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Abstract

In this paper, a domain decomposition method for the Poisson-Boltzmann (PB) solvation
model that is widely used in computational chemistry is proposed. This method, called ddLPB
for short, solves the linear Poisson-Boltzmann (LPB) equation defined in R3 using the van
der Waals cavity as the solute cavity. The Schwarz domain decomposition method is used to
formulate local problems by decomposing the cavity into overlapping balls and only solving a
set of coupled sub-equations in balls. A series of numerical experiments is presented to test
the robustness and the efficiency of this method including the comparisons with some existing
methods. We observe exponential convergence of the solvation energy with respect to the
number of degrees of freedom which allows this method to reach the required level of accuracy
when coupling with quantum mechanical descriptions of the solute.

Keywords: Implicit solvation model, Poisson-Boltzmann equation, domain decomposition method,
spherical harmonic approximation

1 Introduction
The properties of numerous charged bio-molecules and their complexes with other molecules are
dependent on the dielectric permittivity and the ionic strength of their environment. There are
various methods to model ionic solution effects on molecular systems, which can be commonly
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divided into two broad categories according to whether they employ an explicit or implicit solvation
model. Explicit solvation models adopt molecular representations of both the solute and the solvent
molecules, which produce accurate results, but are very expensive. Implicit solvation models adopt
a microscopic treatment of the solute (with possibly a few solvent molecules), but characterize
the solvent in terms of its macroscopic physical properties (for example, the solvent dielectric
permittivity and the ionic strength). This reduces greatly the computational cost compared to an
explicit description of the solvent. For this reason, implicit solvation models based on the Poisson-
Boltzmann (PB) equation [1, 2] are now widely-used, taking into account both the solvent (relative)
dielectric permittivity and the ionic strength. In this paper, we call these models the PB solvation
models and we mention that the ESU-CGS (electrostatic units, centimetre-gram-second) system of
units [3] is used for all equations.

For the sake of simplicity, we consider the linear Poisson-Boltzmann (LPB) equation, which
describes the electrostatic potential ψ of the PB solvation model in the following form (see [2])

−∇ · [ε(x)∇ψ(x)] + κ̄(x)2ψ(x) = 4πρM(x), in R3, (1.1)

where ε(x) represents the space-dependent dielectric permittivity function, κ̄(x) is the modified
Debye-Hückel parameter and ρM(x) represents the known solute’s charge distribution. Usually,
ε(x) has the following form

ε(x) =

®
ε1 in Ω,

ε2 in Ωc := R3\Ω,
(1.2)

where ε1 and ε2 are respectively the solute dielectric permittivity and the solvent dielectric per-
mittivity, Ω and Ωc represents respectively the solute cavity and the solvent region. Furthermore,
κ̄(x) usually has the following form

κ̄(x) =

®
0 in Ω,
√
ε2κ in Ωc,

(1.3)

where κ is the Debye-Hückel screening constant. More details on the nonlinear Poisson-Boltzmann
(NPB) equation and its linearization will be presented in Section 2.

Finally, we also mention two popular implicit solvation models as particular cases: the polariz-
able continuum model (PCM) [4, 5, 6] and the conductor-like screening model (COSMO) [7]. In the
classical PCM, the solvent is represented as a polarizable continuous medium which is non-ionic,
i.e., κ = 0. The COSMO is a reduced version of the PCM, where the solvent is represented as
a conductor-like continuum. Both the PCM and the COSMO can be seen as two particular PB
solvation models.

1.1 Previous work
We recall three widely used methods for solving the LPB equation: the boundary element method
(BEM), the finite difference method (FDM) and the finite element method (FEM), see [8] for a
review. As the names indicate, the BEM is based on solving an integral equation defined on the
solute-solvent interface [9], while the FDM and the FEM are implemented in some 3-dimensional
big domain covering the solute molecule.

In the BEM, the LPB equation is recast as some integral equations defined on the 2-dimensional
solute-solvent boundary [1, 10, 11, 12]. To solve the integral equations, a surface mesh should be
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generated, for example, using the MSMS [13] or the NanoShaper [14] etc. The BEM is efficient to
solve the LPB equation and some techniques can be used to accelerate the BEM solvers, including
the fast multipole method [15] and the hierarchical “treecode” technique [8]. For instance, the
PAFMPB solver [16, 15] developed by Lu et al. provides a fast calculation of the solvation energy,
which uses the adaptive fast multipole method and achieves linear complexity with respect to
(w.r.t.) the number of mesh elements. Another interesting BEM solver, called TABI-PB [17], has
been developed in the past several years, which uses the “treecode” technique. However, the BEM
has a limitation that it can not be easily generalized to solve the NPB equation.

To solve the general PB equation (linear or nonlinear), the FDM might be the most popular
method. Here, we list some successful FDM solvers: UHBD [18], DelPhi [19], MIBPB by Wei’s
group [20] and APBS by Baker, Holst, McCammon et al. [21, 22, 23]. In particular, the APBS is
well-developed with many useful options and its popularity is still increasing. In addition, there are
some other contributions to the FDM for the PB equation [2, 24, 25, 19, 26]. In the FDM, a big
box with grid is first taken, which covers the region of interest. Then, different types of boundary
conditions can be chosen, such as zero, single Debye-Hückel, multiple Debye-Hückel and focusing
boundary conditions (see the APBS documentation [21, 23]). We mention that the cost of FDM
can increase considerably with respect to the grid dimension, for example, when the grid dimension
is 10003 as mentioned in [8].

Comparing to the BEM and the FDM, the FEM provides in general more flexibility for mesh
refinement, more analysis of convergence and more selections of linear solvers [8]. A rigorous
solution and approximation theory of the FEM for the PB equation has been established in [27].
Furthermore, the adaptive FEM developed by Holst et al. has tackled some of the most important
issues of the PB equation [28, 29, 27, 30, 31]. In addition, the SDPBS and SMPBS web servers
developed by Xie et al. for solving the size-modified PB equation have performed fast and efficiently
[32, 33, 34, 35, 36].

In addition to the above methods, we mention the framework of particular domain decomposition
methods for implicit solvation models (see also website [37]). In the past several years, a domain
decomposition method for COSMO (called ddCOSMO) has been developed [38, 39, 40, 41]. This
method is independent on mesh and grid, easy to implement, and about two orders of magnitude
faster than the state of the art as demonstrated in [40].

The ddCOSMO method can be coupled with a quantum Hamiltonian [40, 41] or a polarizable
force-field within molecular dynamics [42]. Numerical tests of the method show linear scaling with
respect to the number of atoms and first results of these scaling properties of the ddCOSMO in a
simplified setting can be found in [43, 44]. Recently, a similar discretization scheme for the classical
PCM was proposed within the domain decomposition paradigm (called ddPCM) [45, 46]. Both the
ddCOSMO and the ddPCM work for the solute cavity constituted by overlapping balls, such as the
van der Waals (VDW) cavity and the solvent accessible surface (SAS) cavity [47, 48]. In the case
of the PCM based on the “smooth” molecular surface, i.e., based on the solvent excluded surface
(SES) [49, 50], another domain decomposition method has been proposed in [51], which is called
the ddPCM-SES.

Inspired by the previous work mentioned above, we develop a particular domain decomposition
method for the PB solvation model (called ddLPB), to solve the LPB equation in R3.
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1.2 ddLPB
In fact, the LPB equation (1.1) consists of a Poisson equation defined in the bounded solute cavity
Ω and a homogeneous screened Poisson (HSP) equation defined in the unbounded solvent region
Ωc, which are coupled by some jump conditions on the interface Γ := ∂Ω.

To solve this problem, we first transform the Poisson equation in (1.1) into the following Laplace
equation of ψr := ψ − ψ0,

−∆ψr = 0, in Ω, (1.4)

where ψr is called the reaction potential and ψ0 satisfies −∆ψ0 = 4π
ε1
ρM in R3. Then, according to

the potential theory, the electrostatic potential ψ|Ωc can be represented as a single-layer potential
(an exterior Dirichlet problem), which simultaneously gives an extended potential ψe satisfying the
following HSP equation defined now in Ω (an interior Dirichlet problem)

−∆ψe(x) + κ2ψe(x) = 0, in Ω. (1.5)

Based on the classical jump-conditions (see Section 3) of ψ on the solute-solvent boundary, a
coupling condition (see Figure 1) between the Laplace equation (1.4) and the extended HSP equation
(1.5) arises through an auxiliary function g defined by

g = Sκ
Å
∂nψe −

ε1

ε2
∂n (ψ0 + ψr)

ã
, on Γ, (1.6)

where Sκ : H−
1
2 (Γ) → H

1
2 (Γ) denotes the single-layer operator on Γ (Sκ is defined in Section 3).

Here, H−
1
2 (Γ) and H

1
2 (Γ) denote the usual Sobolev spaces of order ± 1

2 on Γ, see [52]. The initial
problem defined in R3 is therefore transformed into two equations (1.4)–(1.5) coupled through g in
Eq. (1.6).

Considering the fact that the solute cavity is commonly modeled as a union of overlapping
balls, a particular Schwarz domain decomposition method (called ddLPB) can be used to solve Eqs
(1.4)–(1.5) by respectively solving a group of coupled sub-equations in balls. The main idea of this
domain decomposition method is illustrated in Figure 1. Ultimately, only a Laplace solver and a
HSP solver in the unit ball need to be developed for the local Laplace sub-equations and the local
HSP sub-equations. Each solver uses the spectral method for the corresponding PDE, where the
spherical harmonics are taken as basis functions in the angular direction of the spherical coordinate
system.

The ddLPB provides a new discretization of the LPB equation and has its own features. In
fact, this method is initially designed for quantum calculations, which usually require the accurate
electrostatic solvation energy and the derivatives w.r.t. the atom positions. This method does not
rely on mesh nor grid, but only on the Lebedev quadrature points [53] on 2-dimensional spheres.
Therefore, it will be convenient to apply the ddLPB in molecular dynamics, without remeshing
molecular surface as in the BEM. The computation of forces becomes also very natural as the
spheres are centered at the nuclear positions. In the numerical tests, we will further show that the
ddLPB is numerically robust and efficient.

1.3 Outline
In Section 2, we introduce the derivation of the PB equation as well as its linearization. Then,
in Section 3, we transform the original LPB equation defined in R3 into the Laplace equation and
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Figure 1: Schematic diagram of the ddLPB.

the HSP equation both defined in the bounded solute cavity, as briefly outlined above. We present
a global strategy for solving the transformed problem. This strategy involves solving the Laplace
equation and the HSP equation defined in the solute cavity, which will be presented in Section 4
using a particular domain decomposition method. In Section 5, we develop a Laplace solver and a
HSP solver in the unit ball to solve the local equations. After that, in Section 6, we reformulate the
coupling conditions and deduce a global linear system to be finally solved. In Section 7, we present
some numerical results about the ddLPB. In the last section, we draw some conclusions.

2 PB solvation model
In this section, we introduce the well-known PB equation and its linearization, which describe the
electrostatic potential in the implicit solvation model with ionic solutions.

The space R3 is simply divided into the solute cavity and the solvent region, as introduced in Eqs
(1.1) – (1.3). Three types of molecular surfaces are mostly used to define the solute-solvent interface:
the VDW surface, the SAS and the SES. Both the VDW surface and the SAS are the boundary of
the union of balls (respectively the VDW-balls and the SAS-balls), while the geometrical structure
of SES is more complicated, see [50, 54] for a thorough characterization. In practice, the scaled
VDW surface is often used, where each VDW-radius is multiplied by a scalar factor such as 1.1 ∼ 1.2
which is a common approach. For the rest of this article we will limit the development to VDW-
cavities. Note that without any further difficulty, the ddLPB method also work for the scaled
VDW-cavity and the SAS-cavity.
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Figure 2: 2D schematic diagram of the implicit solvation model with ionic solutions, i.e., the PB
solvation model.

2.1 Poisson-Boltzmann equation
In the PB solvation model, the solvent is represented by a polarizable and ionic continuum. The
freedom of the ions to move in the solution is accounted for by Boltzmann statistics. That is to
say, the Boltzmann equation is used to calculate the local ion density ci of the i-th type of ion as
follows

ci = c∞i exp

Å−Wi

kBT

ã
, (2.1)

where c∞i is the bulk ion concentration at an infinite distance from the solute molecule, Wi is the
work required to move the i-th type of ion to a given position from an infinitely far distance, kB

is the Boltzmann constant, T is the temperature in Kelvins (K). The electrostatic potential ψ of a
general implicit solvation model is described originally by the Poisson equation as follows

−∇ · ε(x)∇ψ(x) = 4πρ(x), in R3, (2.2)

where ψ(x) = O( 1
|x| ) as |x| → ∞. Here, ε(x) represents the space-dependent dielectric permittivity

and ρ(x) represents the charge distribution of the solvated system. Given the solute’s charge
distribution ρM and the ionic distribution ci in (2.1), we can derive the PB equation from Eq. (2.2)
as follows (see [24])

−∇ · [ε(x)∇ψ(x)] = 4πρM(x) +
∑
i

zi e c
∞
i exp

Å−zieψ(x)

kBT

ã
χΩc(x), (2.3)

where zie is the charge of the i-th type of ion, e is the elementary charge and χΩc is the characteristic
function of the solvent region Ωc.

In the PB solvation model with a 1 : 1 electrolyte, there are two types of ions respectively with
charge +e and −e (see Figure 2 for a schematic diagram). With the assumption that ψ satisfies
the low potential condition, i.e.,

∣∣∣ eψkBT ∣∣∣ � 1, the NPB equation (2.3) can be linearized to (see [2]
for this form)

−∇ · [ε(x)∇ψ(x)] + κ̄(x)2ψ(x) = 4πρM(x), (2.4)

where ψ is determined by the data ε(x), κ̄(x) and ρM(x) that are introduced in Section 1.
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Remark 2.1. When the ionic solution has more than two types of ions, the nonlinear Poisson-
Boltzmann equation can still be linearized to the form (2.4). In order to obtain a simpler expression
of the modified Debye-Hückel parameter κ̄(x), we consider the 1 : 1 electrolyte in this paper.

In the definition (1.2) of ε(x), the solute (relative) dielectric permittivity ε1 should theoretically
be set to 1 as in the vacuum (for example, in [9]). However, values different from ε1 = 1 might be
used. For example, in [2], the authors claim to obtain better approximations with the empirical
value ε1 = 2. The solvent dielectric permittivity ε2 is determined by the solvent as well as the
temperature, for example, ε2 = 78.54 for water at the room temperature 25◦C. The modified
Debye-Hückel parameter in the implicit solvation model with a 1 : 1 electrolyte is taken as

κ̄(x) =

®
0 in Ω,
√
ε2κ in Ωc,

(2.5)

where κ is the Debye-Hückel screening constant representing the attenuation of interactions due
to the presence of ions in the solvent region, which is related to the ionic strength I of the ionic
solution according to (see [2] and [55, Section 1.4] for the following formula)

κ2 =
8πe2NAI

1000ε2kBT
, (2.6)

where NA is the Avogadro constant.
Furthermore, it is usually assumed that the solute’s charge distribution ρM is supported in Ω.

For example, for a classical description of the solute, ρM is given by the sum of M point charges in
the following form

ρM(x) =
M∑
i=1

qi δ(x− xi), (2.7)

where M is the number of solute atoms, qi represents the (partial) charge carried on the ith atom
with center xi, δ is the Dirac delta function. For a quantum description of the solute, ρM consists
of a sum of classical nuclear charges and the electron charge density.

3 Problem transformation
In this section, we first introduce the integral representation of the LPB equation in the potential
theory. Based on this, we then transform the original electrostatic problem to two coupled equations
restricted to the (bounded) solute cavity.

3.1 Problem setting
The LPB equation can be divided into two equations: first, the Poisson equation in the solute cavity
and second, the HSP equation in the solvent region. That is to say, the problem is recast in the
following form  −∆ψ(x) =

4π

ε1
ρM(x) in Ω,

−∆ψ(x) + κ2ψ(x) = 0 in Ωc,
(3.1)
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with two classical jump-conditions ®
[ψ] = 0 on Γ,

[∂n (εψ)] = 0 on Γ,
(3.2)

where Γ := ∂Ω is the solute-solvent boundary, n is the unit normal vector on Γ pointing outwards
with respect to Ω and ∂n = n · ∇ is the notation of normal derivative. [ψ] represents the jump
(inside minus outside) of the potential and [∂n (εψ)] represents the jump of the normal derivative
of the electrostatic potential multiplied by the dielectric permittivity.

3.2 Necessary tools from the potential theory
The free-space Green’s function of the operator −∆ is given as

G(x,y) =
1

4π|x− y|
, ∀x,y ∈ R3, (3.3)

and similarly, the free-space Green’s function of the operator −∆ + κ2 is given as

Gκ(x,y) =
exp (−κ|x− y|)

4π|x− y|
, ∀x,y ∈ R3, (3.4)

which yields
−∆xG(x,y) = δ(x− y), ∀y ∈ R3, (3.5)

and
−∆xGκ(x,y) + κ2Gκ(x,y) = δ(x− y), ∀y ∈ R3. (3.6)

In the solute cavity Ω, we define the reaction potential ψr := ψ − ψ0, where ψ0 is the potential
generated by ρM in vacuum written as

ψ0 =
M∑
i=1

qi
ε1|x− xi|

, (3.7)

satisfying −∆ψ0 = 4π
ε1
ρM in R3. Then, ψr is harmonic in Ω, that is,

−∆ψr = 0, in Ω, (3.8)

which yields the following integral equation

ψr(x) = S̃σr(x) :=

∫
Γ

σr(y)

4π|x− y|
, ∀x ∈ Ω, (3.9)

where σr is some function in H−
1
2 (Γ) and S̃ : H−

1
2 (Γ) → H1(R3\Γ) is the single-layer potential

associated with G.
Furthermore, according to the HSP equation in (3.1), the electrostatic potential in the solvent

region Ωc can be represented by

ψ|Ωc(x) = S̃κσe(x) :=

∫
Γ

exp (−κ|x− y|)σe(y)

4π|x− y|
, ∀x ∈ Ωc, (3.10)
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where σe is another function in H−
1
2 (Γ) and S̃κ : H−

1
2 (Γ)→ H1(R3\Γ) is the single-layer potential

associated with Gκ. Here, we also introduce the single-layer operator Sκ : H−
1
2 (Γ) → H

1
2 (Γ)

defined by

Sκσe(x) :=

∫
Γ

exp (−κ|x− y|)σe(y)

4π|x− y|
, ∀x ∈ Γ, (3.11)

which is an invertible operator (this is true according to the proof of the invertibility of the single-
layer operator for the Helmholtz equation, see [56, Corollary 7.26] and [57, Theorem 3.9.1]). The
invertibility of Sκ implies that σe can be characterized as σe = S−1

κ ψ|Γ.

3.3 Transformation
We will now transform the original problem defined in R3 equivalently to two coupled equations
both defined in the solute cavity.

According to the continuity of the single-layer potential S̃κ across the interface [57], we can
artificially extend the electrostatic potential ψ|Ωc from Ωc to Ω as follows

ψe(x) := S̃κσe(x) =

∫
Γ

exp (−κ|x− y|)σe(y)

4π|x− y|
, ∀x ∈ Ω, (3.12)

where ψe is called the extended potential in this paper. As a consequence, ψe satisfies the same
HSP equation as ψ|Ωc , but defined on Ω, as follows

−∆ψe(x) + κ2ψe(x) = 0, in Ω, (3.13)

with the same Dirichlet boundary conditions on Γ. Furthermore, from [57, Theorem 3.3.1], we have
a relation among σe and the normal derivatives of ψe and ψ|Ωc on Γ as follows

σe = ∂nψe|Ω − ∂nψ|Ωc , on Γ. (3.14)

As introduced above, Eq. (3.8) of ψr and (3.13) of ψe are two PDEs defined on Ω, that are
derived from the original LPB equation (3.1). As a consequence, it is sufficient to couple these two
equations. According to [ψ] = 0 on Γ and the continuity of S̃κ across Γ [57], we then deduce a first
coupling condition

ψ0 + ψr = ψe, on Γ. (3.15)

Further, combining Eq. (3.14) with the second equation of the jump conditions (3.2), i.e.,

ε1∂nψ|Ω − ε2∂nψ|Ωc = 0, on Γ, (3.16)

we deduce another coupling condition

σe = ∂nψe −
ε1

ε2
∂n (ψ0 + ψr) , on Γ. (3.17)

In summary, the original problem (3.1) is transformed into the following two equations defined
on Ω ®

−∆ψr(x) = 0 in Ω,

−∆ψe(x) + κ2ψe(x) = 0 in Ω,
(3.18)
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with two coupling conditions on Γ given byψ0 + ψr = ψe on Γ,

σe = ∂nψe −
ε1

ε2
∂n (ψ0 + ψr) on Γ,

(3.19)

where σe is the charge density generating ψe, as presented in (3.12). The second equation of (3.19)
is also equivalent to

ε2ψe + Sκ (ε1∂nψr − ε2∂nψe) = −ε1Sκ (∂nψ0) , on Γ, (3.20)

which is derived from letting Sκ act on both sides of the equation.

Remark 3.1. Eqs (3.18) – (3.20) are equivalent to the integral equation formulations (IEF) in [58]
and [17]. The reason why we do the above transformation is that both the Laplace and the HSP
equations in (3.18) can be solved efficiently using a particular domain decomposition method, see
Section 4.2 and Section 5. The main computational cost will be spent on the coupling conditions
(3.19).

Remark 3.2. The right hand side of Eqn (3.20) can be modified as in standard IEF-PCM by using
the identity

−Sκ (∂nψ0) = (2π −Dκ)ψ0, on Γ,

where Dκ is the corresponding double layer boundary operator, see [9, 58]. This allows to obtain
a right hand side that only depends on the potential and not on the field which subsequently leads
to simpler expressions in the contribution to the Fock-matrix, if coupled to a quantum mechanical
Hamiltonian within a polarizable embedding.

4 Strategy
In this section, we introduce a global strategy for solving Eqs (3.18)–(3.19) that are derived from
the LPB equation (2.4). Then, we present how the domain decomposition method can be applied
to solve the two PDEs defined on Ω, taking advantage of its particular geometrical structure (i.e.,
a union of overlapping balls). The scheme of this section is inspired by [51, Section 4.2 and 5], our
previous work for the case of non-ionic solvent.

4.1 Global strategy
We propose the following iterative procedure for solving Eqs (3.18)–(3.19): let g0 defined on Γ be
an initial guess for the Dirichlet condition ψe|Γ and set k = 1.

[1] Solve the following Dirichlet boundary problem for ψkr :®
−∆ψkr = 0 in Ω,

ψkr = gk−1 − ψ0 on Γ,
(4.1)

and derive its Neumann boundary trace ∂nψkr on Γ.

10



[2] Solve the following Dirichlet boundary problem for ψke :®
−∆ψke + κ2ψke = 0 in Ω,

ψke = gk−1 on Γ,
(4.2)

and derive similarly its Neumann boundary trace ∂nψke on Γ.

[3] Build the charge density σke = ∂nψ
k
e −

ε1

ε2
∂n
(
ψ0 + ψkr

)
and compute a new Dirichlet condition

gk = Sκσke .

[4] Compute the contribution Es
k to the solvation energy based on ψkr at the k-th iteration, set

k ← k + 1, go back to Step [1] and repeat until the increment of interaction |Es
k − Es

k−1|
becomes smaller than a given tolerance Tol� 1.

Remark 4.1. In order to provide a suitable initial guess of g0 (defined on Γ), we consider the (unre-
alistic) scenario where the whole space R3 is covered by the solvent medium. Then, the electrostatic
potential ψ in this case is given explicitly by

ψ(x) =
M∑
i=1

4πqi
ε2

exp (−κ|x− xi|)
|x− xi|

, ∀x ∈ R3, (4.3)

see details in [55, Section 1.3.2]. As a consequence, we choose g0 as this potential restricted on Γ.

Remark 4.2. The above global strategy is an iterative procedure, which is presented for an easier
understanding. However, the final convergent solution satisfies, after discretization, a global linear
system that can be solved by different linear solvers. We will address this issue in the later Section
6.2.

4.2 Domain decomposition (DD) scheme
The Schwarz’s domain decomposition method [59] is a good choice to solve the PDE defined on a
complex domain which can be composed as a union of overlapping and possibly simple subdomains.
According to the definition of Ω, we have a natural domain decomposition as follows

Ω =
M⋃
j=1

Ωj , Ωj = Brj (xj),

where each Ωj denotes the j-th VDW-ball with center xj and radius rj . As a consequence, the
Schwarz’s domain decomposition method can be applied to solve the PDEs (4.1) and (4.2).

Similar to the ddCOSMO method [38], Eq. (4.1) is equivalent to the following coupled local
equations, each restricted to Ωj : ®

−∆ψr|Ωj
= 0 in Ωj ,

ψr|Γj
= φr,j on Γj ,

(4.4)

where Γj = ∂Ωj and

φr,j =

®
ψr on Γi

j ,

g − ψ0 on Γe
j .

(4.5)
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Figure 3: 2D schematic diagram of Γi
j (red) and Γe

j (blue) associated with Ωj .

Here, we omit the superscript due to the (outer) iteration index k. Γe
j is the external part of Γj

not contained in any other ball Ωi (i 6= j), i.e., Γe
j = Γ ∩ Γj ; Γi

j is the internal part of Γj , i.e.,
Γi
j = Ω ∩ Γj (see Figure 3 for an illustration). Similarly, Eq. (4.2) is equivalent to the following

coupled local equations, each restricted to Ωj :®
−∆ψe|Ωj + κ2ψe|Ωj = 0 in Ωj ,

ψe|Ωj = φe,j on Γj ,
(4.6)

where

φe,j =

®
ψe on Γi

j ,

g on Γe
j .

(4.7)

Note that the Dirichlet conditions that appear in (4.5) and (4.7) are implicit since ψr (resp. ψe) is
not known on Γi

j . Hence, given the Dirichlet boundary condition on Γ, an iterative procedure must
be applied to solve the coupled equations (4.4)–(4.5) (resp. (4.6)–(4.7)), such as the parallel Schwarz
algorithm and the alternating Schwarz algorithm as presented in the ddCOSMO [38]. For example,
the idea of the parallel algorithm is to solve each local problem based on the boundary condition
of the neighboring solutions derived from the previous iteration. In this iterative procedure, the
computed value of ψr|Γi

j
(resp. ψe|Γi

j
) is updated step by step and converges to the exact value.

However, the parallel and the alternating Schwarz algorithms might not be the most efficient
way to solve such a set of equations, but they are well-suited to illustrate the idea of the domain
decomposition method. In fact, the global linear system obtained after discretization can be solved
by different linear solvers (for example, the GMRES method). We will discuss more about this in
Section 6.2. Before that, we shall develop two single-domain solvers: a Laplace solver and a HSP
solver in the unit ball.

5 Single-domain solvers
In this section, we develop two single domain solvers in the unit ball respectively for solving Eq.
(4.4) and Eq. (4.6) within the domain decomposition scheme.

5.1 Laplace solver
Developing a Laplace solver in a ball is not difficult and has already been presented in our previous
work including the ddCOSMO [38], the ddPCM [45] and the ddPCM-SES [51]. For the sake of
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completeness, we recall briefly the Laplace solver in the following content.
We want to solve the Laplace equation (4.4) defined on Ωj . Without loss of generality, we

consider the following Laplace equation defined in the unit ball®
−∆ur = 0 in B1(0),

ur = φr on S2.
(5.1)

Its unique solution in H1(B1(0)) can be written as

ur(r, θ, ϕ) =
∞∑
`=0

∑̀
m=−`

[φr]
m
` r

` Y m` (θ, ϕ), 0 ≤ r ≤ 1, 0 ≤ θ ≤ π, 0 ≤ ϕ < 2π. (5.2)

Here, Y m` denotes the (real orthonormal) spherical harmonic of degree ` and order m defined on S2

and
[φr]

m
` =

∫
S2
φr(s)Y

m
` (s)ds,

is the real coefficient of ur corresponding to the mode Y m` . Then, ur can be numerically ap-
proximated by ũr in the discretization space spanned by a truncated basis of spherical harmonics
{Y m` }0≤`≤`max, −`≤m≤`, defined as

ũr(r, θ, ϕ) =

`max∑
`=0

∑̀
m=−`

[φ̃r]
m
` r

` Y m` (θ, ϕ), 0 ≤ r ≤ 1, 0 ≤ θ ≤ π, 0 ≤ ϕ < 2π, (5.3)

where `max denotes the maximum degree of spherical harmonics and

[φ̃r]
m
` =

Nleb∑
n=1

wleb
n φr(sn)Y m` (sn). (5.4)

Here, sn ∈ S2 represent Lebedev quadrature points [60], wleb
n are the corresponding weights and

Nleb is the number of Lebedev quadrature points.

5.2 HSP solver
We now want to solve the HSP equation (4.6) defined on Ωj . Without loss of generality, we consider
the following HSP equation defined in the unit ball®

−∆ue + κ2u2
e = 0 in B1(0),

ue = φe on S2.
(5.5)

Solving the above HSP equation in spherical coordinates by separation of variables, the radial
equation corresponding to the angular dependency Y m` has the form

1

R

d

dr

Å
r2 dR

dr

ã
= κ2r2 + `(`+ 1), ` ≥ 0, (5.6)

that is,

r2 d
2R

dr2
+ 2r

dR

dr
− (κ2r2 + `(`+ 1))R = 0, (5.7)
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which is called the modified spherical Bessel equation [61]. This equation has two linearly indepen-
dent solutions as follows

i`(r) =

…
π

2κr
I`+ 1

2
(κr), k`(r) =

…
2

πκr
K`+ 1

2
(κr), (5.8)

where i` and k` are the modified spherical Bessel functions of the first and second kind associated
with κ, see [61, Chapter 14] for details and Figure 4 for an illustration. Here, Iα(x) and Kα(x)
with subscript α are the modified Bessel functions of the first and second kind [62].

Remark 5.1. Iα(x) and Kα(x) satisfy the modified Bessel equation

x2 d
2f

dx2
+ x

df

dx
− (x2 + α2)f = 0. (5.9)

In fact, Iα and Kα are exponentially growing and decaying functions, respectively.

Since k` → ∞ as r → 0, we are interested in the family i` of the first kind. That is, we write
the solution to (5.5) in the form of

ue(r, θ, ϕ) =
∞∑
`=0

∑̀
m=−`

cm` i`(r)Y
m
` (θ, ϕ), 0 ≤ r ≤ 1, 0 ≤ θ ≤ π, 0 ≤ ϕ < 2π, (5.10)

where cm` is the coefficient of the mode Y m` . With the same discretization as in Section 5.1, we
derive the following approximate solution similar to Eq. (5.3):

ũe(r, θ, ϕ) =

`max∑
`=0

∑̀
m=−`

[φ̃e]m`
i`(r)

i`(1)
Y m` (θ, ϕ), 0 ≤ r ≤ 1, 0 ≤ θ ≤ π, 0 ≤ ϕ < 2π, (5.11)

where [φ̃e]m` is given similar to (5.4) as follows

[φ̃e]m` =

Nleb∑
n=1

wleb
n φe(sn)Y m` (sn), (5.12)

with the same notations wleb
n and Nleb as above.

Remark 5.2. According to the fact that (see [61, page 708])

i`(r) ≈
(κr)`

(2`+ 1)!!
, when r > 0 is very small,

we have i`(r)
i`(1) → r` as κ → 0. Therefore, if φr = φe, then ũe → ũr as κ → 0. This means that the

solution to Eq. (5.5) tends to the solution to Eq. (5.1), which makes sense.

6 Discretization
The global strategy in Section 4 in combination with the domain decomposition schemes for solving
Eq. (4.1) and Eq. (4.2) is an iterative procedure. This implies that the proposed algorithm can
be parallelized since only a group of local problems on each Ωj are solved. However, as mentioned
in Remark 4.2, we will solve the problem in a global way, meaning that we finally solve a global
linear system derived from discretization. To present this, we first introduce a reformulation of the
coupling conditions and then present the global linear system for its discretization.
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Figure 4: The modified spherical Bessel functions of the first kind (in, left) and the second kind
(kn, right) with κ = 1.

6.1 Reformulation
Let χi be the characteristic function of Ωi, i.e.,

χi(x) :=

®
1 if x ∈ Ωi

0 if x 6∈ Ωi
(6.1)

and then let
wji(x) :=

χi(x)

|N (j,x)|
=

χi(x)∑
i 6=j χi(x)

, ∀x ∈ Γj , (6.2)

where N (j,x) represents the index set of all balls containing x. Here, we make the convention that
in the case of |N (j,x)| = 0 (i.e., x ∈ Γe

j), we define wji(x) = 0, ∀i. Furthermore, ∀x ∈ Γj , we
define

χe
j(x) :=

®
1 if x ∈ Γe

j ,

0 if x ∈ Γi
j ,

(6.3)

which is equivalent to
χe
j(x) = 1−

∑
i 6=j

wji(x), ∀x ∈ Γj . (6.4)

6.1.1 DD scheme

There are two local coupling conditions in the DD scheme, i.e., Eq. (4.5) and (4.7), respectively
for coupling the local Laplace equation (4.4) and the local HSP equation (4.6). Based on the
above-defined notations, Eq. (4.5) can be recast as

ψr|Γj
(x)−

∑
i 6=j

wji(x)ψr|Ωi
(x) = χe

j(x) (g(x)− ψ0(x)) , ∀x ∈ Γj . (6.5)
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Similarly, Eq. (4.7) can be recast as

ψe|Γj
(x)−

∑
i 6=j

wji(x)ψe|Ωi
(x) = χe

j(x)g(x), ∀x ∈ Γj . (6.6)

6.1.2 Boundary coupling condition

There is a global coupling condition on Γ, i.e., Eq. (3.20), between the global Laplace equation and
the global HSP equation defined in Ω (see (3.18)), involving the nonlocal operator Sκ:

g(x) = ψe|Γ(x) = Sκ
Å
∂nψe −

ε1

ε2
∂n (ψ0 + ψr)

ã
(x), ∀x ∈ Γ. (6.7)

The single-layer operator Sκ involves an integral over the whole solute-solvent boundary Γ which
seems difficult to compute at a first glance. We introduce a technique to compute the integral of
Sκ efficiently. For each sphere Γi, we define a local single-layer potential S̃κ,Γi

as follows

S̃κ,Γi
σ(x) :=

∫
Γi

exp (−κ|x− y|)σ(y)

4π|x− y|
, ∀x ∈ R3, (6.8)

where σ is an arbitrary function in H−
1
2 (Γi). As a consequence, ∀σ ∈ H− 1

2 (Γ), we have

Sκσ =
M∑
i=1

S̃κ,Γi
(χe
iσ) , (6.9)

where χe
iσ extends σ|Γe

i
by zero to the whole sphere Γi. The above equation implies that the integral

over Γ can be divided into a group of integrals respectively over each sphere Γi. Therefore, Eq.
(6.7) can be recast as

g(x) =
M∑
i=1

S̃κ,Γi

ï
χe
i

Å
∂nψe −

ε1

ε2
∂n (ψ0 + ψr)

ãò
(x), ∀x ∈ Γ, (6.10)

which is used for updating the boundary potential in the global strategy in Section 4.

6.2 Linear system
In this part, we first present the discretization of the above reformulation and then introduce the
global linear system derived from this discretization.

6.2.1 Local truncation in balls

In Section 5, without the loss of generalization, we have presented the discretization of the solutions
to the Laplace equation and the HSP equation defined in the unit ball.

Based on this, for each sphere Γj , we first approximate ψr|Γj and ψe|Γj respectively by a linear
combination of spherical harmonics {Y m` } with 0 ≤ ` ≤ `max and −` ≤ m ≤ ` as follows

ψr|Γj
(xj + rjs) =

`max∑
`=0

∑̀
m=−`

[Xr]j`m Y
m
` (s), s ∈ S2, (6.11)
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and

ψe|Γj
(xj + rjs) =

`max∑
`=0

∑̀
m=−`

[Xe]j`mY
m
` (s), s ∈ S2, (6.12)

where [Xr]j`m and [Xe]j`m are unknown coefficients of the mode Y m` respectively associated with
ψr|Γj

and ψe|Γj
. Here, for any point x ∈ Γj , we actually use its spherical coordinates (rj , s) s.t.

x = xj +rjs. According to the Laplace solver and the HSP solver presented in Section 5, we deduce
directly

ψr|Ωi
(xi + rs) =

`max∑
`′=0

`′∑
m′=−`′

[Xr]i`′m′

Å
r

ri

ã`′
Y m

′

`′ (s), 0 ≤ r ≤ ri, s ∈ S2, (6.13)

and

ψe|Ωi
(xi + rs) =

`max∑
`′=0

`′∑
m′=−`′

[Xe]i`′m′
i`′ (r)

i`′ (ri)
Y m

′

`′ (s), 0 ≤ r ≤ ri, s ∈ S2, (6.14)

where for any point x ∈ Ωi, we take its spherical coordinates (r, s) s.t. x = xi + rs. Also, for each
sphere Γi, we can compute the normal derivative of ψr on Γe

i as follows

∂nψr(xi + ris) =

`max∑
`′=0

`′∑
m′=−`′

[Xr]i`′m′

Å
`′

ri

ã
Y m

′

`′ (s), xi + ris ∈ Γe
i , (6.15)

and the normal derivative of ψe on Γe
i

∂nψe(xi + ris) =

`max∑
`′=0

`′∑
m′=−`′

[Xe]i`′m′
i′`′ (ri)

i`′ (ri)
Y m

′

`′ (s), xi + ris ∈ Γe
i , (6.16)

where i′`′ represents the derivative of i`′ .

Remark 6.1. We compute i′`′(ri) according to the following equation (see [61, page 707] for the
derivation)

(2n+ 1)i′n(ri) = nriin−1(ri) + (n+ 1)riin+1(ri), (6.17)

and in analogy, we compute k′`(ri) used in the Appendix A as follows

−(2n+ 1)k′n(ri) = nrikn−1(ri) + (n+ 1)rikn+1(ri). (6.18)

6.2.2 Discretization

So far, we have written the Ansatz for the unknowns ψr|Γj , ψe|Γj , respectively ψr|Ωi , ψe|Ωi with
normal derivatives ∂nψr and ∂nψe, following Eqs (6.11) – (6.16), which depend on the unknowns
Xr and Xe. This allows us to discretize the coupling conditions (6.5), (6.6) and (6.10), to derive a
final linear system.

First, we replace the variable x ∈ Γj of Eq. (6.5) by x = xj + rjs with s ∈ S2 and derive the
equation for each sphere Γj as follows

ψr|Γj
(xj + rjs)−

∑
i 6=j

wji(xj + rjs)ψr|Ωi
(xj + rjs)

=χe
j(xj + rjs) (g(xj + rjs)− ψ0(xj + rjs)) ,

(6.19)
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which induces the following local equation by multiplying by Y m` and integrating over S2 on both
sides, ∀j, `,m, ∞

ψr|Γj
(xj + rj·)−

∑
i6=j

wji(xj + rj·)ψr|Ωi
(xj + rj·), Y m` (·)

∫
S2

=
〈
χe
j(xj + rj·) (g(xj + rj·)− ψ0(xj + rj·)) , Y m` (·)

〉
S2 .

(6.20)

Here, 〈·, ·〉S2 represents the integral over the unit sphere S2, which is numerically approximated using
the Lebedev quadrature rule with Nleb points. We therefore denote such a numerical integration
over S2 by the notation 〈·, ·〉S2,Nleb

. Eq. (6.20) can be rewritten in the form of a linear system

[AXr]j`m = [GX ]j`m + [G0]j`m, ∀j, `,m. (6.21)

Here, A is a square matrix of dimension M(`max + 1)2×M(`max + 1)2 and the j`m-th row of AXr

is given by substituting (6.11) and (6.13) into (6.20) as follows

[AXr]j`m =

∞
ψr|Γj

(xj + rj·)−
∑
i6=j

wji(xj + rj·)ψr|Ωi
(xj + rj·), Y m` (·)

∫
S2,Nleb

= [Xr]j`m −
∑
i 6=j

∑
`′,m′(

Nleb∑
n=1

wleb
n wji(xj + rjsn)

Å
rijn
ri

ã`′
Y m

′

`′ (sijn)Y m` (sn)

)
[Xr]i`′m′ ,

(6.22)

where (rijn, sijn) is the spherical coordinate associated with Γi of the point xj + rjsn s.t.

xj + rjsn = xi + rijnsijn, with sijn ∈ S2.

Furthermore, the j`m-th element of the column vector GX is given as

[GX ]j`m =
〈
χe
j(xj + rj·)g(xj + rj·), Y m` (·)

〉
S2,Nleb

=

Nleb∑
n=1

wleb
n χe

j(xj + rjsn)g(xj + rjsn)Y m` (sn),
(6.23)

which depends on the unknowns Xr and Xe through g given by Eq. (6.10). The notation X denotes
the column of all unknowns, i.e.,

X =

Å
Xr

Xe

ã
∈ R2M(`max+1)2 . (6.24)

Similarly, the j`m-th element of the column vector G0 is given as

[G0]j`m = −
Nleb∑
n=1

wleb
n χe

j(xj + rjsn)ψ0(xj + rjsn)Y m` (sn), (6.25)

which can be computed a priori, since it is independent of X.
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Similar to the linear system (6.21) and according to Eq. (6.6) for each sphere Γj , we have
another linear system in the form of matrices

[BXe]j`m = [GX ]j`m, ∀j, `,m, (6.26)

where the square matrix B satisfies

[BXe]j`m = [Xe]j`m −
∑
i 6=j

∑
`′,m′(

Nleb∑
n=1

wleb
n wji(xj + rjsn)

i`′ (rijn)

i`′ (ri)
Y m

′

`′ (sijn)Y m` (sn)

)
[Xe]i`′m′ ,

(6.27)

and [GX ]j`m is given by (6.23).
So far, we have derived two linear systems of the form®

AXr = GX +G0,

BXe = GX ,
(6.28)

where Xr and Xe are the column vectors of unknowns [Xr]j`m and [Xe]j`m (respectively associated
with the potentials ψr and ψe). However, the column vector GX depending on both Xr and Xe is
not specified yet. To do this, the coupling condition (6.10) in terms of g should be used (which has
not been used yet). Combining Eq. (6.10) with (6.23), we deduce the following form of GX ,

GX = F0 −C1Xr −C2Xe, (6.29)

where the column vector F0 is associated with ∂nψ0, two dense square matrices C1 and C2

are respectively associated with ∂nψr and ∂nψe. Considering the complexity of the formulas of
F0, C1, C2, we present them in Append. A.

Remark 6.2. The number of the intersection of one atom with others is bounded from above. From
the definition (6.2) of wji, we have wji(xj + rjsn) = 0 if rijn ≥ ri. Therefore, A and B are both
sparse matrices for a large molecule.

6.3 Linear solver
We finally obtain a global linear system written asÅ

A + C1 C2

C1 B + C2

ãÅ
Xr

Xe

ã
=

Å
G0 + F0

F0

ã
, (6.30)

where both A and B are sparse for a large molecule, but not C1 nor C2.
To solve this linear system (6.30), the LU factorization method and the GMRES method can

be used directly [63, 64], where the first one gives an exact solution and the second one gives
an approximate solution. However, the global strategy introduced in Section 4 provides another
iterative strategy as followsÅ

A 0
0 B

ãÅ
Xk

r

Xk
e

ã
= −

Å
C1 C2

C1 C2

ãÅ
Xk−1

r

Xk−1
e

ã
+

Å
G0 + F0

F0

ã
, (6.31)
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where k denotes the (outer) iteration number as in Section 4, Xk
r and Xk

e are respectively the
values of Xr and Xe computed at the k-th iteration. At the k-th iteration, we first update the
right-hand side of Eq. (6.31), based on the previously-computed Xk−1

r and Xk−1
e . Then, we use

the GMRES method to solve the linear system associated with Xk
r and Xk

e . To distinguish the
GMRES iterations, we call the above iteration with index k as the outer iteration.

7 Numerical results
For an implicit solvation model, one important issue is to compute the solute-solvent interaction
energy, to which the electrostatic contribution plays an important role. In fact, the electrostatic
solvation energy Es is computed from the reaction potential ψr according to the following formula
(see [24] for the derivation of this formula)

Es =
1

2

∫
R3

ρM(r)ψr(r) dr, (7.1)

where the solute’s charge density ρM is given in Eq. (2.7) and ψr is obtained by solving the LPB
equation. The outer iteration stops if inck < Tol, where Tol is the stopping tolerance and

inck :=
|Es
k − Es

k−1|
|Es
k|

, (7.2)

where Es
k denotes the electrostatic solvation energy computed at the k-th iteration. In the following

content, we study the electrostatic solvation energy computed numerically by the ddLPB, which
has been implemented in both Matlab and Fortran. Our Fortran code is based on the ddCOSMO
and ddPCM codes written by Lipparini et al. (see GitHub link [65]).

By default, we take the dielectric permittivity in the solute cavity as in vacuum, that is, ε1 = 1,
and take the solvent to be water with the dielectric permittivity ε2 = 78.54 at the room temperature
T = 298.15K (25◦C). Further, we set the Debye-Hückel screening constant to κ = 0.1040 Å−1, for
an ionic strength I = 0.1 molar. The solute cavity is chosen as the VDW-cavity. The atomic
centers, charges and VDW radii are obtained from the PDB files [66] and the PDB2PQR package
[67, 22] with the PEOEPB force field. By default, the stopping tolerance introduced in Section 6.3
is set to Tol = 10−4, while the GMRES tolerance in the ddLPB is set to 10−8. In the following
content, these default parameters are used if they are not specified.

7.1 Kirkwood model
To test the ddLPB, we start from the Kirkwood model which has the explicit analytical solution,
see [68, 69, 70]. In this model, there is only one sphere but with multiple charges distributed in
this sphere. We consider the following six cases with the sphere radii all set to 2Å.

• Case 0 (Born model). One positive unit charge placed at (0, 0, 0).

• Case 1. Two positive unit charges placed at (1, 0, 0) and (−1, 0, 0).

• Case 2. Two positive unit charges placed at (1, 0, 0) and (−1, 0, 0), and two negative unit
charges placed at (0, 1, 0) and (0,−1, 0).

20



Table 1: Electrostatic solvation energies (kcal/mol) of different Kirkwood models computed by the
ddLPB with different discretization parameters `max and Nleb, where κ = 0. RE represents the
relative error of the ddLPB result with respective to the exact result.

Case 0 Case 1 Case 2
`max Nleb Es RE Es RE Es RE

3 26 -81.9589 0 -349.5532 1.3762e-04 -64.0454 2.0606e-02
5 50 -81.9589 0 -349.4132 2.6294e-04 -62.5341 3.4772e-03
7 86 -81.9589 0 -349.5064 3.7195e-06 -62.7587 1.0199e-04
9 146 -81.9589 0 -349.5043 2.2890e-06 -62.7508 2.3904e-05
11 194 -81.9589 0 -349.5052 2.8612e-07 -62.7524 1.5936e-06
Exact -81.9589 -349.5051 -62.7523

Case 3 Case 4 Case 5
`max Nleb Es RE Es RE Es RE

3 26 -141.3629 4.5417e-02 -2991.4727 9.8768e-04 -3114.9078 2.7422e-03
5 50 -133.2890 1.4292e-02 -2988.0565 1.5543e-04 -3126.2105 8.7643e-04
7 86 -135.3437 9.0296e-04 -2988.5869 2.2051e-05 -3124.0588 1.8755e-04
9 146 -135.1534 5.0436e-04 -2988.4893 1.0607e-05 -3123.5037 9.8288e-06
11 194 -135.2189 1.9967e-05 -2988.5196 4.6846e-07 -3123.5193 1.4823e-05
Exact -135.2216 -2988.5210 -3123.4730

• Case 3. Two positive unit charges placed at (1.2, 0, 0) and (−1.2, 0, 0), and two negative unit
charges symmetrically placed at (0, 1.2, 0) and (0,−1.2, 0).

• Case 4. Six Positive unit charges placed at (0.4, 0, 0), (0, 0.8, 0), (0, 0, 1.2), (0, 0,−0.4),
(−0.8, 0, 0) and (0,−1.2, 0).

• Case 5. Six positive unit charges placed at (0.2, 0.2, 0.2), (0.5, 0.5, 0.5),
(0.8, 0.8, 0.8), (−0.2, 0.2,−0.2), (0.5,−0.5, 0.5) and (−0.8,−0.8,−0.8).

The first case is also called the Born model and the other fives cases are recommended in [70] to be
tested for PB solvers. Table 1 lists the electrostatic solvation energies computed by the ddLPB as
well as the relative errors, which are computed according to the following definition

RE :=
|Es − Es

ex|
|Es

ex|
. (7.3)

Here, Es denotes the electrostatic solvation energy computed by the ddLPB, while Es
ex denotes

the exact result. In the table, for a fixed `max, the corresponding Nleb ensures the accuracy of
computing the scalar products of two arbitrary spherical harmonics in the function basis.

7.2 Convergence w.r.t. discretization parameters
We study the relationship between the electrostatic solvation energy Es and the discretization
parameters, `max andNleb. For the sake of simplicity, we test a small molecule, namely formaldehyde
with 4 atoms (see Table 2 for the geometry data). First, we compute an “exact” electrostatic
solvation energy with large discretization parameters `max = 25 and Nleb = 4334. This implies that
we use 676 basis functions and 4334 integration points on each VDW sphere.
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Table 2: Charges, centers (x, y, z) and radii (Å) of the 4 atoms of formaldehyde.

Charge x y z VDW-radius
0.08130 0.00000 0.00000 -0.61750 2.11805
-0.20542 0.00000 0.00000 0.75250 1.92500
0.06206 0.00000 0.93500 -1.15750 1.58730
0.06206 0.00000 -0.93500 -1.15750 1.58730

Figure 5: The electrostatic solvation energies (kcal/mol, left) of formaldehyde and the relative errors
(right). On the left-hand side, the blue line represents the “exact” electrostatic solvation energy;
the red curve illustrates the energies computed by the ddLPB w.r.t. `max; the blue curve illustrates
the energies computed by the APBS w.r.t. the number of grid points nx = ny = nz in each axis
direction.

The red curve in Figure 5 illustrates how Es computed by ddLPB varies w.r.t. the maximum
degree of spherical harmonics `max, where Nleb = 4334. It is observed that the ddLPB provides
systematically improvable approximations when `max increases and we observed even exponential
convergence of the energy w.r.t. `max. This allows to efficiently obtain an accuracy that is needed
when the solvation model is coupled to a quantum mechanical description of the solute. Further,
we also run the APBS software for comparison, where the box size is fixed to be 20 × 20 × 20

(Å3) and the grid dimension nx × ny × nz varies (with nx = ny = nz in x-, y-, z-axis). In the
input file, the molecular surface is chosen to be the VDW surface, by setting srad = 0. We use
the multi-grid solver by setting mg-manual. The other parameters are set as follows: gcent = mol
1, bcfl = mdh, chgm = spl4, sdens = 10, srfm = mol, swin = 0.3. In Figure 5, the blue
curve illustrates how Es computed by the APBS varies w.r.t. nx.

Figure 6 illustrates how Es (computed by the ddLPB) varies w.r.t. the number of Lebedev
quadrature points Nleb, where `max = 25. In fact, when Nleb is greater than 1000, Es varies very
slightly (less than 0.04%), despite that it does not decay monotonically.
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Figure 6: The electrostatic solvation energies (kcal/mol, left) of formaldehyde and the relative errors
(right) w.r.t. Nleb, computed by the ddLPB. On the left-hand side, the blue line represents the
“exact” electrostatic solvation energy.

7.3 Varying the Debye-Hückel screening constants
We now study the relationship between the electrostatic solvation energy and the Debye-Hückel
screening constant κ. On the continuous level, the solution of the Poisson-Boltzmann equation
tends to the one of COSMO in the limit κ → ∞. Physically speaking, this is reasonable since the
solvent becomes a perfect conductor as the ionic strength tends to ∞ and screens any charge from
the solute. On the other hand, the solution of PB equation tends to the solution of PCM in the
limit κ→ 0.

It is therefore natural to compare the ddLPB with the ddCOSMO [38] and the ddPCM [45].
In Figure 7, we plot the electrostatic solvation energies of formaldehyde (with 4 atoms) and 1etn
(PDB ID, with 141 atoms) w.r.t. the Debye-Hückel screening constant. The same discretization
parameters `max = 11 and Nleb = 590 are used for all three methods ddCOSMO, ddPCM and
ddLPB.

For the limit κ → ∞, the ddLPB result tends to the ddCOSMO result. This is consistent
with the theory since the discretized equations for the ddLPB with κ coincide with those for the
ddCOSMO even after discretization. Indeed, the ddCOSMO method can been seen as a particular
ddLPB method in the case of κ =∞.

When κ = 0, we observe a difference between the ddLPB and ddPCM results. The reason is
that the ddPCM discretizes the IEF-PCM [9] directly whereas the ddLPB uses a discretization of
a different integral formulation. Since the continuous models are equivalent, the difference tends to
zero when higher discretization parameters are used.

7.4 Comparison with APBS
In this part, we further compare the ddLPB solver with the widely-used software, APBS. The
same parameters are used as in Section 7.2, except the grid spacings and dimensions. The test is
performed on a MacBook Pro with a 2.5 GHz Intel Core i7 processor and we consider the protein
1etn with 141 atoms as test case.

Table 3 illustrates the ddLPB and APBS results for different discretization parameters, includ-
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Figure 7: The electrostatic solvation energy (kcal/mol) of formaldehyde (left) and 1etn (right)
w.r.t. the Debye-Hückel screening constant κ. Solid blue line: ddCOSMO result; dashed blue line:
ddPCM result; red curve: ddLPB result, 0 < κ <∞; dashed red line: ddLPB result, κ = 0.

ing the electrostatic solvation energy, the relative error, the number of iterations, the run time
and the memory. To compute the relative error, two “exact” electrostatic solvation energies are
computed respectively using an exponential fitting for ddLPB and a linear extrapolation for APBS,
as illustrated in Figure 8.

In fact, we have observed an exponential convergence of the energy w.r.t. `max for formaldehyde
in Section 7.2. It appears therefore consistent to apply an exponential data fitting for the ddLPB-
energies. More precisely, we use the function fit in Matlab where the fit type is set to y =
a+ b · exp(−c · x). The “exact” electrostatic solvation energy E∗ddlpb is obtained as the coefficient a
when the fitting function is figured out. For the APBS, we use the linear extrapolation procedure
introduced in [17]. We first plot the APBS energies w.r.t. hg and then draw a line crossing the
leftmost two energies at hg = 0.1 and hg = 0.12. As a consequence, as hg tends to zero, this line
crosses the y-axis at an “exact” electrostatic solvation energy E∗apbs.

In Table 3, we can observe that the ddLPB usually cost less memory than the APBS due to
the nuclear-centered spectral-type basis functions similar to atomic orbitals. Furthermore, from the
relative errors obtained by extrapolation, one observes that the ddLPB results are more accurate
in this example, as also observed in Figure 5 which can be explained that APBS is a first order
method while ddLPB shows exponential convergence for the energy.

7.5 Computational cost
To study the computational cost of the ddLPB, we test a set of 24 proteins with the following PDB
IDs: 1ajj, 1ptq, 1vjw, 1bor, 1fxd, 1sh1, 1hpt, 1fca, 1bpi, 1r69, 1bbl, 1vii, 2erl, 451c, 2pde, 1cbn,
1frd, 1uxc, 1mbg, 1neq, 1a2s, 1svr, 1o7b, 1a63. The discretization parameters of the ddLPB are set
to `max = 5 and Nleb = 50. For the comparison, we also run the TABI-PB solver [17], which however
works on the SES, not the VDW surface. To have approximately the same degree of freedom, we
set the density of vertices in the TABI-PB to be 5 per Å2. In the TABI-PB, the order of Taylor
approximation is set to 1, the MAC parameter is set to 0.4 and the GMRES tolerance (relative
residual error) is set to 10−4. Both the TABI-PB and the ddLPB use the default parameters given
at the beginning of Section 7, that is, ε1 = 1, ε2 = 78.54 and κ = 0.1040 Å−1.
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Table 3: ddLPB (top) and APBS results (bottom) for the protein 1etn. Niter represents the number
of outer iterations in the ddLPB. hg and Ng represent the grid spacing and the grid dimension in the
APBS. E∗ddlpb and E∗apbs represent the “exact” electrostatic solvation energies computed respectively
from an exponential fitting for ddLPB and a linear extrapolation for APBS, as illustrated in Fig.
8.

`max Nleb Es(kcal/mol) RE Niter Run time (s) Memory (MB)

3 26 -429.3457 2.5091e-02 9 1 7
5 50 -433.3903 1.5907e-02 11 2 30
7 86 -437.6449 6.2460e-03 11 8 91
9 146 -438.9725 3.2314e-03 11 22 241
11 194 -439.1880 2.7421e-03 14 63 461
13 266 -439.1629 2.7991e-03 18 198 861
15 350 -440.1754 5.0001e-04 12 206 893
17 434 -440.1017 6.7735e-04 13 362 1398
E∗ddlpb -440.3956

hg Ng Es(kcal/mol) RE Niter Run time (s) Memory (MB)

0.5 653 -476.3143 7.9224e-02 – 1 63
0.4 973 -464.0155 5.1358e-02 – 3 203
0.26 1293 -457.4919 3.6577e-02 – 8 475
0.2 1933 -452.8998 2.6172e-02 – 29 1606
0.16 2253 -450.5827 2.0922e-02 – 46 2572
0.13 2893 -448.8017 1.6887e-02 – 113 5608
0.12 3213 -448.0838 1.5260e-02 – 190 7819
0.1 3853 -446.9613 1.2717e-02 – 525 14044
E∗apbs -441.3488

Figure 8: Estimation of the electrostatic solvation energy of 1etn (141 atoms), based on the expo-
nential data fitting for the ddLPB results (left) and the linear extrapolation for the APBS results
(right) in Table 3. Here, hg represents the grid spacing in the APBS. On the left, the red curve plots
the fitting function y = −440.3956 + 27.4584 exp(−0.2974x), which tends to E∗ddlpb = −440.3956
at the infinity. The dashed horizontal line is the asymptote of the curve. On the right, the red line
crosses the leftmost two energies and intersects the y-axis at the star maker E∗apbs = −441.3488.
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Figure 9: Run time (left) and maximum allocation of memory (right) of the ddLPB and the
TABI-PB w.r.t. the number of atoms, for different proteins in the test set. The detailed memory
information of the TABI-PB is not available and the memory is finally released.

Table 4: Details on the ddLPB and the TABI-PB for the test set of proteins, including the degree
of freedom and the number of iterations. M denotes the number of atoms.

Degree of freedom Iteration
PDB M ddLPB TABI ddLPB TABI

1ajj 602 43344 41420 15 10
1ptq 795 57240 56898 12 9
1vjw 946 68112 56084 12 13
1bor 832 59904 58076 16 100
1fxd 978 70416 62844 9 14
1sh1 696 50112 55604 14 15
1hpt 945 68040 65572 12 10
1fca 864 62208 49744 14 9
1bpi 1393 103320 64482 13 7
1r69 1099 79128 62648 11 11
1bbl 576 41472 53654 10 17
1vii 596 42912 50874 14 24

Degree of freedom Iteration
PDB M ddLPB TABI ddLPB TABI

2erl 633 45576 46642 10 11
451c 1435 103320 89286 13 45
2pde 667 48024 48430 18 12
1cbn 642 46224 – 12 –
1frd 1652 118944 90772 11 25
1uxc 809 58248 58164 19 10
1mbg 902 64944 64190 14 12
1neq 1187 85464 98964 11 100
1a2s 1272 91584 93574 15 22
1svr 1432 103104 100546 15 16
1o7b 1525 109800 103920 13 17
1a63 2065 148680 144796 13 74

Figure 9 illustrates the run time and the maximum allocation of memory of the ddLPB and
the TABI-PB for different proteins in the test set. Table 4 provides more information including
the degree of freedom and the number of iterations. As a general observation, we see that the
number of iteration to reach the tolerance is more stable in ddLPB. Notice that for the protein
1cbn, the MSMS in the TABI-PB fails to generate a suitable mesh and the TABI-PB stops without
returning the energy. Further, for the protein 1bor and 1neq, the GMRES in the TABI-PB reaches
the maximum number of iterations 100, before reaching the residual tolerance 10−4. The ddLPB
reaches the tolerance Tol = 10−4 within 20 outer iterations for all proteins in the test set.

Remark 7.1. At this moment, we haven’t yet employed acceleration techniques in the ddLPB
implementation, while the TABI-PB features the “treecode” acceleration technique [17].
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Figure 10: Reaction potentials (e/Å = 561.91 kT/e) on the VDW surface of 1etn with 141 atoms:
APBS result (left), ddLPB result (middle) and difference (right). The following parameters are
used: grid dimension 193× 193× 193 and grid spacing 0.2× 0.2× 0.2 for the APBS, `max = 11 and
Nleb = 194 for the ddLPB. The other parameters are the default ones as used previously.

Figure 11: Reaction potential (e/Å) on the VDW surfaces of benzene (left), caffeine (middle) and
1ajj (right) respectively with 4, 24 and 602 atoms. The following parameters are used: `max = 11
and Nleb = 194 for benzene and caffeine, `max = 7 and Nleb = 86 for the protein 1ajj. The other
parameters are the default ones as used previously.

7.6 Graphical illustration
Finally, we provide some graphical illustrations of the reaction potential ψr on the VDW surface. In
Figure 10, we illustrate the reaction potentials of 1etn computed by the APBS and the ddLPB, and
their potential difference on the VDW surface. It is observed that the difference is usually small
over the surface. In Figure 11, we present the reaction potentials of two small molecules benzene
and caffeine, and the protein 1ajj. We notice that the reaction potential of benzene has rotational
symmetry, which matches its geometrical structure.

8 Conclusion
In this paper, we proposed a domain decomposition method for the Poisson-Boltzmann solvation
model that shows exponential convergence in the energy w.r.t to the number of basis functions
employed. This allows to reach a precision which enable this method to couple it with models on
the level of quantum mechanics.

The original problem defined in R3 is first transformed into two coupled equations defined in
the bounded solute cavity, based on potential theory. Then, the Schwarz domain decomposition
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method was used to solve these two problems by decomposing the solute cavity into balls. In
consequence, we developed two direct single-domain solvers respectively for solving the Laplace
equation and the HSP equation defined in the unit ball, which becomes easy to tackle by using the
spherical harmonics in the angular direction. Taking into account the coupling conditions allowed
then to obtain a global linear system. A series of numerical results have been presented to show
the performance of the ddLPB method.

In the future, we will focus on accelerating the ddLPB to make it suitable to very large molecules
based on linear scaling acceleration techniques such as the Fast Multipole Method (FMM). In
addition, we will embed the ddLPB solver in software packages which simulate the computation of
the solute on the level of theory of quantum mechanics or molecular dynamics.
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A Computation of C1, C2 and F0

For each Γe
i , we first define a square matrix Pχe

i
of dimension (`max + 1)2× (`max + 1)2 for each χe

i ,
the (`0m0, `

′m′)-th element of which is defined as

[Pχe
i
]`
′m′

`0m0
:=

Nleb∑
n=1

wleb
n χe

i (xi + risn)Y m0

`0
(sn)Y m

′

`′ (sn), (A.1)

where 0 ≤ `0 ≤ `max,−`0 ≤ m0 ≤ `0, 0 ≤ `′ ≤ `max,−`′ ≤ m′ ≤ `′. Based on Eq. (6.15), we can
approximate χe

i∂nψr (defined on Γi) by a linear combination of spherical harmonics {Y m0

`0
} with

0 ≤ `0 ≤ `max,−`0 ≤ m0 ≤ `0 as follows

χe
i∂nψr(ri, s) =

`max∑
`0=0

`0∑
m0=−`0

cr,`0m0 Y
m0

`0
(s), s ∈ S2, (A.2)

where the coefficient cr,`0m0
is computed by the Lebedev quadrature rule as follows

cr,`0m0
=

`max∑
`′=0

`′∑
m′=−`′

[Pχe
i
]`
′m′

`0m0

`′

ri
[Xr]i`′m′ . (A.3)

Remark A.1. By writing χe
i∂nψr as a linear combination of spherical harmonics, the single-layer

potential S̃κ,Γi
can act on it conveniently.

For an arbitrary Lebedev point xj + rjsn = xi + rijnsijn ∈ Γe
j , we can then compute as followsÄ

S̃κ,Γi
χe
i∂nψr

ä
(xj + rjsn)

=

`max∑
`0=0

`0∑
m0=−`0

cr,`0m0

Ä
S̃κ,Γi

Y m0

`0

ä
(xj + rjsn)

=

`max∑
`0=0

`0∑
m0=−`0

cr,`0m0

Ç
i′`0 (ri)

i`0 (ri)
−
k′`0 (ri)

k`0 (ri)

å−1
k`0 (rijn)

k`0 (ri)
Y m0

`0
(sijn)

=

`max∑
`′=0

`′∑
m′=−`′

[Q]jni`′m′
`′

ri
[Xr]i`′m′ ,

(A.4)
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where Q is a matrix of dimension M(`max + 1)2 ×MNleb, with the (i`′m′, jn)-th element defined
by

[Q]jni`′m′ :=

`max∑
`0=0

`0∑
m0=−`0

[Pχe
i
]`
′m′

`0m0

Ç
i′`0 (ri)

i`0 (ri)
−
k′`0 (ri)

k`0 (ri)

å−1
k`0 (rijn)

k`0 (ri)
Y m0

`0
(sijn). (A.5)

Therefore, we have the (j`m, i`′m′)-th element of C1 as follows

[C1]i`
′m′

j`m =
ε1

ε2

(
Nleb∑
n=1

wleb
n χe

j(xj + rjsn)Y m` (sn)[Q]jni`′m′
`′

ri

)
. (A.6)

Similarly, based on Eq. (6.16), we can approximate χe
i∂nψe (defined on Γi) by another linear

combination of spherical harmonics {Y m0

`0
} with 0 ≤ `0 ≤ `max,−`0 ≤ m0 ≤ `0 as follows

χe
i∂nψe(ri, s) =

`max∑
`0=0

`0∑
m0=−`0

ce,`0m0 Y
m0

`0
(s), s ∈ S2, (A.7)

where

ce,`0m0 =

`max∑
`′=0

`′∑
m′=−`′

[Pχe
i
]`
′m′

`0m0

i′`′ (ri)

i`′ (ri)
[Xe]i`′m′ . (A.8)

For an arbitrary Lebedev point xj + rjsn = xi + rijnsijn ∈ Γe
j , we can then computeÄ

S̃κ,Γiχ
e
i∂nψe

ä
(xj + rjsn)

=

`max∑
`0=0

`0∑
m0=−`0

ce,`0m0

Ä
S̃κ,ΓiY

m0

`0

ä
(xj + rjsn)

=

`max∑
`0=0
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ce,`0m0

Ç
i′`0 (ri)

i`0 (ri)
−
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k`0 (ri)

å−1
k`0 (rijn)

k`0 (ri)
Y m0

`0
(sijn)

=

`max∑
`′=0

`′∑
m′=−`′

[Q]jni`′m′
i′`′ (ri)

i`′ (ri)
[Xe]i`′m′ .

(A.9)

This yields that

[C2]i`
′m′

j`m = −

(
Nleb∑
n=1

wleb
n χe

j(xj + rjsn)Y m` (sn)[Q]jni`′m′
i′`′ (ri)

i`′ (ri)

)
. (A.10)

In addition, since ∂nψ0 is known, for an arbitrary Lebedev point xj + rjsn = xi + rijnsijn ∈ Γe
j ,

we can compute the following column vector S

[S]ijn =
Ä
S̃κ,Γi

χe
i∂nψ0

ä
(xj + rjsn)

=

`max∑
`0=0

`0∑
m=−`0

c0,`0m
Ä
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Y m0

`0

ä
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=
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`0∑
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Ç
i′`0 (ri)

i`0 (ri)
−
k′`0 (ri)

k`0 (ri)

å−1
k`0 (rijn)

k`0 (ri)
Y m0

`0
(sijn),

(A.11)
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where

c0,`0m0 =

Nleb∑
n=1

wleb
n χe

i (xi + risn)∂nψ0(xi + risn)Y m0

`0
(sn). (A.12)

This yields that

[F0]j`m = −ε1

ε2

(
Nleb∑
n=1

wleb
n χe

j(xj + rjsn)Y m` (sn)
M∑
i=1

[S]ijn

)
. (A.13)
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