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A SMOOTHING ACTIVE SET METHOD FOR LINEARLY
CONSTRAINED NON-LIPSCHITZ NONCONVEX OPTIMIZATION\ast 

CHAO ZHANG\dagger AND XIAOJUN CHEN\ddagger 

Abstract. We propose a novel smoothing active set method for linearly constrained non-
Lipschitz nonconvex problems. At each step of the proposed method, we approximate the objective
function by a smooth function with a fixed smoothing parameter and employ a new active set method
for minimizing the smooth function over the original feasible set, until a special updating rule for the
smoothing parameter meets. The updating rule is always satisfied within a finite number of iterations
since the new active set method for smooth problems proposed in this paper forces at least one sub-
sequence of projected gradients to zero. Any accumulation point of the smoothing active set method
is a stationary point associated with the smoothing function used in the method, which is necessary
for local optimality of the original problem. And any accumulation point for the \ell 2  - \ell p (0 < p < 1)
sparse optimization model is a limiting stationary point, which is a local minimizer under a certain
second-order condition. Numerical experiments demonstrate the efficiency and effectiveness of our
smoothing active set method for hyperspectral unmixing on a 3 dimensional image cube of large size.
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stationary point
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1. Introduction. Active set methods have been successfully used for linearly
constrained smooth optimization problems of large size; see [8, 13, 17, 18, 25, 42]
and references therein. Hager and Zhang developed a novel active set algorithm for
the bound constrained smooth optimization problems in [17], and ten years later they
extended the method to solve linearly constrained smooth optimization problems [18].
The active set method in [18] switches between phase one that employs the gradient
projection algorithm for the original problem and phase two that uses an algorithm
with certain requirements for solving linearly constrained optimization problems on a
face of the original feasible set. Hager and Zhang [18] showed that any accumulation
point of the sequence generated by their method is a stationary point, and only phase
two is performed after a finite number of iterations under certain conditions.

For linearly constrained nonsmooth convex optimization problems, Panier pro-
posed an active set method [29], in which the search direction is computed by a
bundle principle. And the convergence result is obtained under a certain nondegener-
acy assumption. Wen et al. developed an active set algorithm for the unconstrained
\ell 1 minimization with good numerical performance and convergence results [36, 37].
For bound-constrained nonsmooth nonconvex optimization, Keskar and W\"achter pro-
posed a limited-memory quasi-Newton algorithm which uses an active set selection
strategy to define the subspace in which search directions are computed [21]. Numer-
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2 CHAO ZHANG AND XIAOJUN CHEN

ical experiments were conducted to show the efficacy of the algorithm, but theoretical
convergence guarantees are elusive even for the unconstrained case. To the best of
our knowledge, there is no active set method that tackles linearly constrained non-
Lipschitz nonconvex optimization problems with solid convergence results.

One effective way to overcome the nonsmoothness in optimization is the type of
smoothing methods which uses the structure of the problem to define smoothing func-
tions and the algorithms for solving smooth problems. Nesterov proposed a smoothing
scheme [27] for minimizing a nonsmooth convex function over a convex set. Zhang
and Chen proposed a smoothing projected gradient method [41] for minimizing a Lip-
schitz continuous function over a convex set. Bian and Chen developed a smoothing
quadratic regularization method [4] for a class of linearly constrained non-Lipschitz
optimization problems arising from image restoration. Xu, Ye, and Zhang proposed
a smoothing sequential quadratic programming method [38] for solving degenerate
nonsmooth and nonconvex constrained optimization problems with applications to
bilevel programs. Liu et al. proposed a smoothing sequential quadratic programming
framework [26] for a class of composite \ell p (0 < p < 1) minimization over a polyhedron.

Inspired by the active set method [18] and the smoothing technique, we develop
a novel smoothing active set method with solid convergence results for the following
minimization problem

min f(x) s.t. x \in \Omega ,(1.1)

where f : Rn \rightarrow R is continuous but not necessarily Lipschitz continuous and

\Omega = \{ x \in Rn : cTi x = di, i \in \scrM E ; cTi x \leq di, i \in \scrM I\} .(1.2)

Here \scrM E = \{ 1, 2, . . . ,me\} , \scrM I = \{ me + 1,me + 2, . . . ,m\} , \scrM = \scrM E

\bigcup 
\scrM I , and

ci \in Rn, di \in R for i = 1, 2, . . . ,m.
Problem (1.1) involving a sparsity penalized term in the objective function has

recently intrigued a lot of researchers. It serves as a basic model for a variety of im-
portant applications, including the compressed sensing [1], the edge-preserving image
restoration [4, 28], the sparse nonnegative matrix factorization for data classification
[40], and the sparse portfolio selection [9, 15]. For example, the widely used \ell 2  - \ell p
(0 < p < 1) sparse optimization model

min \| Ax - b\| 2 + \tau \| x\| pp s.t. x \geq 0,(1.3)

where \| \cdot \| refers to the Euclidean norm, \| x\| pp =
\sum n

i=1 | xi| p, and A \in Rl\times n, b \in Rl,
and \tau > 0 are given. The non-Lipschitz nonconvex term \| x\| pp in the objective function
and the nonnegative constraints benefit to recover some prior knowledge such as the
sparsity of the signal, or the range of pixels. It is worth mentioning that in typical
compressive sensing or image restoration, the dimension of optimization problems is
large.

In order to develop the smoothing active set method, we first assume f is smooth
in (1.1) in section 2 and develop an efficient new active set method for the linearly
constrained smooth problems, which can be considered as a modification of the active
set algorithm [18]. The new active set method combines the projected gradient (PG)
method [8] and a linearly constrained optimizer (LCO) that satisfies mild require-
ments. We show in Theorem 2.2 that the new active set method forces at least one
subsequence of projected gradients to zero. This property is essential in developing
the smoothing active set method with global convergence in section 3. It is guaran-
teed that any accumulation point of the sequence generated by the new active set
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SMOOTHING ACTIVE SET METHOD 3

method is a stationary point. Moreover, if the sequence generated by the new active
set method converges to a stationary point x\ast , then the sequence can identify the set
of strongly active constraints and hence is trapped by the face exposed by  - \nabla f(x\ast )
after a finite number of iterations. The convergence and identification properties are
not guaranteed by the active set method in [18] for the smooth problems. Based on
the identification properties, we also prove the local convergence result that if the
sequence converges to x\ast and the strong second-order sufficient optimality condition
holds, then only the LCO is executed after a finite number of iterations.

Combining the new active set method for linearly constrained smooth minimiza-
tion problem with delicate smoothing strategies, we then develop in section 3 a novel
smoothing active set method that solves the linearly constrained non-Lipschitz min-
imization problem (1.1). The new active set method for smooth problems is used to
solve the smoothing problems. We give the concept of a stationary point associated
with the smoothing function and show that it is necessary for optimality of the original
problem. We show that any accumulation point generated by the smoothing active
set method is a stationary point of the original problem. Moreover, it is a limiting
stationary point of problem (1.3). If in addition a second-order condition holds, it is
also a strict local minimizer of (1.3).

We conduct numerical experiments on real applications of large scale in hyper-
spectral unmixing in section 4. The numerical results manifest that the smoothing
active set method performs favorably in comparison to several state-of-the-art meth-
ods in hyperspectral unmixing.

Throughout the paper, we use the following notation. \langle x, y\rangle = xT y presents the
inner product of two vectors x and y of the same dimension. Rn

+ = \{ x \in Rn : x \geq 0\} 
and Rn

++ = \{ x \in Rn : x > 0\} . | \scrS | corresponds to the cardinality of a finite set \scrS . If
\scrS is a subset of \{ 1, 2, . . . , n\} , then for any vector u \in Rn and M \in Rn\times n, u\scrS is the
subvector of u whose entries lie in u indexed by \scrS , and M\scrS \scrS denotes the submatrix
of M whose rows and columns lie in \scrS . \scrN (M) is the null space of M . Let \BbbN be the
set of all natural numbers and \scrN \sharp 

\infty be the infinite subsets of \BbbN . We use the notation
 - \rightarrow 
N

for the convergence indexed by N \in \scrN \sharp 
\infty . The normal cone to a closed convex set

\Omega at x is denoted by N\Omega (x), and P\Omega [x] = argmin\{ \| z - x\| : z \in \Omega \} is the orthogonal
projection from x into \Omega . The ball with center x\ast and radius \delta is denoted by B\delta (x

\ast ).
For any x \in Rn, the active and free index sets are defined by

\scrA (x) :=\scrM E \cup \{ i \in \scrM I : cTi x = di\} , \scrF (x) := \{ i \in \scrM I : cTi x < di\} .

2. A new active set method for linearly constrained smooth minimiza-
tion. In this section, we consider the following linearly constrained smooth problem

min f(x) s.t. x \in \Omega ,(2.1)

where f is continuously differentiable and \Omega is defined in (1.2).
Recall that the projected gradient \nabla \Omega f(x) is defined by

\nabla \Omega f(x) \equiv PT (x)[ - \nabla f(x)] = argmin\{ \| v +\nabla f(x)\| : v \in T (x)\} ,

where T (x) is the tangent cone to \Omega at x. Calamai and Mor\'e (Lemma 3.1 of [8])
showed that x\ast \in \Omega is a stationary point of (2.1) if and only if \nabla \Omega f(x

\ast ) = 0. It is
worth mentioning that \| \nabla \Omega f(x)\| can be bounded away from zero in a neighborhood of
a stationary point x\ast , since \| \nabla \Omega f(\cdot )\| is not continuous, but only lower semicontinuous
on \Omega according to Lemma 3.3 of [8]. That is, for any \{ xk\} \subset \Omega converging to x,

\| \nabla \Omega f(x)\| \leq lim inf
k\rightarrow \infty 

\| \nabla \Omega f(x
k)\| .
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4 CHAO ZHANG AND XIAOJUN CHEN

A stationary point x\ast of (2.1) is often characterized as

d1(x\ast ) := P\Omega [x
\ast  - \nabla f(x\ast )] - x\ast = 0.

We find that convergence of most existing active set methods for (2.1) is to
show lim infk\rightarrow \infty \| d1(xk)\| = 0, such as the active set method in [18]. However, since
the norm of projected gradient is not continuous, lim infk\rightarrow \infty \| d1(xk)\| = 0 does not
imply lim infk\rightarrow \infty \| \nabla \Omega f(x

k)\| = 0. See Example 1 in section 2. The new active set
method proposed in this section aims to have

lim inf
k\rightarrow \infty 

\| \nabla \Omega f(x
k)\| = 0,

which is essential for showing the convergence result of the smoothing active set
method for solving nonsmooth problem (1.1) proposed in section 3.

2.1. Structure of the new active set method. Now we introduce the neces-
sary notation used in the new active set method. Let us denote g(x) = \nabla f(x). Given
an index set \scrS satisfying\scrM E \subseteq \scrS \subseteq \scrM , we define g\scrS (x) \in Rn by

g\scrS (x) = P\scrN (CT
\scrS )[g(x)] = argmin\{ \| y  - g(x)\| : y \in Rn and CT

\scrS y = 0\} ,(2.2)

where C\scrS \in Rn\times | \scrS | is the matrix whose columns are ci, i \in \scrS . In particular, we denote
g\scrA (x) for \scrS = \scrA (x) and if \scrA (x) = \emptyset , then g\scrA (x) = g(x). Thus g\scrA (x) is the unique
optimal solution of the strongly convex problem

min
1

2
\| y  - g(x)\| 2 s.t. cTi y = 0, i \in \scrA (x).(2.3)

From the first-order optimality conditions, it is easy to find that for x \in \Omega , g\scrA (x) = 0
if and only if x is a stationary point of f on its associated face

\u \Omega (x) := \{ y \in \Omega : cTi y = di for all i \in \scrA (x)\} .(2.4)

Let x\ast be a stationary point of (2.1) and \Lambda (x\ast ) be the set of Lagrange multipliers
associated with the constraints. That is, x\ast \in \Omega and for any \lambda \ast \in \Lambda (x\ast ), (x\ast , \lambda \ast )
satisfies

(2.5)

g(x\ast ) +
\sum 

i\in \scrM \lambda \ast 
i ci = 0,

\lambda \ast 
i \geq 0 if i \in \scrM I \cap \scrA (x\ast ), \lambda \ast 

i = 0 if i \in \scrF (x\ast ),

\lambda \ast 
i (c

T
i x

\ast  - di) = 0 for all i \in \scrM I .

Consider

y(x, \alpha ) = P\Omega [x - \alpha g(x)] = argmin
\bigl\{ 
\| x - \alpha g(x) - y\| 2 : y \in \Omega 

\bigr\} 
,(2.6)

where \alpha > 0 is a given number. Thus there exists \lambda \in Rm such that (y(x, \alpha ), \lambda )
satisfies

(2.7)
y(x, \alpha ) - (x - \alpha g(x)) +

\sum 
i\in \scrM \lambda ici = 0,

\lambda i \geq 0 if i \in \scrM I \cap \scrA (y(x, \alpha )), \lambda i = 0 if i \in \scrF (y(x, \alpha )),
\lambda i(c

T
i y(x, \alpha ) - di) = 0 for all i \in \scrM I .

Let \Lambda (x, \alpha ) be the set of Lagrange multipliers satisfying (2.7) at the solution y =
y(x, \alpha ) of (2.6). It is easy to see that

y(x\ast , \alpha ) = x\ast and \Lambda (x\ast , \alpha ) = \alpha \Lambda (x\ast ).(2.8)
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SMOOTHING ACTIVE SET METHOD 5

In the new active set method, it employs either the iteration of the PG method
or the iteration of the LCO by given rules. Let xk be the current iterate and the LCO
be chosen to get the new iterate. Then the LCO solves the problem

min f(y) s.t. y \in \u \Omega (xk),(2.9)

which operates on the faces of \Omega . Compared to the original problem (2.1), there are
usually many more equality constraints in (2.9) which may lead the efficiency of the
LCO. This is obviously true when the feasible set is defined by the bound constraints
or the simplex constraint (which are sometimes called ``hard constraints"" and it is
better to satisfy them strictly rather than penalize them into the objective function).
The PG step comes from the classic ``piecewise PG method"" proposed in [8], and an
arbitrary LCO can be chosen as long as it satisfies certain requirements listed below.

\bullet PG method:
Given \rho , \beta \in (0, 1). For k = 1, 2, . . . ,
set dk =  - g(xk) and let xk+1 = P\Omega [x

k + \alpha kd
k], where \alpha k is determined by

the Armijo line search, i.e., \alpha k = max\{ \rho 0, \rho 1, . . .\} is chosen such that

f(xk+1) \leq f(xk) + \beta \langle g(xk), xk+1  - xk\rangle .(2.10)

\bullet LCO requirements:
For k = 1, 2, . . . ,
F1: xk \in \Omega and f(xk+1) \leq f(xk) for each k.
F2: \scrA (xk) \subseteq \scrA (xk+1) for each k.
F3: If \exists \=k > 0 such that \scrA (xj) \equiv \=\scrA for all j \geq \=k, then lim infj\rightarrow \infty \| g\scrA (xj)\| =
0.

F1 and F2 of the LCO requirements are satisfied, as long as the LCO adopts
a monotone line search, and whenever a new constraint becomes active, it changes
the corresponding inequality constraint to the equality constraint in (2.9). Later we
always assume the two strategies are incorporated into the LCO. F3 requires that if
the active set becomes stable as \scrA (xj) \equiv \=\scrA , then at least one accumulation point
x\ast of the sequence \{ xk\} generated by the LCO is a stationary point of problem (2.9)
with \u \Omega (xk) = \{ y \in \Omega : cTi y = di for all i \in \=\scrA \} . Note that in this case x\ast is a

stationary point if and only if g
\=\scrA (x\ast ) = 0. And since g

\=\scrA (x) = P\scrN (CT
\=\scrA )[g(x)], we know

that g
\=\scrA (\cdot ) : Rn \rightarrow Rn is a continuous function. Thus g

\=\scrA (x\ast ) = 0 indicates

lim inf
j\rightarrow \infty 

\| g\scrA (xj)\| = lim inf
j\rightarrow \infty 

\| g \=\scrA (xj)\| = 0.

Therefore the LCO requirements can be easily fulfilled by many algorithms based
on gradient or Newton type iterations that employ a monotone line search and add
constraints to the active set whenever a new constraint becomes active, e.g., the PG
method [8], the method of Zoutendijk (section 10.1 of [2]), the Frank--Wolfe algorithm
[16], the first-order interior-point method [33], and the affine-scaling interior-point
method [19]. When \Omega = Rn

+, we can employ the LCO using essentially unconstrained
optimization methods such as the conjugate gradient method as in [17].

Now we are ready to outline the new active set method for problem (2.1).

2.2. Convergence analysis.

Assumption 2.1. For any \Gamma \in R, the level set

\scrL \Gamma = \{ x \in \Omega : f(x) \leq \Gamma \} 

is bounded.
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6 CHAO ZHANG AND XIAOJUN CHEN

Algorithm 2.1 A new active set method.

1: Parameters: \epsilon \in [0,\infty ), \theta and \eta \in (0, 1). x1 = P\Omega [x
0], k = 1.

2: Phase one:
3: while \| \nabla \Omega f(x

k)\| > \epsilon , do
4: Execute the PG step to obtain xk+1 from xk. Let k \leftarrow k + 1.
5: If \| g\scrA (xk)\| \leq \theta \| \nabla \Omega f(x

k)\| , then \theta \leftarrow \eta \theta .
6: If \| g\scrA (xk)\| > \theta \| \nabla \Omega f(x

k)\| , then go to phase two.
7: end while
8: Phase two:
9: while \| \nabla \Omega f(x

k)\| > \epsilon , do
10: Execute the LCO step to obtain xk+1 from xk. Let k \leftarrow k + 1.
11: If \| g\scrA (xk)\| \leq \theta \| \nabla \Omega f(x

k)\| , then go to phase one and \theta \leftarrow \eta \theta .
12: end while

In the remainder of this paper, we assume that the LCO satisfies the LCO re-
quirements F1--F3, and Assumption 2.1 holds. We now show the global convergence
of Algorithm 2.1 for problem (2.1).

Theorem 2.2. Let \{ xk\} be the sequence generated by Algorithm 2.1 with \epsilon = 0.
Then there exists at least one accumulation point of \{ xk\} ,

lim inf
k\rightarrow \infty 

\| \nabla \Omega f(x
k)\| = 0,(2.11)

and any accumulation point of \{ xk\} is a stationary point of (2.1).

Proof. By Assumption 2.1, there exists at least one accumulation point x\ast of \{ xk\} .
Let \{ xk\} k\in K be an infinite subsequence of \{ xk\} such that limk\rightarrow \infty , k\in K xk = x\ast .

If only phase one is performed for k sufficiently large, then by Assumption 2.1
and Theorem 2.4 of [8],

lim
k\rightarrow \infty , k\in K

xk+1  - xk

\alpha k
= 0.

Hence for k \rightarrow \infty , k \in K,

\| xk+1  - x\ast \| \leq \| xk+1  - xk\| + \| xk  - x\ast \| \rightarrow 0,

which indicates limk\rightarrow \infty , k\in K xk+1 = x\ast . According to Theorem 3.4 of [8],

lim
k\rightarrow \infty , k\in K

\| \nabla \Omega f(x
k+1)\| = 0.

By the lower semicontinuity of \| \nabla \Omega f(\cdot )\| shown in Lemma 3.3 of [8],

\| \nabla \Omega f(x
\ast )\| \leq lim

k\rightarrow \infty , k\in K
\| \nabla \Omega f(x

k+1)\| = 0,

which guarantees that x\ast is a stationary point of (2.1).

If only phase two is performed for k sufficiently large, then there exists \^\theta > 0 such
that \theta \equiv \^\theta for k sufficiently large, because \theta is never reduced in phase two. Hence for
k sufficiently large,

\| g\scrA (xk)\| \geq \^\theta \| \nabla \Omega f(x
k)\| .(2.12)
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SMOOTHING ACTIVE SET METHOD 7

Note that the LCO works on the faces of \Omega and no index in the active set can be
freed from xk to xk+1 using the LCO. By F2 of the LCO requirements, the active set
becomes stable for k large enough and hence lim infk\rightarrow \infty \| g\scrA (xk)\| = 0 according to
F3. From (2.12) we then have (2.11) holds. By the lower semicontinuity of \| \nabla \Omega f(\cdot )\| ,
x\ast is a stationary point of (2.1).

The remaining case is that there are an infinite number of branches from phase
two to phase one for \{ xk\} k\in K . Then phase one is performed an infinite number
of times at k1 < k2 < \cdot \cdot \cdot < \cdot \cdot \cdot , where \{ ki\} \subseteq K. By Theorem 3.4 of [8],
limki\rightarrow \infty \| \nabla \Omega f(x

ki+1)\| = 0. Again we find x\ast is a stationary point by using \{ xki+1\} \rightarrow 
x\ast and the lower semicontinuity of \| \nabla \Omega f(\cdot )\| . The proof is completed.

Identification properties of an algorithm for linearly constrained problems are
significant from both a theoretical and a practical point of view [14, 25]. For a
stationary point x\ast , the set of strongly active constraints is defined by

\scrA +(x
\ast ) =\scrM E \cup \{ i \in \scrM I : cTi x

\ast = di, and \exists \lambda \ast \in \Lambda (x\ast ) such that \lambda \ast 
i > 0\} .

In convex analysis, the face of a convex set \Omega exposed by the vector w \in Rn is

E[w] \equiv argmax\{ wTx : x \in \Omega \} .

A computation based on the definition of a face shows that for the polyhedral set \Omega 
given in (1.2),

E[ - \nabla f(x\ast )] = \{ x \in \Omega : cTi x = di if \lambda \ast 
i > 0 for i \in \scrM I\} ,(2.13)

where \lambda \ast \in \Lambda (x\ast ). Note that this expression is valid for any choice of Lagrange
multipliers \lambda \ast \in \Lambda (x\ast ).

We say that the linear independence constraint qualification (LICQ) holds at a
point x \in \Omega if the gradients ci, i \in \scrA (x), are linearly independent.

Theorem 2.3. Let \{ xk\} be a sequence generated by Algorithm 2.1 with \epsilon = 0
which converges to x\ast . Suppose that the LICQ holds at x\ast , and for some \delta > 0, g
is Lipschitz continuous in B\delta (x

\ast ) with a Lipschitz constant \varrho . Then there exists an

integer \^k0 > 0 such that

\scrA +(x
\ast ) \subseteq \scrA (xk) and xk \in E[ - \nabla f(x\ast )] for k \geq \^k0.

Proof. Since \{ xk\} converges to x\ast , there exists k0 > 0 such that xk \in B\delta (x
\ast ) for

any k \geq k0. Using the definition of y(x, \alpha ) in (2.6) and the Lipschitz continuity of g
with the Lipschitz constant \varrho in B\delta (x

\ast ), we have for any \alpha > 0 and k \geq k0,

\| y(xk, \alpha ) - x\ast \| = \| y(xk, \alpha ) - y(x\ast , \alpha )\| 
= \| P\Omega [x

k  - \alpha g(xk)] - P\Omega [x
\ast  - \alpha g(x\ast )]\| 

\leq \| xk  - x\ast + \alpha (g(x\ast ) - g(xk))\| 
\leq (1 + \alpha \varrho )\| xk  - x\ast \| .

Since \{ xk\} converges to x\ast , there is an integer \=k > 0 such that \scrF (x\ast ) \subseteq \scrF (y(xk, \alpha )) for
k \geq \=k. We know that \Lambda (x\ast ) is a singleton, since the gradients of the active constraints
at x\ast are linearly independent. Thus \Lambda (x\ast , \alpha ) = \alpha \Lambda (x\ast ) is also a singleton for any
given \alpha > 0. Moreover, \Lambda (xk, \alpha ) is a singleton for k \geq \=k, because \scrA (y(xk, \alpha )) \subseteq 
\scrA (x\ast ) for k \geq \=k and the gradients of the active constraints at y(xk, \alpha ) are linearly
independent.
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8 CHAO ZHANG AND XIAOJUN CHEN

Consider the linear system

q +
\sum 
i\in \scrM 

\lambda ici = 0, \lambda i \geq 0 for i \in \scrM I , \lambda i = 0 for i \in \scrF (x\ast ).(2.14)

Let
p1 = y(xk, \alpha ) - xk + \alpha g(xk) and p2 = y(x\ast , \alpha ) - x\ast + \alpha g(x\ast ).

According to (2.7), \lambda k \in \Lambda (xk, \alpha ) is feasible in the linear system (2.14) with q = p1.
And by (2.5) and (2.8), it is easy to see that for \lambda \ast \in \Lambda (x\ast ), \alpha \lambda \ast \in \Lambda (x\ast , \alpha ) is also
feasible in the same system (2.14) but with q = p2. Hence by Hoffman's result (see,
e.g., Theorem 7.12 of [32]) and the fact that \Lambda (x\ast , \alpha ) is a singleton, there exists a
positive constant \nu , independent of p1 and p2 and depending only on ci, i \in \scrM , such
that

\| \lambda k  - \alpha \lambda \ast \| \leq \nu \| p1  - p2\| \leq 2\nu (1 + \alpha \varrho )\| xk  - x\ast \| .

For any i0 \in \scrM I \cap \scrA +(x
\ast ), the Lagrange multiplier \lambda \ast \in \Lambda (x\ast ) satisfies \lambda \ast 

i0
> 0.

Thus there exists an integer \~ki0 > 0 such that \lambda k
i0

> 0 for all k \geq \~ki0 . Now we
consider (2.6) and its first-order optimality conditions given in (2.7). We find that
cTi0y(x

k, \alpha ) = di0 by complementarity and hence i0 \in \scrA (y(xk, \alpha )). Let

\~k = max\{ \~ki, i \in \scrM I \cap \scrA +(x
\ast )\} and \^k = max\{ \=k, \~k\} .

Clearly for any i \in \scrA +(x
\ast ) and any given \alpha > 0,

i \in \scrA (y(xk, \alpha )) for all k \geq \^k.

We need to consider two possible cases.

Case 1. There exists an integer \^k1 \geq \^k such that x
\^k1+1 is obtained from the PG

step in Algorithm 2.1. Then for any k \geq \^k1 such that xk+1 is obtained from xk by
the PG step in Algorithm 2.1, we know by (2.6)

xk+1 = P\Omega [x
k  - \alpha kg(x

k)] = y(xk, \alpha k)

and, consequently, i \in \scrA (xk+1) for any i \in \scrA +(x
\ast ). Since no active constraint can be

freed by the LCO step in phase two, we get

i \in \scrA (xk) for any k \geq \^k1 + 1.

Case 2. xk+1 is obtained from the LCO step in phase two for any k \geq \^k. By F2
of the LCO requirements, we find \scrA (xk) \subseteq \scrA (xk+1) for all k \geq \^k. Then the active
constraints become unchanged after a finite number of steps. Thus there exists an
integer \^k2 > \^k such that

\scrA (xk) \equiv \~\scrA \subseteq \scrA (x\ast ) for all k \geq \^k2.

By the definition of g
\~\scrA (xk), and the first-order optimality conditions at the global

optimizer g
\~\scrA (xk), there exists a unique vector \pi k \in Rm such that

(2.15)
g

\~\scrA (xk) - g(xk) - 
\sum 

i\in \~\scrA \pi k
i ci = 0,

cTi g
\~A(xk) = 0, i \in \~\scrA , \pi k

i = 0 if i \not \in \~A.

Here the vector \pi k is unique because the column vectors ci, i \in \~\scrA \subseteq \scrA (x\ast ) are
linearly independent. Similarly, by the strong convexity of problem (2.3) with x
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SMOOTHING ACTIVE SET METHOD 9

being replaced by x\ast , and the linear independence of \{ ci, i \in \scrA (x\ast )\} , there exist a
unique vector g\scrA (x\ast ) \in Rn and a unique vector \lambda \in Rm such that

(2.16)
g\scrA (x\ast ) - g(x\ast ) - 

\sum 
i\in \scrA (x\ast ) \lambda ici = 0,

cTi g
\scrA (x\ast ) = 0, i \in \scrA (x\ast ), \lambda i = 0 if i \not \in \scrA (x\ast ).

And there exists a unique vector \lambda \ast \in Rm such that

g(x\ast ) =  - 
\sum 

i\in \scrA (x\ast )

\lambda \ast 
i ci, \lambda \ast 

i = 0 if i \not \in \scrA (x\ast ),(2.17)

since x\ast is a stationary point of (2.1) and the gradients of the active constraints at
x\ast are linearly independent.

We get g\scrA (x\ast ) = 0 and \lambda = \lambda \ast , by comparing (2.16), (2.17), and using the

uniqueness of g\scrA (x\ast ) and \lambda in (2.16). Moreover, lim infk\rightarrow \infty g
\~\scrA (xk) = 0 according to

F3 of the LCO requirements. Let \{ kj\} \subseteq \{ k\} be an infinite subsequence such that

limkj\rightarrow \infty g
\~\scrA (xkj ) = 0. Taking the limit to the first linear system in (2.15), we have

0 = lim
kj\rightarrow \infty 

g
\~A(xkj ) = g(x\ast ) +

\sum 
i\in \~\scrA 

lim
kj\rightarrow \infty 

\pi 
kj

i ci.(2.18)

Comparing (2.17) and (2.18), and noting the uniqueness of \lambda \ast in (2.17), we find

lim
kj\rightarrow \infty 

\pi 
kj

i = \lambda \ast 
i > 0 for any i \in \scrA +(x

\ast ) \setminus \scrM E .

Since \pi k
i = 0 if i \not \in \~\scrA for k sufficiently large according to (2.15), we know

lim
kj\rightarrow \infty 

\pi 
kj

i = 0 for any i \in \scrA +(x
\ast ) \setminus \~\scrA .

This indicates \scrA +(x
\ast ) \setminus \~\scrA = \emptyset . Hence for any i \in \scrA +(x

\ast ), we get i \in \~A \equiv \scrA (xk) for

k \geq \^k2.
Thus in any case, there exists an index \^k0 (\^k0 = \^k1 + 1 if Case 1 occurs, and

\^k0 = \^k2 if Case 2 happens otherwise) such that

\scrA +(x
\ast ) \subseteq \scrA (xk) for k \geq \^k0.

This, combined with (2.13), implies

xk \in E[ - \nabla f(x\ast )] for k \geq \^k0.

We complete the proof.

Based on the identification properties analyzed above, we will show the local
convergence result that only iterations in phase two occur for k sufficiently large, if
we further assume that the strong second-order sufficient optimality condition holds at
x\ast . A stationary point x\ast of (2.1) satisfies the strong second-order sufficient optimality
condition if there exists \sigma > 0 such that

vT\nabla 2f(x\ast )v \geq \sigma \| v\| 2(2.19)

for all v \in Rn such that cTi v = 0 for all i \in \scrA +(x
\ast ).
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10 CHAO ZHANG AND XIAOJUN CHEN

Lemma 2.4. Let \{ xk\} be a sequence generated by Algorithm 2.1 with \epsilon = 0 which
converges to x\ast . Suppose that the LICQ holds at x\ast , and for some \delta > 0, g is Lipschitz
continuous in B\delta (x

\ast ) with a Lipschitz constant \varrho . Then

\| \nabla \Omega f(x
k)\| \leq \varrho \| xk  - x\ast \| for k sufficiently large.(2.20)

Proof. From the nonexpansive property of the projection operator,

\| \nabla \Omega f(x
k)\| = \| PT (xk)[ - g(xk)] - PT (xk)[ - g(x\ast )] + PT (xk)[ - g(x\ast )]\| 
\leq \| g(xk) - g(x\ast )\| + \| PT (xk)[ - g(x\ast )]\| .(2.21)

Similarly,

\| PT (xk)[ - g(x\ast )]\| 
= \| PT (xk)[ - g(x\ast )] - PT (xk)[ - g(xk)] + PT (xk)[ - g(xk)]\| 
\leq \| g(xk) - g(x\ast )\| + \| \nabla \Omega f(x

k)\| .
(2.22)

From (2.21) and (2.22),

\| \nabla \Omega f(x
k)\|  - \| g(xk) - g(x\ast )\| \leq \| PT (xk)[ - g(x\ast )]\| \leq \| \nabla \Omega f(x

k)\| + \| g(xk) - g(x\ast )\| .

Theorem 2.3 guarantees that there is an integer \^k0 such that xk \in E[ - \nabla f(x\ast )] for all

k \geq \^k0. Thus according to Theorem 3.1 of [25], limk\rightarrow \infty \| \nabla \Omega f(x
k)\| = 0. This, com-

bined with (2.22) and the facts that \{ xk\} \rightarrow x\ast and g is locally Lipschitz continuous
at x\ast , yields

lim
k\rightarrow \infty 

\| PT (xk)[ - g(x\ast )]\| = 0.(2.23)

By direct computation,

T (xk) = \{ v : cTi v = 0, i \in \scrM E ; cTi v \leq 0, i \in \scrM I \cap \scrA (xk)\} .(2.24)

When xk is sufficiently near x\ast , we know \scrF (x\ast ) \subseteq \scrF (xk). Then by Theorem 2.3, we
find

\scrA +(x
\ast ) \subseteq \scrA (xk) \subseteq \scrA (x\ast ).(2.25)

From the inclusions in (2.25) and the fact that \scrA (x\ast ) has a finite number of subsets,
there are only a finite number of index sets \scrA 1, . . . ,\scrA \nu for \scrA (xk), k = 1, 2, . . . . From
the expression of T (xk) in (2.24), let us define

Tj = \{ v : cTi v = 0, i \in \scrM E ; cTi v \leq 0, i \in \scrM I \cap \scrA j\} for j = 1, 2, . . . , \nu .

Without loss of generality, we assume

\{ T1, T2, . . . , Tt\} \subseteq \{ T1, T2, . . . , T\nu \} 

is composed of all the elements in \{ T1, T2, . . . , T\nu \} such that each Tj , j = 1, 2, . . . , t,
contains an infinite number of T (xk), k = 1, 2, . . . . Hence we get PTj [ - g(x\ast )] = 0 for
j = 1, 2, . . . , t, according to (2.23). Consequently, for all k sufficiently large, we have

PT (xk)[ - g(x\ast )] \in \{ PT1
[ - g(x\ast )], PT2

[ - g(x\ast )], . . . , PTt
[ - g(x\ast )]\} ,

which indicates

PT (xk)[ - g(x\ast )] = 0 for all k sufficiently large.(2.26)

Substituting (2.26) into (2.21) and using the Lipschitz continuity of g with the Lip-
schitz constant \varrho in B\delta (x

\ast ), we get our desired result (2.20).

D
ow

nl
oa

de
d 

04
/0

3/
23

 to
 1

58
.1

32
.1

61
.1

85
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SMOOTHING ACTIVE SET METHOD 11

Lemma 2.5. Let \{ xk\} be a sequence generated by Algorithm 2.1 with \epsilon = 0 which
converges to x\ast . If f is twice continuously differentiable in a neighborhood of x\ast ,
the LICQ holds at x\ast , and the strong second-order sufficient optimality condition in
(2.19) holds at x\ast , then there exists \theta \ast > 0 such that

\| g\scrA (xk)\| \geq \theta \ast \| \nabla \Omega f(x
k)\| for all k sufficiently large.(2.27)

Proof. By Theorem 2.3, \scrA +(x
\ast ) \subseteq \scrA (xk) for k \geq k0. Thus xk  - x\ast satisfies

cTi (x
k  - x\ast ) = 0 for all i \in \scrA +(x

\ast ) and k \geq k0. By the strong second-order suffi-
cient optimality condition, we find x\ast is a strict local minimizer of (2.1), and for k
sufficiently large,

(xk  - x\ast )T (g(xk) - g(x\ast )) \geq 0.5\sigma \| xk  - x\ast \| 2.(2.28)

Using the first-order necessary optimality conditions for a local minimizer of (2.1), we
know that there exists a multiplier \lambda \ast \in Rm such that

g(x\ast ) +
\sum 
i\in \scrM 

\lambda \ast 
i ci = 0, (di  - cTi x

\ast )\lambda \ast 
i = 0, i \in \scrM , \lambda \ast 

i \geq 0, i \in \scrM I .(2.29)

We have for k sufficiently large, \scrA +(x
\ast ) \subseteq \scrA (xk) and di - cTi x

\ast = 0 = di - cTi x
k when

i \in \scrA +(x
\ast ), and \lambda \ast 

i = 0 when i \not \in \scrA +(x
\ast ). Hence

\lambda \ast 
i c

T
i (x

k  - x\ast ) = \lambda \ast 
i [(di  - cTi x

\ast ) - (di  - cTi x
k)] = 0 for all i \in \scrM .

This, combined with (2.29), yields

(xk  - x\ast )T g(x\ast ) = (xk  - x\ast )T
\biggl[ 
g(x\ast ) +

\sum 
i\in \scrM 

\lambda \ast 
i ci

\biggr] 
= 0.(2.30)

Denote here \scrS = \scrA (xk) for simplicity. The first-order optimality conditions for
the minimizer g\scrS (xk) in (2.2) implies the existence of \lambda \scrS \in R| \scrS | such that

g\scrS (xk) - g(xk) + C\scrS \lambda \scrS = 0.(2.31)

Because \scrA (xk) \subseteq \scrA (x\ast ) for k \geq k0, we have cTi (x
k  - x\ast ) = 0 for all i \in \scrS . Hence

[CT
\scrS (x

k  - x\ast )]T\lambda S = 0 for all k sufficiently large.(2.32)

By (2.31) and (2.32), we find

(xk  - x\ast )T g(xk) = (xk  - x\ast )T [g\scrS (xk) + C\scrS \lambda \scrS ] = (xk  - x\ast )T g\scrS (xk).(2.33)

Using the Cauchy--Schwarz inequality, (2.33), (2.28), and (2.30) sequentially, we get

\| xk  - x\ast \| \| g\scrS (xk)\| \geq (xk  - x\ast )T g\scrS (xk)

= (xk  - x\ast )T g(xk)

= (xk  - x\ast )T [g(xk) - g(x\ast ) + g(x\ast )]

\geq 0.5\sigma \| xk  - x\ast \| 2.

Reminding that \scrS = \scrA (xk), we have

\| g\scrA (xk)\| \geq 0.5\sigma \| xk  - x\ast \| for k sufficiently large.(2.34)

This, together with Lemma 2.4, deduces (2.27) with \theta \ast = 0.5\sigma 
\varrho .
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12 CHAO ZHANG AND XIAOJUN CHEN

We are ready to show that the new active set method given in Algorithm 2.1 will
only perform the LCO within a finite number of iterations.

Theorem 2.6. Let \{ xk\} be a sequence generated by Algorithm 2.1 with \epsilon = 0
which converges to x\ast . If the assumptions in Lemma 2.5 hold, then within a finite
number of iterations, only phase two is executed.

Proof. First we claim that phase two must occur within a finite number of itera-
tions. If on the contrary only phase one occurred, then \theta is decreased in each iteration,
and will be decreased to \theta < \theta \ast after a finite number of iterations. Then according to
Lemma 2.5, \| g\scrA (xk)\| > \theta \| \nabla \Omega f(x

k)\| will occur. Once this holds, phase one branches
to phase two. This is a contradiction.

Once phase two is invoked, then phase two cannot branch to phase one an infinite
number of times. Otherwise, \theta will be reduced to \theta < \theta \ast and again \| g\scrA (xk)\| >
\theta \| \nabla \Omega f(x

k)\| will occur, and after that phase two cannot branch to phase one.

Now we make clear the novelty of our new active set method in Algorithm 2.1,
compared to the active set method proposed by Hager and Zhang [18]. Algorithm
2.1 adopts the so-called piecewise PG method with xk+1 = P\Omega [x

k  - \alpha kg(x
k)] so that

the search direction within one iteration is along the projection arc [8]. While the
active set method by Hager and Zhang [18] chooses the so-called gradient projection
algorithm (GPA) in which the single projection is used to define the feasible search
direction dk = P\Omega [x

k  - \=\alpha g(xk)] - xk, where \=\alpha > 0 is a fixed parameter, and the next
iterate point xk+1 = xk + skd

k is obtained by backtracking toward the starting point
along dk. As pointed out by Bertsekas in subsection 2.3 of [3], the iterates obtained
by the piecewise PG method used in this paper are more likely to be at the boundary
than the GPA used in [18]. Moreover, the finite identification property of the new
active set method is shown in Theorem 2.3. In contrast, after Lemma 6.1 of [18], the
authors stated that there is a fundamental difference between the GPA and the PG
method and, consequently, they cannot show the finite identification property of the
active set method in [18].

The main motivation of such a modification lies in that Algorithm 2.1 guarantees
lim infk\rightarrow \infty \| \nabla \Omega f(x

k)\| = 0, which is novel and essential in providing the convergence
result of the new smoothing active set method given in the next section. This conver-
gence result is stronger than that of the active set method in [18] which guarantees
lim infk\rightarrow \infty \| d1(xk)\| = 0, since by Lemma 2.2 of [8],

\| \nabla \Omega f(x
k)\| = lim

\alpha \downarrow 0

\| P\Omega [x
k  - \alpha \nabla f(xk)] - P\Omega [x

k]\| 
\alpha 

\geq \| d1(xk)\| .(2.35)

But lim infk\rightarrow \infty \| d1(xk)\| = 0 does not imply lim infk\rightarrow \infty \| \nabla \Omega f(x
k)\| = 0 because the

norm of projected gradient is not continuous and can be large near the solution. This
can be explained by the following simple example.

Example 1. Let us consider the linearly constrained strongly convex quadratic
programming

min 0.01(10x1 + x2)
2 + 10(x1 + 10.1x2 + 1)2 + x2

3

s.t. x2 \geq 1, x3 \geq 0.

We know \scrM = \scrM I = \{ 1, 2\} for this problem. It is easy to calculate that x\ast =
(x\ast 

1, x
\ast 
2, x

\ast 
3)

T = ( - 10.1, 1, 0)T is the unique global minimizer. The Lagrangian mul-
tipliers corresponding to the constraint x2 \geq 1 and x3 \geq 0 at x\ast are \lambda \ast 

1 = 200 and
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SMOOTHING ACTIVE SET METHOD 13

\lambda \ast 
2 = 0, respectively. Hence \scrA +(x

\ast ) = \{ 1\} , \scrA (x\ast ) =\scrM = \{ 1, 2\} , and x\ast is a degener-
ate stationary point. The tangent cone to the feasible region at x\ast and the gradient
at x\ast are

T (x\ast ) = \{ (d1, d2, d3)T \in R3 : d2 \geq 0, d3 \geq 0\} , \nabla f(x\ast 
1, x

\ast 
2, x

\ast 
3) = (0, 200, 0)T .

Let xk = (xk
1 , x

k
2 , x

k
3)

T = ( - 10.1 + (0.5)k/2, 1 + (0.5)k, (0.5)k)T \rightarrow x\ast as k \rightarrow +\infty .
By direct computation, the tangent cone to the feasible region at xk is T (xk) = R3.
Since f is twice continuously differentiable near x\ast , we know that

\nabla f(xk)\rightarrow \nabla f(x\ast ) = (0, 200, 0)T as k \rightarrow \infty 

and, consequently,

\| \nabla \Omega f(x
k)\| = \| PT (xk)[ - \nabla f(xk)]\| = \|  - \nabla f(xk)\| \rightarrow 200 as k \rightarrow \infty .

Hence limk\rightarrow \infty \| \nabla \Omega f(x
k)\| = 200 > 0, although limk\rightarrow \infty \| d1(xk)\| = 0.

Remark 2.7. Suppose \{ xk\} \rightarrow x\ast , \nabla f is locally Lipschitz continuous at x\ast , and
the active constraints are identified after finite iterations. Then there exists k0 > 0
such that T (xk) \equiv T (x\ast ) for all k \geq k0 and, consequently, limk\rightarrow \infty \| \nabla \Omega f(x

k)\| = 0
and limk\rightarrow \infty \| d1(xk)\| = 0 are equivalent. However, the active set method in [18] may
not identify the active constraints, but only owns the property in Lemma 6.2 of [18]
that the violation of the constraints cTi x  - di = 0 for i \in \scrA +(x

\ast ) by iterate xk is on
the order of the error in xk squared under certain conditions. Using Example 1, we
find

\=xk = argminy\{ \| xk  - y\| : y2 = 1\} = (xk
1 , 1, x

k
3)

T ,

and

lim
k\rightarrow \infty 

\| xk  - \=xk\| 
\| xk  - x\ast \| 2

= lim
k\rightarrow \infty 

| xk
2  - 1| 

\| xk  - x\ast \| 2
= lim

k\rightarrow \infty 

(0.5)k

(0.5)k + (0.5)2k + (0.5)2k
= 1.

This indicates that, although under certain conditions any sequence generated by the
active set method [18] satisfies the property in Lemma 6.2 of [18], this property does
not guarantee lim infk\rightarrow \infty \| \nabla \Omega f(x

k)\| = 0 that we need in designing the smoothing
active set method with convergence result.

3. Smoothing active set method. In this section, we develop a smoothing
active set method for solving (1.1) with solid convergence result. Here the objective
function f is continuous, but not necessarily Lipschitz continuous.

To characterize the stationary points of (1.1), we review first the concepts of
several subdifferentials that are often used in nonsmooth analysis [6, 31] and references
therein. Let f : Rn \rightarrow R be a proper lower semicontinuous function and x \in Rn be a
point where f(x) is finite. The Fr\'echet subdifferential, the limiting (or Mordukhovich)
subdifferential, the horizontal (or singular Mordukhovich) subdifferential, and the
Clarke subdifferential (Definition 1 of [6]) are defined, respectively, as

\^\partial f(x) := \{ v : f(y) \geq f(x) + vT (y  - x) + o(\| y  - x\| ) \forall y\} ,

\partial f(x) :=
\Bigl\{ 
v : \exists xk f - \rightarrow x, vk \rightarrow v with vk \in \^\partial f(xk) \forall k

\Bigr\} 
,

\partial \infty f(x) :=
\Bigl\{ 
v : \exists xk f - \rightarrow x, tkv

k \rightarrow v, tk \downarrow 0 with vk \in \^\partial f(xk) \forall k
\Bigr\} 
,

\partial \circ f(x) := \=co\{ \partial f(x) + \partial \infty f(x)\} ,
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14 CHAO ZHANG AND XIAOJUN CHEN

where xk f - \rightarrow x means that xk \rightarrow x and f(xk) \rightarrow f(x), and `` \=co"" means the closure
of the convex hull. We say that x\ast is a Clarke stationary point of (1.1) if there is
V \in \partial \circ f(x\ast ) such that

\langle V, x\ast  - z\rangle \leq 0 for all z \in \Omega .(3.1)

If there exists V \in \partial f(x\ast ) such that (3.1) holds, then x\ast is a limiting stationary point
of (1.1). Under the basic qualification (BQ)

 - \partial \infty f(x\ast ) \cap N\Omega (x
\ast ) = \{ 0\} ,(3.2)

if x\ast is a local minimizer, then x\ast is a limiting stationary point (Rockafellar and Wets,
Theorem 8.15 of [31]). It is easy to see that BQ in (3.2) holds if f is locally Lipschitz
continuous at x\ast , or x\ast is an interior point of \Omega . However, BQ often fails if f is
non-Lipschitz at a boundary point x\ast as pointed out in [9].

We use the following definition for smoothing function.

Definition 3.1. Let f : Rn \rightarrow R be a continuous function. We call \~f : Rn \times 
R+ \rightarrow R a smoothing function of f if \~f(\cdot , \mu ) is continuously differentiable in Rn for
any \mu \in R++, and for any x \in Rn,

lim
z\rightarrow x, \mu \downarrow 0

\~f(z, \mu ) = f(x),(3.3)

and there exists a constant \kappa > 0 and a function \omega : R++ \rightarrow R++ such that

| \~f(x, \mu ) - f(x)| \leq \kappa \omega (\mu ) with lim
\mu \downarrow 0

\omega (\mu ) = 0.(3.4)

For each fixed \mu > 0, the smooth subproblem is then defined by

min \~f(x, \mu ) s.t. x \in \Omega ,(3.5)

and the projected gradient \nabla \Omega 
\~f(x, \mu ) is defined by

\nabla \Omega 
\~f(x, \mu ) \equiv PT (x)[ - \nabla x

\~f(x, \mu )] = argmin\{ \| v +\nabla x
\~f(x, \mu )\| : v \in T (x)\} ,

where T (x) is the tangent cone to \Omega at x. Now we present our smoothing active set
method, Algorithm 3.1.

Algorithm 3.1 Smoothing active set method.

1: Let \^\gamma be a positive constant, \zeta be a constant in (0, 1), and n1 > 0 be a positive
integer. Choose x0 \in \Omega and \mu 0 > 0.
For k \geq 0:

2: Let y0,k = xk, j := 0.
3: while \| \nabla \Omega 

\~f(yj,k, \mu k)\| > \^\gamma \mu k or j < n1, do
4: Execute one iterate of the active set method in Algorithm 2.1 for (3.5) with

\mu = \mu k from the initial point yj,k and get the new point yj+1,k.
Set j := j + 1.

5: end while
6: Set xk+1 = yj,k.
7: Choose \mu k+1 \leq \zeta \mu k.D
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SMOOTHING ACTIVE SET METHOD 15

Remark 3.2. It is worth mentioning that Algorithm 3.1 can be extended to a gen-
eral framework of a smoothing method, since the new active set method in Algorithm
2.1 that is used in Algorithm 3.1 can be substituted for by any other type of algorithm
for minimizing a smooth function (SA for short) on a closed convex set, as long as the
algorithm satisfies the SA requirement defined below. And then the same convergence
result developed in this section can be obtained without difficulty.

SA requirement. For any fixed \mu > 0, let \{ xk\} be generated by the SA that
solves (3.5). Then

lim inf
k\rightarrow \infty 

\nabla \Omega 
\~f(xk, \mu ) = 0.

When \Omega = Rn, then (3.5) reduces to unconstrained smooth optimization and
hence \nabla \Omega 

\~f(x, \mu ) =  - \nabla \~f(x, \mu ). Many unconstrained algorithms for (3.5) meet the
SA requirement, e.g., the steepest descent method, the accelerated gradient method
proposed by Nesterov, the conjugate gradient method, the trust region method, and
the quasi-Newton method. When \Omega is a general closed convex set, the PG method
satisfies the SA requirement. When \Omega is constructed by linear constraints defined in
(1.2), the new active set method developed in section 2 meets the SA requirement as
we desired. Although the proposed active set method is in spirit very similar to Hager
and Zhang's approach [18], the satisfaction of the SA requirement makes it necessary
and a novelty for building up the convergence of the smoothing active set method
that tackles linearly constrained non-Lipschitz nonconvex optimization problems.

Since we use a smoothing function in Algorithm 3.1, the convergence result is
natural to connect with the smoothing function employed.

Definition 3.3. We say that x\ast is a stationary point of (1.1) associated with a
smoothing function \~f if

lim inf
x\rightarrow x\ast , x\in \Omega , \mu \downarrow 0

\langle \nabla x
\~f(x, \mu ), x - z\rangle \leq 0 for all z \in \Omega .(3.6)

For any fixed x \in \Omega , denote

G \~f (x) := \{ V : \exists N \in \scrN \sharp 
\infty , x\nu  - \rightarrow 

N
x, \mu \nu \downarrow 0 with \nabla x

\~f(x\nu , \mu \nu )  - \rightarrow 
N

V \} .(3.7)

By Corollary 8.47(b) in [31], we have

\partial f(x) \subseteq G \~f (x).

When f is Lipschitz continuous, it is shown in [7, 10, 31] that many smoothing func-
tions satisfy the gradient consistency property

\partial \circ f(x\ast ) = G \~f (x
\ast ).

Then the stationary point of (1.1) associated with \~f coincides with the Clarke station-
ary point, i.e., there exists V \in \partial \circ f(x\ast ) such that (3.1) holds. When f is continuously
differentiable at x\ast , then \partial \circ f(x\ast ) = \{ \nabla f(x\ast )\} and x\ast coincides with the classic sta-
tionary point for smooth minimization problems.

Now we show that x\ast being a stationary point of (1.1) associated with a smoothing
function \~f is a necessary optimality condition for x\ast being a local minimizer, without
the requirement for BQ.
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16 CHAO ZHANG AND XIAOJUN CHEN

Proposition 3.4. For any given smoothing function \~f defined in Definition 3.1,
if x\ast is a local minimizer of (1.1), then x\ast is a stationary point of (1.1) associated
with \~f .

Proof. Since x\ast is a local minimizer of (1.1), there exists a constant \delta > 0 such
that

f(x\ast ) \leq f(x) for any x \in B\delta (x
\ast ) \cap \Omega .

This, combined with (3.4) in Definition 3.1 for the smoothing function, yields that for
all x \in B\delta (x

\ast ) \cap \Omega ,

\~f(x\ast , \mu ) \leq f(x\ast ) + \kappa \omega (\mu ) \leq f(x) + \kappa \omega (\mu ) \leq \~f(x, \mu ) + 2\kappa \omega (\mu ).(3.8)

For any z \in \Omega , let x\mu = x\ast +
\sqrt{} 
\omega (\mu )(z - x\ast ). Since \Omega is a convex set and lim\mu \downarrow 0 \omega (\mu ) =

0, we get x\mu \in B\delta (x
\ast )\cap \Omega for all \mu sufficiently small and x\mu \rightarrow x\ast as \mu \downarrow 0. By Taylor's

theorem,

\~f(x\ast , \mu ) = \~f(x\mu , \mu ) +\nabla x
\~f(x\mu , \mu )

T (x\ast  - x\mu ) + o(\| x\ast  - x\mu \| )
= \~f(x\mu , \mu ) +

\sqrt{} 
\omega (\mu )\nabla x

\~f(x\mu , \mu )
T (x\ast  - z) + o(

\sqrt{} 
\omega (\mu )).(3.9)

Substituting (3.9) into the left side of (3.8) and replacing x by x\mu into the right side
of (3.8), we get \sqrt{} 

\omega (\mu )\nabla x
\~f(x\mu , \mu )

T (x\ast  - z) + o(
\sqrt{} 
\omega (\mu )) \leq 2\kappa \omega (\mu ).

Dividing both sides of the above inequality by
\sqrt{} 

\omega (\mu ), and taking the limit as \mu \downarrow 0,
we find

lim sup
\mu \downarrow 0

\langle \nabla x
\~f(x\mu , \mu ), x

\ast  - z\rangle \leq 0.(3.10)

Note that

\langle \nabla x
\~f(x\mu , \mu ), x\mu  - z\rangle = (1 - 

\sqrt{} 
\omega (\mu ))\langle \nabla x

\~f(x\mu , \mu ), x
\ast  - z\rangle .

This, together with (3.10), yields that

lim inf
\mu \downarrow 0

\langle \nabla x
\~f(x\mu , \mu ), x\mu  - z\rangle = lim inf

\mu \downarrow 0
(1 - 

\sqrt{} 
\omega (\mu ))\langle \nabla x

\~f(x\mu , \mu ), x
\ast  - z\rangle \leq 0,

which indicates

lim inf
x\rightarrow x\ast , x\in \Omega , \mu \downarrow 0

\langle \nabla x
\~f(x, \mu ), x - z\rangle \leq 0 for all z \in \Omega .(3.11)

Hence (3.6) holds and x\ast is a stationary point of (1.1) with respect to \~f .

Now we are ready to give the global convergence result of Algorithm 3.1.

Theorem 3.5. Assume Assumption 2.1 holds. Then any accumulation point x\ast 

of \{ xk\} generated by Algorithm 3.1 is a stationary point of (1.1) associated with the
smoothing function \~f .

D
ow

nl
oa

de
d 

04
/0

3/
23

 to
 1

58
.1

32
.1

61
.1

85
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SMOOTHING ACTIVE SET METHOD 17

Proof. By (3.4) of Definition 3.1, for each fixed \mu > 0,

f(x) - \kappa \omega (\mu ) \leq \~f(x, \mu ) \leq f(x) + \kappa \omega (\mu ).

Then for each fixed \mu > 0,

\scrL \mu ,\Gamma = \{ x \in \Omega : \~f(x, \mu ) \leq \Gamma \} 

is bounded for any \Gamma , because \~f(x, \mu ) \leq \Gamma implies f(x) \leq \Gamma + \kappa \omega (\mu ) and \scrL \Gamma +\kappa \omega (\mu ) is
bounded by Assumption 2.1.

By (2.11) of Theorem 2.2, we know Algorithm 3.1 is well-defined and

\| \nabla \Omega 
\~f(xk+1, \mu k)\| \leq \^\gamma \mu k and lim

k\rightarrow \infty 
\mu k = 0.(3.12)

According to Calamai and Mor\'e [8],

min\{ \langle \nabla x
\~f(xk+1, \mu k), v\rangle : v \in T (xk+1), \| v\| \leq 1\} =  - \| \nabla \Omega 

\~f(xk+1, \mu k)\| .(3.13)

For any z \in \Omega , it is easy to see that

v =
z  - xk+1

\| z  - xk+1\| 
\in T (xk+1) and \| v\| = 1

and, hence, by (3.13)

\langle \nabla x
\~f(xk+1, \mu k), x

k+1  - z\rangle \leq \| \nabla \Omega 
\~f(xk+1, \mu k)\| \| z  - xk+1\| .

This, combined with (3.12), yields

\langle \nabla x
\~f(xk+1, \mu k), x

k+1  - z\rangle \leq \^\gamma \mu k\| z  - xk+1\| for any z \in \Omega .(3.14)

Since x\ast is an accumulation point of \{ xk\} , there exists an infinite sequence \^K \in 
\scrN \sharp 

\infty such that limk\rightarrow \infty , k\in \^K xk = x\ast . Let us denote K = \{ k  - 1 : k \in \^K\} and then

limk\rightarrow \infty , k\in K xk+1 = x\ast . We get from (3.14) that

lim inf
k\rightarrow \infty , k\in K

\langle \nabla x
\~f(xk+1, \mu k), x

k+1  - z\rangle \leq 0 for any z \in \Omega .(3.15)

Therefore x\ast is a stationary point of (1.1) associated with \~f .

The objective function f in this paper is a general non-Lipschitz nonconvex func-
tion, which is broader than that considered in [4, 5, 11, 26]. In [5], the optimality and
complexity for the convexly constrained minimization problem are considered with
the objective function in the following form

f(x) := \Theta (x) + c(h(x)), with h(x) := (h1(D
T
1 x), h2(D

T
2 x), . . . , hm(DT

mx))T .

Here \Theta : Rn \rightarrow R and c : Rm \rightarrow R are continuously differentiable, Di \in Rn\times r, and
hi : R

r \rightarrow R, i = 1, . . . ,m, are continuous, but not necessarily Lipschitz continuous.
This type of function includes all the objective functions considered in [4, 11, 26]. A
generalized stationary point based on the generalized directional derivative is proposed
in Definition 2 of [5], which is shown to be a necessary optimality condition, and
satisfies the necessary optimality conditions given or used in [4, 11, 26]. Note that for
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18 CHAO ZHANG AND XIAOJUN CHEN

any v \in T (xk+1) and \| v\| \leq 1, there exists z \in \Omega such that v = z  - xk+1 \in T (xk+1).
By (3.14) of Theorem 3.5 and \| z  - xk+1\| \leq 1,

\langle \nabla x
\~f(xk+1, \mu k), v\rangle = \langle \nabla x

\~f(xk+1, \mu k), z  - xk+1\rangle \geq  - \^\gamma \mu k\| z  - xk+1\| \geq  - \^\gamma \mu k,

which implies that (44) in Corollary 2 of [5] holds and, consequently, any accumulation
point of \{ xk\} generated by the smoothing active set method is also a generalized
stationary point of (1.1) defined in [5] for the same type of functions in [5] and \Omega 
defined in (1.2).

Remark 3.6. In Algorithm 3.1, we require for each fixed \mu k, the iterations of the
inner loop is no less than n1. This strategy has no effect for convergence analysis, but
aims to enhance the computational performance of finding a better stationary point
with respect to \~f .

3.1. \ell \bftwo  - \ell \bfitp sparse optimization model. Problem (1.3) is a special case of
problem (1.1), for which we show that Algorithm 3.1 has stronger convergence results
than that in Theorem 3.5.

For | t| , we construct its smoothing function as follows:

s\mu (t) =

\Biggl\{ 
| t| if | t| \geq \mu ,
t2

2\mu + \mu 
2 if | t| < \mu .

(3.16)

By simple computation, for any p \in (0, 1) and any t \in R, we have | s\mu (t)p - | t| p| \leq 2\mu p.
We then easily find that

\~f(x, \mu ) = \| Ax - b\| 2 + \tau 

n\sum 
i=1

(s\mu (xi))
p

is a smoothing function of the objective function f in (1.3), and for any x \in Rn,

| \~f(x, \mu ) - f(x)| \leq \kappa \mu p with \kappa = 2\tau n.(3.17)

The gradient of \~f(x, \mu ) is

\nabla x
\~f(x, \mu ) = 2AT (Ax - b) + \tau p

n\sum 
i=1

(s\mu (xi))
p - 1s\prime \mu (xi).(3.18)

Theorem 3.7. There exists at least one accumulation point x\ast of \{ xk\} generated
by Algorithm 3.1 with the smoothing function \~f . Suppose limk\rightarrow \infty , k\in K xk+1 = x\ast .

Then \{ limk\rightarrow \infty , k\in K \nabla x
\~f(xk+1, \mu k)\} is nonempty and bounded, and x\ast is a limiting

stationary point of (1.3).

Proof. Assumption 2.1 holds for f in (1.3), since the objective function in (1.3)
satisfies that f(x)\rightarrow +\infty if \| x\| \rightarrow +\infty . Moreover, we know from (3.17) that

\~f(xj+1, \mu j) - f(xj+1) \geq  - \kappa \mu p
j and \~f(xj , \mu j) - f(xj) \leq \kappa \mu p

j .

Therefore for any natural number k,

f(xk+1) \leq \~f(xk+1, \mu k) + \kappa \mu p
k \leq \~f(xk, \mu k) + \kappa \mu p

k \leq f(xk) + 2\kappa \mu p
k

\leq \cdot \cdot \cdot 
\leq f(x0) + 2\kappa [\mu p

0 + (\zeta \mu 0)
p + (\zeta 2\mu 0)

p + \cdot \cdot \cdot + (\zeta k\mu 0)
p]

\leq f(x0) + 2\kappa \mu p
0

1

1 - \zeta p
.
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SMOOTHING ACTIVE SET METHOD 19

Hence \{ xk\} is bounded and there exists at least one accumulation point x\ast of \{ xk\} 
generated by Algorithm 3.1.

For any index i0 such that x\ast 
i0

> 0, by direct computation,

lim
k\rightarrow \infty , k\in K

(\nabla x
\~f(xk+1, \mu k))i0 = (2AT (Ax\ast  - b))i0 + \tau p(x\ast 

i0)
p - 1.

For i0 such that x\ast 
i0

= 0, let K2 = \{ k \in K : xk+1
i0

> 0\} . If K2 is an infinite

subsequence, then we define zk+1,1 and zk+1,2 in Rn
+ for each k \in K2, where

zk+1,1
i =

\biggl\{ 
xk+1
i if i \not = i0,

0 if i = i0,
and zk+1,2

i =

\biggl\{ 
xk+1
i if i \not = i0,

2xk+1
i if i = i0.

Replacing zk+1,1 and zk+1,2 in (3.14) of Theorem 3.5, respectively, we get eventually

 - \^\gamma \mu k \leq (\nabla x
\~f(xk+1, \mu k))i0 \leq \^\gamma \mu k for any k \in K2

and, consequently,

lim
k\rightarrow \infty , k\in K2

(\nabla x
\~f(xk+1, \mu k))i0 = 0.(3.19)

Otherwise, there exists an integer \=k > 0 such that xk+1
i0

= 0 for all k \geq \=k, k \in K. In
this case

(\nabla x
\~f(xk+1, \mu k))i0 = (2AT (Axk+1  - b))i0 + \tau p(s\mu k

(xk+1
i0

))p - 1s\prime \mu k
(xk+1

i0
)

= (2AT (Axk+1  - b))i0 + \tau p
\Bigl( \mu k

2

\Bigr) p - 1xk+1
i0

\mu k

= (2AT (Axk+1  - b))i0 for all k \geq \=k, k \in K.

Consequently

lim
k\rightarrow \infty , k\in K

(\nabla x
\~f(xk+1, \mu k))i0 = (2AT (Ax\ast  - b))i0 .(3.20)

Combining (3.19) and (3.20), we can easily find that any accumulation point V \in Rn

of \{ \nabla x
\~f(xk+1, \mu k)\} K is of the special form

Vi =

\biggl\{ 
(2AT (Ax\ast  - b))i + \tau p(x\ast 

i )
p - 1 if x\ast 

i > 0,
(2AT (Ax\ast  - b))i or 0 if x\ast 

i = 0,
(3.21)

that is bounded.
Furthermore, we know V \in \partial f(x) by the definition of the limiting subdifferential,

which indicates that x\ast is also a limiting stationary point of (1.3).

Theorem 3.8. Let x\ast be an accumulation point of a sequence \{ xk\} generated by
Algorithm 3.1 for solving (1.3). If \scrF (x\ast ) = \emptyset , then x\ast = 0 is a local minimizer of
(1.3). If \scrF (x\ast ) \not = \emptyset and

2(ATA)\scrF (x\ast )\scrF (x\ast ) + \tau p(p - 1)diag((x\ast 
\scrF (x\ast ))

p - 2) is positive definite,(3.22)

then x\ast is a strict local minimizer of (1.3).
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20 CHAO ZHANG AND XIAOJUN CHEN

Proof. By Theorem 3.7, and (3.15) in the proof of Theorem 3.5, there exists an
accumulation point V of \{ limk\rightarrow \infty , k\in K \nabla x

\~f(xk+1, \mu k)\} in the form of (3.21) such
that

\langle V, x\ast  - z\rangle \leq 0 for all z \geq 0.

This indicates Vi = 0 for all i \in \scrF (x\ast ).

Let us define \varsigma i :=
2
\tau 

\Bigl( 
max\{  - (AT (Ax\ast  - b))i, 0\} + 1

\Bigr) 
for all i \in \scrA (x\ast ), and

\=f(x) := \| Ax - b\| 2 + \tau 
\sum 

i\in \scrF (x\ast )

| xi| p + \tau 
\sum 

i\in \scrA (x\ast )

\varsigma ixi.(3.23)

Now we consider the minimization problem

min \=f(x) s.t. x \geq 0,(3.24)

whose objective function is twice continuously differentiable around x\ast \in Rn
+. By

direct computation, \=f(x\ast ) = f(x\ast ) and the gradient \nabla \=f(x\ast ) has the form

(\nabla \=f(x\ast ))i =

\biggl\{ 
(2AT (Ax\ast  - b))i + \tau p(x\ast 

i )
p - 1 if i \in \scrF (x\ast ),

(2AT (Ax\ast  - b))i + \tau \varsigma i if i \in \scrA (x\ast ).

Clearly, (\nabla \=f(x\ast ))i = Vi = 0 for all i \in \scrF (x\ast ) and (\nabla \=f(x\ast ))i \geq 2 for all i \in \scrA (x\ast ).
Therefore, x\ast is a stationary point of (3.24) since

x\ast \geq 0, \nabla \=f(x\ast ) \geq 0, x\ast T\nabla \=f(x\ast ) = 0.(3.25)

Note that for any p \in (0, 1),

lim
t\downarrow 0, t \not =0

tp

t
= lim

t\downarrow 0, t \not =0
tp - 1 = +\infty .

Thus there exists \delta 1 > 0 such that for any x \in B\delta 1(x
\ast ) \cap Rn

+,

\varsigma ixi \leq xp
i for all i \in \scrA (x\ast ).

Consequently for any x \in B\delta 1(x
\ast ) \cap Rn

+,

\=f(x) - f(x) = \tau 
\sum 

i\in \scrA (x\ast )

(\varsigma ixi  - xp
i ) \leq 0.(3.26)

If \scrF (x\ast ) = \emptyset , then x\ast = 0 and \=f(x) in (3.23) is a convex function. Any stationary
point of (3.24) is a global minimizer of (3.24). Hence

\=f(x\ast ) \leq \=f(x) for any x \in Rn
+.

This, combined with (3.26), yields

f(x\ast ) = \=f(x\ast ) \leq \=f(x) \leq f(x) for any x \in B\delta 1(x
\ast ) \cap Rn

+.

Hence x\ast is a local minimizer of (1.3).
Now we consider \scrF (x\ast ) \not = \emptyset . Noting (3.25), we know that (x\ast , \lambda \ast ) satisfies

the KKT conditions if and only if \lambda \ast = \nabla \=f(x\ast ). Since for any i \in \scrA (x\ast ), \lambda \ast 
i =

(\nabla \=f(x\ast ))i \geq 2, it follows that the critical cone

\scrC (x\ast , \lambda \ast ) = \{ d \in Rn : di = 0 for i \in \scrA (x\ast ), and di \geq 0 for i \in \scrF (x\ast ) \} .
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SMOOTHING ACTIVE SET METHOD 21

It is easy to see that (3.22) is equivalent to

dT\nabla 2 \=f(x\ast )d > 0 for any d \in \scrC (x\ast , \lambda \ast ), d \not = 0,

which are the second-order sufficient conditions for x\ast being a strict local minimizer
of (3.24). Then there exists \delta > 0 such that

f(x\ast ) = \=f(x\ast ) < \=f(x) for any x \in B\delta (x
\ast ) \cap Rn

+.(3.27)

This, combined with (3.26), yields

f(x\ast ) < f(x) for any x \in B\u \delta (x
\ast ) \cap Rn

+,

where \u \delta = min\{ \delta , \delta 1\} . Hence x\ast is a strict local minimizer of (1.3).

4. Numerical experiments. A hyperspectral image is a 3 dimentional (3D)
image cube of hundreds of contiguous and narrow spectral channels often used in earth
observation and remote sensing. Due to the low spatial resolution of hyperspectral
cameras, pixels are often a mixture of several spectra of materials in a scene. This,
together with the 3D image cube, makes the hyperspectral image hard to display and
understand. Hyperspectral unmixing is the process of estimating a common set of
spectral bases (called endmembers) and their corresponding composite percentages
(called abundance) at each pixel so that people can better visualize, analyze, and
understand the hyperspectral image.

In this section, we apply Algorithm 3.1 with Algorithm 2.1 to the constrained
sparse nonnegative matrix factorization (NMF) used in hyperspectral unmixing. The
mathematical model is as follows:

min
W,H

1

2
\| V  - WH\| 2F + \tau \| H\| pp(4.1)

s.t. W \geq 0, H \geq 0,(4.2)

1TKH = 1TN ,(4.3)

where V = [v1, v2, . . . , vN ] \in RL\times N
+ is the given hyperspectral image data with L

channels and N pixels, W = [w1, w2, . . . , wK ] \in RL\times K
+ is the endmember matrix

including K endmember vectors with K \ll min\{ L,N\} , and H = [h1, h2, . . . , hN ] \in 
RK\times N

+ is the corresponding abundance matrix. Here 1K and 1N are the column
vectors of all ones of dimensions K and N , respectively.

In the objective function in (4.1), the parameter \tau > 0 balances the data fidelity
term 1

2\| V  - WH\| 2F and the sparse regularization term \| H\| pp, p \in (0, 1) that forces
the sparsity of the abundance matrix. The sparse regularization term is effective
for spectral unmixing since only a few endmembers can contribute to representing
an observed pixel. To be physically meaningful, the nonnegative constraints in (4.2)
are necessary. Moreover, the abundance sum-to-one constraints (ASC) in (4.3) are
required since each column of H is the abundance vector whose components are the
proportions of each endmember contributing to the mixed pixel. Let Hij denote the
(i, j)-entry of the matrix H. The existence of ASC makes the usually used sparsity-
induced regularization term \| H\| 1 =

\sum 
i,j | Hij | meaningless since in this case \| H\| 1

equals a constant N .
To solve the constrained sparse NMF model, the two block coordinate descent

method is adopted. That is, W and H are considered to be two separate block
variables, and the scheme alternatively solves the two subproblems of matrix-based
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22 CHAO ZHANG AND XIAOJUN CHEN

optimization problems. The difficulty of solving problem (4.1)--(4.3) for block H lies
in two aspects: the non-Lipschitz regularization term of the objective function in (4.1)
and the numerous N constraints defined by ASC in (4.3).

In [30], Qian et al. considered the special case p = 1
2 and called the model L1/2-

NMF. To deal with the ASC, Qian et al. adopted the strategy akin to that in [20] by
augmenting the data matrix V and the endmember matrix W to Va and Wa as

Va =

\biggl( 
V
\delta 1TN

\biggr) 
and Wa =

\biggl( 
W
\delta 1TK

\biggr) 
,(4.4)

where \delta > 0 controls the impact of the additivity constraint over the endmember
abundances. This strategy, in fact, leads to solve the penalized counterpart

min
W\geq 0, H\geq 0

1

2
\| V  - WH\| 2F + \tau \| H\| pp +

1

2
\delta 2\| 1TKH  - 1TN\| 2F .(4.5)

The multiplicative update (MU) method [23] for classic NMF is extended to solve
the L1/2-NMF, by alternatively updating W and H as

W \leftarrow W. \ast (V HT )./(WHHT ),(4.6)

H \leftarrow H. \ast (WT
a Va)./

\Bigl( 
WT

a WaH +
\tau 

2
T\xi (H) - 

1
2

\Bigr) 
,(4.7)

where (T\xi (H) - 
1
2 )ij = H

 - 1
2

ij if Hij > \xi and (T\xi (H) - 
1
2 )ij = 0 otherwise for a predefined

threshold \xi > 0 to avoid computational instability. Here ``.\ast "" and ``./"" denote the
elementwise matrix multiplication and division, respectively.

Here we use the two block proximal alternating optimization (PAO) framework
to solve (4.5). Let W k

a be the augmented matrix in (4.4), where the block W in Wa

is replaced by W k.
We combine Algorithms 2.1 and 3.1 proposed in this paper to solve the two

subproblems (4.8) and (4.9) in Algorithm 4.1.
\bullet To solve the W -subproblem in (4.8), we use the active set conjugate gradient
(ASCG) method, i.e., Algorithm 2.1 with the LCO employing the conjugate
gradient method [12].

\bullet To solve the H-subproblem in (4.9) that involves the non-Lipschitz term,
we use the smoothing active set conjugate gradient (SASCG) method, i.e.,
Algorithm 3.1 with ASCG that solves the smoothing H-subproblem of (4.9).
The smoothing function of \| H\| pp is constructed by using (3.16).

We denote the method as PAO-ASCG-SASCG for short.

Algorithm 4.1 PAO framework.

1: Initialize W 1 \geq 0, H1 \geq 0, and parameters \tau 1 > 0 and \tau 2 > 0.
2: Repeat until a stopping criterion is satisfied

2.1 Find W k+1 and Hk+1 such that

W k+1 = arg min
W\geq 0

\Bigl\{ 1

2
\| V  - WHk\| 2F +

1

2
\tau 1\| W  - W k\| 2F

\Bigr\} 
,(4.8)

Hk+1 = arg min
H\geq 0

\Bigl\{ 1

2
\| Va  - W k

aH\| 2F + \tau \| H\| pp +
1

2
\tau 2\| H  - Hk\| 2F

\Bigr\} 
.(4.9)

2.2 Set k := k + 1.
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SMOOTHING ACTIVE SET METHOD 23

We also use the two block PAO framework to solve (4.1)--(4.3) directly without
penalization to the equality constraints, by substituting for (4.9) in Algorithm 4.1 by

Hk+1 = arg min
H\geq 0, 1TKH=1TN

\{ FWk,Hk(H)\} ,(4.10)

where

FWk,Hk(H) :=
1

2
\| V  - W kH\| 2F + \tau \| H\| pp +

1

2
\tau 2\| H  - Hk\| 2F .(4.11)

We then combine Algorithms 2.1 and 3.1 proposed in this paper to solve (4.8)
and (4.10) in the PAO framework.

\bullet To solve the W -subproblem in (4.8), we use the PG method.
\bullet To solve the H-subproblem in (4.10), we use the smoothing active set pro-

jected gradient (SASPG), i.e., Algorithm 3.1, together with Algorithm 2.1 in
which the LCO being the PG method. The smoothing function of \| H\| pp is
also constructed by using (3.16).

We denote the method as PAO-PG-SASPG-O for short. Here ``-O"" indicates that the
original L1/2-NMF problem (4.1)--(4.3) is solved.

It is worth mentioning that the constraints in (4.10) are N independent simplex

hj \geq 0,
\sum K

i=1 Hij = 1, j = 1, 2, . . . , N . Let

\scrA (Hk) := \{ (i, j) : Hk
ij = 0\} ,

\u \Omega (Hk) := \{ H \in \Omega : Hij = 0 if (i, j) \in \scrA (Hk)\} .

The efficiency of Algorithm 2.1 depends on the fast computation of matrices
P\Omega [H], P\u \Omega (Hk)[H], \nabla \Omega FWk,Hk(H), and g\scrA (H). Here P\u \Omega (Hk)[H] is used for the PG

method that works on the faces \u \Omega (Hk) of \Omega . All the four types of matrices are essen-
tially composed of projections of a vector on a certain polyhedron. The projections
of a vector on a polyhedron can be obtained efficiently, e.g., [18]. Here we compute
them in matrix form directly, since N is in general no less than 10000. We adopt the
MATLAB code SimplexProj in [34] for obtaining P\Omega [H]. And by using the group-
ing idea of inactive indices as in [22], we use SimplexProj for computing P\u \Omega (Hk)[H]
on each group with the same inactive constraints. Moreover, the projected gradient
\nabla \Omega FWk,Hk(H) and g\scrA (H) can be computed efficiently in matrix form using the KKT
conditions.

We use two real-world data sets in the experiment.
Jasper Ridge is a popular hyperspectral data set. There are 512 \times 614 pixels in

it. In this image, each pixel is recorded at 224 channels ranging from 0.38 to 2.5
\mu m, and the spectral resolution is up to 9.46 nm. Because this hyperspectral image
is too complex to get the groundtruth, we consider a subimage of 100 \times 100 as in
[43], the first pixel of which is the (105, 269)th pixel in the original image. After the
channels 1--3, 108--112, 154--166, and 220--224 are removed (due to dense water vapor
and atmospheric effects), we retain 198 channels (this is a common preprocess for
hyperspectral unmixing analysis). There are 4 endmembers in groundtruth: \sharp 1 Tree,
\sharp 2 Soil, \sharp 3 Water, \sharp 4 Road.

Urban is one of the most widely used hyperspectral data sets in the hyperspectral
unmixing study. There are 307 \times 307 pixels, each of which corresponds to a 2 \times 2
m2 area. In this image, there are 210 wavelengths ranging from 400 nm to 2500 nm,
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24 CHAO ZHANG AND XIAOJUN CHEN

resulting in a spectral resolution of 10 nm. After the channels 1--4, 76, 87, 101--111,
136--153, and 198--210 are removed, we retain 162 channels. There are 4 endmembers
in ground truth: \sharp 1 Asphalt, \sharp 2 Grass, \sharp 3 Tree, \sharp 4 Roof.

We choose p = 1
2 and consider the L1/2-NMF problem. We compare our methods

(PAO-ASCG-SASCG and PAO-PG-SASPG-O) with the other three methods. The
information of all the methods is summarized as follows.

1) Our method: PAO-ASCG-SASCG that solves the penalized counterpart of
L1/2-NMF problem in (4.5).

2) Our method: PAO-PG-SASPG-O that solves the original L1/2-NMF problem
in (4.1)--(4.3).

3) PAO-PG-SPG-O: this method solves the original L1/2-NMF problem in (4.1)--
(4.3). It employs the PAO framework in Algorithm 4.1 with (4.9) substituted
for by (4.10). The W -subproblem is solved by the PG method [24] and the
H-subproblem is solved by the smoothing PG method [41]. No active set
strategy is adopted.

4) MU method: this method is a state-of-the-art method that employs (4.6) and
(4.7) recursively to solve the penalized counterpart of L1/2-NMF problem in
(4.5).

5) Adaptive HT method: this method is proposed in [35]. It employs the half-
thresholding algorithm and an adaptive strategy for automatically choosing
regularization parameters \tau kj , j = 1, 2, . . . , N , in the kth iteration, and solving
the penalized L1/2 sparsity-constrained NMF defined by

min
W\geq 0,H\geq 0

1

2
\| Va  - WaH\| 2F +

N\sum 
j=1

\tau kj \| hj\| 
1
2
1
2

,(4.12)

where Va and Wa are defined in (4.4).
We set the maximum CPU time to be 3000 seconds for all the methods, and

the maximum number of iterations for the MU method to be 3000, and the max-
imum number of iterations for the PAO-ASCG-SASCG, PAO-PG-SASPG-O, and
PAO-PG-SPG-O methods to be 1000, and n1 = 5 in Algorithm 3.1. To overcome the
nonconvexity of the original problem (4.1)--(4.3), and the penalized problem (4.5),
we randomly choose 10 initial points for W 1 and H1 using the MATLAB commands
rand(L,K) and rand(K,N) for all the methods, respectively. And each column of
H1 is further rescaled to sum to one, according to the ASC in (4.3). The MU and
the PAO-ASCG-SASCG methods involve two essential parameters \tau and \delta , while the
adaptive HT method only has one parameter \delta and the PAO-PG-SASPG-O meth-
ods only has one parameter \tau . In order to estimate an optimal parameter, we first
determine the intervals [\tau min, \tau max] and/or [\delta min, \delta max] by trying the values at large
steps. We then search the optimal parameters by trying more values in the interval
[\tau min, \tau max] and/or [\delta min, \delta max].

If (W,H) is a solution of NMF, then (WD,D - 1H) is also a solution of NMF for
any positive diagonal matrices D. To get rid of this kind of uncertainty, one intuitive
method is to scale each column of W to be the unit \ell 1- or \ell 2-norm [39, 43], e.g.,

Wlk \leftarrow 
Wlk\sqrt{} \sum 

W 2
lk

, Hkn \leftarrow Hkn

\sqrt{} \sum 
W 2

lk.(4.13)

Considering the ASC in (4.3), we further let

Hkn \leftarrow 
Hkn\sum 
k Hkn

.(4.14)
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Fig. 1. Convergence curve of objective value versus CPU time using the PAO-PG-SPG-O and
the PAO-PG-SASPG-O on the Jasper Ridge data, respectively.

To evaluate the performance of the computed solution, we use the spectral an-
gle distance (SAD) and the root mean squared error (RMSE) [30, 35, 43] as two
benchmark metrics. The SAD is used to evaluate the endmembers, which is defined
as

SAD(w, \^w) = arccos

\biggl( 
wT \^w

\| w\| \| \^w\| 

\biggr) 
,(4.15)

where w is an estimated endmember, and \^w is the corresponding ground-truth end-
member. The RMSE is used to evaluate the performance of the estimated abundance,
which is given by

RMSE(z, \^z) =

\biggl( 
1

N
\| z  - \^z\| 2

\biggr) 1/2

,(4.16)

where N is the number of pixels in the image, z is the estimated abundance map
(a row vector in the abundance matrix H), and \^z is the corresponding ground-truth
abundance map. In general, a smaller SAD and a smaller RMSE correspond to a
better hyperspectral unmixing result.

We draw in Figure 1 the corresponding objective value 1
2\| V  - WH\| 2F + \tau \| H\| 

1
2
1
2

of each iterate point versus the CPU time obtained by the PAO-PG-SASPG-O and
the PAO-PG-SPG-O methods, using the same optimal parameter \tau = 1.5 \times 106 and
the same initial point on Jasper Ridge data, respectively. We divide the x-axis to be
[0, 200] and [200, 3000] in two subfigures to see clear the decrease tendency and the final
objective value. We can find from Figure 1 that our PAO-PG-SASPG-O decreases
faster and gets lower objective value than the PAO-PG-SPG-O method. The final
objective value obtained by the PAO-PG-SASPG-O method is 2.6494e10, which is
much lower than the 2.6988e10 that is obtained by the PAO-PG-SPG-O method. It
is easy to see that the active set strategy helps fasten the computational speed.

For Jasper Ridge, we record in Table 1 the final SAD and RMSE for each end-
member corresponding to the computed solution with the smallest sum of SAD and
RMSE, among the 10 trials of initial points as well as the choices of parameters. The
lowest SAD and RMSE for each endmember, and the lowest average SAD and RMSE
are indicated in bold face in Table 1. It is easy to see that the computed solution
obtained by the PAO-PG-SASPG-O method proposed in this paper has the lowest
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26 CHAO ZHANG AND XIAOJUN CHEN

Table 1
SAD and RMSE on the Jasper Ridge data estimated by our methods and the other methods.

SAD Avg.

Jasper Ridge (K = 4) \sharp 1 \sharp 2 \sharp 3 \sharp 4 \sharp 1 \sim \sharp 4

MU 0.2070 0.1185 0.3324 0.2939 0.2379

Adaptive HT 0.1451 0.3099 0.1367 0.1515 0.1858

PAO-ASCG-SASCG 0.1241 0.0690 0.1859 0.1645 0.1359

PAO-PG-SPG-O 0.1315 0.0606 0.1132 0.0516 0.0892

PAO-PG-SASPG-O 0.1301 0.0616 0.1019 0.0609 0.0886

RMSE Avg.

MU 0.1235 0.0953 0.1773 0.0953 0.1361

Adaptive HT 0.1016 0.1483 0.1761 0.1885 0.1536

PAO-ASCG-SASCG 0.0836 0.0425 0.1244 0.1052 0.0889

PAO-PG-SPG-O 0.0846 0.0581 0.0929 0.0875 0.0808

PAO-PG-SASPG-O 0.0840 0.0578 0.0930 0.0842 0.0798

Table 2
SAD and RMSE on the Urban data estimated by our methods and the other methods.

SAD Avg.

Urban (K = 4) \sharp 1 \sharp 2 \sharp 3 \sharp 4 \sharp 1 \sim \sharp 4

MU 0.1976 0.0318 0.0454 0.1445 0.1048

Adaptive HT 0.0715 0.0393 0.0704 0.3288 0.1275

PAO-ASCG-SASCG 0.0738 0.0525 0.0314 0.0736 0.0578

PAO-PG-SPG-O 0.0900 0.1940 0.0423 0.3424 0.1672

PAO-PG-SASPG-O 0.0925 0.1026 0.0397 0.2153 0.1125

RMSE Avg.

MU 0.0989 0.1037 0.0707 0.0995 0.0932

Adaptive HT 0.1165 0.0964 0.0794 0.0895 0.0954

PAO-ASCG-SASCG 0.1101 0.1085 0.0562 0.0548 0.0824

PAO-PG-SPG-O 0.2595 0.2242 0.1281 0.2052 0.2242

PAO-PG-SASPG-O 0.2452 0.1715 0.1435 0.2082 0.1921

average SAD and RMSE of the four endmembers. Our proposed PAO-ASCG-SASCG
method that solves the penalized version of L1/2-NMF also provides lower average
SAD and RMSE than does the MU and the Adaptive HT methods.

For Urban, we record in Table 2 the final SAD and the final RMSE for each
endmember. The lowest SAD and RMSE for each endmember, and the lowest average
SAD and RMSE are indicated in bold face in Table 2. Clearly the PAO-ASCG-SASCG
method provides the solution that obtains the lowest average SAD and RMSE than
do the other four methods. The PAO-PG-SPG-O and PAO-PG-SASPG-O methods
for solving the original model (4.1)--(4.3) do not provide satisfying SAD and RMSE.
The reason, we think, is due to the model itself. As pointed out in [43], applying an
identical strength of constraints to all the factors, (that is, in our case, using the same
p = 1

2 for all the columns of H) does not hold in practice. Therefore, in [43] they
proposed to solve

min
W\geq 0,H\geq 0

1

2
\| V  - WH\| 2 + \tau 

N\sum 
j=1

\| hj\| pj
pj
,(4.17)

where pj \in (0, 1), j = 1, 2, . . . , N , are estimated from the original data V using two-
step procedures. If the pixels indeed have very different levels of sparsity as in Urban,
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1-Tree 2-Water 3-Dirt 4-Road

Fig. 2. Abundance maps from the ground truth, MU, Adaptive HT, PAO-ASCG-SASCG, PAO-
PG-SPG-O, and PAO-PG-SASPG-O (from the first row to the last row sequentially) for four targets
in the Jasper Ridge data.

the sum-to-one constraints will make the original model (4.1)--(4.3) deviate a lot from
the true model. The PAO-ASCG-SASCG method, in contrast, because of the lack
of the sum-to-one constraints, has the ability to adjust the sparsity levels of differ-
ent pixels to some degree. The adaptive HT method, which adaptively adjusts the
different regularization parameter for each column of H, also has the effect to assign
different level of sparsity for each pixel. When the pixels have not so much different
levels of sparsity as in Jasper, the PAO-PG-SASPG-O that solves the original model
(4.1)--(4.3) with the sum-to-one constraints provides the best SAD and RMSE.

The abundance fractions for Jasper Ridge from the ground truth, and separated
by the five methods, are shown in Figure 2. We can also see that our proposed PAO-
ASCG-SASCG and PAO-PG-SASPG-O methods provide good estimates of abun-
dance. The abundance fractions for Urban from the ground truth, and separated by
the MU, the Adaptive HT, and the PAO-ASCG-SASCG methods are shown in Figure
3. It is easy to see that our proposed PAO-ASCG-SASCG method provides the best
estimates of abundance.

The numerical results demonstrate that our proposed PAO-PG-SASPG-O method
and PAO-ASCG-SASCG method can efficiently solve the original and penalized L1/2-
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1-Asphalt 2-Grass 3-Tree 4-Roof

Fig. 3. Abundance maps from the ground truth, MU, Adaptive HT, and PAO-ASCG-SASCG
(from the first row to the last row sequentially) for four targets in the Urban data.

NMF problems, respectively. Moreover, at least one of our methods provides an ex-
cellent unmixing performance compared to the popular MU method and the adaptive
HT method.

It is worth pointing out that our smoothing active set method can deal with the
sum-to-one constraints, but the MU method and the adaptive HT method cannot.
Our smoothing active set method is flexible to solve the new model in (4.17) with
additional sum-to-one constraints. It is interesting to further investigate how to get
a good estimation of pj , j = 1, 2, . . . , N , and whether applying our smoothing active
set method to this new model can provide even better unmixing results in future.

5. Conclusion remarks. We develop Algorithm 3.1, a novel smoothing active
set method, for solving problem (1.1) where the objective function f may be non-
Lipschitz continuous. We approximate f by a continuously differentiable function \~f
and employ Algorithm 2.1 for solving the smooth optimization problem (3.5) until the
special updating rule holds in the inner loop of Algorithm 3.1. Algorithm 2.1 is a new
active set method for linearly constrained smooth optimization, which ensures that for
any positive smoothing parameter \mu k, the iterate xk+1 satisfies \| \nabla \Omega 

\~f(xk+1, \mu k)\| \leq 
\^\gamma \mu k. This property is essential for the convergence result of Algorithm 3.1. It is
worth noting that convergence results of most existing active set methods for the
smooth minimization problem (2.1) are in the sense lim infk\rightarrow \infty P\Omega [x

k  - \nabla f(xk)]  - 
xk = 0, which does not imply lim infk\rightarrow \infty \| \nabla \Omega f(x

k)\| = 0. See inequality (2.35)
and Example 1. Our global convergence result, as well as the nice finite identification
property, and the local convergence result makes Algorithm 2.1 not only important for
approximately solving subproblems in Algorithm 3.1 for non-Lipschitz minimization
problem (1.1), but also advanced solutions for smooth problem (2.1).

Acknowledgments. We are very grateful to Prof. W. W. Hager and the anony-
mous referees for valuable comments.
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