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SPARSE STRETCHING FOR SOLVING SPARSE-DENSE LINEAR LEAST-SQUARES

PROBLEMS

JENNIFER SCOTT∗ AND MIROSLAV TŮMA†

Abstract. Large-scale linear least-squares problems arise in a wide range of practical applications. In some cases, the

system matrix contains a small number of dense rows. These make the problem significantly harder to solve because their

presence limits the direct applicability of sparse matrix techniques. In particular, the normal matrix is (close to) dense, so

that forming it is impractical. One way to help overcome the dense row problem is to employ matrix stretching. Stretching

is a sparse matrix technique that improves sparsity by making the least-squares problem larger. We show that standard

stretching can still result in the normal matrix for the stretched problem having an unacceptably large amount of fill. This

motivates us to propose a new sparse stretching strategy that performs the stretching so as to limit the fill in the normal

matrix and its Cholesky factor. Numerical examples from real problems are used to illustrate the potential gains.

Key words. sparse matrices, linear least-squares problems, dense rows, matrix stretching, Cholesky factorization,

normal matrix.

1. Introduction. Large-scale linear least-squares (LS) problems occur in a wide variety of practical

applications, both in their own right and as subproblems of nonlinear least-squares problems. Our interest

lies in solving the real m× n (m > n) mixed sparse-dense LS problem

min
x
‖Ax− b‖2 = min

x

∥∥∥∥(AsAd
)
x−

(
bs
bd

)∥∥∥∥
2

, (1.1)

in which each row of the p × n block Ad is considered to be dense and As is ms × n with ms � p

(m = ms + p); the vector b is partitioned conformally. The presence of dense rows causes the normal

matrix C = ATA to be very (or even completely) dense, and this greatly limits the effectiveness of the

straightforward application of sparse matrix techniques for solving (1.1). A number of authors in the 1980s

and 1990s studied direct methods for tackling this problem, including George and Heath [18], Heath [21],

Björck [7, 8], and Sun [33, 34]. More recently, preconditioning strategies for (1.1) have been proposed.

A simple approach is that of Avron, Ng and Toledo [5] in which LSQR [27] is preconditioned by the

complete QR factorization of As (Ad is dropped from the factorization) while Scott and Tůma [32] explore

transforming the problem and using a reduced augmented form with either direct or iterative solvers. In

a separate paper, Scott and Tůma [31] propose processing the rows of Ad separately within a conjugate

gradient method using an incomplete factorization preconditioner combined with the factorization of a

dense matrix of size equal to the number of dense rows.

Here, we revisit the idea of matrix stretching for handling dense rows. Stretching aims to split each

of the rows of Ad into several sparser parts and to formulate a (larger) modified problem that provides

the solution to the original one. The approach was introduced in 1990 by Grcar [20], who proposed both

row and column stretching as an effective way of treating sparse matrices with dense rows or columns

before performing an LU factorization. The technique was subsequently used for solving linear systems

by Alvarado [3], Ferris and Horn [17], Aykannat, Pinar and Çatalyürek [6], and Duff and Scott [15].

For LS problems, a theoretical analysis of the stretching of dense rows was presented in 2000 by Adlers

and Björck [1, 2], who proposed row splitting as an alternative to updating methods and presented some

preliminary numerical results illustrating the potential of the approach.

A key issue with matrix stretching is deciding how to choose the number of parts the dense rows should

be split into. While a small number can significantly improve sparsity of the normal matrix, increasing this

number can adversely effect the condition of the problem. Moreover, the fill in the Cholesky factor of the
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normal matrix for the stretched problem can still be unacceptably large, limiting the suitability of sparse

direct solvers and leading to poor quality incomplete factorization preconditioners. To overcome this, we

introduce a new idea of sparse stretching. Sparse stretching looks at the interaction between the stretched

rows and the non-dense rows As when deciding how to split the dense rows. This leads to the need to

solve an auxiliary combinatorial problem. In practice, this combinatorial problem is solved approximately

and its solution determines the number of parts to split the dense rows into as well as how to split the

dense rows.

The rest of the paper is organised as follows. In Section 2, we recall stretching of dense rows and

present a result on the condition of the stretched problem. We also look at the structural properties of

the stretched problem for three simple test cases with a single dense row. These highlight the potential

weaknesses of the existing stretching strategy. In Section 3, we introduce sparse stretching and present

our algorithm for determining how to split dense rows so as to limit fill in the resulting stretched normal

matrix. Numerical results are presented in Section 4 and concluding remarks and possible future directions

are discussed in Section 5.

2. Matrix stretching for LS problems.

2.1. Standard stretching. We start by briefly recalling the simplest case of matrix stretching for LS

problems based on binary splitting. The notation used here is based on that of Adlers and Björck [2]. We

initially assume that Ad represents a single dense row, which we denote by fT . The stretching procedure

has two steps. In the first, a larger problem is constructed by splitting the dense row fT into two parts

fT = (fTa fTb ) and introducing a linking variable s ∈ R. Let us split the sparse block As and the solution

vector x as As = (Asa Asb), x = (xTa xTb )T to conform with the splitting of fT . It is straightforward to

observe [2] that the component x of the solution (xT s)T of the extended LS problem

min
(xT s)T

∥∥∥∥∥∥
Asa Asb 0

fTa fTb 0

fTa −fTb
√

2

xaxb
s

−
bsbd

0

∥∥∥∥∥∥
2

(2.1)

is the same as the solution x of the original problem (1.1). The second step applies an orthogonal

transformation to the extended system matrix in (2.1) to replace fTb in the second block row and fTa in

the third block row by zeros (see [2] for details). Orthogonal invariance of the norm leads to the equivalent

stretched problem

min
z
‖Âz − b̂‖2

with

Â =

 Asa Asb 0√
2 fTa 0 1

0
√

2 fTb −1

 , z =

xaxb
s

 , b̂ =

 bs
bd/
√

2

bd/
√

2

 .

Now consider splitting fT into k ≥ 2 parts. Generalising the above gives

Â =

(
As
FT γS

)
, Ad ≡ fT =

1√
k
eTFT , FT ∈ Rk×n, z =

(
x

s

)
, b̂ =

(
bs

bde/
√
k

)
, (2.2)

where e ∈ Rk is the vector of ones. Here the linking matrix S is given by

S =



1

−1 1

−1
. . .

. . . 1

−1


∈ Rk×(k−1)
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and s ∈ Rk−1 is the linking vector [2, 35]. The parameter γ offers additional scaling that is applied to the

linking vector and can be chosen to improve the condition estimate (see below).

Generalising the splitting further, let Ad =
(
f1, . . . , fp

)T
have p ≥ 1 rows. Let each dense row fTi be

stretched into a matrix FTi with ki > 1 rows and let the right-hand side vector bd =
(
b1, . . . , bp

)T ∈ Rp×n
be transformed into b̂. The matrix Â can be written as in (2.2) with S replaced by Ŝ = diag(S1, . . . , Sp)

and F =
(
F1 . . . Fp

)
where

fTi =
1√
ki

eTi F
T
i , FTi ∈ Rki×n, z =

(
x

s

)
, s =

s1...
sp

 , b̂T =
(
bTs ,

b1√
k1
eT1 . . .

bp√
kp
eTp
)
,

with Si ∈ Rki×(ki−1), si ∈ Rki−1, ei ∈ Rki .
We refer to this matrix stretching for LS problems as standard stretching. In particular, we assume

that standard stretching splits the row indices of the entries in the dense rows into sets of equal (or almost

equal) contiguous segments and then bases the stretching on these sets.

2.2. Condition of the stretched system. Adlers and Björck [2] showed that the stretched LS

problem has the same set of solutions x as the original problem. In addition, they analysed the condition

of the stretched problem in the case that A is of full rank. Since their derivation of an upper bound on

the condition number of Â contains a small error, we state a slightly modified conditioning result but omit

full details of the proof. In particular, in deriving an upper bound on the norm of (STS)−1ST , Adlers and

Björck use the inequality sinx ≥ x, x ≥ 0 but this inequality is incorrect. Instead, the following relation

may be used.

Lemma 2.1. For all x ≥ 0, sinx > x− x3/3.

Proof. Setting g(x) = x−x3/3− sinx, we can see that g(0) = 0, g′(x) = 1−x2− cosx = 2 sin2(x/2)−
x2 < 2x2/4− x2 = −x2/2 < 0. Consequently, g is decreasing for x ≥ 0 and the result follows.

Based on the previous lemma, we state another simple relation as follows.

Lemma 2.2. For k ≥ 2, sinπ/(2k) > 1/k.

Proof. From Lemma 2.1 it follows that sin(π/(2k)) > π/(2k)−π3/(24k) > 1/k(π/2−π2/96) > 1/k.

Using this and the identity

‖S†‖22 = ‖(STS)−1ST ‖22 = ‖((STS)−1)ST ((STS)−1ST )T ‖2 = ‖(STS)−TSTS(STS)−1‖2 = ‖(STS)−1‖2,

we obtain a bound for the pseudoinverse

‖S†‖22 = 1/2(1− cos(π/k))−1 = 1/4 sin−2(π/(2k)) < k2/4. (2.3)

We now state a bound on the condition of the stretched system. Let k = max{ki, 1 ≤ i ≤ p}. Let

Ĉ = ÂT Â be the stretched normal matrix. Assume the singular values σi(A) of A and the eigenvalues

λi(Ĉ) of Ĉ are sorted in descending order of their absolute values. Then we have the following result.

Theorem 2.3. (modified from [2]) If the stretching parameter γ is given by 1/2
√
p k‖Ad‖2 then the

largest eigenvalue λ1(Ĉ) satisfies

λn(Ĉ)−1 ≤ σ2
n(A)−1

(
‖S†‖22
γ2

p k‖Ad‖22 +
‖S†‖22
γ2

σ2
n(A) +

‖S†‖2
√
p k

γ
‖Ad‖2

)
. (2.4)

Furthermore,

λ1(Ĉ) ≤
(
σ2
1(A) + p k ‖Ad‖22 + 2γ

√
p k‖Ad‖2

)
=
(
σ2
1(A) + 2p k ‖Ad‖22

)
.
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Substituting the bound (2.3) for ‖S†‖2 into (2.4) yields the following result.

Theorem 2.4. An upper bound for the condition number of the stretched matrix Â with γ =

1/2
√
p k‖Ad‖2 is

κ2(Â) ≤ κ2(A)k

(
1 +

2 p k‖Ad‖22
‖A‖22

)(
k + 1 +

σn(A)2

‖Ad‖22

)
.

2.3. Structural properties of the stretched system. In this section, we consider structural

effects caused by standard stretching. We focus on three simple cases: As diagonal, As tridiagonal and As
with a simple Laplacian structure based on the five-point two-dimensional stencil. We demonstrate that

the stretched rows can adversely influence the density of the stretched normal matrix and of its factors,

even if the number of stretched parts is small. This will help understand the experimental results in

Section 4 for practical examples and motivates the sparse stretching that we propose in Section 3. With

the stretched matrix given by

Â =

(
As
FT γS

)
,

the stretched normal matrix is

Ĉ = ÂT Â =

(
ATs F

γST

)(
As
FT γS

)
=

(
ATs As + FFT γFS

γSTFT γ2STS

)
. (2.5)

The number of entries in Ĉ is denoted by nz(Ĉ).

2.3.1. As diagonal. We start by considering A with a single dense row and As diagonal. The sparsity

pattern of the stretched matrix Â and the stretched normal matrix Ĉ is illustrated in Figure 2.1. Here,

n = 64 and the dense row fT is stretched into k = 8 parts.
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Fig. 2.1. Structure of Â (left) and Ĉ (right) for the matrix A with a single dense row and As diagonal with n=64 and

the dense row stretched into 8 parts.

We have the following result.

Lemma 2.5. Consider the m × n matrix A =

(
As
fT

)
with a single dense row, m = n + 1, n = 2r

(r > 1) and As diagonal. If the dense row is split into k = 2l equal parts (0 ≤ l ≤ r − 1) then the number

nz(Ĉ) of entries in the stretched normal matrix Ĉ is

nz(Ĉ) = 22r−l + 2r+2 − 2r−l+2 + 3 (2l − 1)− 2.
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Proof. The stretched matrix Â is of order (n + 2l) × (n + 2l − 1). The dense row is split into 2l

parts, each of length 2r−l. ATs As + FFT is block diagonal with blocks of dimension 2r−l, having a total

of 2l × 22(r−l) entries. FS has 2l − 1 blocks each of size 2(2(r−l)) × 1. Finally, STS is tridiagonal with

3 (2l − 2)− 2 nonzeros. Combining yields

nz(Ĉ) = 2l × 22(r−l) + 2(2l − 1)2(2(r−l)) + 3(2l − 1)− 2,

from which the result is obtained.

In this case with As diagonal, there is no fill in the factors of Ĉ.

Lemma 2.6. Under the same assumptions as in Lemma 2.5, the Cholesky factorization of Ĉ generates

no fill.

Proof. Since ATs As+FFT is block diagonal, there is no fill when it is factorized. Furthermore, there is

no fill in the off-diagonal block γFS. All the updates of entries during the Cholesky factorization belong to

the tridiagonal matrix γ2STS. But, because the construction of Ĉ always couples only two neighbouring

parts of the stretched matrix Â, the block γ2STS embeds all the updates within its tridiagonal structure.

Figure 2.2 plots the number of entries in Â and Ĉ for the matrix A with a single dense row that is

split into an increasing number of parts and As diagonal (n = 64). Even in this simple case we see that,

after an initial reduction, nz(Ĉ) (and hence the number of entries in the Cholesky factor of Ĉ) stagnates

as the number of parts increases. This indicates that it may not be worthwhile to split dense rows into a

large number of parts.
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Fig. 2.2. Number of entries in Â and Ĉ when A has a single dense row that is split into an increasing number of

parts and As is diagonal (n = 64).

2.3.2. As tridiagonal. We now consider As tridiagonal and again we assume A has a single dense

row. The following lemma shows that the Cholesky factorization Ĉ = L̂T L̂ of the stretched normal matrix

can suffer from significant fill caused by the interaction of the stretched row with As.

Lemma 2.7. Consider the m × n matrix A =

(
As
fT

)
with a single dense row, m = n + 1, n = 2r

(r > 1) and As tridiagonal. If the dense row is split into k = 2l equal parts (0 ≤ l ≤ r − 1), then

nz(Ĉ) = 22r−l + 2r+2 − 2r−l+2 + 3 (2l − 1)− 2.

Furthermore, if Ĉ = L̂T L̂ then

nz(L̂+ L̂T ) = 2l × 22 (r−l) + 6(2l − 1) + (2l − 1)(2l − 1) + 2 (2l − 1)2(r−l) + 2(r−l)(2(l−1)(2l − 1)).
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Proof. The dense row is split into 2l parts, each of length 2r−l. ATs As + FFT has blocks on the

diagonal of dimension 2r−l plus nonzeros between the blocks because As is tridiagonal. This gives 2l ×
22(r−l)+6(2l−1) entries. The off-diagonal block FS and the remaining diagonal block ŜTS then contribute

2 (2 (2l − 2)2(r−l) + 2× 2(r−l)) and 2l − 1 + 2(2l − 2) entries, respectively. From this we obtain

nz(Ĉ) = 2l × 22(r−l) + 6(2l − 1) + 2 (2 (2l − 2)× 2(r−l) + 2× 2(r−l)) + 2l − 1 + 2 (2l − 2),

which gives the first result. To compute nz(L̂ + L̂T ), we need to consider the fill. There is no fill

from factorizing ATs As + FFT and its contribution is thus 2l × 22(r−l) + 6(2l − 1). The (2, 2) block fills in

completely, contributing (2l − 1)(2l − 1) entries. Finally, the full lower-trapezoidal block in L̂ contributes

2× (2l − 1)× 2(r−l) + 2(r−l)(1 + . . .+ 2l − 1) = 2× (2l − 1)× 2(r−l) + 2(r−l)(2(l−1)(2l − 1)) entries and the

result follows.

Figure 2.3 illustrates the sparsity patterns of Ĉ and its Cholesky factor for the matrix in Lemma 2.7

with n = 64 and the dense row split into 8 parts. Figure 2.4 plots the number of entries in Â, Ĉ and its

Cholesky factor as the number k of parts into which the dense row is split is increased. Here the fill in the

Cholesky factor increases rapidly with k (even though the basic sparsity pattern of Ĉ is an arrowhead [12]).

In this example, the fill can be reduced by reordering Ĉ prior to performing the Cholesky factorization.

Figure 2.5 illustrates the effect of reordering using the approximate minimum degree (AMD) algorithm

[4].
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Fig. 2.3. Structure of Ĉ and its Cholesky factor for the matrix A with As tridiagonal and a single dense row that is

split into 8 parts (n = 64).

2.3.3. As with Laplacian structure. The third example we consider is As having the structure of

the two-dimensional 5-point discrete Laplacian matrix and one dense row is appended. In this case, as can

be seen in Figures 2.6 and 2.7, reordering the stretched normal matrix offers some advantages but does

not prevent the fill from growing as the number of parts the dense row is split into increases. We remark

that these results are for AMD ordering but similar results are obtained using nested dissection ordering.

3. Sparse stretching. We have seen that standard stretching based on the simple splitting of the

dense row into a number of contiguous segments can result in significant fill in the stretched normal matrix

and, in particular, in its factor. In this section, we introduce a new sparse stretching strategy that aims

to limit this fill. We use the same notation as in Section 2.2 and in particular, we initially assume a single

dense row fT and use the notation (2.5). We want to perform the splitting of fT (that is, the construction

of FT ) so as to limit the entries in Ĉ. We make the following observations.

Observation 3.1. STS is tridiagonal and so the number of entries in the (2,2) block of Ĉ depends

only on the order of S (that is, on the number of parts k the dense row is split into). Thus we want k to

be small.
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Fig. 2.4. Number of nonzeros in Â and Ĉ (left) and number of nonzeros in Ĉ and its Cholesky factor (right) for the

matrix A with As tridiagonal and a single dense row that is split into an increasing number of parts (n = 64).
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Fig. 2.5. Structure of the Cholesky factor for the AMD reordered Ĉ for the matrix A with As tridiagonal and a single

dense row that is split into 8 parts (n = 64) (left); the number of nonzeros in the reordered Ĉ and its Cholesky factor (right)

for the same matrix with the dense row split into an increasing number of parts.

Observation 3.2. The fill in the principal leading block ATs As + FFT of Ĉ resulting from the dense

row is a minimum if the structure of FFT is contained within that of ATs As.

Consider a sparse vector u. Define Struct(u) to be the set of indices corresponding to the non zero

entries in u. This can be generalised to a sparse matrix X by defining Struct(X) to be the set of positions

(i, j) of the non zero entries in X. The condition on embedding stated in Observation 3.2 can then be

written as

Struct(FFT ) ⊆ Struct(ATs As). (3.1)

We define the concept of dominance among rows of a sparse matrix.

Definition 3.1. Consider a sparse matrix X. Row vT of X is said to structurally dominate row uT

of X if

Struct(u) ⊆ Struct(v).

We have the following straightforward result.
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Fig. 2.6. Structure of the Cholesky factor of the stretched normal matrix with no reordering (left) and AMD ordering

(right). As has the structure of the two-dimensional 5-point discrete Laplacian matrix; one dense row is appended and split

into 8 parts (n = 64).
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Fig. 2.7. Number of nonzeros in the Cholesky factor of Ĉ with no reordering (left) and with AMD ordering (right) as

the number of stretched parts increases. As has the structure of the two-dimensional 5-point discrete Laplacian matrix and

one dense row is appended (n = 64).

Lemma 3.2. Consider an m × n sparse matrix X and let uT be a 1 × n sparse row vector. If there

exists a row vT of X that structurally dominates uT then

Struct(
(
XT u

)(X
uT

)
) ⊆ Struct(XTX).

As a simple example, consider the 4× 4 matrix

X =


∗ ∗ ∗
∗

∗ ∗
∗

 .

The sparsity patterns of rows 2 and 3 are both contained within that of row 1 and so row 1 structurally

dominates rows 2 and 3. If uT =
(
∗ 0 0 ∗

)
then again row 1 structurally dominates uT and it is
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straightforward to verify that the sparsity pattern of
(
XT u

)(X
uT

)
and of XTX is


∗ ∗ ∗
∗ ∗ ∗

∗
∗ ∗ ∗


The idea behind sparse stretching is to find a splitting of Struct(f) into k disjoint non-empty index

sets t1, . . . , tk (k ≤ r) and to construct FT so that its i-th row contains the |ti| entries of Struct(f)

corresponding to the i-th part of the splitting. Any such splitting that satisfies (3.1) is said to define a

correct stretching. From Lemma 3.2, finding a correct stretching involves finding index sets so that each

row of FT is dominated by one or more rows of As. This problem is closely related to the well-known

problem of minimizing a set cover, which we discuss below.

Definition 3.3. Consider a set U and a collection R of subsets of U whose union is equal to U . A

subcollection Q ⊆ R is a set cover for B ⊆ U if

B ⊆
⋃
q∈Q

q. (3.2)

Q is a minimum set cover for B if it is the smallest subcollection of R satisfying (3.2). Q is a minimal

set cover for B if there is no proper subset of Q satisfying (3.2).

To express the relationship between a minimum vertex cover for B and a correct stretching we use the

following bipartite graph.

Definition 3.4. Denote the i-th row of As by (As)i∗ (1 ≤ i ≤ ms) and let Struct(f) = {j1, . . . , jr}
where r = |Struct(f)|. The bipartite graph G = (R,B,E) with vertex sets R = {1, . . . ,ms} and B =

{j1, . . . , jr} and edges given by

(i, j) ∈ E ⇐⇒ j ∈ Struct((As)i∗) (3.3)

is called the bipartite row intersection graph of As and fT .

As an example, consider the matrix A on the left of Figure 3.1. Here As ∈ R14×12 and Struct(f) =

{1, 2, 3, 4, 5, 6, 7, 8, 10, 12} (r = 10). The bipartite row intersection graph of As and fT is given (middle)

and a subgraph that contains only the edges involving the vertices in the vertex cover for B (right). The

vertex cover Q′ depicted here is given by the subset {2, 5, 8, 9} of the vertices in the set R corresponding

to rows (As)2∗, (As)5∗, (As)8∗ and (As)9∗ of A. Thus Q′ = {t′1, t′2, t′3, t′4} with

t′1 = {2, 8, 10}, t′2 = {1, 2, 5, 7}, t′3 = {3, 12}, t′4 = {3, 4, 6}.

Lemma 3.5. Let G = (R,B,E) be the bipartite row intersection graph of As and fT and let Q′ =

{t′1, . . . , t′k} be a minimal vertex set cover for B. Consider the transformation of Q′ to another vertex

cover Q = {t1, . . . , tk} such that

Struct(tu) ∩ Struct(tv) = ∅, u, v ∈ {1, . . . , k}, u 6= v. (3.4)

Then the sets of column indices in Q represent a splitting that gives a correct stretching.

Proof. From the definition of a vertex set cover of B it follows that the union of the sets in Q′ contains

all indices in Struct(f). Removal of entries from Q′ makes its members disjoint. Since the cover is minimal,

there is no subcollection of Q′ that is a vertex set cover of B. This means that none of the members of Q
is empty. Consequently, Q defines a correct stretching.

Recall Observations 3.1 and 3.2. From the above, the structure of FFT is embedded within that of

ATs As when the stretching is based on the transformation of a minimal vertex set cover of B to obtain

9
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Fig. 3.1. A matrix of order 15× 12 with one dense row (left); the bipartite row intersection graph G = (R,B,E) of As

and fT (middle); a subgraph containing only the edges involving the vertices in the vertex cover for B (right).

disjoint sets. Thus to minimise the fill in Ĉ (2.5), it remains to consider fill in FS. Recall that S is

tridiagonal and so it is easy to see that the fill in FS is given by

|t1|+ |tk|+ 2

k∑
i=2

|ti|. (3.5)

This is minimized by reordering the sets within Q so that

|t1| ≥ |tk| ≥ max
2≤i≤k−1

|ti|. (3.6)

Our algorithm for determining the splitting on which sparse stretching is based can now be presented

(Algorithm 3.1). We remark that the number k of parts into which the dense row is split is determined

by step 2 of the algorithm as the number of sets in the minimal vertex set cover.

Algorithm 3.1. Sparse stretching of A with one dense row

Input: A ∈ Rm×n with m ≥ n split into two parts As and Ad where As ∈ Rms×n and Ad ≡ fT ∈ R1×n

Output: k and disjoint index sets t1, t2, . . . , tk such that Struct(f) = ∪1≤i≤kti
1. Construct the bipartite row intersection graph G = (R,B,E) of As and fT .

2. Find a minimum vertex set cover Q′ = {t′1, . . . , t′k} for B. (This determines k.)

3. for i = 1, . . . , k do

4. Set ti = argmaxτ∈Q′ |τ |, update Q′ ⇐ Q′ \ ti.
5. for q ∈ Q′ do

6. q ⇐ q \ (q ∩ ti)
7. end do

8. end do

9. Set t = t2.

10



10. for i = 2, . . . , k − 1 do

11. Set ti = ti+1

12. end do

13. Set tk = t.

We illustrate Algorithm 3.1 for the example in Figure 3.1. Starting with Q′ = {t′1, t′2, t′3, t′4}, the

algorithm finds the vertex set cover Q = {t1, t2, t3, t4} with disjoint sets

t1 = {1, 2, 5, 7}, t2 = {8, 10}, t3 = {12}, t4 = {3, 4, 6}.

We illustrate this graphically in Figure 3.2. On the left, we have the k = 4 rows of A chosen by solving

the minimal vertex cover problem. Then, on the right, the sets of indices corresponding to these rows

are made pairwise disjoint by removing some of the entries and then reordering so that the sets with the

largest number of entries are the first and last ones. This gives the required sparse stretching of the dense

row into 4 parts, that is, it gives Struct(F ). Observe that the rows of FT are, respectively, dominated by

rows 5, 2, 8 and 9 of As.


1 2 3 4 5 6 7 8 9 10 11 12

∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗
∗ ∗ ∗

. FT =


1 2 3 4 5 6 7 8 9 10 11 12

∗ ∗ ∗ ∗
∗ ∗

∗
∗ ∗ ∗

.

Fig. 3.2. For the problem in Figure 3.1, the rows of A that solve the minimal vertex cover problem are on the left and

on the right is the sparsity pattern of the stretched block FT .

We now consider the complexity of the preprocessing based on Algorithm 3.1. We focus on step 2

because the other steps pass through the selected rows only once and hence their complexity is low. The

decision version of the set cover problem is one of twenty-one classical NP-complete problems introduced

by Karp [25]. There are a number of ways to construct a minimum vertex set cover; we would like the

cardinality k to be small. A classical treatment of this problem and its extensions can be found, for

example, in [36]. In our experiments, we adopt a greedy approach. Given the bipartite row intersection

graph G(R,B,E), for each i ∈ R we define the adjacency set

adji = {j ∈ B|(i, j) ∈ E},

that is, adji is the set of neighbours of i in B. For each j ∈ B, the adjacency set adjj is defined analogously.

If we store the indices of the entries in As by both rows and columns then adji and adjj are readily available.

The degrees degi and degj are the numbers of entries in adji and adjj , respectively. The greedy algorithm

starts by marking all the vertices in B as uncovered and, for each i ∈ R, initialises the count of uncovered

neighbours in B to counti = degi; the m vertices in R are then sorted into decreasing order of their

counts. Starting with the first vertex in the sorted sequence, at each step, the next vertex i ∈ R in the

sequence is selected. The uncovered neighbours of i are marked as covered, and for each of the remaining

vertices r ∈ R, countr is updated and the sorted sequence amended. It follows that an upper bound on

the operation count of the greedy algorithm is given by

m+ k max
i∈R

degi max
j∈B

degj .

To illustrate that this complexity is comparable with other standard preprocessing steps used by sparse

solvers, consider the algorithms that are used to make a sparse matrix more diagonally dominant. These

are commonly employed within modern sparse solvers to help limit the need for pivoting that can adversely
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effect performance and limit the scope for parallelism (see, for example, [11, 22, 26, 28]) and are based

on maximum matching [13, 14, 16]. For an m × n sparse matrix M , computing a maximum matching

involves employing a bipartite graph GM in which the vertex sets Row and Col correspond to the rows

and columns of M with an edge between r ∈ Row and c ∈ Col if Mij 6= 0. Each step of the maximum

matching algorithm searches for augmenting paths in GM . This involves passing through the adjacency

sets for both the row and column vertices and the complexity can be shown [16] to be n |M | (|M | denotes

the number of entries in M), although in practice maximum matching algorithms are typically much faster

than this.

We observe that another interesting aspect of the greedy algorithm is its approximation quality, see,

for example, [24]. It can be shown that if kmin is the smallest possible number of rows in the set cover,

that is, the cardinality of the optimum solution, then k in Algorithm 3.1 satisfies k ≤ kmin lnn, where ln

denotes the natural logarithmic function (see [9]).

Finally, we remark that we have discussed stretching of a single row fT . In the case of more than one

such row, we stretch each separately (the number of parts k is typically different for each row). The matrix

is extended by a block FTi for each dense row fTi that is stretched. While the initial classification of rows

is straightforward since it is enough to mark the rows and not to move them, separate constructions of the

graph model by Algorithm 3.1 for each row can result in significant increases in the preprocessing time. In

our future research we plan to try and overcome this by handling blocks of dense rows as a single entity.

4. Numerical results. In this section, we demonstrate that sparse stretching finds a suitable number

of parts for the splitting and can significantly reduce the fill in both the stretched normal matrix and its

Cholesky factor compared to standard stretching.

Our first set of examples do not initially contain dense rows; instead we append one or more dense

rows. This allows us to explore the effect of varying the number of dense rows as well as the density of

these rows. The problems are listed in Table 4.1. They are taken from the University of Florida Sparse

Matrix Collection [10] and, if necessary, are transposed so that ms > ns.

Table 4.1

Statistics for Test Set 1. ms, ns and nz(As) are the row and column counts and the number of nonzeros in As.

Problem ms ns nz(As)

WM1 277 207 2909

LP AGG 615 488 2862

GAMS60AM 1071 714 2607

MARAGAL 5 4654 3320 93091

CEP1 4769 1521 8233

STORM2-8 11322 4409 28553

IG5-15 11369 6146 323509

KEMELMACHER 28452 9693 100875

BAXTER 30733 27441 11576

TESTBIG 31223 17613 61639

STORMG2-27 37485 14441 94274

WORLD 67147 34506 198883

MRI1 147456 65536 589824

4.1. Two small examples. We first consider two examples WM1 and LP AGG that are small enough for

us to present plots of the stretched matrix and the stretched normal matrix and its factors. In both cases,

one fully dense row is appended to the given matrix. These problems illustrate the potential advantages of

sparse stretching over standard stretching. For example WM1, Figure 4.1 reports the entries in the stretched

normal matrix (left) and its Cholesky factor (right). Results for standard stretching are plotted for an

increasing number of stretched parts while for sparse stretching a single point is plotted, corresponding to

the number of parts determined by Algorithm 3.1.

Analogous results for LP AGG are summarized in Figure 4.2. In this case, the value of k returned

by Algorithm 3.1 is 55. For this k, the sparsity patterns of Ĉ for standard stretching (left) and sparse
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Fig. 4.1. Comparison of the entries in the stretched normal matrix (left) and its Cholesky factor (right) for problem

WM1 with one dense row appended. The curve corresponds to the number of entries varying with the number of parts into

which the dense row is stretched (standard stretching); the dot is for sparse stretching with the number of stretched parts

determined by Algorithm 3.1 (k = 116).
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Fig. 4.2. Comparison of the entries in the stretched normal matrix (left) and its Cholesky factor (right) for problem

LP AGG with one dense row appended. The curve corresponds to the number of entries varying with the number of parts into

which the dense row is stretched (standard stretching); the dot is for sparse stretching with the number of stretched parts

determined by Algorithm 3.1 (k = 55).

stretching (right) are given in Figure 4.3 and its Cholesky factors with and without reordering Ĉ before it

is factorized are given in Figures 4.4 and 4.5, respectively.

The emphasis of our study is on the structural effects of sparse stretching and the potential this

has to make LS problems with a few dense rows more tractable for both direct and iterative solvers.

Nevertheless, it is of interest to consider how stretching effects conditioning. In Figure 4.6, for examples

WM1 and LP AGG we plot the condition number (computed using the Matlab function condest) of the

normal matrix corresponding to the original matrix with one dense row appended and to the stretched

matrix (the former has zero stretched parts). As expected, the condition number increases with the number

of stretched parts. But for WM1, we observe that stretching the dense row into a small number of parts

improves the conditioning compared to the unstretched problem.

4.2. Comparison of standard and sparse stretching. We now compare standard and sparse

stretching when applied to the remaining problems in Test Set 1; again, a single dense row is added.

Results are given in Table 4.2. Here Ratio(Ĉ) is the ratio of the number of entries in the stretched normal

matrix Ĉ using sparse stretching to the number using standard stretching. Similarly, Ratio(L̂) is the ratio

of the number of entries in the Cholesky factor of Ĉ using sparse stretching to the number using standard

stretching; nzAMD(L̂) and RatioAMD(L̂) indicate that Ĉ is reordered before being factorized. We see
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Fig. 4.3. For problem LP AGG with one dense row appended, the sparsity pattern of the stretched normal matrix for

standard stretching (left) and sparse stretching (right) with the number of stretched parts determined by Algorithm 3.1.

Fig. 4.4. For problem LP AGG with one dense row appended, the sparsity pattern of the Cholesky factor of the stretched

normal matrix (without reordering) for standard stretching (left) and sparse stretching (right) with the number of stretched

parts determined by Algorithm 3.1.

that, in general, Ĉ is significantly sparser when sparse stretching is used in place of standard stretching

(Ratio(Ĉ) is less than 1.0 for all problems except IG5-15). This, in turn, generally leads to sparser factors,

although this is not guaranteed (particularly if Ĉ is reordered).

4.3. The effects of varying the density. It is not necessary for a row to be fully dense for it to be

advantageous to treat it as dense. Given the density ρ < 1, we randomly generate the sparsity pattern of

the appended row. In Figure 4.7, for problem WORLD, we plot the number of entries in the Cholesky factor

of Ĉ when the appended row has density ρ = 0.01, 0.05 and 0.1. As expected, as ρ increases, so too does

the number of parts it needs to be split into to retain sparsity in the factors and the greater the advantage

gained from using sparse stretching.

In Figure 4.8, we plot the number of entries in the Cholesky factor of the AMD reordered stretched

normal matrix for an increasing number of added rows. Each added row is of density ρ = 0.05 (with the

patterns generated randomly). Results are given for standard and sparse stretching. In each case, the

number of stretched parts is determined by Algorithm 3.1. We observe the significant advantage of using

sparse stretching.

4.4. Problems containing some dense rows. We now consider examples where the supplied

matrix has a number of dense rows. These are taken from the Meszaros subcollection of the University of

Florida Sparse Matrix Collection. In these experiments, we define a row of A to be dense if the number

of entries either exceeds 100 times the average number of entries per row or is more than 4 times greater
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Fig. 4.5. For problem LP AGG with one dense row appended, the sparsity pattern of the Cholesky factor of the AMD
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parts determined by Algorithm 3.1.
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Fig. 4.6. The condition number of the normal matrix for the original matrix with one dense row appended and for the

stretched matrix for problems WM1 (left) and LP AGG (right). The curves correspond to the condition number varying with the

number of parts into which the dense row is stretched (standard stretching); the dot is for sparse stretching with the number

of stretched parts determined by Algorithm 3.1.

than the maximum number of entries in a row in the sparse part As [31]. In Table 4.3, we report results

for standard and sparse stretching. The ratios are defined as in Section 4.2. Algorithm 3.1 is applied to

each dense row; the total number of parts the dense rows are split into is reported. We see that, when

there are multiple dense rows, the dimensions of the stretched matrix can be much greater than for the

original matrix. Moreover, compared to standard stretching, sparse stretching can significantly reduce the

number of entries in the factor L̂, although the use of reordering can limit the differences between the two

approaches.

4.5. Use with an iterative solver. So far, we have presented results for complete factorizations.

However, we can also perform an incomplete Cholesky (IC) factorization of the stretched normal matrix

and use it as as a preconditioner for an iterative solver. Here we illustrate the effectiveness of combining

standard and sparse stretching with an iterative solver; in a future study, more extensive results will be

given and comparisons made to other approaches for handling dense rows within an iterative solver, such as

have been recently proposed in [31, 32]. To perform the IC factorization, we use the package HSL MI35 from

the HSL mathematical software library [23]. HSL MI35 implements a limited memory IC algorithm; details

are given in [29, 30]. It requires the user to set the parameters lsize and rsize that respectively control the

number of entries in each column of the IC factor and the memory required to compute the factorization.

In general, increasing these parameters improves the quality of the preconditioner (so that the number

of iterations of the preconditioned iterative solver is reduced) at the cost of more time and memory to

compute the factorization and increased cost for each preconditioner application. In our experiments we set
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Table 4.2

Results for Test Set 1 with a single dense row appended. k is the number of parts the dense row is split into, determined

by Algorithm 3.1. The ratios are for sparse stretching to standard stretching.

Identifier k standard stretching Ratios

nz(Ĉ) nz(L̂) nzAMD(L̂) Ratio(Ĉ) Ratio(L̂) RatioAMD(L̂)

GAMS60AM 203 1.1 × 104 1.3 × 105 1.6 × 104 0.48 0.60 1.38

MARAGAL 5 17 2.7 × 106 5.5 × 106 4.4 × 106 0.94 1.00 0.69

CEP1 652 1.3 × 105 1.1 × 106 3.9 × 105 0.82 0.90 1.02

STORMG2-8 2448 1.9 × 106 1.3 × 107 2.3 × 106 0.02 0.68 0.26

IG5-15 1116 1.1 × 107 6.9 × 107 5.7 × 107 1.00 1.04 1.01

KEMELMACHER 4701 1.4 × 105 3.8 × 107 3.2 × 106 0.71 0.95 0.83

BAXTER 7662 1.1 × 107 4.2 × 108 5.9 × 107 0.07 0.41 0.44

TESTBIG 8008 3.0 × 106 1.5 ×108 9.3 × 106 0.57 0.93 1.04

STORMG2-27 8002 2.0 × 107 1.4 × 108 2.2 × 107 0.01 0.65 0.14

WORLD 13443 2.9 × 107 2.0 × 108 3.3 × 107 0.01 0.68 0.10

MRI1 19721 2.1 × 107 1.6 × 109 5.3 × 107 0.04 1.00 0.40
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Fig. 4.7. Problem WORLD with one appended row of density ρ =0.01, 0.05 and 0.1. In each case, the number of entries

in the Cholesky factor of the stretched normal matrix is reported. The curves correspond to the number of entries varying

with the number of parts into which the dense row is stretched (standard stretching); the dot is for sparse stretching with

the number of stretched parts determined by Algorithm 3.1.

lsize = rsize (and so just report lsize). We employ preconditioned CGLS (an extension of the conjugate

gradient method to least-squares problems) and terminate it using the following stopping rule from [19]:

‖ÂT r̂‖2
‖r̂‖2

<
‖ÂT r̂(0)‖2
‖r̂(0)‖2

∗ δ,

where r̂ = b̂− Âz is the residual of the stretched problem, r̂(0) = b̂− Âẑ(0) is the initial residual and the

convergence tolerance is set to 10−6. The (unstretched) vector b is taken to be the vector of all 1’s and

we take the initial solution guess for CGLS to be ẑ(0) = 0. Note that the stopping rule is for the stretched

system. Once it is satisfied, we perform a check that it is also satisfied for the original system.

In Figures 4.9 and 4.10, we present results for problem LP AGG with a single dense row appended. Here

we set the HSL MI35 parameter lsize to 25 and 50. Using sparse stretching, the iteration counts are 63 and

7, respectively. For standard stretching, the iteration counts as the number of parts increases do not form

a smooth curve and it is not possible to predict the number of parts that will lead to a low iteration count.

This can be explained from the structural point of view because the stretched segments that result from

using different numbers of parts cause very different fill in the corresponding stretched normal matrix.

Examination of the condition number of the preconditioned stretched normal matrix shows that sparse

stretching does not always offer an advantage over standard stretching. Despite this, sparse stretching leads

to a lower iteration count, from which we conclude that the condition number can be a poor indicator of

preconditioner quality. For this example, increasing the number of entries in the preconditioner by setting

lsize = 50 significantly reduces the condition number along with the iteration counts.

In Figure 4.10, we plot the eigenvalues of the preconditioned stretched normal matrix (lsize = 25).
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Fig. 4.8. Problem WORLD with an increasing number of added rows, each of density ρ = 0.05. The solid curve is the

entries in the Cholesky factor of the stretched normal matrix for standard stretching and the dotted curve is for sparse

stretching.

Table 4.3

Results for problems containing some dense rows. p is the number of dense rows.
∑

i ki is the total number of parts the

dense rows are split into. mstr and nstr are the dimensions of the stretched matrix Â. The ratios are for sparse stretching

to standard stretching.

p
∑

i ki m n mstr nstr Standard stretching Ratios

Identifier nz(L̂) nzAMD(L̂) Ratio(L̂) RatioAMD(L̂)

scrs8-2r 22 12828 27669 14357 40497 27163 9.9 × 107 3.8 × 107 0.80 1.01

sctap1-2b 34 14420 33824 15390 48244 29776 2.1 × 108 2.5 × 107 0.49 0.83

scsd8-2r 50 21640 60500 8645 82140 30235 2.4 × 108 3.0 × 107 0.95 0.45

scagr7-2r 7 12966 46672 32846 59638 45805 1.3 × 108 2.2 × 107 0.62 0.20

sctap1-2r 34 26964 63392 28830 90356 55760 7.3 × 108 6.3 × 107 0.49 0.75

scfxm1-2r 58 15825 65885 37973 81710 53740 1.2 × 108 1.6 × 107 1.00 0.93

Following sparse stretching (k = 55), the number of entries in the incomplete factorization preconditioner

is 13, 741 and the iteration count is 63. Standard stretching with k = 163 parts yields a preconditioner of

a similar size (16, 575 entries) but this fails to give convergence within 2000 iterations. The large number

of eigenvalues close to zero may explain this poor performance.

5. Conclusions. In this paper, we have considered employing matrix stretching to tackle the problem

of dense rows in otherwise sparse LS problems. Stretching for LS problems has been used in the past [1, 2]

but, as we have illustrated using some problems with very basic sparsity structures, standard stretching can

lead to unacceptably large amounts of fill in the stretched normal matrix and its factor; simply increasing

the number of parts into which the dense rows are split does not necessarily alleviate the problem and can

lead to a poorly conditioned problem. The novelty of our approach lies in performing the splitting so as

to limit the fill in the stretched normal matrix. A practical algorithm for obtaining the proposed splitting

has been presented and the new sparse stretching strategy has been shown to perform well when compared

with standard stretching on a range of practical problems. Thus we have a new tool that can be used to

help solve LS problems with dense rows.

The main focus has been on complete factorizations but we have also illustrated that it is possible

to consider incomplete factorizations of the stretched normal matrix for use as a preconditioner with

an iterative solver. Preliminary results suggest that sparse stretching is again preferable to standard

stretching. Further investigations into using incomplete factorizations with sparse stretching will be part of

a study in which we also explore combining stretching with updating techniques [32]. Updating techniques

aim to use a factorization of the sparse reduced normal matrix Cs = ATs As combined with the factorization

of a dense subproblem involving Ad. However, even if A is of full column rank, removing the dense block

Ad can result in the sparse part As being rank-deficient. In particular, As may contain one or more null

columns and the Cholesky factorization of Cs breaks down. A possible option is to select some of the
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Fig. 4.9. Comparison of iteration counts for standard and sparse stretching for problem LP AGG with one dense row

appended. The dot is for sparse stretching. Here lsize = 25 (left) and lsize = 50 (right).
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Fig. 4.10. Spectrum of the preconditioned stretched normal matrix. Standard stretching with k = 163 (left) and sparse

stretching (k = 55) (right). Here lsize = 25.

rows of Ad, stretch them and then add the sparse parts to As to recover full rank. Again, the original

problem will be replaced by a larger one but the hope is that the increase will be modest and will allow

us to exploit the advantages of both updating and stretching in a single approach.
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