate the interior points
using the triangulation software DistMesh [PS04], and augment the boundary with
additional points to ensure a sufficient boundary resolution. Convergence rates are
presented in Figure 4a and Table 2. We can see that the linear interpolation scheme
achieves both the best rate of convergence and a better absolute error.

5.2. Pucci equation. Our next example is the Pucci equation,{
αΛ+u(x) + Λ−u(x) = 0 x ∈ Ω

u(x) = g(x) x ∈ ∂Ω
(42)

where α is a positive scalar, and Λ−u and Λ+u are respectively the minimal and
maximal eigenvalues of the Hessian. A convergent, monotone and stable finite
difference scheme for the Pucci equation was first developed in [Obe08b]. Following
[DG05, Obe08b] we take

u(x, y) = −ρ1−α, ρ(x, y) =
√

(x+ 2)2 + (y + 2)2.(43)

We compute solutions on the unit disc and the square [−1, 1]2.
We discretized the square using a regular grid, and use either the nearest neigh-

bour scheme, or the symmetric finite difference interpolation scheme presented in
Section 3. We use stencils of radius two or three. Errors and rates of convergence on
the grid are presented in Table 3 and in Figure 6b. Both methods achieve roughly
the same convergence rate before angular resolution error dominates. The nearest
neighbour scheme achieves a slightly better error rate.

As in the convex envelope example, we used DistMesh to triangulate the unit
disc. Error and convergence rates are shown Table 3 and Figure 6a. Both methods
achieve nearlyO(1) convergence rate, which is better than predicted by our analysis.
We hypothesize this is due to the fact that this example is smooth on the domain
studied.
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Figure 4. Figure 4a: Convergence plot for the convex envelope
on the unit disc with triangular mesh. Figure 4b: Convergence plot
for the convex envelope on a regular grid over the square [−1, 1]2.

5.2.1. Solver comparison. Finally, we performed a comparison of the three solvers
(semi-smooth Newton, Euler, and a combination of the two) in terms of CPU time,
for the Pucci equation on a regular grid. Results are presented in Table 4.

As a function of number of grid points, the CPU time of Euler’s method is
roughly O(N2) for both methods, interpolation and nearest neighbour. For the
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Triangular mesh, interpolation
h N Error rate
8.6e−2 427 0.16 –
5.9e−2 785 0.13 0.61
4.0e−2 1452 0.11 0.41
2.9e−2 2713 0.09 0.58
2.0e−2 5101 0.07 0.59
1.4e−2 9674 0.05 1.07

Regular grid, interpolation, r = 2
h N Error rate
5.9e−2 392 7.5e−2 –
4.1e−2 721 6.5e−2 0.43
3.0e−2 1288 5.5e−2 0.51
2.1e−2 2492 4.7e−2 0.43
1.5e−2 4616 4.3e−2 0.26
1.0e−2 9017 4.2e−2 0.09

Regular grid, interpolation, r = 3
h N Error rate
5.9e−2 528 9.0e−2 –
4.2e−2 913 8.4e−2 0.20
3.0e−2 1552 5.6e−2 1.24
2.1e−2 2868 3.4e−2 1.45
1.5e−2 5136 2.9e−2 0.52
1.0e−2 9757 2.2e−2 0.68

Triangular mesh, Fro17
h N Error rate
8.6e−2 427 0.17 –
5.0e−2 810 0.16 0.18
4.1e−2 1533 0.12 0.80
3.0e−2 2908 0.11 0.30
2.0e−2 5526 0.09 0.37
1.4e−2 10542 0.08 0.47

Regular grid, Nearest neighbour, r = 2
h N Error rate
5.9e−2 392 5.4e−2 –
4.2e−2 721 4.2e−2 0.73
3.0e−2 1288 4.0e−2 0.15
2.1e−2 2492 4.2e−2 -0.13
1.5e−2 4616 3.9e−2 0.24
1.0e−2 9017 4.0e−2 -0.07

Regular grid, Nearest neighbour, r = 3
h N Error rate
5.9e−2 528 5.4e−2 –
4.2e−2 913 2.7e−2 2.0
3.0e−2 1552 3.0e−2 -0.29
2.1e−2 2868 2.5e−2 0.47
1.5e−2 5136 1.9e−2 0.98
1.0e−2 9757 1.7e−2 0.18

Table 2. Errors and convergence order for the convex envelope.

interpolation finite different schemes, both semi-smooth Newton and the combi-
nation solver is nearly O(N): we calculated a log-log line of best fit, and found
semi-smooth Newton and the combination solver to be about O(N1.2).

Of all solvers and finite difference methods, the nearest neighbour finite differ-
ence scheme with the combination solver achieves the best CPU time, followed by
the semi-smooth Newton. However, as a function of number of grid points, the
CPU time is roughly O(N1.75). This rate is worse than the interpolation finite dif-
ferent scheme, and so we expect on even larger grids, eventually the interpolation
finite difference method would be faster with either semi-smooth Newton or the
combination solver.
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[DB08] Germund Dahlquist and Åke Björck. Numerical methods in scientific computing, vol-
ume i. Society for Industrial and Applied Mathematics, 8, 2008.

[DG05] Edward J Dean and Roland Glowinski. On the numerical solution of a two-dimensional

pucci’s equation with dirichlet boundary conditions: a least-squares approach. Comptes
Rendus Mathematique, 341(6):375–380, 2005.

[FFL+17] Zexin Feng, Brittany D. Froese, Rongguang Liang, Dewen Cheng, and Yongtian Wang.

Simplified freeform optics design for complicated laser beam shaping. Appl. Opt.,
56(33):9308–9314, Nov 2017.
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h N Error rate
8.6e−2 427 1.3e−3 –
5.0e−2 785 8.3e−4 1.16
4.1e−2 1452 5.0e−4 1.34
3.0e−2 2713 3.5e−4 1.09
2.0e−2 5101 2.5e−4 0.88
1.4e−2 9674 1.6e−4 1.29

Regular grid, interpolation, r = 2
h N Error rate
5.9e−2 392 9.4e−4 –
4.1e−2 721 7.0e−4 0.88
3.0e−2 1288 5.8e−4 0.58
2.1e−2 2492 5.1e−4 0.35
1.5e−2 4616 4.8e−4 0.19
1.0e−2 9017 4.6e−4 0.11

Regular grid, interpolation, r = 3
h N Error rate
5.9e−2 528 1.0e−3 –
4.1e−2 913 8.4e−4 2.20
3.0e−2 1552 4.2e−4 2.14
2.1e−2 2868 3.1e−4 0.86
1.5e−2 5136 2.6e−4 0.53
1.0e−2 9757 2.3e−4 0.30

Triangular mesh, Fro17
h N Error rate
8.6e−2 427 1.5e−3 –
5.0e−2 810 2.1e−3 -0.90
4.1e−2 1533 1.2e−3 1.60
3.0e−2 2908 9.9e−4 0.58
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1.0e−2 9017 2.6e−4 0.07

Regular grid, Nearest neighbour, r = 3
h N Error rate
5.9e−2 528 7.0e−4 –
4.1e−2 913 3.8e−4 1.80
3.0e−2 1552 2.4e−4 1.45
2.1e−2 2868 1.6e−4 1.08
1.5e−2 5136 1.3e−4 0.62
1.0e−2 9757 1.0e−4 0.68

Table 3. Errors and convergence order for the Pucci equation.
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Figure 7. CPU time taken to compute solution of the Pucci equa-
tion on a regular grid, with stencil width r = 3, for both methods.

Interpolation, r = 2
N 392 721 1288 2492 4616 9017
Euler 1.16 3.22 9.43 34.39 125.49 500.98
Newton 0.74 1.29 2.70 5.86 12.32 28.86
Combination 0.75 1.36 2.50 6.07 12.39 28.35

Nearest neighbour, r = 2
N 392 721 1288 2492 4616 9017
Euler 0.43 1.62 5.75 24.23 90.90 383.43
Newton 0.06 0.11 0.25 1.04 3.40 13.51
Combination 0.05 0.10 0.23 0.73 2.66 9.54

Interpolation, r = 3
N 528 913 1552 2868 5136 9757
Euler 1.54 3.11 7.73 26.17 86.05 317.98
Newton 1.47 2.59 4.66 9.54 19.29 45.68
Combination 1.39 2.56 5.70 11.97 23.12 53.77

Nearest neighbour, r = 3
N 528 913 1552 2868 5136 9757
Euler 0.84 3.28 11.93 50.90 195.14 823.99
Newton 0.08 0.16 0.37 1.35 4.63 17.66
Combination 0.07 0.14 0.36 0.95 3.07 10.61

Table 4. Comparison of wall clock time of solvers for the Pucci
equation (42) in two dimensions on a regular grid. Time is reported
in seconds. Results are for stencils of either radius r = 2 or r = 3.
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