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Abstract

The Jones eigenvalue problem, first described in [19], concerns unusual vibrational
modes in bounded elastic bodies: time-harmonic displacements whose tractions and
normal components are both identically zero on the boundary. This problem is usu-
ally associated with a lack of unique solvability for certain models of fluid-structure
interaction. The boundary conditions in this problem appear, at first glance, to rule
out any non-trivial modes unless the domain possesses significant geometric symme-
tries. Indeed, Jones modes were shown to not be possible in most C∞ domains in [12].
However, we show in this paper that while the existence of Jones modes sensitively
depends on the domain geometry, such modes do exist in a broad class of domains.
This paper presents the first detailed theoretical and computational investigation of
this eigenvalue problem in Lipschitz domains. We also analytically demonstrate Jones
modes on some simple geometries.
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1 Introduction

In this paper we investigate the Jones eigenvalue problem, which is to locate non-trivial
vector fields u in Rn (n ∈ {2, 3}), and scalars w ∈ R so that

Lu := − (µ∆u + (λ+ µ)∇(divu)) = ρw2u in Ω, (1a)(
µ∇u+(λ+ µ)(div u)I

)
n = 0 on ∂Ω, (1b)

u · n = 0 on ∂Ω. (1c)

Here Ω ⊆ Rn is a bounded domain with Lipschitz boundary ∂Ω, n is the unit outer
normal on ∂Ω, ρ > 0 is a density and µ > 0, λ ∈ R such that λ +

(
2
n

)
µ > 0 are the

so-called Lamé parameters.
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the Discovery program of Canada.
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The Jones eigenvalue problem arises while studying time-harmonic solutions of a fluid-
solid interaction problem in Rn. Precisely, suppose an isotropic elastic bounded body
occupying the region Ω ⊂ Rn is immersed in an inviscid compressible fluid occupying the
rest of the space. The solutions of the Jones eigenvalue problem coincides exactly with
the determination of non-trivial solutions of the corresponding homogeneous equations
governing the displacements of the elastic body. The occurrence of these eigenpairs was
first noticed in [19], where the author introduced the fluid-structure interaction problem of
interest and pointed out its lack of uniqueness. Many other authors have also noticed the
non-uniqueness issue in this model [3, 8, 10, 15, 17, 22, 24, 25]. In these papers the main
interest was in studying the full fluid-structure problem, and the Jones eigenmodes were of
interest only within the context of well-posedness, which was only guaranteed away from
such modes. We note this is not the only possible model for fluid-structure interaction
in the frequency domain; other models which ameliorate the breakdown of uniqueness at
exceptional frequencies have been proposed. We discuss this later in section 2. Nonethe-
less, in [7], it was found that Jones eigenpairs may pollute numerical approximations in
both the solid and the fluid. Such phenomenon was later confirmed in [1]. This shows the
importance of identifying eigenpairs of Equation 1 in order to obtain suitable numerical
methods to handle the corresponding fluid-structure problem.

Our focus in this paper is the eigenvalue problem Equation 1. We notice that Equa-
tion 1a and Equation 1b together define a standard eigenvalue problem (we call this the
traction eigenvalue problem) for the Lamé operator L on Ω, analogous to the Neumann
eigenvalue problem for the Laplacian. The traction eigenvalue problem has been exten-
sively studied and has numerous applications in mechanical engineering; the existence of a
countable discrete spectrum for Lipschitz domains is well-established (see, e.g. [20]). How-
ever, the problem under consideration in the present article asks: do there exist traction
eigenmodes which additionally satisfy Equation 1c? This constraint intimately couples the
geometry of the domain with the Jones eigenmode; in essence, the only traction modes
which are also Jones modes are those which are purely tangential to the boundary.

Not much is known about the Jones eigenvalue problem itself. As mentioned, the most
intriguing feature of this problem is its dependence on the boundary of the domain. An
influential paper [12] showed that for almost any 3D domain with C∞ boundary, there
can be no modes with free traction and zero normal component on the boundary that
solve the Jones eigenvalue problem. The central claim in this paper was established in a
fairly narrow setting - for instance, the analysis cannot extend to domains with corners
- yet perhaps the main theorem served to deter further investigations. Likewise, [26]
showed that smooth 3D domains having two flat non-parallel manifolds of the boundary
cannot support a non-trivial divergence-free Jones mode. Even though the authors claim
these kind of deformations are Jones eigenvectors, we note that the full eigenproblem
Equation 1a does not impose the condition on the divergence.

The rest of this paper is organized as follows: in section 2 we introduce the eigenvalue
problem. We first describe the fluid-solid interaction where the Jones modes appear. We
provide exact Jones eigenmodes on rectangles. We next provide a detailed description of
the point spectrum of this problem and identify important properties relating the eigen-
pairs with the domain. In section 3 we derive a primal formulation to approximate Jones
eigenpairs where the extra constraint on the displacement in the normal direction on the
boundary has been introduced as an essential condition in the search and test spaces. The
continuity of the normal trace will ensure this space is closed. A careful treatment of this
formulation is then provided as it is known that the spectrum of this problem depends
heavily on the geometry of the domain [12, 26]. In fact, the proof of the usual ellipticity of
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one of the bilinear forms depends entirely on a Korn’s inequality shown in [4] for Lipschitz
domains in Rn, with n ∈ {2, 3}. A weaker version of this result for domains with C1

boundary is given in [6]. In addition, in [4] the authors showed that the gradient of a
vector with mixed tangential and/or normal components vanishing on the boundary can
be bounded (up to a constant) above by the deviatoric part of its strain tensor in con-
cave or polyhedral domains in R3 with piecewise C2 boundaries (as defined in the same
reference). In section 4 we use a conforming discretization of the continuous eigenvalue
problem via Lagrange finite elements. The sensitivity of the spectrum to the shape of
the domain suggests that the classical FEM using triangular meshes may not be the best
method to use to approximate the spectrum of this problem for curved domains. Numer-
ical examples presented in section 5 show the performance of this classical scheme and
exhibit the different regularity of the eigenfunctions of this problem in different domains.

2 The fluid-structure interaction problem

Solutions of the Jones eigenvalue problem appear as non-trivial elements in the kernel
of a model of fluid-solid interaction where an isotropic elastic body is immersed in a
compressible inviscid fluid occupying the whole space Rn, n ∈ {2, 3}. In this section we
introduce such problem and establish its connection with the Jones eigenpairs.

2.1 Some notation

We begin by fixing the notation for the remainder of this paper. For vectors in Rn, the
operation a · b is the standard dot product with induced norm ‖ · ‖. For second-order
tensors σ, τ in Rn×n, the double dot product is the usual Frobenius inner product for
matrices

σ : τ :=

n∑
i,j=1

τijσij = tr(τ tσ).

This inner product induces the usual Frobenius norm. For differential operators, ∇ denotes
the usual gradient operator acting on either a scalar field or a vector field. The divergence
operator “div” of a vector field reduces to the trace of its gradient. The operator “div”
acting on tensors stands for the usual divergence operator applied to each row of the
tensors. The curl operator curl of a vector field is defined as usual in the 3D case. For
vector fields u in 2D, curl u reduces to a vector that only points out of the plane. The
deviatoric part of a tensor of τ is τ d := τ − 1

ntr(τ )I, where I is the identity matrix of n×n
entries. If τ ,σ are second-order tensors whose entries are L2(Ω) functions on a bounded
domain Ω, we define

(τ ,σ)0 :=

∫
Ω
τ : σ dΩ.

We observe that

‖τ d‖20 = ‖τ‖20 −
2

n
(tr(τ )I, τ )0 +

1

n2
(tr(τ )I, tr(τ )I)0 = ‖τ‖20 −

1

n
‖tr(τ )‖20.

If u is a differentiable vector field in Rn, the strain tensor is a symmetric second-order
tensor

ε(u) :=
1

2

(
∇u + (∇u)t

)
.
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In what follows we need to identify domains which are axisymmetric. We employ the
definition given in [4]: The domain Ω is axisymmetric if it is invariant under rotations
about an axis of symmetry. With this definition one can see that in the 2D case the disk
and its complement are the only axisymmetric domains. For the 3D case, the number of
axisymmetric domains becomes a lot larger. Any solid of rotation is axisymmetric, and
has circular cross-section transverse to the axis of rotation.

2.2 A model of fluid-solid interaction

As discussed in section 1, the Jones eigenproblem was originally described within the
context of a fluid-structure interaction problem. Consider a bounded, simply connected
domain Ωs ⊆ Rn representing an isotropic linearly elastic body in Rn. This body is
assumed to be immersed in a compressible inviscid fluid occupying the region Ωf := Rn\Ω̄s.
See Figure 1 for a schematic of this situation. Note that ∂Ωs, the bounded component

pinc

p

Ωs

us

n

Ωf

Figure 1: Schematic of the fluid-structure interaction problem.

of the boundary of Ωf coincides with the boundary of the elastic body Ωs. We denote
Γ := ∂Ωf = ∂Ωs.

The parameters describing the elastic properties of Ωs are the so-called Lamé constants
µ > 0 and λ ∈ R, satisfying the condition

λ+

(
2

n

)
µ > 0. (2)

One fluid-structure interaction problem of interest concerns the situation when the fields
are time-harmonic, allowing us to factor out the time-dependence and consider the problem
in the frequency domain. Using standard interface conditions coupling the pressure in the
fluid p and the elastic displacement in the solid u, the fluid-solid interaction problem in
the frequency domain reads: given volumetric forces f and g, and an incident pressure
pinc, find a pressure field p in Ωf and elastic deformations u of Ωs satisfying

∆p+

(
w2

c2

)
p = div f , on Ωf , −ρw2u− divσ(u) = g, in Ωs, (3a)

− (p+ pinc)n = σ(u)n,
∂

∂n
(p+ pinc) = ρw2u · n, on Γ, (3b)

∂p

∂r
− i
(w
c

)
p = o(1/r), as r := ‖x‖ → ∞. (3c)
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The parameter c is the constant speed of the sound in the fluid, and the Cauchy tensor
σ depends on the Lamé constants µ > 0 and λ ∈ R and is defined in terms of the strain
tensor ε(u) as

σ(u) := 2µε(u) + λ tr(ε(u))I in Ωs.

Using the vector Laplacian operator, we see that

divσ(u) = µ∆u + (λ+ µ)∇(div u) on Ωs.

This is a commonly accepted formulation for time-harmonic fluid-solid interaction
problems involving inviscid flow, see, for example, [15, 17, 18]. The system in Equation 3
is known to possess a non-trivial kernel under certain situations. As discussed in [19], this
problem lacks a unique solution whenever u is a non-trivial solution of the homogeneous
problem:

−divσ(u) = ρw2u, in Ωs, σ(u)n = 0, u · n = 0, on Γ. (4)

The pair (w2,u) solving this eigenvalue problem is a Jones eigenpair [19]. The homoge-
neous problem for the displacements can be viewed as the usual eigenvalue problem for
linear elasticity with traction free boundary condition, plus the extra constraint on the nor-
mal trace of u along the boundary. Therefore, we may consider this as an overdetermined
problem. We know that there is a countable number of eigenmodes for linear elasticity
with free traction given reasonable assumptions on Γ (see [2] and references therein). The
extra condition u · n = 0 on the boundary plays an important role in the existence of the
zero eigenvalue of Equation 4. All of these properties are discussed in detailed in the next
sections.

We note that other authors have addressed the lack of uniqueness in Equation 3. A
slightly different model for fluid-structure interaction in the frequency domain can be
derived by considering the problem with non-zero fluid viscosity and then taking the
viscosity to zero. As pointed out in [15], in this setting it is reasonable to adding another
condition on the shear of u on the interface as a fix for the non-uniqueness of Equation 3.
The condition

ρw2u · t =
∂

∂t
(σ(u)n · n),

removes the non-zero solutions of Equation 4. Here t is the unit tangent vector on Γ. In
[9], the authors add a Robin boundary condition for the fluid pressure on a far enough
“artificial” boundary containing the solid. They then consider the fluid to be bounded
between the solid and this interface. As shown in the same reference, the modified problem
has a unique solution.

Since our interest in the present paper concerns the eigenvalue problem Equation 1, we
do not delve any further into the properties of the interaction problem (cf. Equation 3).

2.3 Lipschitz domains can support Jones modes

The paper by Hargé in 1990 [12] examined the existence of non-trivial solutions of Equa-
tion 1. The results of this paper have been cited extensively in subsequent works focusing
on the well-posedness of the fluid-structure model presented in the previous section. As
an instance, “Fortunately, these traction-free oscillations occur only in highly specific sit-
uations...” [16]; “Note that Hargé [...] has established that Jones modes do not exist for
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arbitrarily-shaped bodies.” [3]; ”However, intuitively, we do not expect Jones frequencies
to exist for an ”arbitrary” body; this has been proved recently by Hargé [...]”. [23] These
papers also note that domains which are axisymmetric may indeed have such modes. As
a historical aside, Horace Lamb [21] documented such modes in the sphere in 1881.

Revisiting [12], we note that the setting of the paper is as follows:

Pour Ω ouvert borné connexe de R3 á bord C∞ ... fixé et soit E =
{
φ ∈

C∞(Ω;R3); φ difféomorphisme de Ω sur φ(Ω)
}

; on munit E de la topologie

C∞ ...[12]

and the main theorem is then

There is an open, countable dense intersection G of open sets of E such that
for any φ in G, there is no exceptional eigenvalue ...

This theorem and its technique of proof cannot be directly applied to the situation of
polygonal domains in R2, nor to polyhedral domains. Intuitively one may believe the
result should hold in polygonal or polyhedral domains; indeed, our initial starting point
for the current study was to try to extend the result of Hargé to general Lipschitz domains.
The critical observation was the following example. It is easy to verify by inspection that
(w2

s ,us), (w
2
p,up) defined below are Jones eigenpairs on the rectangle [0, a]× [0, b]:

us :=

(
(a`) sin

(mπx
a

)
cos
(`πy
b

)
,−(bm) cos

(mπx
a

)
sin
(`πy
b

))t

, (5a)

w2
s :=

µπ2

ρ

(
m2

a2
+
`2

b2

)
, m, ` = 1, 2, . . . , (5b)

and

up :=

(
(bm) sin

(mπx
a

)
cos
(`πy
b

)
, (a`) cos

(mπx
a

)
sin
(`πy
b

))t

, (6a)

w2
p :=

(λ+ 2µ)π2

ρ

(
m2

a2
+
`2

b2

)
, m, ` = 0, 1, . . . , m+ ` > 0. (6b)

It can also be readily seen that div us = 0 and curl up = 0; eigenmodes of this form
are termed s- and p- modes respectively. Further, some eigenvalues may have geometric
multiplicity depending on a and b. In case λ, µ, a

2

b2
are integers, the value w2 can be a

higher-multiplicity Jones eigenvalue with an associated eigenspace which includes both s-
and p- modes, provided we can find integer pairs (m, `) and (n, k) satisfying

µπ2

ρ

(
m2

a2
+
`2

b2

)
=

(λ+ 2µ)π2

ρ

(
n2

a2
+
k2

b2

)
=: w2.

Studying this simple example it became clear that the situation for polygonal domains
required a different approach, and would yield different results to those described in [12].
One could think, for example, that under certain conditions it could be possible for domains
comprising a finite union of rectangles could possess Jones modes; this is shown to be the
case for the L-shaped domain in a subsequent section.
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3 Weak formulation

In the presence of corners or edges, it is no longer reasonable to ask for the boundary
condition in the problem Equation 4 to be imposed pointwise, since the eigenfunctions may
not be sufficiently regular. In fact, the zero normal trace condition on the displacement
holds almost everywhere on ∂Ω; it is clear that this condition cannot be imposed, for
example over vertices of the boundary. A weak formulation is needed and later in this
paper we shall compute Jones modes using a finite element discretization.

Let Ω be a Lipschitz domain of Rn (we drop the subscript referring to the solid domain).
Recall the eigenvalue problem in Equation 4: find the Jones pairs (w2,u), u non-zero, such
that

−divσ(u) = ρw2u, in Ω, (7a)

σ(u)n = 0, u · n = 0. on ∂Ω (7b)

with ρ > 0 a fixed constant. Using the definition of the Cauchy stress tensor, we can write
Equation 7 as

µ∆u + (λ+ µ)∇(divu) + ρw2u = 0 in Ω, (8a)(
µ∇u + (λ+ µ)(div u)I

)
n = 0, u · n = 0, on ∂Ω. (8b)

In order to introduce a weak formulation of Equation 7 (equivalently Equation 8), we
define the spaces

H1(Ω) :=
{

v = (v1, . . . , vn) : vi ∈ H1(Ω)
}
, H :=

{
u ∈ H1(Ω) : γnu = 0 on ∂Ω

}
.

Here H1(Ω) denotes the usual Hilbert space of scalar functions in L2(Ω) whose partial
derivatives (in all directions) belong to L2(Ω). The operator γn : H1(Ω)→ L2(∂Ω) is the
normal trace operator, which is linear and bounded in H1(Ω). The space H is endowed
with the usual H1-inner product, denoted by (·, ·)1. This implies that H is a closed
subspace of H1(Ω). We shall also need the space Ht+1(Ω) of vector fields whose entries
belong to the Sobolev space Ht+1(Ω), t ≥ 0, and the semi-norm | · |t+1 in Ht+1(Ω).

We consider the following primal formulation of Equation 8: find u ∈ H and κ ∈ R
such that

a(u,v) = κ (u,v)0, ∀v ∈ H, (9)

where κ := ρw2, and the bilinear form a : H×H→ R is given by

a(u,v) := µ(∇u,∇v)0 + (λ+ µ)(divu,divv)0, ∀u, v ∈ H,

Since ‖divu‖0 ≤ ‖∇u‖0 ≤ ‖u‖1, for all u ∈ H1(Ω), the bilinear form a(·, ·) is bounded. In
addition, a(·, ·) is symmetric and positive semi-definite. The Rayleigh quotient gives

a(v,v)

‖v‖20
≥ 0, ∀v ∈ H, v 6= 0. (10)

We see that all possible eigenvalues of Equation 9 are real and non-negative. Using the
Cauchy tensor σ we can write Equation 9 in the equivalent form

ã(u,v) = κ (u,v)0, ∀v ∈ H, (11)

7
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where ã(u,v) := (σ(u),∇v)0 = (σ(u), ε(v))0 for all u,v ∈ H. In terms of the strain
tensor only, ã(·, ·) becomes

ã(u,v) = 2µ
(
ε(u), ε(v)

)
0

+ λ
(
tr(ε(u)), tr(ε(v))

)
0
.

Using the deviatoric part of the strain tensor we can write

ã(u,v) = 2µ
(
ε(u)d, ε(v)d

)
0

+

(
λ+

2µ

n

)(
tr(ε(u)), tr(ε(v))

)
0
, ∀u, v ∈ H. (12)

Obviously, a(u,v) = ã(u,v) for all u, v ∈ H. Furthermore, the bilinear forms a(·, ·) and
ã(·, ·) are bounded in H1(Ω)×H1(Ω) and hence in H×H. We can then define the solution
operator T̃ : L2(Ω)→ H by T̃ (f) = u such that

ã(u,v) = (f ,v)0, ∀v ∈ H. (13)

We immediately have that T̃ is a linear operator. However, to show all necessary properties
of T̃ , we need to show that ã (equivalent a) is coercive in H. In particular, this will give
us the compactness of T̃ restricted to H, and therefore we are guaranteed that T̃ has a
countable and positive point spectrum with eigenfunctions lying in H. These properties
will rely on the coercivity properties of ã(·, ·), which will depend crucially on the domain
shape as we shall see.

Using the definition of ã(·, ·), for any u ∈ H we have

ã(u,u) = 2µ‖ε(u)d‖20 +

(
λ+

2µ

n

)
‖tr(ε(u))‖20

=n
(2µ

n
‖ε(u)d‖20 +

(
λ+

2µ

n

)
1

n
‖tr(ε(u))‖20

)
≥ min

{
2µ, n

(
λ+

2µ

n

)}(
‖ε(u)d‖20 +

1

n
‖tr(ε(u))‖20

)
= min

{
2µ, n

(
λ+

2µ

n

)}
‖ε(u)‖20,

where we have used ‖τ‖20 = ‖τ d‖20 + 1
n‖tr(τ )‖20. This establishes the inequality

ã(u,u) ≥ min
{

2µ, n

(
λ+

2µ

n

)}
‖ε(u)‖20, ∀u ∈ H. (14)

Now, to show that ã(·, ·) is coercive on H, we need to bound from below the term
‖ε(u)‖0 by ‖u‖1 (up to a constant). However, as we will see in the forthcoming sections,
the intersection RM(Ω) ∩H depends intimately on Ω and therefore the positiveness of
ã(·, ·) cannot be established in case this intersection is not the trivial space.

It turns out that for non-axisymmetric Lipschitz domains, κ = 0 is not in the point
spectrum of Equation 11. We establish this in the following subsection.

3.1 Existence of Jones modes on non-axisymmetric domains

Let Ω be a non-axisymmetric domain in Rn, n ∈ {2, 3}. In [4] the following version of
Korn’s inequality for vector fields in H defined on non-axisymmetric Lipschitz domains
was established: there is a positive constant C which depends only on Ω so that

‖ε(u)‖0 ≥ C‖u‖1, ∀u ∈ H. (15)

8
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This is a type of Korn’s inequality; we recall there are several variants of this inequality,
[14].

Combining the inequality above and the derived inequality for ã(·, ·) in Equation 14
we obtain the coercivity of ã(·, ·) in H for non-axisymmetric domains:

ã(u,u) ≥C2 min
{

2µ, d

(
λ+

2µ

n

)}
‖u‖21, ∀u ∈ H. (16)

Provided Ω is a non-axisymmetric Lipschitz domain, the coercivity of ã(·, ·) means that
the solution operator T̃ |H : H→ H is well-defined, and satisfies

C2 min
{

2µ, d

(
λ+

2µ

n

)}
‖T̃ f‖21 ≤ ã(T̃ f , T̃ f) = (f , T̃ f)0 ≤ ‖T̃ f‖0‖f‖0,

for all f ∈ H. This establishes the boundedness of T̃ :

‖T̃ f‖1 ≤
C−2

min
{

2µ, d
(
λ+ 2µ

n

)}‖f‖l, l ∈ {0, 1}, ∀ f ∈ H. (17)

The compactness of the inclusion H1(Ω) ↪→ L2(Ω), and the fact that H is closed in
H1(Ω), imply that H is continuously embedded in H1(Ω), and hence that the inclusion
H ↪→ L2(Ω) is compact. Therefore, the previous bound with l = 0 imply the compactness
of T̃ |H. The Spectral Theorem for bounded self-adjoint linear and compact operators says
that T̃ has a countable real point spectrum {αn} ⊆ (0, ‖T̃‖) and eigenfunctions {un} such

that T̃un = αnun for all n, with ‖T̃‖ := C−2 min
{

2µ, d
(
λ+ 2µ

n

)}−1
. Note that the

eigenpair (αn,un) of T̃ solves Equation 11 with κn = 1
αn

and un as the corresponding
eigenfunction.

We remark that the results in this section also hold for the bilinear form a(·, ·) and
therefore, since ã(u,v) = a(u,v) for all u, v ∈ H, this establishes the existence of the
Jones spectrum for bounded Lipschitz domains Ω which are not axisymmetric.

To finish up this section, we summarize the main properties in the following theorem.

Theorem 1. Let us assume Ω is a non-axisymmetric and Lipschitz domain of Rn, n ∈
{2, 3}. The spectrum of T̃ is {αn}n∈N ⊆ (0, ‖T̃‖), with eigenfunctions belonging to H. In
addition, eigenfunctions corresponding to different eigenvalues are orthogonal in the usual
L2-inner product.

3.2 The case of zero eigenvalues and rigid motions

When studying problems involving the Lamé operator L (cf. section 1), we need to be
aware of rigid motions. Depending on the boundary conditions imposed, rigid motions
may be part of the eigenspace of certain eigenvalues. Rigid motions satisfy Lw = 0, and
it is possible that they may satisfy both Equation 1b and Equation 1c. We now want to
characterize domains having these eigenfunctions. Consider the space

RM(Ω) := {u ∈ H1(Ω) : u = b + Bx, b ∈ Rn, B ∈ Rn×nskew, x ∈ Ω},

where Rn×nskew is the space of all skew-symmetric matrices in Rn×n. The space RM(Ω)
consists of translations, rotations and combinations of these. It is known that (see, e.g. [2]
and references therein) the linear elasticity problem with traction free boundary conditions

−divσ(ū) = δū, in Ω, σ(ū)n = 0, in ∂Ω, (18)

9
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has eigenmodes in RM(Ω) with eigenvalue δ = 0. In fact, if n = 2, the eigenspace of δ = 0
is exactly RM(Ω) with dimension 3. Define now the space

Z :=
{

u ∈ H1(Ω) : ã(u,v) = 0, ∀v ∈ H1(Ω)
}
.

Examining the weak formulation of Equation 18, it is clear that RM(Ω) ⊆ Z. We show
that these spaces actually coincide.

Theorem 2. There holds RM(Ω) = Z.

Proof. First, let u ∈ RM(Ω). By definition, u = b + Bx, x ∈ Ω, B skew-symmetric.
Then ∇u = B so that ε(u) = 0 and clearly ã(u,v) = 0 for any v ∈ H1(Ω). Conversely,
assume u ∈ Z. Then ã(u,u) = 0, and using the definition of ã(·, ·) in Equation 12 we get

0 = 2µtr(ε(u)) + nλtr(ε(u)) = n

(
λ+

2

n
µ

)
tr(ε(u)).

Since λ + 2
nµ > 0, we get that both tr(ε(u)) = 0 and ε(u) = 0. This implies that

u ∈ RM(Ω).

Now that we know the eigenvalue problem in Equation 18 has RM(Ω) as the eigenspace
of δ = 0, the question is if there is any non-zero elements in RM(Ω)∩H, i.e., those which
satisfy the additional constraint u ·n = 0 on the boundary. Such elements would be Jones
modes corresponding to a zero Jones eigenvalue.

The next result states the cases in which we have 2D rigid motions which additionally
satisfy u ·n = 0 on the boundary. We note parts (i) and (ii) of the result can be combined
for a more succinct statement involving arbitrary half-spaces, but we provide the version
below for clarity of exposition.

Theorem 3. Assume n = 2. If Ω is not bounded, then

(i) RM(Ω) ∩H = span{(0, 1)t} if and only if Ω = {(x, y)t ∈ R2 : x > a, y ∈ R}, for
a ∈ R.

(ii) RM(Ω) ∩H = span{(1, 0)t} if and only if Ω = {(x, y)t ∈ R2 : x ∈ R, y > b}, for
b ∈ R.

In case Ω is bounded,

(iii) RM(Ω) ∩H = span{(y,−x)t} if and only if Ω = B(0, R).

Proof. For (i), suppose Ω = {(x, y)t ∈ R2 : x > a, y ∈ R}, for some a ∈ R. Let
u ∈ RM(Ω) ∩H. We write u = b + Bx, b ∈ R2, B skew-symmetric, and x ∈ Ω. Assume

b = (b1, b2)t, B =

(
0 b
−b 0

)
.

The normal on ∂Ω := {(a, y) : y ∈ R} is n = (−1, 0)t. We have

0 = u · n = b · n + Bx · n = b1 + by, ∀ y ∈ R.

We must have b1 = 0 and b = 0, which gives B = 0 and b = (0, b2), showing that
u ∈ span{(0, 1)t}. Part (ii) can be easily proved by following the same steps showed before.

10
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For (iii), assume Ω is a circle of radius R centered at the origin. Let u ∈ RM(Ω)∩H. As
before, u = b + Bx, x ∈ Ω, and u · n = 0 on ∂Ω = {(x, y) ∈ R2 : x2 + y2 = R2}. Then

0 = u · n = b · n + Bx · n = b1n1 + b2n2 + b(n1y − n2x), ∀ (x, y) ∈ ∂Ω.

The normal vector on ∂Ω is n = 1
R(x, y). Putting this into the previous equation we

obtain

b1x+ b2y = 0, ∀ (x, y) ∈ ∂Ω.

Since x and y cannot be zero simultaneously, we conclude that b1 = b2 = 0 and u = Bx,
proving that u ∈ span{(y,−x)t}.

Note that the converses of all three parts (i), (ii) and (iii) are trivial since the basis of
RM(Ω) ∩H is always orthogonal (in the Euclidean inner product) to the normal vector
on the boundary of the corresponding domain.

In the result above one could also have the same conclusions for the complement of
each domain considered. Indeed, the complement of Ω in parts (i), (ii) and (iii) obviously
has the same boundary ∂Ω, meaning that the normal vector only changes its sign. This
indicates that the vanishing condition of the normal trace of the displacement would be
readily satisfied in this case as well.

Theorem 2 suggests that the traction eigenvalue problem given by Equation 18 has
zero as eigenvalue with rigid motions as eigenfunctions, independent of the domain Ω.
However, the extra constraint on the normal trace of the displacement u (cf. Equation 4)
may preclude κ = 0 as a Jones eigenvalue on some domains. The elements in RM(Ω) ∩
H depend on the boundary of Ω as shown in Theorem 3. Combining Theorem 2 and
Theorem 3, we have the following theorem.

Theorem 4. Assume n = 2 and suppose κ = 0 in Equation 9 (equivalently Equation 11).
If Ω is not bounded, then

(i) u0 = (0, 1)t is a Jones mode on Ω := {(x, y)t ∈ R2 : x > a, y ∈ R}, for some a ∈ R.

(ii) u0 = (1, 0)t is a Jones mode on Ω := {(x, y)t ∈ R2 : x ∈ R, y > b}, for some b ∈ R.

In case Ω is bounded, then

(iii) u0 = (y,−x)t is a Jones mode on Ω := B(0, R), for any fixed 0 < R <∞.

In the 3D case, a rigid motion can be decomposed as

u = c1(1, 0, 0)t + c2(y,−x, 0)t + c3(z, 0,−x)t + c4(0, 1, 0)t

+ c5(0, z,−y)t + c6(0, 0, 1)t,

for constants c1, . . . , c6 ∈ R. In this case, we see that we have three possible rotations and
three possible translations. This implies that we may have more eigenvectors associated
to the zero eigenvalue in Equation 9 (equivalently Equation 11).

The spaces T(Ω) and R(Ω) are defined as the spaces of pure translations and pure
rotations of Ω respectively. These allow the following decomposition of RM(Ω):

RM(Ω) = T(Ω)⊕R(Ω),

with trivial intersection. To characterize the elements of RM(Ω)∩H, it was shown in [4]
that axisymmetric domains always support rotational displacements in R(Ω) which are
tangential to the boundary.

3D versions of Theorem 3 and Theorem 4 can be now stated.

11
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Theorem 5. Assume n = 3. If Ω is not bounded, then

(i) RM(Ω) ∩H = span{(1, 0, 0)t} if Ω := {(x, y, z)t ∈ R3 : by + cz < a, x ∈ R}, for
some a, b, c ∈ R such that 1 = b2 + c2.

(ii) RM(Ω) ∩H = span{(0, 1, 0)t} if Ω := {(x, y, z)t ∈ R3 : ax + cz < b, y ∈ R}, for
some a, b, c ∈ R such that 1 = a2 + c2.

(iii) RM(Ω) ∩H = span{(0, 0, 1)t} if Ω := {(x, y, z)t ∈ R3 : ax + by < c, z ∈ R}, for
some a, b, c ∈ R such that 1 = a2 + b2.

In case Ω is bounded,

(iv) RM(Ω) ∩H ⊆ R(Ω) if and only if Ω is axisymmetric.

Proof. (i), (ii) and (iii) readily follow by applying the same steps as in the proof of parts
(i) and (ii) of Theorem 3. For part (iv), let u ∈ RM(Ω) ∩H ⊆ R(Ω), and assume Ω is
a non-axisymmetric domain. Then, Korn’s inequality (cf. inequality Equation 15) holds
for u, that is, there is a constant c > 0 such that c‖u‖1 ≤ ‖ε(u)‖0. However, u ∈ R(Ω)
is a rotation so ε(u) = 0 and ‖u‖1 6= 0. This means that c ≤ 0, which is a contradiction.
For the converse of part(iv), assume that Ω is axisymmetric, and R(Ω) ⊆ RM(Ω) ∩H
with strict inclusion. This implies there is an element of RM(Ω) ∩H which is a non-zero
translation motion; however, the boundary condition on the normal trace prohibits such
modes.

From here, Theorem 2 and Theorem 5 give the next result.

Theorem 6. Assume n = 3 and suppose κ = 0 is an eigenvalue of Equation 7. If Ω is
not bounded, then its corresponding eigenvector is:

(i) u0 = (1, 0, 0)t on Ω := {(x, y, z)t ∈ R3 : by + cz < a, x ∈ R}, for some a, b, c ∈ R
such that 1 = b2 + c2.

(ii) u0 = (0, 1, 0)t on Ω := {(x, y, z)t ∈ R3 : ax + cz < b, y ∈ R}, for some a, b, c ∈ R
such that 1 = a2 + c2.

(iii) u0 = (0, 0, 1)t on the domain Ω := {(x, y, z)t ∈ R3 : ax + by < c, z ∈ R}, for some
a, b, c ∈ R such that 1 = a2 + b2.

In case Ω is bounded, its corresponding eigenvector is

(iv) u0 ∈ R(Ω) whenever Ω is axisymmetric.

In the case of the circle in 2D, the zero eigenvalue would lead to a bilinear form a(·, ·)
that is not H-elliptic. For the 3D case, axisymmetric domains would lead to a loss of
H-ellipticity for the bilinear form a(·, ·). To overcome this issue, we add a shift to the
formulation in Equation 9 to get the equivalent formulation: find (u, κ) ∈ H×R such that

ā(u,v) = (κ+ 1)(u,v)0, ∀v ∈ H, (19)

with ā(u,v) := a(u,v) + (u,v)0, for all u, v ∈ H. This new formulation is obviously
H-elliptic since for any u ∈ H we have

ā(u,v) = µ‖∇u‖20 + (λ+ µ)‖div u‖20 + ‖u‖20 ≥ min{µ, 1}‖u‖21.

12
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The symmetry of a(·, ·) and the inner product (·, ·)0 along with the Rayleigh quotient (cf.
Equation 10) show that the eigenvalues κ+ 1 of Equation 19 are real and positive.

We define the solution operator T̄ : L2(Ω)→ H by T̄ (f) = u such that

ā(u,v) = (f ,v)0, ∀v ∈ H, (20)

Since ā(·, ·) is H-elliptic, the Lax-Milgram lemma shows that the restriction of T̄ to H,
T̄ |H, is a well-defined linear operator and also gives the boundedness of T̄ |H in the L2-
and H1-norms:

‖T̄ f‖1 ≤
1

min{µ, 1}
‖f‖l, l ∈ {0, 1}, ∀ f ∈ H. (21)

We again use the compact inclusion H1(Ω) ↪→ L2(Ω) to obtain the compactness of the
inclusion H ↪→ L2(Ω). This compact inclusion and the bound of T̄ |H in Equation 21 with
l = 0 imply that T̄ is a compact operator (see [2]). Also, the symmetry of ā(·, ·) implies
that T̄ is a self-adjoint with respect to ā(·, ·). The Spectral Theorem for compact and self-
adjoint bounded linear operators now implies the existence of positive eigenvalues {βn}n∈N
and eigenfunctions {un}n∈N such that T̄un = βnun and βn → 0. Note that T̄un = βnun
is a solution of Equation 20 if and only if (κn,un) solves Equation 9 with βn := 1

κn+1 .
Since κn ≥ 0 for any n ∈ N, we see that {βn}n∈N ⊆ (0, 1]. We summarize these properties
in the following main result.

Theorem 7. The point spectrum of T̄ |H is decomposed as follows: {βn}n∈N ∪ {1}, where

1. the associated eigenspace of the eigenvalue 1 is given by Theorem 3 in 2D and The-
orem 5 in 3D;

2. {βn}n∈N ⊆ (0, 1) is a sequence of eigenvalues of T̄ with finite multiplicity that con-
verges to 0 and their corresponding eigenfunctions lie in H.

In addition, eigenfunctions corresponding to different eigenvalues are orthogonal in the
usual L2-inner product.

3.3 Elastic bodies with variable density

In many realistic applications the density ρ > 0 varies. In this section we discuss the
existence of Jones eigenpairs for variable density. Under the same assumptions on Ω as
given at the beginning of section 3, we consider a variable density ρ > 0 belonging to
L∞(Ω). The weak formulation in Equation 9 would then be: find Jones eigenpairs u ∈ H
and w2 ∈ R such that

a(u,v) = w2 b(u,v), ∀v ∈ H, (22)

where the bilinear form b(·, ·) is defined as

b(u,v) :=

∫
Ω
ρu · v, ∀u, v ∈ H.

Since ρ ∈ L∞(Ω), we have that |b(u,v)| ≤ ‖ρ‖∞‖u‖0‖v‖0, for all u, v ∈ H. If L2
ρ(Ω)

denotes the space of functions in L2(Ω) whose weighted inner product is finite (with the
variable density as the corresponding weight), we note that the inclusion H ↪→ L2

ρ(Ω) is
compact.

13
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The fact that the density varies does not change the positiveness of a(·, ·) (equivalently
ã(·, ·)) in H. We then have that the H-ellipticity in Equation 16 holds true in this case as
well.

We can conclude that the existence of Jones eigenpairs is guaranteed by Theorem 1 and
Theorem 2 for the non-axisymmetric and the axisymmetric case, respectively. However,
eigenfunctions corresponding to different eigenvalues would be orthogonal in the weighted
inner product as defined by the bilinear form b(·, ·).

We end this section by summarizing our main results. For axisymmetric domains,
Jones modes exist and include 0 as an eigenvalue with certain rigid motions as permissi-
ble eigenmodes. For non-axisymmetric Lipschitz domains which are bounded, there are
countably many positive Jones eigenvalues whose only accumulation point is at infinity.
Finally, if a variable density of the elastic body is assumed, then the existence of eigenpairs
falls into the setup of Theorem 1 and Theorem 7, depending on the nature of the shape
of the domain.

In the forthcoming section we use a standard conforming finite element method to
approximate Jones eigenmodes. As per usual of this approach, one has that at a given
level of refinement, curved boundaries are approximated by straight edges and/or faces.
Numerically speaking, this means that, in the case of an axisymmetric domain, the nu-
merical method may not compute the zero eigenvalue which should be a Jones eigenvalue
as shown in Theorem 7. As we will see in section 5, even in the most simple case the
standard conforming finite element method used for non-axisymmetric domain might not
be a suitable choice to approximate Jones eigenpairs on axisymmetric domains.

4 Discrete weak formulations

The preceding discussion shows that the behaviour of Jones modes for axisymmetric and
non-axisymmetric domains is different. We now present discretization strategies for both.
Even though two discrete formulations are given for the Jones eigenproblem, we only
provide a priori error estimates on polygons or polyhedra since, as the results presented in
subsection 5.3 below suggest that the discrete formulation in Equation 23 does not appear
to approximate the Jones eigenvalues correctly on curvilinear domains.

We first let Ω be a polygonal/polyhedral domain in Rn, with n ∈ {2, 3}, and let Th be
a regular triangulation by triangles (tetrahedra in 3D) of Ω with meshsize h. For a given
integer k ≥ 1, we consider the space Pk(T ) as the set of all vector polynomials of degree
at most k defined on T ∈ Th. Define the space

Hh :=
{

vh ∈ C(Ω) : vh|T ∈ Pk(T ), ∀T ∈ Th
}
∩H,

where C(Ω) is the space of continuous vector fields defined over Ω. Consider the discrete
weak formulation: find uh ∈ Hh and κh ∈ R such that

a(uh,vh) = κh (uh,vh)0, ∀vh ∈ Hh. (23)

From the discussion in Sections 2 and 3, for non-axisymmetric domains the bilinear forms
ã(·, ·) and a(·, ·) coincide in H. We only provide approximation results for the eigenvalue
problem Equation 9 as they readily apply to the formulations Equation 11 and Equation 19.

Since Hh is a subspace of H, the coercivity of a(·, ·) (cf. inequality Equation 16) in H
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implies its Hh-ellipticity. We can define a discrete solution operator Th as follows:

Th : L2(Ω)→ Hh

f → Th(f) := uh,

where uh ∈ Hh is the solution of the problem

a(uh,vh) = (f ,vh)0 ∀vh ∈ Hh.

Analogous to the situation of the continuous weak formulation, the pair (κh,uh) solves
Equation 23 if and only if Thuh = σhuh and σh := 1

κh
. Also, the restriction operator

Th|Hh
: Hh → Hh is self-adjoint with respect to a(·, ·) and (·, ·)0. We thus have the

following result concerning the spectrum of Th|Hh
on non-axisymmetric Lipschitz domains.

Theorem 8. The spectrum of Th|Hh
consists of Mh := dim(Hh) eigenvalues. Moreover,

1. the point spectrum consists of positive eigenvalues {σh,k}Mh
k=1 counted with their mul-

tiplicities;

2. σh = 0 is not an eigenvalue of Th.

Concerning the approximation properties of this scheme, as described in [2], we have
the following error bounds for the eigenvalues and eigenfunctions of Equation 23:

|κ− κh|
|κ|

≤ Cεh(κ)2, ‖u− uh‖1 ≤ Cεh(κ), (24)

where the term εh is defined as

εh(κ) := sup
u∈H(κ)

inf
uh∈Hh

‖u− uh‖1.

For a given κ ∈ R, the subset H(κ) of H is defined as

H(κ) :=
{

u ∈ H : u solves Equation 9 with eigenvalue κ, ‖u‖0 = 1
}
.

That is, H(κ) is the eigenspace of the eigenvalue κ, containing normalized eigenvectors (in
the L2-norm).

The upper bounds for the errors in Equation 24 hold for eigenvalues with multiplicity
greater than 1. In fact, if κ is an eigenvalue of Equation 9 of multiplicity M ∈ N with
um ∈ H(κ), for all m = 1, . . . ,M , then there is a unit vector (in the L2-norm) w in
span{u1, . . . ,uM} and a vector field wh in the span of {u1,h, . . . ,uM,h}, with ‖wh‖0 = 1,
such that

‖w −wh‖1 ≤ Cεh(κ),

where the vectors u1,h, . . . ,uM,h solve Equation 23 with κh.
Regarding the approximation estimates of the finite element discretization, for a regular

triangulation, the interpolation error estimate for the Lagrange finite elements is

‖u− Ihu‖s ≤ Chmin{k,t}+1−s|u|t+1, ∀u ∈ Ht+1(Ω),
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where Ih is the vector version of the usual Lagrange interpolant (componentwise), and
t, s ≥ 0. Using this interpolation error estimate in the error bound for κ in Equation 24,
we have

|κ− κh|
|κ|

≤ c h2 min{k,t}|u|2t+1, t > 0. (25)

Note that the rate of convergence of the eigenvalues κh depends on the regularity of its
corresponding eigenvector u ∈ Ht+1(Ω), and the error in the computed eigenvectors would
decay as hmin{k,t}.

Clearly, Jones eigenpairs form a subset of the eigenpairs of the Lamé operator with
traction conditions (see eigenproblem given in Equation 18). It is known that the eigen-
vectors of the latter problem posses extra regularity, depending on the vertices/edges of
the domain. Concretely, it is shown in [11] (see also [27, 5, 28]) that the tractions eigen-
functions belong to H1+ε(Ω), for some ε ∈ (0, 1]. For a polygonal/polyhedral domain, we
have therefore that the Jones eigenvectors belong to H1+ε(Ω), where ε ∈ (0, 1] is the first
positive root r solving the following nonlinear equation [11, 27]:

r2 sin2(θ) = sin2(rθ), r ∈ R, (26)

where θ represents the largest of the interior angles of Ω. We notice that in the case of
Neumann boundary conditions, the regularity of the eigenvectors does not seem to be
affected by the Lamé parameters. Moreover, we note that r = 1 is always a solution to
Equation 26; this means that the best regularity one can obtain is for the Jones eigenvectors
to belong to H2(Ω).

In the case of domains with a smooth boundary, the problem formulation must be
modified. The approximation of the Jones eigenvalues on this domain is not guaranteed
when using the discrete formulation given by Equation 23; numerical results demonstrating
this are presented in subsection 5.3 below. Instead, a mixed formulation may be more
appropriate.

If Ω is axisymmetric, the analysis in subsection 3.2 implies that a shift needs to be
added in Equation 23. The essential condition on the normal trace of the displacement
is added to the formulation in Equation 9. The equivalent mixed formulation would then
be: find (u, p) ∈ H1(Ω)×H1(Ω) such that

ã(u,v) + 〈v · n, p〉1/2 = κ (u,v)0, ∀v ∈ H1(Ω),

〈u · n, q〉1/2 − η (p, q)0 = 0, ∀ q ∈ H1(Ω),
(27)

where η ≥ 0 is a stabilization constant. For η = 0, this formulation is obviously equivalent
to Equation 9. The stabilization term η (p, q)0 is added only for implementation purposes
as the Lagrange multiplier p is being defined on the whole domain Ω. Note that this imple-
mentation does not require the use of a penalty method to introduce Dirichlet boundary
data as we needed for the original formulation Equation 23. A full error analysis of this
formulation on curvilinear domains will be presented in a future work.

5 Numerical results

We now present some numerical results that support the theoretical results established in
the previous sections.
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5.1 Convergence studies for polygonal and polyhedral domains

We first present three numerical examples on non-smooth domains. We consider three
domains: the square Ω1 := (−1, 1)2, the L-shape Ω2 := Ω1\[0, 1)2, and the unit cube
Ω3 := (0, 1)3. We recall that the rate of convergence of the discretization depends entirely
on the regularity of the eigenvectors in Equation 4. Using the discussion of the previous
section and Equation 26 we see that on the square and on the cube, the Jones eigenmodes
belong to H2(Ω). Combined with Equation 25, the error in the discrete eigenvalues should
decay as h2 if we use piecewise linear elements. For the L-shape domain Ω2, the decay
rate will be slower due to the lower regularity. From Equation 26 with θ = 3π

2 , we see that
its first non-zero root is approximately r1 := 0.5445. This means that the eigenfunctions
on the L-shape belong to H1+r1(Ω2).

In all the experiments we have used P1-conforming elements to approximate the eigen-
pairs on a sequence of regular (not necessarily uniform) meshes. The true eigenvalues were
used as exact solutions on the square (cf. subsection 2.3) and cube, and a P2-conforming
approximation on a very fine grid was used to obtain reference solutions on the L-shape.
These experiments were implemented in FreeFem++ [13]. For completeness, we remark
that Dirichlet boundary conditions are added to the system as a penalty term in the stan-
dard manner. We shall examine the numerical convergence rates in terms of the degrees
of freedom (DOFs), which for a P1 element scales as the number of vertices in the mesh.
Recall that in this case the meshsize h scales as DOFs−1/n, n ∈ {2, 3}, and therefore the
predicted rates of convergence for the eigenvalues on Ω1 and Ω3 are DOFs−1 and DOFs−2/3

respectively.
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Figure 2: Convergence study for the first 5 eigenvalues of Equation 7 on Ω1 (top-left), Ω2

(to-right), and Ω3 (bottom).

The convergence history of the first 5 eigenvalues of Equation 9 on Ω1 is shown in
Figure 2 top-left for the parameters µ = 10, λ = 1, and ρ = 12. We observe that the
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discretization method exhibits the expected convergence behaviour as we increase the
number of degrees of freedom. We can see that in all 5 cases the error goes down with a
similar rate.

For our second example on the L-shaped domain Ω2, we set the parameters µ =
λ = ρ = 1. As expected, the rate of convergence reflects the poor regularity of some
eigenfunctions. However, as for other elliptic operators, it seems that some eigenfunctions
do not capture the corner singularity at the origin. This is the case for κh,5 (Figure 2
bottom). We see that the relative error for this eigenvalues decays as DOFs−1, suggesting
that its corresponding eigenfunctions belong to H2(Ω2).

In the last example, we consider the unit cube Ω3 with parameters µ = 10, λ = 1,
and ρ = 12. Figure 2 (top right) shows the convergence history of the first five Jones
eigenvalues on Ω3. We notice that computed eigenvalues converge at the predicted rate as
the triangulation gets refined.

5.2 An example of variable density

Jones modes also can be found when the material density ρ varies. As an example, we
consider the unit square Ω1 with a variable density ρ(x, y) = 12|x − 0.3||y − 0.25| and
Lamé parameters µ = λ = 1. The rate of convergence of the first five Jones eigenvalues is
shown in Figure 3 top. We see that the error of the computed eigenvalues decays at the
same rate as for the case with constant density. The two eigenfunctions shown in Figure 3
middle and bottom correspond to distinct eigenvalues; the weighted L2

ρ-inner product of
these eigenfunctions is zero as discussed in subsection 3.3.

5.3 Jones modes on a disk

We next present numerical results demonstrating conforming discretizations of both the
primal formulation Equation 9 and the mixed formulation Equation 27 on the disk, where
we have used regular triangles. We consider the unit disk Ω4 := B(0, 1) centered at
the origin, with parameters µ = 1, λ = 1, and ρ = 1. As discussed in subsection 3.2,
an eigenmode associated to the eigenvalue κ1 = 0 is added on the circle (2D case) as a
consequence of the symmetry of the domain and the condition on the normal trace of the
displacement on the boundary. Figure 4 shows the eigenfunction u1 associated to κ1. We
can see that this displacement is a rigid mode with a pure tangential displacement towards
the boundary.

In Table 1-Table 4, we present the first 5 Jones eigenmodes, computed on the same
meshes (over 5 levels of refinement). We observe that the computed spectrum using the
primal formulation Table 1-Table 2 misses the first three Jones eigenvalues that the mixed
formulation approximates Table 3-Table 4. The mixed formulation accurately captures
these modes and, in particular, captures the shifted zero eigenvalue that is added to the
spectrum when an axisymmetric domain is considered.

The convergence history of the first five eigenvalues on the circle is shown for a P2−P2-
conforming discrete formulation of Equation 27, with predicted rate of convergence of
h2 =DOFs−1. The decay for κh,1 is of the order of the tolerance we set in the eigenvalue
solver. This comes from the fact that κh,1 approximates the zero eigenvalue.

5.4 Shear and compression modes of Jones eigenpairs

We end this section by using the discrete formulation in Equation 23 to compute Jones
modes on some geometries, to explore the dependence of the spectrum on domain shape
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Figure 3: Convergence study (top) of the first 5 Jones on the unit square Ω1 with variable
density ρ(x, y). The figures in the middle and bottem represent the x-component (left)
and y-component (right) of the Jones eigenmodes associated with κ1,h and κ2,h.
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Figure 4: x-component (left) and y-component (right) of the eigenfunction uh,1 on the
unit disk associated to the eigenvalue κ1 = 0. The computations are performed on a grid
comprising of triangles.

DOFs κ1,h κ2,h κ3,h κ4,h κ5,h

15972 12.32475648 12.32477023 15.6907989 28.29273062 28.29380655

21488 12.32412585 12.32414851 15.68856957 28.28731457 28.28944094

28120 12.32366488 12.32368938 15.68708044 28.28443298 28.28511814

36140 12.32329776 12.32330826 15.68588773 28.28155673 28.28226112

65637 12.32312009 12.32313548 15.68522911 28.28039584 28.28075982

Table 1: First five (shifted) Jones eigenvalues on the unit circle for five levels of refinement,
using the P1 conforming scheme (vectorial Lagrange elements) of the primal formulation.

DOFs κ1,h κ2,h κ3,h κ4,h κ5,h

63282 12.31982312 12.3198605 15.60885775 28.27462732 28.27464639

85246 12.31995092 12.32000357 15.61697078 28.27415568 28.27415894

111674 12.31996175 12.3200125 15.62039435 28.27382317 28.27384615

143654 12.3202651 12.32030354 15.62961012 28.27365126 28.27366316

261039 12.32050245 12.32052281 15.63657853 28.27352834 28.27353722

Table 2: First five (shifted) Jones eigenvalues on the unit circle for five levels of refinement,
using the P2 conforming scheme (vectorial Lagrange elements) of the primal formulation.

DOFs κ1,h κ2,h κ3,h κ4,h κ5,h

23958 1.000000000 6.189626972 6.189643368 13.15499546 13.15505685

32232 1.000000000 6.189248857 6.189257759 13.15390925 13.15400431

42180 1.000000000 6.188970148 6.188978719 13.15310588 13.1531842

54210 1.000000000 6.188735065 6.188747593 13.15246565 13.15249264

65637 1.000000000 6.188634352 6.188638195 13.15215436 13.15220753

Table 3: First five (shifted) Jones eigenvalues on the unit circle for ten different levels of
refinement, using a P1-P1 scheme of the mixed formulation.

and the Lamé parameters. We also report the L2-norm of the divergence and rotational
of the computed fields. In simple shapes, as the rectangle, the Jones modes can be readily
identified as pure s- or p- modes. The eigenvalues can also have multiplicity, and the
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DOFs κ1,h κ2,h κ3,h κ4,h κ5,h

94923 1.000000000 6.188425852 6.188425903 13.15133728 13.15133729

127869 1.000000000 6.18832008 6.188320227 13.15110141 13.15110143

167511 1.000000000 6.188251842 6.188251917 13.15094836 13.15094836

215481 1.000000000 6.188205638 6.188205663 13.15084343 13.15084343

261039 1.000000000 6.188172645 6.188172683 13.15076839 13.15076839

Table 4: First five (shifted) Jones eigenvalues on the unit circle for ten different levels of
refinement, using a P2-P2 scheme of the mixed formulation.
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Figure 5: Convergence study for the first 5 eigenvalues of Equation 7 on the unit circle
using the mixed formulation with quadratic elements. The approximated eigenvalue κh,1
corresponds to the eigenvalue 1.0 in the shifted formulation of Equation 27.

eigenspaces may include eigenmodes of both types. This points to the need for care with
resolving eigenmodes, as with any problem involving multiple eigenvalues or clusters of
these.

As found in section 3, the Jones eigenvalue problem on Lipschitz domains possesses a
countable set of eigenvalues w2

m`, m, ` = 0, 1, 2, . . .. For the sake of presentation, we set
νj = w2

m`, with j = j(m, `) ∈ N0, such that νj ≤ νj+1, for all j ∈ N0.
In subsection 2.3, we showed that eigenpairs given by Equation 5 and Equation 6

are part of the spectrum of the Jones eigenproblem on a rectangle. By changing the
Lamé parameters, one expects to change not only the eigenvalues, but potentially also
the geometric multiplicity of eigenspaces. An example of this behaviour can be seen in
subsection 5.4 and Table 5.4 where we show the first seven approximated Jones eigenpairs
on the unit square with parameters µ = ρ = 1, and λ ∈ {1, 2}.

From the analytic expressions Equation 6 and Equation 5 for the rectangle, it is clear that
by changing the Lamé parameters one can change the multiplicity as well as the composition of
eigenspaces. For example, the first eigenmode on a rectangle [0, 1]× [0, 2] with µ = λ = ρ = 1 is a
pure p mode; changing λ to 10 will make the first eigenmode be a pure s mode.
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j νj νj/π
2 ‖div u‖20 ‖curl u‖20 x−component y−component

1 19.74 2.000 5.048e-08 19.72

2 29.61 3.000 9.870 0.000188

3 29.61 3.000 9.870 0.0001293

4 49.35 5.000 7.168e-07 49.22

5 49.35 5.000 8.863e-07 49.25

6 59.22 6.000 19.74 0.0005061

7 78.96 8.000 2.979e-06 78.78

Table 5: First 7 eigemodes on unit square with parameters µ = λ = ρ = 1. ν2 = ν3, and
the corresponding eigenspace has pure p modes. Also, ν4 = ν5, and the corresponding
eigenspace has pure s modes.

j νj νj/π
2 ‖div u‖20 ‖curl u‖20 x−component y−component

1 19.74 2.000 5.048e-08 19.72

2 39.48 4.000 9.870 0.000188

3 39.48 4.000 9.870 0.0001294

4 49.35 5.000 6.414e-07 49.22

5 49.35 5.000 8.263e-07 49.25

6 78.96 8.000 19.74 0.0005061

7 78.96 8.000 2.742e-06 78.78

Table 6: First 7 eigenmodes on unit square with parameters µ = ρ = 1, λ = 2. Again, ν2 =
ν3, and the corresponding eigenspace has pure p modes; ν4 = ν5, and the corresponding
eigenspace has pure s− modes. Note that the eigenspace corresponding to ν6 has an s
mode as well as a p-mode, in contrast to subsection 5.4.

For shapes other than rectangles, the eigenmodes do not need to be pure s or pure p waves.
This points out the fact that the shape of the boundary is an important factor in this problem.
The L-shaped domain discussed in the convergence studies is an example of such a domain: due to
the re-entrant corner (see Table 5.4), the eigenmodes are neither pure shear nor pure compression
modes. The same can be observed on the isosceles triangle of vertices (0, 0), (2, 0) and (0, 1), where
none of the eigenfunctions seem to be divergence or curl free (see Table 5.4).

Conclusions In this work we demonstrated the existence of Jones modes on Lipschitz domains.
The spectrum of the Jones eigenproblem (cf. Equation 4) depends heavily on the shape of the
domain under consideration (as shown in section 3).
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j νj νj/π
2 ‖div u‖20 ‖curl u‖20 x−component y−component

1 0.08848 0.008965 0.01531 5.013

2 1.285 0.1302 0.1411 5.273

3 3.8100 0.3861 0.2903 15.43

4 5.1300 0.5197 0.4458 8.277

Table 7: L-shaped domain with parameters µ = λ = ρ = 1.

j νj νj/π
2 ‖div u‖20 ‖curl u‖20 x−component y−component

1 4.6563 0.4718 0.7007 24.36

2 8.3125 0.8422 0.4333 14.42

3 11.84674 1.200 2.527 4.15

4 21.0647 2.134 1.640 75.96

Table 8: Isosceles triangle of vertices (0, 0), (2, 0) and (0, 1) with parameters λ = µ = ρ = 1.

Axisymmetric domains such as bodies of revolution, spheres or disks present more challenges
for computation compared to polygonal domains. Concretely, there are two issues in these cases:
the presence of a zero eigenvalue, and the discretization of the boundary curve. The former issue
is handled by using a shift. The effect of the discretization of the smooth boundary by a polygonal
one is more profound. As we saw in the computations for the disk, the primal formulation did not
capture the same part of the spectrum. This phenomenon was also found to hold for other smooth
domains, such as ellipses.

We believe the reason for this phenomenon is the interplay between the imposition of the
constraint on u · n, and the fact that the boundary is being approximated by piecewise linear
polynomials. We expect curvilinear elements which are boundary-conforming should ameliorate
this problem, and a careful investigation of this is ongoing work.
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