
Data-driven nonsmooth optimization

Sebastian Banert∗1, Axel Ringh∗1, Jonas Adler1,2,
Johan Karlsson1, and Ozan Öktem1

1KTH Royal Institute of Technology, 100 44 Stockholm, Sweden.
2Elekta, Box 7593, 103 93 Stockholm, Sweden.
Email: {banert, aringh, jonasadl, ozan}@kth.se,

johan.karlsson@math.kth.se

August 3, 2018

Abstract

In this work, we consider methods for solving large-scale optimization
problems with a possibly nonsmooth objective function. The key idea is
to first specify a class of optimization algorithms using a generic iterative
scheme involving only linear operations and applications of proximal
operators. This scheme contains many modern primal-dual first-order
solvers like the Douglas–Rachford and hybrid gradient methods as special
cases. Moreover, we show convergence to an optimal point for a new
method which also belongs to this class. Next, we interpret the generic
scheme as a neural network and use unsupervised training to learn the best
set of parameters for a specific class of objective functions while imposing
a fixed number of iterations. In contrast to other approaches of “learning
to optimize”, we present an approach which learns parameters only in
the set of convergent schemes. As use cases, we consider optimization
problems arising in tomographic reconstruction and image deconvolution,
and in particular a family of total variation regularization problems.

1 Introduction

Many problems in science and engineering can be formulated as convex opti-
mization problems which then need to be solved accurately and efficiently. In
this paper we focus on methods for solving such problems, namely of the form

min
x∈X

[
F (x) +

m∑
i=1

Gi(Lix)
]
. (1.1)

Here, Li : X → Yi, i = 1, . . . ,m, are linear operators, where X ,Y1, . . . ,Ym are
Hilbert spaces, and F : X → R and Gi : Yi → R, i = 1, . . . ,m, are proper, convex
and lower semicontinuous functions. This class of optimization problems appears
for example in variational regularization of inverse problems in imaging, such as

∗equal contribution

1

ar
X

iv
:1

80
8.

00
94

6v
1 

 [
m

at
h.

O
C

] 
 2

 A
ug

 2
01

8



X-ray computed tomography (CT) [40, 41], magnetic resonance imaging (MRI)
[18], and electron tomography [42].

A key challenge is to handle the computational burden. In imaging, and
especially so for three-dimensional imaging, the resulting optimization problem is
very high-dimensional even after clever digitization and might involve more than
one billion variables. Moreover, many regularizers that are popular in imaging
(see Section 5), like those associated with sparsity, result in a nonsmooth objective
function. These issues prevent usage of variational methods in time-critical
applications, such as medical imaging in a clinical setting. Modern methods
which aim at overcoming these obstacles are typically based on the proximal
point algorithm [46] and operator splitting techniques, see e.g., [10, 12, 14–16,
20–22, 25, 29, 33, 34] and references therein.

The main objective of the paper is to offer a computationally tractable
approach for minimizing large-scale nondifferentiable, convex functions. The key
idea is to “learn” how to optimize from training data, resulting in an iterative
scheme that is optimal given a fixed number of steps, while its convergence
properties can be analyzed. We will make this precise in Section 4.

Similar ideas have been proposed previously in [8, 27, 35], but these ap-
proaches are either limited to specific classes of iterative schemes, like gradient-
descent-like schemes [8, 35] that are not applicable for nonsmooth optimization,
or specialized to a specific class of regularizers as in [27], which limits the possible
choices of regularizers and forward operators. The approach taken here leverages
upon these ideas and yields a general framework for learning optimization algo-
rithms that are applicable to solving optimization problems of the type (1.1),
inspired by the proximal-type methods mentioned above.

A key feature is to present a general formulation that includes several existing
algorithms, among them the primal-dual hybrid gradient (PDHG) algorithm
(also called the Chambolle–Pock algorithm) [20] and the primal-dual Douglas–
Rachford algorithm [15] as a special case. This means that the learning can
be done in a space of schemes that includes these solvers as special cases.
Moreover, from the proposed parametrization we also derive a new optimization
algorithm. We demonstrate the performance of a solver based on this general
formulation by training in an unsupervised manner for two inverse problems:
image reconstruction in CT and deconvolution, both through TV regularization.
In particular, we present a method to learn the parameters of a convergent solver
and demonstrate the improvement to the ad-hoc parameter choice. Moreover,
empirical results indicate that by using additional parameters we can achieve
improved performance.

The paper is organized as follows: In Section 2 we recall elements of monotone
operator theory and convex optimization, while setting up the notation. In
Section 3, we present and analyze a new solver for monotone inclusions, which
in Section 3.3 is specialized to convex optimization problems of the form (1.1).
Section 4 deals with the notion of “learning” an optimization solver, and in
Section 5 we present numerical experiments for variational regularization of
inverse problems in imaging.

2



2 Background

Solving optimization problems of the type in (1.1) are often addressed using
variable splitting techniques, which work well if the different terms are “simple”
[10, 22, 24]. To keep the discussion as general as possible and since it does not add
complexity to the proof of convergence, we will carry it out for monotone inclu-
sions instead of convex optimization problems. The following subsections present
necessary background material on monotone operators, convex optimization, and
variable splitting.

2.1 Fundamental notions

LetH be a real Hilbert space with the inner product 〈·, ·〉. We denote convergence
in norm (or strong convergence) and weak convergence by→ and ⇀, respectively.
A set-valued operator S : H⇒ H is monotone if

〈z − z′, w − w′〉 ≥ 0 for all z, z′ ∈ H, w ∈ S(z), and w′ ∈ S(z′).

A monotone operator S is called maximally monotone if, in addition, the graph
of S, defined by graph(S) := {(z, w) ∈ H ×H | w ∈ S(z)}, is not properly con-
tained in the graph of any other monotone operator, i.e.,

(z, w) ∈ graph(S) ⇐⇒ 〈z − z′, w − w′〉 ≥ 0 for all (z′, w′) ∈ graph(S).

A monotone operator is called strongly monotone if there exists a µ > 0 such
that

〈z − z′, w − w′〉 ≥ µ‖z − z′‖2 for all z, z′ ∈ H, w ∈ S(z), and w′ ∈ S(z′).

Next, for any scalar σ > 0, the operator JσS = (Id + σS)
−1

is called the resolvent
operator or proximal mapping [46]. It can be shown that JσS is a single-valued
operator H → H [10, Proposition 23.8]. Note that an efficient routine to evaluate
JσS for all σ > 0 also enables to evaluate the resolvent operator of S−1 via

JσS−1(z) = z − σJ1/σ
S (z/σ) (2.1)

for z ∈ H (see [10, Proposition 23.20]).
A maximally monotone inclusion problem is defined as the problem of finding

a point z ∈ H such that 0 ∈ S(z), which we henceforth denote z ∈ zer(S). In
fact, it is easily seen that z ∈ zer(S) is equivalent with z being a fixed-point for
the resolvent operator, i.e., z = JσS (z).

One reason for the interest in maximally monotone inclusion problems is that
the subdifferential ∂F of a proper, convex and lower semicontinuous function
F : H → R is a maximally monotone operator [39]. Here, ∂F : H⇒ H is defined
to be

∂F (x) := {y ∈ H | ∀x̃ ∈ H : F (x̃) ≥ F (x) + 〈y, x̃− x〉}

if F (x) ∈ R and ∂F (x) = ∅ if F (x) ∈ {±∞}. Moreover, the subdifferential at
any minimizer of such a function contains zero, so F can be minimized by solving
a maximally monotone inclusion problem [10, Theorem 16.3]. Note that we do
not distinguish between local and global minimizers, since any local minimizer
of a convex function is global [10, Proposition 11.4].

3



Remark 2.1. A continuous linear operator A : H → H of a Hilbert space H into
itself is maximally monotone if and only if it is accretive, i.e., if 〈x,Ax〉 ≥ 0 for all
x ∈ H [10, Corollary 20.28, see also Definition 2.23], and it is the subdifferential
∂f of a function f : H → R if and only if it is additionally symmetric [9,
Proposition 2.51]. In particular the Volterra integral operator [11, Example 4.4]

(Af)(t) =

∫ t

0

f(s) ds

and its inverse are maximally monotone, but not the subdifferential of a proper,
convex and lower semicontinuous function.

For F : H → R, the Fenchel dual (convex conjugate) function F ∗ : H → R is
defined by [10, Chapter 13]

F ∗(y) := sup
x∈H

[
〈x, y〉 − F (x)

]
for y ∈ H.

If F is proper, convex and lower semicontinuous, then ∂F ∗ = (∂F )
−1

[10,
Corollary 16.30].

The proximal point algorithm is a fixed-point iterative scheme for solving the
maximally monotone inclusion problem. It is given by repeatedly applying the
resolvent operator:

zk+1 = JσS
(
zk
)
.

It can now be shown that if zer(S) 6= ∅ then zk converges weakly to a point
z∞ ∈ zer(S) [46] for all starting points z0 ∈ H. The special case when S := ∂F ,
i.e., the case of the resolvent of a subdifferential of F , is called the proximal
operator. One can express the proximal as [39]

Jσ∂F (x) = ProxσF (x) = arg min
x′∈H

{
F (x′) +

1

2σ
‖x′ − x‖2

}
. (2.2)

To see this, we simply note that if x′ is a minimizing argument then

0 ∈ ∂F (x′) +
1

σ
(x′ − x) ⇐⇒ x′ = Jσ∂F (x).

It is thus interesting to note that the fixed-point iteration

xk+1 = ProxσF
(
xk
)

= arg min
x′∈H

{
F (x′) +

1

2σ

∥∥x′ − xk∥∥2
}

generates a sequence
(
xk
)

that converges weakly to a minimizer of F . In this
setting, the parameter σ can be interpreted as a step length. This can give rise
to methods for solving the optimization problems if the proximal operator can
be efficiently computed, e.g., through a closed-form expression. Note that (2.1)
gives a method to obtain the proximal points of F ∗ from those of F , namely

ProxτF∗ (x) = x− τ Prox
1/τ
F (x/τ) for all τ > 0.

Sometimes the resolvent of the maximally monotone operator S is not easy
to evaluate, but S is of the form S = A + B where A and B are maximally
monotone and the resolvents of A and B can be evaluated efficiently. One may

4



then consider approximating JσA+B with JσA and JσB (splitting) [24]. An example
when this arises is in convex minimization of an objective that is a sum of two
(or more) functions F +G, like in (1.1). In these cases it is often not possible
to compute a closed-form expression for the proximal operator ProxσF+G. Such
problems can be addressed using operator splitting techniques that allow for
solving the problem by only evaluating ProxσF and ProxσG [22].∗

2.2 Convex optimization

Next, we will consider duality and optimality conditions for the problem (1.1).
To simplify the notation, we consider the case m = 1 in (1.1), i.e., let X and Y
be two Hilbert spaces and consider the model problem

min
x∈X

[
F (x) +G(Lx)

]
, (2.3)

where L : X → Y is a continuous linear operator and F : X → R and G : Y → R
are proper, convex and lower semicontinuous functions. Note that (1.1) is
recovered by setting

G(y) :=

m∑
i=1

Gi(yi) for y = (y1, . . . , ym) ∈ Y := Y1 × . . .× Ym (2.4)

and Lx := (L1x, . . . , Lmx) for x ∈ X in (2.3).
The dual formulation of the primal problem (2.3) is

max
y∈Y

[
−F ∗(L∗y)−G∗(−y)

]
. (2.5)

Under suitable conditions the two optimization problems (2.3) and (2.5) have
the same optimal value [10, Chapter 15.3]. Also note that, since both F and G
are proper, convex and lower semicontinuous functions, F ∗∗ = F and G∗∗ = G
by the Fenchel–Moreau theorem [10, Theorem 13.37]. Hence, the following
primal-dual formulation

min
x∈X

max
y∈Y

L(x; y) with L(x; y) := 〈Lx, y〉+ F (x)−G∗(y) (2.6)

(the mapping L(·; ·) is called the Lagrangian) is equivalent to the primal problem.†

In fact, under suitable assumptions it can be shown that if (x̄, ȳ) is a saddle
point to (2.6), then x̄ is a solution to the primal problem (2.3) and ȳ is a solution
to the dual problem (2.5) [10, Proposition 19.20].

A necessary optimality condition for the primal-dual formulation (2.6) is
that the corresponding point (x̄, ȳ) ∈ X ×Y be stationarity with respect to both
variables, i.e., that

Lx̄ ∈ ∂G∗(ȳ) and −L∗ȳ ∈ ∂F (x̄). (2.7)

For later use we note that the first of these conditions can be reformulated as

Lx̄ ∈ ∂G∗(ȳ) ⇐⇒ ȳ + σLx̄ ∈ ȳ + σ∂G∗(ȳ) = (I + σ∂G∗)(ȳ)

⇐⇒ ȳ = Jσ∂G∗(ȳ + σLx̄) = ProxσG∗ (ȳ + σLx̄),

∗In optimization, this operator splitting is sometimes referred to as variable splitting. The
reason for this can be understood by comparing equations (2.3) and (2.8) below.
†To see this, note that maxy∈Y

[
〈Lx, y〉 −G∗(y)

]
= G∗∗(Lx) = G(Lx).

5



and the second as

−L∗ȳ ∈ ∂F (x̄) ⇐⇒ x̄− τL∗ȳ ∈ x̄+ τ∂F (x̄) = (I + τ∂F )(x̄)

⇐⇒ x̄ = Jτ∂F (x̄− τL∗ȳ) = ProxτF (x̄− τL∗ȳ).

Therefore, an equivalent condition to (2.7) is

ȳ = ProxσG∗ (ȳ + σLx̄) and x̄ = ProxτF (x̄− τL∗ȳ). (2.8)

2.3 Two splitting algorithms

As mentioned before, there are many different splitting methods available to
solve problems of the form (1.1). For ease of reference, we here mention two
popular choices. The first one, given in (2.9), is PDHG [20]

yn+1 = ProxσG∗ (yn + σLvn),

xn+1 = ProxτF (xn − τL∗yn+1),

vn+1 = xn+1 + θ(xn+1 − xn).

(2.9)

The second one is the Douglas–Rachford type primal-dual algorithm [15], pre-
sented in (2.10)

pn = ProxτF (xn − τL∗yn),

xn+1 = xn + λn(pn − xn),

qn = ProxσG∗ (yn + σL(2pn − xn)),

yn+1 = yn + λn(qn − yn).

(2.10)

3 A new family of optimization solvers

In this section we introduce a new family of optimization algorithms and prove
convergence for a subfamily. For ease of notation we will consider the simplified
optimization problem (2.3), but results easily extend to the general case (1.1).

To this end, consider the two algorithms (2.9) and (2.10). Note that they
can both be written as

qn = ProxσG∗ (b12yn + b11L(c11pn−1 + c12xn−1)), (3.1a)

yn+1 = a21qn + a22yn, (3.1b)

pn = ProxτF (d12xn + d11L
∗(a11qn + a12yn)), (3.1c)

xn+1 = c21pn + c22xn, (3.1d)

for suitable values of the coefficients. More precisely, the PDHG algorithm (2.9)
is obtained by setting

a11 = 1 a12 = 0 a21 = 1 a22 = 0 b11 = σ b12 = 1

c11 = 1 + θ c12 = −θ c21 = 1 c22 = 0 d11 = −τ d12 = 1

and the Douglas-Rachford algorithm (2.10) by setting

a11 = λn a12 = 1− λn a21 = λn a22 = 1− λn b11 = σ b12 = 1

c11 = 2 c12 = −1 c21 = λn c22 = 1− λn d11 = −τ d12 = 1.

6



We now go on to analyze the scheme (3.1). To state our results as gener-
ally as possible, we formulate them for a monotone inclusion problem that in
particular specializes to the optimality conditions in (2.7) when the operators
are subdifferentials. The monotone inclusion problem we seek to solve reads
as follows: Let X and Y be two (not necessarily finite-dimensional) Hilbert
spaces, and let L : X → Y be a continuous linear operator. Let A : X ⇒ X and
B : Y ⇒ Y be maximally monotone operators. Find a pair (x̄, ȳ) ∈ X × Y such
that

Lx̄ ∈ B−1ȳ and −L∗ȳ ∈ Ax̄. (3.2)

In this setting, the scheme (3.1) generalizes to

qn = JσB−1(b12yn + b11L(c11pn−1 + c12xn−1)), (3.3a)

yn+1 = a21qn + a22yn, (3.3b)

pn = JτA(d12xn + d11L
∗(a11qn + a12yn)), (3.3c)

xn+1 = c21pn + c22xn. (3.3d)

We first note that if a21 = 0 or c21 = 0 the update for either yn+1 or xn+1

becomes trivial, and the algorithm will not be globally convergent to a point
fulfilling (3.2) in general. Henceforth we will therefore assume that a21 and c21

are not equal to 0, unless the opposite is explicitly stated.

3.1 Fixed-point analysis

In this section, we give necessary and sufficient conditions for the solution set
of (3.2) and the fixed point set of (3.3) to coincide for any choice of A, B, and
L. To this end, let (q̄, ȳ, p̄, x̄) ∈ Y × Y × X × X be a fixed point of the iterative
scheme (3.3) and note that (3.3b) and (3.3d) gives

q̄ =
1− a22

a21
ȳ and p̄ =

1− c22

c21
x̄.

Using this, we further get that

1− a22

a21
ȳ = JσB−1

(
b12ȳ + b11L

(
c11

1− c22

c21
x̄+ c12x̄

))
1− c22

c21
x̄ = JτA

(
d12x̄+ d11L

∗
(
a11

1− a22

a21
ȳ + a12ȳ

))
The conditions in (3.2) can now be re-phrased as

ȳ = JσB−1(ȳ + σLx̄) and x̄ = JτA(x̄− τL∗ȳ),

and combining the above two equations yields

a21 + a22 = 1, b12 = 1, b11(c11 + c12) = σ,

c21 + c22 = 1, d12 = 1, d11(a11 + a12) = −τ.
(3.4)

The conditions in (3.4) are necessary and sufficient, however, due to the linearity
of L, the algorithm does not change if we agree to the normalization

b11 = σ, c11 + c12 = 1,

d11 = −τ, a11 + a12 = 1.

7



If we fix all these conditions, the iteration (3.3) takes the form

qn = JσB−1(yn + σL(xn−1 + c11(pn−1 − xn−1))), (3.5a)

yn+1 = yn + a21(qn − yn), (3.5b)

pn = JτA(xn − τL∗(yn + a11(qn − yn))), (3.5c)

xn+1 = xn + c21(pn − xn). (3.5d)

3.2 Convergence analysis

The following theorem gives sufficient conditions for the weak convergence of the
sequence (xn, yn) generated by (3.5) to a point that satisfies (3.2), i.e., a point
that solves the monotone inclusion problem.

Theorem 3.1. Assume that there is a point that satisfies (3.2), i.e., the mono-
tone inclusion problem has a solution. Moreover, let

a11 = a21 and c11 = 1 +
c21

a21
. (3.6)

Assume furthermore that 0 < a21 < 2, 0 < c21 < 2 and

στ‖L‖2 < a2
21(2− a21)(2− c21)

(a21 + c21 − a21c21)
2 with σ, τ > 0. (3.7)

Finally, let (qn, yn, pn, xn) be the sequence generated by scheme (3.5). Then the
following holds:

(a)
∑
n≥0

‖xn − pn‖2 < +∞ and
∑
n≥0

‖xn − xn+1‖2 < +∞.

(b)
∑
n≥0

‖yn − qn‖2 < +∞ and
∑
n≥0

‖yn − yn+1‖2 < +∞.

(c) The sequence (xn, yn)n converges weakly to a point that satisfies (3.2).

(d) If A is strongly monotone, then there is a unique x̄ ∈ X such that all solutions

of (3.2) are of the form (x̄, y) with some y ∈ Y. Moreover,

∞∑
n=1

‖pn − x̄‖2 <

+∞, in particular pn → x̄ strongly.
If B−1 is strongly monotone, then there is a unique ȳ ∈ Y such that all
solutions of (3.2) are of the form (x, ȳ) with some x ∈ X . Moreover,
∞∑
n=1

‖qn+1 − ȳ‖2 < +∞, in particular qn → ȳ strongly.

By rewriting with (3.6), the iteration (3.5) takes the following form:

Algorithm 3.2. Choose parameters σ > 0, τ > 0 and a21 ∈ R, c21 ∈ R and
starting points x0 ∈ X , x1 ∈ X , p0 ∈ X , y1 ∈ Y. For all n = 1, 2, . . ., calculate

qn = JσB−1

(
yn + σL

(
pn−1 +

c21

a21
(pn−1 − xn−1)

))
, (3.8a)

yn+1 = yn + a21(qn − yn), (3.8b)

pn = JτA(xn − τL∗yn+1), (3.8c)

xn+1 = xn + c21(pn − xn). (3.8d)

8



Then, xn ⇀ x̄, pn ⇀ x̄, yn ⇀ ȳ, and qn ⇀ ȳ, where (x̄, ȳ) is a solution of (3.2),
provided that 0 < a21 < 2, 0 < c21 < 2 and (3.7) are satisfied.

The remainder of the convergence analysis will therefore refer to scheme (3.8).
The proof of Theorem 3.1 rests upon a number of technical results and is given
in Section 3.2.1. An immediate corollary is the convergence of the primal-dual
Douglas–Rachford method with constant relaxation [15].

Corollary 3.3. Let στ‖L‖ < 1 and 0 < λ < 2. Then, for the iteration

qn = JσB−1(yn + σL(2pn−1 − xn−1)),

yn+1 = yn + λ(qn − yn),

pn = JτA(xn − τL∗yn+1),

xn+1 = xn + λ(pn − xn),

the sequence (xn, yn)n converges weakly to a point that satisfies (3.2).

Proof. Set a21 = c21 = λ in Theorem 3.1 and observe that (3.7) reduces to

στ‖L‖2 < 1.

3.2.1 Proof of Theorem 3.1

For the proof, we define notions of distance Q1 and Q2 on the space X × Y
of pairs of primal and dual variables (Lemma 3.5). Next, we show that the
distance (in terms of Q1) between the iterates and the set of solutions of (3.2)
decreases (Proposition 3.6). This property is also known as Fejér monotonicity
[10, Chapter 5]. Proposition 3.7 improves the statement of Proposition 3.6 for
strongly monotone operators. The proof of Theorem 3.1 is completed by showing
that any weak sequential cluster point of the iteration sequence is a solution to
(3.2).

We start with some simple inequalities between real numbers. In particular,
Lemma 3.4 (a) shows that we do not divide by zero in (3.7).

Lemma 3.4. Let 0 < a21 < 2 and 0 < c21 < 2. Then

(a) a21 + c21 > a21c21 and

(b)
a21c21(2− a21)(2− c21)

(a21 + c21 − a21c21)
2 ≤ 1.

Proof. By assumption, a21(2− a21) > 0, i.e., a21 >
1
2a

2
21, and the same holds

for c21. Therefore,

a21 + c21 >
1

2
a2

21 +
1

2
c221 ≥ a21c21,

whence (a).
For (b), use the inequality 2a21c21 ≤ a2

21 + c221 in

a21c21(2− a21)(2− c21) = 4a21c21 − 2a2
21c21 − 2a21c

2
21 + a2

21c
2
21

≤ a2
21 + c221 + 2a21c21 − 2a2

21c21 − 2a21c
2
21 + a2

21c
2
21

= (a21 + c21 − a21c21)
2
.

9



Lemma 3.5. Define the quadratic forms Q1, Q2 : X × Y → R by

Q1(x, y) =
1

2τc21
‖x‖2 +

1

2σa21
‖y‖2 − 1

a21
〈y, Lx〉,

Q2(x, y) =
2− c21

2τ
‖x‖2 +

2− a21

2σ
‖y‖2 − a21 + c21 − a21c21

a21
〈y, Lx〉

for all x ∈ X and y ∈ Y. Under the assumptions in Theorem 3.1, there exist
C1, C2, D1, D2 > 0 such that

Qi(x, y) ≥ Ci‖x‖2 and Qi(x, y) ≥ Di‖y‖2

for all x ∈ X , y ∈ Y and i = 1, 2.

Proof. We can rewrite

Q1(x, y) =
1

2σa21
‖y − σLx‖2 +

1

2τc21
‖x‖2 − σ

2a21
‖Lx‖2,

Q1(x, y) =
1

2τc21

∥∥∥∥x− c21τ

a21
L∗y

∥∥∥∥2

+
1

2σa21
‖y‖2 − c21τ

2a2
21

‖L∗y‖2

and

Q2(x, y) =
2− a21

2σ

∥∥∥∥y − σ(a21 + c21 − a21c21)

a21(2− a21)
Lx

∥∥∥∥2

+
2− c21

2τ
‖x‖2 − σ(a21 + c21 − a21c21)

2

2a2
21(2− a21)

‖Lx‖2,

Q2(x, y) =
2− c21

2τ

∥∥∥∥x− τ(a21 + c21 − a21c21)

a21(2− c21)
L∗y

∥∥∥∥2

+
2− a21

2σ
‖y‖2 − τ(a21 + c21 − a21c21)

2

2a2
21(2− c21)

‖L∗y‖2.

From this, the assertion of the lemma is clear with the quantities

C1 =
1

2τc21
− σ

2a21
‖L‖2 =

a21 − c21στ‖L‖2

2τa21c21
,

D1 =
1

2σa21
− c21τ

2a2
21

‖L‖2 =
a21 − c21στ‖L‖2

2σa2
21

,

C2 =
2− c21

2τ
− σ(a21 + c21 − a21c21)

2

2a2
21(2− a21)

‖L‖2

=
a2

21(2− a21)(2− c21)− (a21 + c21 − a21c21)
2
στ‖L‖2

2τa2
21(2− a21)

,

D2 =
2− a21

2σ
− τ(a21 + c21 − a21c21)

2

2a2
21(2− c21)

‖L‖2

=
a2

21(2− a21)(2− c21)− (a21 + c21 − a21c21)
2
στ‖L‖2

2σa2
21(2− c21)

provided that the numerators are positive, i.e.,

στ‖L‖2 < min

{
a21

c21
,
a2

21(2− a21)(2− c21)

(a21 + c21 − a21c21)
2

}
.

10



Now, by Lemma 3.4, the minimum is always attained by the second value, and
positivity is guaranteed by (3.7).

Proposition 3.6. Define Q1 and Q2 as in Lemma 3.5, let (x̄, ȳ) ∈ X ×Y satisfy
(3.2), and let the sequence (qn, yn, pn, xn) be generated by scheme (3.8). Under
the assumptions in Theorem 3.1, we have for all n ≥ 1

Q1(xn+1 − x̄, yn+2 − ȳ)−Q1(xn − x̄, yn+1 − ȳ) ≤ −Q2(pn − xn, qn+1 − yn+1).

Proof. Let (x̄, ȳ) satisfy (3.2). Then

Q1(xn+1 − x̄, yn+2 − ȳ)−Q1(xn − x̄, yn+1 − ȳ)

=
1

2τc21

(
‖xn+1 − x̄‖2 − ‖xn − x̄‖2

)
+

1

2σa21

(
‖yn+2 − ȳ‖2 − ‖yn+1 − ȳ‖2

)
+

1

a21
(〈yn+1 − ȳ, Lxn − Lx̄〉 − 〈yn+2 − ȳ, Lxn+1 − Lx̄〉)

=
1

2τc21

(
‖xn − x̄+ c21(pn − xn)‖2 − ‖xn − x̄‖2

)
+

1

2σa21

(
‖yn+1 − ȳ + a21(qn+1 − yn+1)‖2 − ‖yn+1 − ȳ‖2

)
+

1

a21

(
〈yn+1 − ȳ, Lxn − Lx̄〉

− 〈yn+1 − ȳ + a21(qn+1 − yn+1), Lxn − Lx̄+ c21(Lpn − Lxn)〉
)

=
c21

2τ
‖pn − xn‖2 +

1

τ
〈xn − x̄, pn − xn〉+

a21

2σ
‖qn+1 − yn+1‖2

+
1

σ
〈yn+1 − ȳ, qn+1 − yn+1〉+

c21

a21
〈ȳ − yn+1, Lpn − Lxn〉

+ 〈qn+1 − yn+1, Lx̄− Lxn〉+ c21〈yn+1 − qn+1, Lpn − Lxn〉. (3.9)

To estimate the above, we use the monotonicity of the operator B−1 together
with the inclusions Lx̄ ∈ B−1ȳ from (3.2) and

yn+1 − qn+1

σ
+ Lpn +

c21

a21
(Lpn − Lxn) ∈ B−1qn+1, (3.10)

which is a reformulation of (3.8a) with n replaced by n + 1. This yields the
inequality

0 ≤
〈
yn+1 − qn+1

σ
+ Lpn +

c21

a21
(Lpn − Lxn)− Lx̄, qn+1 − ȳ

〉
=

1

σ
〈yn+1 − qn+1, qn+1 − ȳ〉+ 〈Lpn − Lx̄, qn+1 − ȳ〉

+
c21

a21
〈Lpn − Lxn, qn+1 − ȳ〉 (3.11)

Analogously, we can rewrite (3.8c) as

xn − pn
τ

− L∗yn+1 ∈ Apn. (3.12)

11



The monotonicity of A together with the inclusion −L∗ȳ ∈ Ax̄ from (3.2) now
yields

0 ≤
〈
xn − pn

τ
− L∗yn+1 + L∗ȳ, pn − x̄

〉
=

1

τ
〈xn − pn, pn − x̄〉+ 〈ȳ − yn+1, Lpn − Lx̄〉. (3.13)

Adding (3.11) and (3.13) yields

0 ≤ 1

σ
〈yn+1 − qn+1, qn+1 − ȳ〉+ 〈Lpn − Lx̄, qn+1 − yn+1〉

+
c21

a21
〈Lpn − Lxn, qn+1 − ȳ〉+

1

τ
〈xn − pn, pn − x̄〉, (3.14)

which, combined with (3.9), gives

Q1(xn+1 − x̄, yn+2 − ȳ)−Q1(xn − x̄, yn+1 − ȳ)

≤ c21

2τ
‖pn − xn‖2 +

1

τ
〈xn − x̄, pn − xn〉+

a21

2σ
‖qn+1 − yn+1‖2

+
1

σ
〈yn+1 − ȳ, qn+1 − yn+1〉+

c21

a21
〈ȳ − yn+1, Lpn − Lxn〉

+ 〈qn+1 − yn+1, Lx̄− Lxn〉+ c21〈yn+1 − qn+1, Lpn − Lxn〉

+
1

σ
〈yn+1 − qn+1, qn+1 − ȳ〉+ 〈Lpn − Lx̄, qn+1 − yn+1〉

+
c21

a21
〈Lpn − Lxn, qn+1 − ȳ〉+

1

τ
〈xn − pn, pn − x̄〉

=

(
c21

2τ
− 1

τ

)
‖pn − xn‖2 +

(
a21

2σ
− 1

σ

)
‖qn+1 − yn+1‖2

+

(
c21

a21
+ 1− c21

)
〈qn+1 − yn+1, Lpn − Lxn〉

= −Q2(pn − xn, qn+1 − yn+1). (3.15)

This concludes the proof.

Proposition 3.7. Let Q1 and Q2 be defined as in Lemma 3.5 and assume the
conditions stated in Theorem 3.1 hold.

1. If A is µ1-strongly monotone for some µ1 > 0, then

Q1(xn+1 − x̄, yn+2 − ȳ)−Q1(xn − x̄, yn+1 − ȳ) + µ1‖pn − x̄‖2

≤ −Q2(pn − xn, qn+1 − yn+1).

2. If B−1 is µ2-strongly monotone for some µ2 > 0, then

Q1(xn+1 − x̄, yn+2 − ȳ)−Q1(xn − x̄, yn+1 − ȳ) + µ2‖qn+1 − ȳ‖2

≤ −Q2(pn − xn, qn+1 − yn+1).

12



Proof. If A is µ1-strongly monotone, we obtain from (3.12) and −L∗ȳ ∈ Ax̄
(3.2) the estimation

µ1‖x̄− pn‖2 ≤
〈
xn − pn

τ
− L∗yn+1 + L∗ȳ, pn − x̄

〉
,

which is a sharpened version of (3.13). By modifying (3.14) and (3.15) accord-
ingly, we get the assumption. The case of a strongly monotone B−1 is analogously
shown by improving (3.11).

Having stated and proved the necessary estimations, we are now ready to
prove Theorem 3.1.

Proof of Theorem 3.1. Let (x̄, ȳ) satisfy (3.2). By Proposition 3.6, we get the
estimation

Q1(xn+1 − x̄, yn+2 − ȳ)−Q1(xn − x̄, yn+1 − ȳ) ≤ −Q2(pn − xn, qn+1 − yn+1).

Considering Lemma 3.5, we see that the real sequence

(Q1(xn − x̄, yn+1 − ȳ))n≥1

is monotonically nonincreasing and therefore has a limit for each primal-dual
solution (x̄, ȳ). Furthermore, for all N ≥ 1,

Q1(xN − x̄, yN+1 − ȳ)−Q1(x0 − x̄, y1 − ȳ)

≤ −
N−1∑
n=0

Q2(pn − xn, qn+1 − yn+1).

By Lemma 3.5, we have Q1(xN − x̄, yN+1 − ȳ) ≥ 0 and

Q1(x0 − x̄, y1 − ȳ) ≥
N−1∑
n=0

Q2(pn − xn, qn+1 − yn+1)

≥
N−1∑
n=0

C2‖pn − xn‖2

as well as

Q1(x0 − x̄, y1 − ȳ) ≥
N−1∑
n=0

D2‖qn+1 − yn+1‖2.

Since this holds for arbitrary N ≥ 1, this proves parts (a) and (b) of the theorem.
On the other hand, we have

Q1(x0 − x̄, y1 − ȳ) ≥ Q1(xN − x̄, yN+1 − ȳ) ≥ C1‖xN − x̄‖2

and
Q1(x0 − x̄, y1 − ȳ) ≥ Q1(xN − x̄, yN+1 − ȳ) ≥ D1‖yN+1 − ȳ‖2

13



for all N ≥ 1, so the sequences (xn)n and (yn) are bounded in X and Y,
respectively. Let (nk)k be a subsequence with xnk

⇀ x∞ ∈ X and ynk+1 ⇀
y∞ ∈ Y. By (3.12) and (3.10), we obtain

xnk
− pnk

τ
− L∗ynk+1 ∈ Apnk

,

ynk+1 − qnk+1

σ
+ Lpnk

+
c21

a21
(Lpnk

− Lxnk
) ∈ B−1qnk+1.

Now apply [7, Proposition 2.4] with

ak = pnk
,

a∗k =
xnk
− pnk

τ
− L∗ynk+1,

bk =
ynk+1 − qnk+1

σ
+ Lpnk

+
c21

a21
(Lpnk

− Lxnk
),

b∗k = qnk+1

and observe that

ak = xnk
+ (pnk

− xnk
) ⇀ x∞,

b∗k = ynk+1 + (qnk+1 − ynk+1) ⇀ y∞,

a∗k + L∗b∗k =
xnk
− pnk

τ
+ L∗(qnk+1 − ynk+1)→ 0,

Lak − bk = −ynk+1 − qnk+1

σ
− c21

a21
(Lpnk

− Lxnk
)→ 0

because parts (a) and (b) imply that xnk
− pnk

→ 0 and ynk+1 − qnk+1 → 0 as
k → +∞. This gives Lx∞ ∈ B−1y∞ and −L∗y∞ ∈ Ax∞, i.e., (x∞, y∞) satisfies
(3.2). Since the choice of the weakly convergent subsequence was arbitrary, each
weak sequential cluster point satisfies (3.2). Claim (c) now follows from [10,
Lemma 2.47] applied to the norm

√
Q1(·) on the product space X × Y and to

the solution set of (3.2).
Now assume that A is µ1-strongly monotone for some µ1 > 0. By Proposi-

tion 3.7, we get the estimation

Q1(xn+1 − x̄, yn+2 − ȳ)−Q1(xn − x̄, yn+1 − ȳ) + µ1‖pn − x̄‖2

≤ −Q2(pn − xn, qn+1 − yn+1)

for all n ≥ 0. Choose N ≥ 1 and sum up this inequality for n = 0, . . . , N − 1 to
obtain

Q1(xN − x̄, yN+1 − ȳ)−Q1(x0 − x̄, y1 − ȳ) + µ1

N−1∑
n=0

‖pn − x̄‖2

≤ −
N−1∑
n=0

Q2(pn − xn, qn+1 − yn+1)

Since the terms Q1(xN − x̄, yN+1 − ȳ) and
∑N−1
n=0 Q2(pn − xn, qn+1 − yn+1) are

nonnegative by Lemma 3.5, we obtain

µ1

N−1∑
n=0

‖pn − x̄‖2 ≤ Q1(x0 − x̄, y1 − ȳ).

14



Analogously, one gets

µ2

N−1∑
n=0

‖qn+1 − ȳ‖2 ≤ Q1(x0 − x̄, y1 − ȳ),

if B−1 is µ2-strongly monotone, and since N is arbitrary, both sums

∞∑
n=0

‖pn − x̄‖2 and

∞∑
n=0

‖qn+1 − ȳ‖2

are finite in the respective cases. The uniqueness of the point x̄ under the
assumption of strong monotonicity of A holds by the fact that we have shown
pn → x̄ for any solution (x̄, ȳ) of (3.2). An analogous argument for ȳ concludes
the proof of Claim (d).

Remark 3.8. We were not able to show the weak convergence of PDHG (2.9) for
θ 6= 1 with this proof method. Indeed, by a straightforward calculation it can be
shown that from Fejér monotonicity with respect to any quadratic form of the
sequence (xn, yn+1)n the conditions (3.6) can be derived, which implies θ = 1.

3.3 Application to convex optimization

In this section, we specialize the scheme (3.8) to the case where the monotone
operators A and B are subdifferentials ∂F and ∂G of proper, convex and lower
semicontinuous functions F : X → R and G : Y → R, resectively. Algorithm 3.2
then reads as follows:

Algorithm 3.9. Choose parameters σ > 0, τ > 0 and a21 ∈ R, c21 ∈ R and
starting points x0 ∈ X , x1 ∈ X , p0 ∈ X , y1 ∈ Y. For all n = 1, 2, . . ., calculate

qn = ProxσG∗

(
yn + σL

(
pn−1 +

c21

a21
(pn−1 − xn−1)

))
, (3.16a)

yn+1 = yn + a21(qn − yn), (3.16b)

pn = ProxτF (xn − τL∗yn+1), (3.16c)

xn+1 = xn + c21(pn − xn). (3.16d)

Then, xn ⇀ x̄, pn ⇀ x̄, yn ⇀ ȳ, and qn ⇀ ȳ, where (x̄, ȳ) is a solution of (2.7),
provided that 0 < a21 < 2, 0 < c21 < 2, and (3.7) are satisfied.

In this case, it is possible to get estimations for the Lagrangian, which is
defined in (2.6).

Theorem 3.10. Given the assumptions in Theorem 3.1, let F : X → R and
G : Y → R be two proper, convex and lower semicontinuous functions. Let
x ∈ X and y ∈ Y be arbitrary. Then the sequence (qn, yn, pnxn) generated by
(3.16) satisfies

min
n=0,...,N−1

(L(pn; y)− L(x; qn+1)) ≤ 1

N
Q1(x0 − x, y1 − y),

L

(
1

N

N−1∑
n=0

pn; y

)
− L

(
x;

1

N

N−1∑
n=0

qn+1

)
≤ 1

N
Q1(x0 − x, y1 − y).

15



This theorem is proved using the following proposition, which bounds the
Lagrangian in terms of the quadratic forms defined in Lemma 3.5.

Proposition 3.11. Given the assumptions in Theorem 3.1, let F : X → R and
G : Y → R be two proper, convex and lower semicontinuous functions. Let x ∈ X
and y ∈ Y be arbitrary. Then the sequence (qn, yn, pn, xn) generated by (3.16)
satisfies

L(pn; y)− L(x; qn+1) ≤ Q1(xn − x, yn+1 − y)−Q1(xn+1 − x, yn+2 − y)

−Q2(pn − xn, qn+1 − yn+1)

for all n ≥ 1, x ∈ X and y ∈ Y.

Proof. Since B−1 = ∂G∗ and A = ∂F , the inclusions (3.10) and (3.12) provide
certain subgradients, which imply the inequalities

G∗(y) ≥ G∗(qn+1) +
1

σ
〈yn+1 − qn+1, y − qn+1〉+ 〈Lpn, y − qn+1〉

+
c21

a21
〈Lpn − Lxn, y − qn+1〉,

F (x) ≥ F (pn) +
1

τ
〈xn − pn, x− pn〉 − 〈L∗yn+1, x− pn〉.

Therefore, we have

L(pn; y)− L(x; qn+1)

= 〈Lpn, y〉+ F (pn)−G∗(y)− 〈Lx, qn+1〉 − F (x) +G∗(qn+1)

≤ 1

τ
〈xn − pn, pn − x〉+ 〈Lpn − Lx, qn+1 − yn+1〉

+
1

σ
〈yn+1 − qn+1, qn+1 − y〉+

c21

a21
〈Lpn − Lxn, qn+1 − y〉.

The right-hand side is now (except for the replacement of x̄ and ȳ by x and
y, respectively) equal to the one in (3.14), and one easily checks by an analogous
calculation, that it equals the expression in the assertion.

Proof of Theorem 3.10. By summing the inequality in Proposition 3.11 for n =
0, . . . , N − 1 and dividing by N for some N ≥ 1, we get

1

N

N−1∑
n=0

(L(pn; y)− L(x; qn+1)) ≤ 1

N
Q1(x0 − x, y1 − y)

for all x ∈ X and y ∈ Y , where we dropped nonpositive terms on the right-hand
side.

We have two possibilities to further estimate the left-hand side: First, we
notice that it is the arithmetic mean of numbers, which is always greater than
the minimum, i.e.,

1

N

N−1∑
n=0

(L(pn; y)− L(x; qn+1)) ≥ min
n=0,...,N−1

(L(pn; y)− L(x; qn+1)).

On the other hand, the Lagrangian is convex in its first and concave in its second
component, so

1

N

N−1∑
n=0

(L(pn; y)− L(x; qn+1)) ≥ L

(
1

N

N−1∑
n=0

pn; y

)
− L

(
x;

1

N

N−1∑
n=0

qn+1

)
.

16



4 Learning an optimization solver

Most optimization problems are solved using iterative methods, akin to the ones
presented in Sections 2 and 3. However, the number of iterations it takes in
order for the algorithm to converge is in general hard to predict, which creates
problems in time-critical applications. In these situations one could instead
consider only doing a predefined fixed number n of iterations. A natural question
that arises in response to this is: what parameter values in the optimization
solver give the best improvement of the objective function in n iterations? This
question leads to a meta-optimization over optimization solvers. Moreover, in
general we are not only interested in optimizing one single cost function, but
rather a (potentially infinite) family {Fθ}θ∈Θ of cost functions, each with a
minimizer x̄θ. Hence, to make the question precise one needs to specify which
family of optimization solvers one is considering, which is the family of cost
functions of interested, and what is meant with “best improvement”.

One such question was raised in [23], where the authors consider the worst-
case performance supθ∈Θ

[
Fθ(xn)−Fθ(x̄θ)

]
of gradient-based algorithms over the

set of continuously differentiable functions with Lipschitz-continuous gradients,
and with a uniform upper bound on the Lipschitz constants. Subsequent work
along the same lines can be found in [31, 48].

The idea of optimizing over optimization solvers has also been considered
from a machine learning perspective. This has for example been done using
reinforcement learning [35], and using unsupervised learning [8, 27]. In the latter
category, one looks for algorithm parameters which minimize the expected value
of the difference in objective function value,

Eθ
[
Fθ(xn)− Fθ(x̄θ)

]
= Eθ

[
Fθ(xn)

]
− Eθ

[
Fθ(x̄θ)

]
(4.1)

where Θ is endowed with a probability measure and xn is the output of the
algorithm after n iterations. However, optimizing (4.1) with respect to the
parameters of the method is independent of the optimal points {x̄θ}θ∈Θ, thus,
this translates into unsupervised learning, i.e., the cost function Eθ

[
Fθ(xn)

]
does not depend on x̄θ. In this setting, [8] restricts attention to an architecture
that operates individually on each coordinate of x. This is done in order to
limit the number of parameters in the algorithm, which otherwise would grow
exponentially with the dimension of x. To overcome this, we use an approach
similar to [27], where the network architecture is inspired by modern first-order
optimization solvers for nonsmooth problems, as presented in Sections 2 and 3.
Similar ideas have also recently been explored for supervised learning in inverse
problems in [4–6, 28, 37, 45, 49].

4.1 Unrolled gradient descent as a neural network

Before we define the architecture considered in this work, we first present an
illustrative example. To this end, consider the optimization problem

min
x

F (x).

We assume that F is smooth, which means that the problem can be solved using
a standard gradient descent algorithm, i.e., by performing the updates

xk = xk−1 − σk∇F (xk).

17



x0

∇F (·) ×

σ1

−

x1

∇F (·)

. . .

. . .

−

xn−1

∇F (·) ×

σn

−

xn

Figure 1: Gradient descent.

The gradient descent algorithm contains a set of parameters that need to be
selected, namely the step length for each iteration, σk. This is normally done via
the Goldstein rule or backtracking line search (Armijo rule) [13], which under
suitable conditions ensures convergence to the optimal point x̄.

However, if we only run the algorithm for a fixed number n of steps, the
gradient descent algorithm can be seen as a feedforward neural network, as
shown in Figure 1. Each layer in the network performs the computation xk−1 −
σk∇F (xk−1) and the parameters of the network are [σ1, . . . , σn]. Moreover, if
the step length is fixed to be the same in all iterations, i.e., σ1 = . . . = σn = σ for
some σ, the gradient descent algorithm can in fact be interpreted as a recurrent
neural network. In both cases, for a given family {Fθ}θ∈Θ of cost functions the
network parameter(s) can be trained (optimized) by minimizing Eθ

[
Fθ(xn)],

where xn is the output of the network in Figure 1. For simple cases this can be
done analytically.

Example 4.1. Consider the family (Fb)b of functions Fb : Rn → R given by
Fb(x) = 1

2x
>Ax − b>x, where A ∈ Rn×n is a (fixed) symmetric and positive

definite matrix. The minimum of Fb is given by x̄b = A−1b. Denote by Λσ the
result of taking a gradient step of length σ > 0, i.e.,

Λσ(x) = x− σ∇Fb(x) = x− σ(Ax− b), x ∈ Rn.

Let x0 ∈ Rn be an arbitrary starting point of the iteration. This gives

Fb(Λσ(x0)) = Fb(x0 − σ(Ax0 − b))

=
1

2
(x0 − σ(Ax0 − b))>A(x0 − σ(Ax0 − b))− b>(x0 − σ(Ax0 − b))

=
σ2

2
(Ax0 − b)>A(Ax0 − b)− σ‖Ax0 − b‖2 + Fb(x0).

Let b be a random variable distributed according to b ∼ P for some probability
distribution P with finite first and second moments. Finding a σ that minimizes
the expectation

Eb∼P

[
Fb(Λσ(x0))

]
=
σ2

2
Eb∼P

[
(Ax0 − b)>A(Ax0 − b)

]
− σ Eb∼P

[
‖Ax0 − b‖2

]
+ Eb∼P

[
Fb(x0)

]
,

18



is a quadratic problem in one variable, and the optimal value of σ is thus

σ =
Eb∼P

[
‖Ax0 − b‖2

]
Eb∼P

[
(Ax0 − b)>A(Ax0 − b)

]
=
‖Ax0‖2 − 2(Ax0)> Eb∼P

[
b
]

+ Eb∼P

[
‖b‖2

]
x>0 A

3x0 − 2(A2x0)> Eb∼P
[
b
]

+ Eb∼P

[
b>Ab

] .
In some particular cases this expression can be simplified. For example if A = I,
then σ = 1 as expected. Or if x0 = 0, then σ = Eb∼P [‖b‖2]/Eb∼P [b>Ab].

4.2 Parametrizing a family of optimization algorithms

Similarly to the considerations in Section 4.1, for a fixed number of iterations
one can consider the optimization algorithms (2.9), (2.10) and (3.16) as neural
networks, where the variables we want to train are the parameters of the opti-
mization methods. Optimizing these parameters with respect to the constraints
corresponding to each algorithm is effectively trying to find optimal parameters
for the corresponding algorithm for a given family of cost functions. However, if
one only intends to do a finite number of iterations one could also remove this
constraint, and thereby enlarge the space of schemes one is optimizing over.

As noted in Section 3, all of the above mentioned optimization algorithms can
be written on the form (3.1). That means that optimizing over the parameters
in (3.1) can be seen as optimizing over a space of schemes that includes all three
algorithms. Now, introducing the intermediate states wn = a11qn + a12yn and
vn+1 = c11pn + c12xn, and the 2× 2 matrices A,B,C,D, the scheme (3.1) can
be written as[

wn
yn+1

]
= (A⊗ Id) diag(ProxσG∗ , Id) (B ⊗ Id)

[
Lvn
yn

]
[
vn+1

xn+1

]
= (C ⊗ Id) diag(ProxτF , Id) (D ⊗ Id)

[
L∗wn
xn

]
,

(4.2)

where the parameters of the scheme are the elements of the matrices. Here, by ⊗
we denote the Kronecker product, and by diag (A,B, . . .) we denote the diagonal
operator with the operators A,B, . . . on the diagonal. Connecting this with
the previous optimization algorithms, the PDHG algorithm (2.9) is obtained by
setting

A =

[
1 0
1 0

]
, B =

[
σ 1
0 1

]
, C =

[
1 + θ −θ

1 0

]
, D =

[
−τ 1
0 1

]
,

the primal-dual Douglas-Rachford algorithm (2.10) by taking

A =

[
λn 1− λn
λn 1− λn

]
, B =

[
σ 1
0 1

]
, C =

[
2 −1
λn 1− λn

]
, D =

[
−τ 1
0 1

]
,

and the proposed algorithm from Section 3 by setting

A =

[
a21 1− a21

a21 1− a21

]
, B =

[
σ 1
0 1

]
, C =

[
1 + c21

a21
− c21
a21

c21 1− c21

]
, D =

[
−τ 1
0 1

]
.

19



Considering (4.2) as a neural network, the structure can easily be extended
in order to incorporate more memory in the network. In this work we assume
that the computationally expensive part of the algorithm is the evaluation of
the operator L and its adjoint, which is typically the case in inverse problems
in imaging, e.g., in three-dimensional CT [40, 41]. Therefore, the extension
presented here thus keeps one evaluation L and one evaluation of L∗ in each
iteration.

To this end, let N be the number of primal variables x1, . . . , xN ∈ X and M
be the number of dual variables y1, . . . , yM ∈ Y . Introducing the four sequences
of matrices An,Bn ∈ RM×M and Cn,Dn ∈ RN×N , the iterations in (4.2) can
be extended to yield the following algorithm.

Algorithm 4.2. Choose parameters An,Bn ∈ RM×M and Cn,Dn ∈ RN×N ,
stepsizes σ, τ > 0, and starting points x1

0, . . . , x
N
0 ∈ X , y2

0 , . . . , y
M
0 ∈ Y. For all

n = 1, 2, . . ., calculate
y1
n+1

y2
n+1
...

yMn+1

 = (An ⊗ Id) diag(ProxσG∗ , Id
M−1) (Bn ⊗ Id)


Lx1

n

y2
n
...
yMn

 ,

x1
n+1

x2
n+1
...

xNn+1

 = (Cn ⊗ Id) diag(ProxτF , Id
N−1) (Dn ⊗ Id)


L∗y1

n+1

x2
n
...
xNn

 .
Remark 4.3. For the more general formulation of (1.1), more specialized network
architectures than the one resulting from the choice (2.4) are possible, which
handle the dual spaces separately instead of using the same stepsize σ and
matrices An and Bn for all of them. An alternative network in the spirit of,
e.g., [14, Theorem 2], to solve (1.1) reads as follows.

Algorithm 4.4. Choose parameters An,i,Bn,i ∈ RM×M , for i = 1, . . . ,m, and
Cn,Dn ∈ RN×N , stepsizes σ1, . . . , σm, τ > 0, and starting points x1

0, . . . , x
N
0 ∈

X , y2
0,i, . . . , y

M
0,i ∈ Yi, i = 1, . . . ,m. For all n = 1, 2, . . ., calculate

y1
n+1,i

y2
n+1,i

...
yMn+1,i

 = (An,i ⊗ Id) diag(Proxσi

G∗i
, IdM−1) (Bn,i ⊗ Id)


Lix

1
n

y2
n,i
...
yMn,i

 ,
i = 1, . . . ,m,

x1
n+1

x2
n+1
...

xNn+1

 = (Cn ⊗ Id) diag(ProxτF , Id
N−1) (Dn ⊗ Id)


∑m
i=1 L

∗
i y

1
n+1,i

x2
n
...
xNn

 .
(4.3)

4.2.1 Extension to forward-backward-forward methods

Some methods in the literature, so called forward-backward-forward methods,
include an extra evaluation of the operator and its adjoint per iteration, see, e.g.,

20



[15, 17, 21]. However, since the evaluation of the linear operator is assumed to
be the expensive part in our setting we consider this as two iterations. Thus,
if we start with the x-iterate and allow for two iterations in our framework to
complete one iteration in such a framework, our proposed algorithm contains,
e.g., [17, Equation (3.1)]. Letting · denote an element that can take any value,
one such set of matrices is given by

A2n =

0 0 1
· · ·
1 0 0

 , B2n =

γn 0 1
1 0 0
0 0 1

 ,
C2n =

1 0 −1
· · ·
1 1 0

 , D2n =

−γn 0 1
γn 0 0
0 0 1

 ,
for the even iterations and

A2n+1 =

0 1 0
· · ·
0 0 1

 , B2n+1 =

 · · ·
0 0 1
γn 0 1

 ,
C2n+1 =

0 0 1
· · ·
0 0 1

 , D2n+1 =

 · · ·
· · ·
−γn 0 1

 ,
for the odd iterations.

Remark 4.5. Other forward-backward-forward methods have been proposed in
the literature, some of which are general enough to include the PDHG as a
special case [29], or both the PDHG and the Douglas-Rachford algorithm as
special cases [34]. However, these methods include a step-length computation in
their updates. This computation involves evaluating the norm of current iterates,
which is not possible to achieve by only doing the linear operations we propose.
Of course, allowing the matrix elements to be nonlinear functions of the states
would allow us to incorporate also these methods, however, that is beyond the
scope of this article.

5 Application to inverse problems and numeri-
cal experiments

As we briefly outline next, optimization problems of the type in (1.1) arise when
solving ill-posed inverse problems by means of variational regularization.

The goal in an inverse problem is to recover parameters characterizing a
system under investigation from indirect observations. This can be formalized
as the task of estimating (reconstructing) model parameters, henceforth called
signal, xtrue ∈ X from indirect observations (data) b ∈ Y where

b = T (xtrue) + δb. (5.1)

In the above, X and Y are typically Hilbert or Banach spaces, and T: X → Y
(forward operator) models how a given signal gives rise to data in absence of
noise. Furthermore, δb ∈ Y is a single sample of a Y-valued random element
that represents the noise component of data.

21



A natural approach for solving (5.1) is to minimize a function D : X → R
(data discrepancy functional) that quantifies the miss-fit in data space. Since
this function needs to incorporate the aforementioned forward operator T and
the data b, it is often of the form

D(x) := ` (T (x), b) for some ` : Y × Y → R.

If ` is the negative data log-likelihood, then minimizing x 7→ D(x) corresponds
to finding a maximum likelihood solution to (5.1).

However, finding a minimizer to D is an ill-posed problem, meaning that a
solution (if it exists) is discontinuous with respect to the data b. Variational
regularization addresses this issue by introducing an additional function R : X →
R (regularization functional) that encodes a priori information about xtrue and
penalizes undesirable solutions [26]. This results in an optimization problem

min
x∈X

[
λD(x) +R(x)

]
, (5.2)

which from a statistical perspective can be interpreted as trying to find a maxi-
mum a posteriori estimate [30]. A common choice of regularization functional,
especially for inverse problems in imaging, is the total variation (TV) regular-
ization R(x) := ‖∇x‖1, but several more advanced regularizers have also been
suggested in the literature, typically exploiting some kind of sparsity using an
L1-like norm [19].

In this section, we consider an inverse problem in computerized tomography.
To this end, let T be the Radon transform and consider TV regularization. This
means that we are interested in minimizing

Hb(x) = ‖T (x)− b‖22 + λ‖∇x‖1, (5.3)

i.e., a family of objective functions that is parametrized by the data b. This
means that we can apply the ideas from Section 4 on learning an optimization
solver.

5.1 Implementation and specifications of the training

We train and evaluate several of the algorithms described in this article on a
clinically realistic data set, namely simulated data from human abdomen CT
scans as provided by Mayo Clinic for the AAPM Low Dose CT Grand Challenge
[38]. Examples of two-dimensional phantoms from this data set are given in
Figure 2. Throughout all examples, the size of the image x is 512× 512 pixels,
and the regularization parameter λ > 0 is fixed. The Radon transform T used in
this example is sampled according to a fan-beam geometry [40] and the data is
generated by applying T to the phantoms and then adding 5% white Gaussian
noise. Examples of such data (sinograms) are also shown in Figure 2.

Problem (5.3) is obtained from (1.1) by setting F (x) := 0 for all x,

L1x := T (x), L2x := ∇x,

G1(y1) := ‖y1 − b‖22, G2(y2) := ‖y2‖1,

and all the proximal operators are implemented in ODL [3]. If not stated
otherwise, we use (2.4) to reduce (1.1) to (2.3).

22



Figure 2: The top row shows three examples of phantoms used for generating
data. These phantoms take values between [0.0, 3.25], but all images are shown
using a window set to [0.8, 1.2] in order to enhance contrast of clinically more
relevant details. The lower row shows corresponding simulated, noisy sinograms.

For each algorithm, the number of unrolled iterations, corresponding to the
depth of the network, was set to nmax = 10, and all evaluations have been done
with this depth. However, in order to heuristically induce better stability of the
general schemes, we have trained using a stochastic depth as follows: In each
step of the training, the depth of the network has been set to the outcome of
the heavy-tailed random variable nmax = min

[
round(8 + Z), 100

]
, where Z is

the exponential of a Gaussian random variable with standard deviation 1.25 and
mean value log (2)− 1.252/2, so that E[Z] = 2. The limitation to 100 iterations
is due to limits in computational resources.

In order to improve stability and generalization properties of the trained
networks, we have normalized the operators before training, i.e., rescaled them
so that ‖T‖2 = ‖∇‖2 = 1. For the same reasons, we have used the zero vector as
initial guess for all networks. Training has been done using the Adam solver [32],
with standard parameter values except for β2 = 0.99. Moreover, we have used
gradient clipping to limit the norm of the gradient of the training cost function
(4.1) to be less than or equal to one [44]. As step length (learning rate) we have
used a cosine annealing scheme [36], i.e., a step length which in step t takes the
value

ηt =
η0

2

(
1 + cos

(
π

t

tmax

))
,

where the initial step length η0 has been set to 10−3. We have trained for
tmax = 100 000 steps and have used 9 out of 10 phantoms from the AAPM Low
Dose CT Grand Challenge for training and one for evaluation.

All algorithms have been implemented using ODL [3], the GPU accelerated

23



version of ASTRA [1, 43], and Tensorflow [2]. The source code to replicate the
experiments is available online, where the weights of the trained networks are
also explicitly given.‡ We have used this setup to train the following methods.

PDHG method. This corresponds to optimal selection of the parameters θ,
τ , and σ for the PDHG method (2.9) on the family of cost functions
(5.3). In order to achieve this, we need to enforce the constraints θ ∈ [0, 1]

and στ‖L‖2 < 1. This has been done implicitly by a change of variables,
namely by

θ =
es1

1 + es1
, τ =

1

‖L‖
· es2+s3

1 + es2
, σ =

1

‖L‖
· es2−s3

1 + es2
(5.4)

with s1, s2, s3 ∈ R. Here, s2 determines how close the parameters σ and
τ are to the constraint στ‖L‖2 < 1, while s3 determines the trade-off
between τ and σ.

PDHG method without constraints on the parameters. Here we train
the same parameters θ, τ, σ as in the PDHG method. However, we do not
make the change of variables (5.4), therefore, no constraints on θ, τ , and σ
are enforced in the training. This means that the resulting scheme might
not correspond to a globally convergent optimization algorithm.

Proposed method from Section 3. This corresponds to optimal parameter
selection for the method (3.16) on the family of cost functions (5.3). To
adhere to the constraints in the assumptions in Theorem 3.1, we have used
the same kind of variable change as in (5.4), namely

a21 =
2es1

1 + es1
, c21 =

2es2

1 + es2
, σ =

K

‖L‖
· es3−s4

1 + es3
, τ =

K

‖L‖
· es3+s4

1 + es3

with s1, . . . , s4 ∈ R, where K =
a221(2−a21)(2−c21)

(a21+c21−a21c21)2
, as in (3.7).

Parametrization proposed in Section 4.2. Here, we have trained schemes
of the form (4.3). We have done this for constant sequences of matrices A1,
A2, B1, B2, C, and D. We restricted ourselves to the sizes N = M = 2
and N = M = 3.

5.2 Performance of the trained methods

To obtain an estimation of the true optimal value of (5.3), we have run 1 000
iterations of PDHG with parameters as in [47]. In Table 1 we show the difference
between the obtained objective function value and the minimal objective function
value, averaged over 100 samples. As can be seen, the scheme proposed in
Section 4 with N = M = 3 performs best at 10 iterations. Moreover, a
general trend seems to be that more parameters in the algorithms improve
the performance. Finally, the results from one specific phantom are presented
as reconstructions in Figure 3. Note that the reconstruction by PDHG with
parameters as in [47] is left out due to the page layout.

‡https://github.com/aringh/data-driven_nonsmooth_optimization

24

https://github.com/aringh/data-driven_nonsmooth_optimization


Table 1: Loss function values for the CT reconstruction after 10 iterations. The
values given are of the form 1

100

∑100
i=1Hbi(x10) − Hbi(x

∗
i ), i.e., the difference

of the obtained objective function value and an estimate of the true minimum
objective function value Hbi(x

∗
i ) corresponding to data bi, averaged over 100

samples.

Method Loss function values

PDHG with parameters from [47] 109.93
Trained PDHG with constraints on parameters 82.381
Trained solver (3.16) 24.183
Trained PDHG without constraints on parameters 27.761
Trained scheme of type (4.3) with N = M = 2 20.024
Trained scheme of type (4.3) with N = M = 3 14.905

(a) TV reconstruction. (b) Trained PDHG with con-
straints on parameters.

(c) Trained solver (3.16).

(d) Trained PDHG without
constraints on parameters.

(e) Trained scheme of type
(4.3) with N = M = 2.

(f) Trained scheme of type
(4.3) with N = M = 3.

Figure 3: Reconstruction with data from a phantom that was not used in the
training. The TV reconstruction, to which they should be compared, is shown
in (a). All reconstructions use 10 steps. The phantom takes values between
[0.0, 2.33], but all images are shown using a window set to [0.8, 1.2] in order to
enhance contrast of clinically more relevant details.

25



100 101 102
10−2

10−1

100

101

102

103

104 (i)

(ii)

(iii)

(iv)

(v)

(vi)

100 101 102
10−2

10−1

100

101

102

103

104 (i)

(ii)

(iii)

(iv)

(v)

(vi)

Figure 4: The figure shows the values 1
100

∑100
i=1Hbi(xn)−Hbi(x

∗
i ), where Hbi(x

∗
i )

is an estimate of the true minimum objective function value corresponding to
data bi, of several reconstruction methods as a function of the iteration number
n. Solid lines are real optimization solvers, dotted lines are schemes that might
not converge to the true optimal solution. (i) PDHG with parameters as in
[47], (ii) PDHG with trained parameters with constraints, (iii) proposed solver
(3.16) with trained parameters, (iv) PDHG with trained free parameters, (v)
proposed scheme (4.3) with N = M = 2, and (vi) proposed scheme (4.3) with
N = M = 3.

5.2.1 Generalization to other iteration numbers

Figure 4 shows the objective function value (5.3) as a function of the iteration
number, i.e., how well the learned algorithms generalize to iteration numbers
they are not trained for. For the trained, convergent solvers, the objective
function value keeps decreasing as expected. Furthermore, the solver proposed
in (3.16) performs better than the others also when the number of iterations are
increased, but poorer in the beginning. For the other schemes, it can be noted
that, while training more parameters seems to increase the performance after 10
iterations, it also seems to decrease the generalizability of the algorithm with
respect to an increase in the number of iterations.

5.2.2 Generalization to deblurring

Next, we investigate the generalizability of the trained networks to other optimiza-
tion problems by replacing the forward operator T in (5.3) with a convolution.
This corresponds to another TV problem in imaging, namely image deblurring.

Clearly, the trained networks that correspond to optimization solvers with
convergence guarantees can be applied to other convex optimization problems.
(Note that we still normalize the operators to have operator norm one so that
the assumptions in Theorem 3.1 do not change.) However, nothing guarantees
that parameters that give fast convergence on one type of problems will also
give fast convergence on another one.

Two example images are shown in Figure 5. The images in Figure 5d–5f,

26



(a) “Ascent” test image. (b) Blurred, noisy image. (c) TV reconstruction.

(d) “Raccoon” test image. (e) Blurred noisy image. (f) TV reconstruction.

Figure 5: Example images used for the deblurring problem in Section 5.2.2.

corresponding to the “Raccoon” test image, are of size 1024 × 768 and use
a different regularization parameter. Blurring has been done with Gaussian
kernels. For the “Ascent” test image, the kernel has a standard deviation of
approximately three pixels in each direction, whereas for the “Raccoon” test
image, the kernel has a standard deviation of approximately four pixels in the
up-down and six pixels in the left-right direction. As for the sinograms in the
CT example, 5% white noise has been added to the blurred images. Again, to
obtain an estimation of the true optimal value of we have run 1 000 iterations of
PDHG with parameters as in [47]. For each algorithm, the difference between
the obtained objective function value and minimal objective function value is
presented in Table 2, and the deblurred images are shown in Figures 6 and 7.
Again, the reconstruction by PDHG with parameters as in [47] is left out due to
the page layout.

The method with N = M = 3 does not generalize well. However, the method
with N = M = 2 generalizes, and the optimization algorithm from Section 3,
with trained parameters, is one of the best on these two test problems.

6 Conclusions and future work

In this work, we have first proposed a new solver for maximally monotone
inclusion problems and proved convergence guarantees. In particular, we have also
proposed a new convergent primal-dual proximal solver for convex optimization
problems. Further, we have investigated new aspects of learning an optimization
solver. This is particularly relevant in inverse problems where one can parametrize
the objective function by data, leaving the other parts unchanged. This can, in
fact, also be interpreted as learning a pseudo-inverse of the forward operator in

27



Table 2: Loss function values for the deblurring problem in Section 5.2.2. Here,
Hbi(x

∗
i ) is an estimate of the true minimum objective function value correspond-

ing to data bi.

Method Hbi(x10)−Hbi(x
∗
i )

Ascent Raccoon

PDHG with parameters from [47] 5.514 11.475
Trained PDHG with constraints on parameters 4.256 8.5126
Trained solver (3.16) 2.173 4.5898
Trained PDHG without constraints on parameters 2.204 4.4790
Trained scheme of type (4.3) with N = M = 2 3.514 9.9139
Trained scheme of type (4.3) with N = M = 3 208.37 873.33

(a) TV reconstruction. (b) Trained PDHG with con-
straints on parameters.

(c) Trained solver (3.16).

(d) Trained PDHG without
constraints on parameters.

(e) Trained scheme of type
(4.3) with N = M = 2.

(f) Trained scheme of type
(4.3) with N = M = 3.

Figure 6: Reconstructions with the trained algorithms for the “Ascent” image.

28



(a) TV reconstruction. (b) Trained PDHG with con-
straints on parameters.

(c) Trained solver (3.16).

(d) Trained PDHG without
constraints on parameters.

(e) Trained scheme of type
(4.3) with N = M = 2.

(f) Trained scheme of type
(4.3) with N = M = 3.

Figure 7: Reconstructions with the trained algorithms for the “Raccoon” image.

an unsupervised fashion. Moreover, the framework admits enforcing convergence
and stability properties in the learning. We should emphasize that this implies
a form of generalizability to other data, and even other forward operators, since
the scheme cannot diverge.

There are several different directions in which the work from this article
can be extended: Regarding the optimization perspective, one could investigate
whether (3.8) can be further relaxed to introduce more free parameters while
retaining convergence, e.g. by relaxing (3.6) or letting parameters vary in each
iteration.

Also from a machine learning perspective, there are aspects to be further
investigated:

• Since accelerated first-order algorithms like FISTA [12] can be parametrized
by (4.3), does the learning result in a scheme with O

(
1/n2

)
convergence

rate for the objective function values when trained for n iterations?

• Our numerical experiments suggest that training without “convergence
constraints” gives the network more freedom and thereby improves accuracy.
However, the resulting schemes seem to be unstable beyond the fixed
number of iterates used for training. Is it true that, in general, convergence
cannot be enforced by training alone?

• Is it possible to state and prove a time accuracy trade-off theorem, i.e., to
estimate the error between the trained solver and the true solution to the
optimization? If so, which properties of the underlying family of objective
functions (training data) does this require?

29



Acknowledgments

We acknowledge Swedish Foundation of Strategic Research grants AM13-0049
and ID14-0055, Swedish Research Council grant 2014-5870 and support from
Elekta.

The authors thank Dr. Cynthia McCollough, the Mayo Clinic, and the
American Association of Physicists in Medicine for providing the data necessary
for performing comparison using a human phantom.

References

[1] W. van Aarle, W.J. Palenstijn, J. Cant, E. Janssens, F. Bleichrodt, A.
Dabravolski, J. De Beenhouwer, K.J. Batenburg, and J. Sijbers. “Fast and
flexible X-ray tomography using the ASTRA toolbox.” In: Optics express
24.22 (2016), pp. 25129–25147. doi: 10.1364/OE.24.025129.

[2] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A.
Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J.
Levenberg, D. Mane, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster,
J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke,
V. Vasudevan, F. Viegas, O. Vinyals, P. Warden, M. Wattenberg, M.
Wicke, Y. Yu, and X. Zheng. TensorFlow: Large-scale machine learning on
heterogeneous distributed systems. 2016. arXiv: 1603.04467v2 [cs.DC].

[3] J. Adler, H. Kohr, and O. Öktem. ODL 0.6.0. Apr. 2017. doi: 10.5281/
zenodo.556409. url: https://github.com/odlgroup/odl.

[4] J. Adler and O. Öktem. “Learned primal-dual reconstruction.” In: IEEE
Transactions on Medical Imaging 37.6 (2018), pp. 1322–1332. doi: 10.
1109/TMI.2018.2799231.

[5] J. Adler and O. Öktem. “Solving ill-posed inverse problems using iterative
deep neural networks.” In: Inverse Problems 33.12 (2017), p. 124007. doi:
10.1088/1361-6420/aa9581.

[6] J. Adler, A. Ringh, O. Öktem, and J. Karlsson. Learning to solve inverse
problems using Wasserstein loss. 2017. arXiv: 1710.10898 [cs.CV].

[7] A. Alotaibi, P.L. Combettes, and N. Shahzad. “Solving coupled composite
monotone inclusions by successive Fejér approximations of their Kuhn–
Tucker set.” In: SIAM Journal on Optimization 24.4 (2014), pp. 2076–2095.
doi: 10.1137/130950616.

[8] M. Andrychowicz, M. Denil, S. Gomez, M. Hoffman, D. Pfau, T. Schaul,
and N. de Freitas. “Learning to learn by gradient descent by gradient
descent.” In: Advances in Neural Information Processing Systems. Vol. 29.
2016, pp. 3981–3989. url: https://papers.nips.cc/paper/6461-

learning-to-learn-by-gradient-descent-by-gradient-descent.

[9] V. Barbu and T. Precupanu. Convexity and optimization in Banach spaces.
4th ed. Springer Monographs in Mathematics. Dordrecht: Springer, 2012.
doi: 10.1007/978-94-007-2247-7.

30

http://dx.doi.org/10.1364/OE.24.025129
http://arxiv.org/abs/1603.04467v2
http://dx.doi.org/10.5281/zenodo.556409
http://dx.doi.org/10.5281/zenodo.556409
https://github.com/odlgroup/odl
http://dx.doi.org/10.1109/TMI.2018.2799231
http://dx.doi.org/10.1109/TMI.2018.2799231
http://dx.doi.org/10.1088/1361-6420/aa9581
http://arxiv.org/abs/1710.10898
http://dx.doi.org/10.1137/130950616
https://papers.nips.cc/paper/6461-learning-to-learn-by-gradient-descent-by-gradient-descent
https://papers.nips.cc/paper/6461-learning-to-learn-by-gradient-descent-by-gradient-descent
http://dx.doi.org/10.1007/978-94-007-2247-7


[10] H.H. Bauschke and P.L. Combettes. Convex analysis and monotone oper-
ator theory in Hilbert spaces. 2nd ed. CMS Books in Mathematics. New
York: Springer, 2017. doi: 10.1007/978-3-319-48311-5.

[11] H.H. Bauschke, X. Wang, and L. Yao. “Examples of discontinuous maximal
monotone linear operators and the solution to a recent problem posed by
B.F. Svaiter.” In: Journal of Mathematical Analysis and Applications 370.1
(2010), pp. 224–241. doi: 10.1016/j.jmaa.2010.04.029.

[12] A. Beck and M. Teboulle. “A fast iterative shrinkage-thresholding algorithm
for linear inverse problems.” In: SIAM Journal on Imaging Sciences 2.1
(2009), pp. 183–202. doi: 10.1137/080716542.

[13] D. Bertsekas. Nonlinear programming. 2nd ed. Belmont: Athena Scientific,
1999.

[14] R.I. Boţ and E.R. Csetnek. “On the convergence rate of a forward-backward
type primal-dual splitting algorithm for convex optimization problems.”
In: Optimization 64.1 (2015), pp. 5–23. doi: 10.1080/02331934.2014.
966306.

[15] R.I. Boţ and C. Hendrich. “A Douglas–Rachford type primal-dual method
for solving inclusions with mixtures of composite and parallel-sum type
monotone operators.” In: SIAM Journal on Optimization 23.4 (2013),
pp. 2541–2565. doi: 10.1137/120901106.

[16] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. “Distributed
optimization and statistical learning via the alternating direction method of
multipliers.” In: Foundations and Trends in Machine Learning 3.1 (2011),
pp. 1–122. doi: 10.1561/2200000016.

[17] L.M. Briceño-Arias and P.L. Combettes. “A monotone+skew splitting
model for composite monotone inclusions in duality.” In: SIAM Journal
on Optimization 21.4 (2011), pp. 1230–1250. doi: 10.1137/10081602X.

[18] R.W. Brown, Y.-C. N. Cheng, E.M. Haacke, M.R. Thompson, and R.
Venkatesan. Magnetic resonance imaging: physical principles and sequence
design. John Wiley & Sons Ltd, 2014. doi: 10.1002/9781118633953.

[19] A.M. Bruckstein, D.L. Donoho, and M. Elad. “From sparse solutions of
systems of equations to sparse modeling of signals and images.” In: SIAM
review 51.1 (2009), pp. 34–81. doi: 10.1137/060657704.

[20] A. Chambolle and T. Pock. “A first-order primal-dual algorithm for convex
problems with applications to imaging.” In: Journal of Mathematical
Imaging and Vision 40.1 (2011), pp. 120–145. doi: 10.1007/s10851-010-
0251-1.

[21] P.L. Combettes and J.-C. Pesquet. “Primal-dual splitting algorithm for
solving inclusions with mixtures of composite, Lipschitzian, and parallel-
sum type monotone operators.” In: Set-Valued and Variational Analysis
20.2 (2012), pp. 307–330. doi: 10.1007/s11228-011-0191-y.

[22] P.L. Combettes and J.-C. Pesquet. “Proximal splitting methods in signal
processing.” In: Fixed-point algorithms for inverse problems in science and
engineering. Ed. by H.H. Bauschke, R. Burachik, P.L. Combettes, V. Elser,
D.R. Luke, and H. Wolkowicz. Vol. 49. Springer Optimization and Its
Applications. New York: Springer, 2011, pp. 185–212. doi: 10.1007/978-
1-4419-9569-8_10.

31

http://dx.doi.org/10.1007/978-3-319-48311-5
http://dx.doi.org/10.1016/j.jmaa.2010.04.029
http://dx.doi.org/10.1137/080716542
http://dx.doi.org/10.1080/02331934.2014.966306
http://dx.doi.org/10.1080/02331934.2014.966306
http://dx.doi.org/10.1137/120901106
http://dx.doi.org/10.1561/2200000016
http://dx.doi.org/10.1137/10081602X
http://dx.doi.org/10.1002/9781118633953
http://dx.doi.org/10.1137/060657704
http://dx.doi.org/10.1007/s10851-010-0251-1
http://dx.doi.org/10.1007/s10851-010-0251-1
http://dx.doi.org/10.1007/s11228-011-0191-y
http://dx.doi.org/10.1007/978-1-4419-9569-8_10
http://dx.doi.org/10.1007/978-1-4419-9569-8_10


[23] Y. Drori and M. Teboulle. “Performance of first-order methods for smooth
convex minimization: a novel approach.” In: Mathematical Programming
145.1–2 (2014), pp. 451–482. doi: 10.1007/s10107-013-0653-0.

[24] J. Eckstein. “Splitting methods for monotone operators with applications
to parallel optimization.” PhD thesis. Department of Civil Engineering,
Massachusetts Institute of Technology, 1989. url: http://hdl.handle.
net/1721.1/14356.

[25] J. Eckstein and D.P. Bertsekas. “On the Douglas-Rachford splitting method
and the proximal point algorithm for maximal monotone operators.” In:
Mathematical Programming 55.1-3 (1992), pp. 293–318. doi: 10.1007/
BF01581204.

[26] H.W. Engl, M. Hanke, and A. Neubauer. Regularization of inverse problems.
Vol. 375. Mathematics and Its Applications. Kluwer Academic Publisher,
2000.

[27] K. Gregor and Y. LeCun. “Learning fast approximations of sparse coding.”
In: Proceedings of the 27th International Conference on Machine Learning
(ICML-10). 2010, pp. 399–406. url: http://yann.lecun.com/exdb/
publis/pdf/gregor-icml-10.pdf.

[28] K. Hammernik, T. Klatzer, E. Kobler, M.P. Recht, D.K. Sodickson, T.
Pock, and F. Knoll. “Learning a variational network for reconstruction of
accelerated MRI data.” In: Magnetic resonance in medicine 79.6 (2018),
pp. 3055–3071. doi: 10.1002/mrm.26977.

[29] B. He and X. Yuan. “Convergence analysis of primal-dual algorithms for a
saddle-point problem: from contraction perspective.” In: SIAM Journal
on Imaging Sciences 5.1 (2012), pp. 119–149. doi: 10.1137/100814494.

[30] J. Kaipio and E. Somersalo. Statistical and computational inverse problems.
Vol. 160. Applied Mathematical Sciences. New York: Springer, 2005. doi:
10.1007/b138659.

[31] D. Kim and J.A. Fessler. “Optimized first-order methods for smooth convex
minimization.” In: Mathematical Programming 159.1-2 (2016), pp. 81–107.
doi: 10.1007/s10107-015-0949-3.

[32] D. Kingma and J. Ba. Adam: A method for stochastic optimization. Pub-
lished as a conference paper at the 3rd International Conference for Learn-
ing Representations, San Diego, 2015. 2014. arXiv: 1412.6980v9 [cs.LG].

[33] S. Ko, D. Yu, and J.-H. Won. On a Class of First-order Primal-Dual
Algorithms for Composite Convex Minimization Problems. 2017. arXiv:
1702.06234v2 [stat.ML].

[34] P. Latafat and P. Patrinos. “Asymmetric forward–backward–adjoint split-
ting for solving monotone inclusions involving three operators.” In: Com-
putational Optimization and Applications 68.1 (2017), pp. 57–93. doi:
10.1007/s10589-017-9909-6.

[35] K. Li and J. Malik. Learning to optimize. 2016. arXiv: 1606.01885v1
[cs.LG].

[36] I. Loshchilov and F. Hutter. SGDR: Stochastic gradient descent with warm
restarts. 2016. arXiv: 1608.03983v5 [math.OC].

32

http://dx.doi.org/10.1007/s10107-013-0653-0
http://hdl.handle.net/1721.1/14356
http://hdl.handle.net/1721.1/14356
http://dx.doi.org/10.1007/BF01581204
http://dx.doi.org/10.1007/BF01581204
http://yann.lecun.com/exdb/publis/pdf/gregor-icml-10.pdf
http://yann.lecun.com/exdb/publis/pdf/gregor-icml-10.pdf
http://dx.doi.org/10.1002/mrm.26977
http://dx.doi.org/10.1137/100814494
http://dx.doi.org/10.1007/b138659
http://dx.doi.org/10.1007/s10107-015-0949-3
http://arxiv.org/abs/1412.6980v9
http://arxiv.org/abs/1702.06234v2
http://dx.doi.org/10.1007/s10589-017-9909-6
http://arxiv.org/abs/1606.01885v1
http://arxiv.org/abs/1606.01885v1
http://arxiv.org/abs/1608.03983v5


[37] M. Mardani, E. Gong, J.Y. Cheng, S. Vasanawala, G. Zaharchuk, M. Alley,
N. Thakur, S. Han, W. Dally, J.M. Pauly, and L. Xing. “Deep generative
adversarial networks for compressed sensing automates MRI.” In: (2017).
arXiv: 1706.00051 [cs.CV].

[38] C. McCollough. “TU-FG-207A-04: Overview of the Low Dose CT Grand
Challenge.” In: Medical Physics 43.6Part35 (2016), pp. 3759–3760. doi:
10.1118/1.4957556.

[39] J.-J. Moreau. “Proximité et dualité dans un espace hilbertien.” In: Bulletin
de la Société Mathématique de France 93.2 (1965), pp. 273–299. doi:
10.24033/bsmf.1625.

[40] F. Natterer. The mathematics of computerized tomography. Vol. 32. Classics
in Applied Mathematics. SIAM, 2001. doi: 10.1137/1.9780898719284.

[41] F. Natterer and F. Wübbeling. Mathematical methods in image recon-
struction. Mathematical Modelling and Computation. SIAM, 2001. doi:
10.1137/1.9780898718324.

[42] O. Öktem. “Mathematics of electron tomography.” In: Handbook of mathe-
matical methods in imaging. Ed. by O. Scherzer. New York: Springer, 2015,
pp. 937–1031. doi: 10.1007/978-1-4939-0790-8_43.

[43] W.J. Palenstijn, K.J. Batenburg, and J. Sijbers. “Performance improve-
ments for iterative electron tomography reconstruction using graphics
processing units (GPUs).” In: Journal of structural biology 176.2 (2011),
pp. 250–253. doi: 10.1016/j.jsb.2011.07.017.

[44] R. Pascanu, T. Mikolov, and Y. Bengio. On the difficulty of training
recurrent neural networks. 2012. arXiv: 1211.5063v2 [cs.LG].

[45] P. Putzky and M. Welling. “Recurrent inference machines for solving
inverse problems.” In: (2017). arXiv: 1706.04008 [cs.NE].

[46] R.T. Rockafellar. “Monotone operators and the proximal point algorithm.”
In: SIAM Journal on Control and Optimization 14.5 (1976), pp. 877–898.
doi: 10.1137/0314056.

[47] E.Y. Sidky, J.H. Jørgensen, and X. Pan. “Convex optimization problem
prototyping for image reconstruction in computed tomography with the
Chambolle–Pock algorithm.” In: Physics in Medicine and Biology 57.10
(2012), pp. 3065–3091. doi: 10.1088/0031-9155/57/10/3065.

[48] A.B. Taylor, J.M. Hendrickx, and F. Glineur. “Smooth strongly convex
interpolation and exact worst-case performance of first-order methods.” In:
Mathematical Programming 161.1–2 (2017), pp. 307–345. doi: 10.1007/
s10107-016-1009-3.

[49] Y. Yang, J. Sun, H. Li, and Z. Xu. “Deep ADMM-Net for Compressive
Sensing MRI.” In: Advances in Neural Information Processing Systems.
Ed. by D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett.
Vol. 29. Curran Associates, 2016, pp. 10–18.

33

http://arxiv.org/abs/1706.00051
http://dx.doi.org/10.1118/1.4957556
http://dx.doi.org/10.24033/bsmf.1625
http://dx.doi.org/10.1137/1.9780898719284
http://dx.doi.org/10.1137/1.9780898718324
http://dx.doi.org/10.1007/978-1-4939-0790-8_43
http://dx.doi.org/10.1016/j.jsb.2011.07.017
http://arxiv.org/abs/1211.5063v2
http://arxiv.org/abs/1706.04008
http://dx.doi.org/10.1137/0314056
http://dx.doi.org/10.1088/0031-9155/57/10/3065
http://dx.doi.org/10.1007/s10107-016-1009-3
http://dx.doi.org/10.1007/s10107-016-1009-3

	1 Introduction
	2 Background
	2.1 Fundamental notions
	2.2 Convex optimization
	2.3 Two splitting algorithms

	3 A new family of optimization solvers
	3.1 Fixed-point analysis
	3.2 Convergence analysis
	3.2.1 Proof of Theorem ??

	3.3 Application to convex optimization

	4 Learning an optimization solver
	4.1 Unrolled gradient descent as a neural network
	4.2 Parametrizing a family of optimization algorithms
	4.2.1 Extension to forward-backward-forward methods


	5 Application to inverse problems and numerical experiments
	5.1 Implementation and specifications of the training
	5.2 Performance of the trained methods
	5.2.1 Generalization to other iteration numbers
	5.2.2 Generalization to deblurring


	6 Conclusions and future work

