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COMPLEX BALANCING RECONSTRUCTED TO THE
ASYMPTOTIC STABILITY OF MASS-ACTION CHEMICAL
REACTION NETWORKS WITH CONSERVATION LAWS

MIN KE] ZHOU FANG! AND CHUANHOU GAOf

Abstract. Motivated by the fact that the pseudo-Helmholtz function is a valid Lyapunov
function for characterizing asymptotic stability of complex balanced mass action systems (MASs),
this paper develops the generalized pseudo-Helmholtz function for stability analysis for more general
MASSs assisted with conservation laws. The key technique is to transform the original network
into two different MASs, defined by reconstruction and reverse reconstruction, with an important
aspect that the dynamics of the original network for free species is equivalent to that of the reverse
reconstruction. Stability analysis of the original network is then conducted based on an analysis of
how stability properties are retained from the original network to the reverse reconstruction. We
prove that the reverse reconstruction possesses only an equilibrium in each positive stoichiometric
compatibility class if the corresponding reconstruction is complex balanced. Under this complex
balanced reconstruction strategy, the asymptotic stability of the reverse reconstruction, which also
applies to the original network, is thus reached by taking the generalized pseudo-Helmholtz function
as the Lyapunov function. To facilitate applications, we further provide a systematic method for
computing complex balanced reconstructions assisted with conservation laws. Some representative
examples are presented to exhibit the validity of the complex balanced reconstruction strategy.

Key words. Chemical reaction network, Mass action system, Generalized pseudo-Helmholtz
function, Reconstruction, Asymptotic stability, Conservation laws.
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1. Introduction. Chemical reaction networks (CRNs) taken with mass action
kinetics arise often in chemistry, biology and engineering. The dynamics of a mass
action system (MAS) can be modeled by polynomial ordinary differential equations
(ODEs) with respect to the concentration of each chemical species that is a nonnega-
tive real number. Although the concentration evolution takes place in a certain invari-
ant set termed the stoichiometric compatibility class, these ODEs will typically lead
to a high-dimensional and complex nonlinear system, often referred to as a kinetic sys-
tem, with unknown model parameters. The model parameters and the network struc-
ture both have great effect on the kinetic system, so it is usually extremely difficult to
characterize the dynamical properties. However, the past decades witnessed the rapid
progress in related directions, including characterizing stability [1,3,8,9,13,21,23,27],
multi-stationarity [6,10,17] and persistence [2,4,5,7,20]. Now, the dynamical prop-
erties have gradually been coming to light, especially for those network systems with
special structures, such as reversible and weakly reversible structures. In line with
these studies, this paper continues to be concerned with characterizing (local asymp-
totic) stability of equilibria in general MASs.

The pioneering work on stability analysis of equilibria in MASs originated from
[13], in which complex balanced MASs were proved to have no self-sustaining oscil-
lation or bistability. This paper [13] reported the famous Deficiency Zero Theorem,
saying that for a deficiency zero weakly reversible CRN with any choice of rate con-
stants, the dynamical equation admits a unique positive equilibrium in each positive
stoichiometric compatibility class, and these positive equilibria are locally asymptoti-
cally stable. This theorem was further extended to the Deficiency One Theorem [10],
which gives alternative conditions for the existence and uniqueness of equilibrium in
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each positive stoichiometric compatibility class, i.e., weakly reversible but not nec-
essary deficiency zero. Recently, the stability issue of complex balanced MASs [21],
and of detailed balanced MASs (a special case of complex balanced systems) [27] were
revisited, and a compact mathematical formulation about the network were derived
that allows to characterize the set of positive equilibria and their stability properties,
easily. For complex balanced systems, if they are assumed to admit persistence [9],
then the stability of equilibria is global [2,20].
In this paper, we consider a class of CRNs, like

3Xo = 3X7 —2X1 + X

which are not weakly reversible, for characterising stability of the corresponding
MASs. This class of CRNs are often encountered in enzymic catalytic reactions
and epidemic models [12]. With respect to stability analysis, the key issue is how
to construct the Lyapunov function. Anderson et. al. [3] treated scaling limits of
non-equilibrium potential as Lyapunov functions for some special species balanced
systems, for example, birth-death systems, etc. Al-Radhawi and Angeli [1] developed
Lyapunov functions that are piecewise linear in rates. The existence of such Lya-
punov functions could guarantee stability of equilibria, and further serve to establish
asymptotic stability if the Lyapunov functions also satisfy the LaSalle’s condition.
Clearly, it poses a great challenge to find a Lyapunov function for this class of MASs.
Another alternative strategy for capturing their stability properties is to apply the
(asymptotic) stability results of complex balanced systems, after all, for which there
is a ready-made Lyapunov function, the pseudo-Helmholtz function. Linear conju-
gacy [14-16] is a related notion for this purpose that defines a non-degenerative linear
transformation to map the mass action system under study to another one. If the
transformed system is complex balanced, then the original system has local asymp-
totic stability [14]. To obtain expected linear conjugacy, this strategy usually calls for
solving linear programming and mixed-integer linear programming problems, analo-
gous to computing complex balanced or detailed balanced realizations [25].

Motivated by the facts that the pseudo-Helmholtz function is a valid Lyapunov
function for asymptotic stability analysis for complex balanced MASs and general
MASs admitting a complex balanced MAS as the linear conjugacy, we develop the
generalized pseudo-Helmholtz function aiming to characterize asymptotic stability for
general MASs. Based on the mass conservation law, the reconstruction and reverse
reconstruction notions are adaptively developed, which are highly related to the orig-
inal network in properties of equilibria and stability. More importantly, the dynamics
of the reverse reconstruction is equivalent to that of the original network at the free
species. The stability analysis for the latter is thus transformed into that for the
former. Taking the generalized pseudo-Helmholtz function as the Lyapunov function,
the reverse reconstruction is proved asymptotically stable when the corresponding
reconstruction is complex balanced. The key point lies that under this condition the
reverse reconstruction possesses only an equilibrium in each positive stoichiometric
compatibility class. Utilizing dynamical equivalence and mass conservation law, the
state of the original network is proved to converges asymptotically to the equilibrium
of interest. To facilitate applications of the proposed strategy of stability analysis,
we also present a systematic method to compute complex balanced reconstructions
based on the computation algorithms for realizations [24-26].

The remainder of this paper is organized as follows. Section 2 gives a brief in-
troduction on CRNs and further formulates the research motivation. In Section 3,
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the generalized pseudo-Helmholtz function is developed with the potential to behave
as a Lyapunov function. Section 4 defines the reconstruction concept to match the
use of the generalized pseudo-Helmholtz function for characterizing stability of gen-
eral MASs. This is followed by further defining reverse reconstruction and complex
balanced reconstruction to characterize asymptotic stability of MASs in Section 5.
Section 6 provides a systematic method to compute complex balanced reconstruc-
tions, and then illustrates it through some representative examples. Finally, Section
7 concludes the paper.

Notations: Throughout the paper, R, RZ,, Rgo, 7", Zgo denote the space of
n dimensional real, positive real, nonnegative real, integer and nonnegative integer
vectors, respectively; for any x € RZ;, the mapping Ln : R%; — R",z — Ln(z)
is defined by (Ln(z)); := In(x;), and the mapping Exp(z) is similarly defined by
(Exp(z)); = exp(x;); for matrix A, A.; refers to the ith column of A4; 0, and 1,
denote the vector with all the entries equal to 0 and 1, respectively; matrix D =
diag(d;) € R™"*" is a diagonal matrix with the ith diagonal element to be d;; E,
denotes the n x n identity matrix; Card(-) represents the number of elements in set.

2. Chemical reaction networks and Motivation statement. In this sec-
tion, we will review some basic concepts related to CRNs [10,13] and set forth the
motivation of the current study.

2.1. Chemical reaction networks. For a CRN involving n species X; (i =
1,---,n), ccomplexes C; (I =1,---,c) and r reactions R; (j =1,--- ,7), it is defined
as follows [10].

DEFINITION 1 (Chemical Reaction Network). A CRN is composed of three finite
sets:
(1) A set X = {X;} of chemical species;
(2) A setC= U;Zl{Z.j, Z';} of complexes with Card(C) = ¢, Z;, Z; € Z%, and
the ith entry of Z.; representing the coefficient of X; in this complex;
(3) Aset R=U;_1{Z; — Z;} of reactions such thatV Z.; €C, Z; = Z; ¢ R
but 3 Z,’j € C to support either Z.; — Z,’j e€R or Z,’j - Z;eR.
The triple (X,C,R) is usually used to express a CRN.

The complexes Z.;,7’ ; actually express the existence of all of n species in the
reactant complex and the product complex, respectively. If Z;; # 0 then there in-
cludes the species X; in the complex Z ;, and vice versa. Organize distinct complexes
according to Z = [Z4, -+, Z..] € Z%;° to form the complex stoichiometric matrix,
whose [th column expresses the Ith complex Z.; in the CRN.

For any CRN, its structure can be described by a digraph, termed as reaction
graph [13], with the vertices indicating the complexes and the directed edges repre-
senting the reactions. Every tail vertex in a directed edge denotes a reactant complex
while the head vertex denotes a product complex. Mathematically, this digraph can
be defined by an incident matrix B € Z*" with Bj; = 1 if vertex [ is the head vertex
of edge j and B;; = —1 if vertex [ is the tail vertex of edge j, while B;; = 0 other-
wise. The incident matrix and the complex stoichiometric matrix further define the
stoichiometric matrix S € Z"™*" satisfying

(1) S = ZB.

It is not difficult to find that the jth column of S is given by S.; = ij - 7,
j=1,---,r, which is also called the reaction vector of the jth reaction. The rank of .S
usually represents the rank the CRN (X, C, R), denoted by s, satisfying s < min{n,r}.
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DEFINITION 2 (Weakly Reversible CRN). A CRN (X,C,R) is weakly reversible
if for each reaction Z.; — Z,’j € R, there exists a sequence of reactions in R, which
starts with Z!; and ends with Z.;, i.e., Z!; — Zj, € R, Zj, — Zj, € R, -+,
Z'j(m—l) — Z-jm €ER, Z-jm — Z.j ER.

DEFINITION 3 (Stoichiometric Compatibility Class). For a CRN (X,C,R), the
linear subspace Im(S) = span{Z’, — Z1,---,Z!. — Z..} is called the stoichiomet-
ric subspace. Let xo € RY,, then the sets . (xo) = {zo + &|§ € Im(S)}, 7 (z0) NRL,
and .7 (z0) NRZ, are named the stoichiometric compatibility class, the nonnegative
stoichiometric compatibility class and the positive stoichiometric compatibility class of
xq, respectively.

When a CRN is assigned a mass action kinetics, the rate v; for reaction Z.; — Z’ g
is evaluated by

(2) vj(@) = kja? s =k [T 2,

where k; € Ry is the rate constant for this reaction, and = € R, is the vector of
concentrations x; of the chemical species X;.

DEFINITION 4 (Mass Action System). A mass action system is a CRN (X,C, R)
taken together with a mass action kinetics. Denote the vector of reaction rate constants
by K = (k1,- - , k) with k; representing the rate constant for reaction Z.; — Z_’j, j=
1,---,r, then a MAS is often referred to as a quadruple (X,C,R,K).

The dynamics of a MAS (X,C, R, K) that captures the changes of concentrations
of every species is thus expressed as

(3) & = Sv(z), r € R,

where v(x) € RY, is the vector of reaction rate vj(z) of Rj, j =1,---,r.

REMARK 1. Whatever the initial state xq is, the state of a MAS (X,C, R, K) will
evolve in the nonnegative stoichiometric compatibility class of xg, i.e., in y(xo)ﬂRgo,
which can be easily verified by integrating (3) from 0 to t, that is,

(4) T =zo+ Z S.; /0 v;(1)dr.

REMARK 2. The dynamical equation (3) is essentially a polynomial system of
ODEs, often referred to as a kinetic system. Note that there is not a one-to-one
relation between a kinetic system and a MAS. Theoretically, the former can be realized
by structurally and/or parametrically different MASs that are dynamically equivalent
[15].

Here, the dynamical equivalence is defined as follows.

DEFINITION 5 (Dynamical Equivalence). Two MASs are said to be dynamically
equivalent if they have identical differential equations produced under the assumption
of mass action kinetics.

DEFINITION 6 (Equilibrium). A concentration vector x* € RZ is an equilibrium
of a MAS (X,C,R,K) if the dynamics of (3) supports Sv(z*) = 0,, and a complex
balanced equilibrium if Bv(z*) = 0.. A MAS (X,C,R,K) is called complex balanced
if it admits a complex balanced equilibrium.
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REMARK 3. Any complex balanced equilibrium is an equilibrium, but not neces-
sarily the other way around, since Z need not be injective.

A nice property of complex balanced MASs is that each positive stoichiometric
compatibility class contains only one equilibrium, and each such equilibrium is locally
asymptotically stable [13].

THEOREM 1 (Locally asymptotic stability of complex balanced equilibrium [13]).
Let z* € RY, be any complex balanced equilibrium of the MAS (X,C,R,K), then z*
is locally asymptotically stable with respect to any initial condition in 7 (x*) NRY,
near x*.

The proof of the above theorem is carried through with the following well-known
Lyapunov function

n *

(5) Gla) =Y (] —z;—xln>t), zeRY
i=1 !

which is referred to as the pseudo-Helmholtz function [13] in the context.

REMARK 4. Note that the domain of the pseudo-Helmholtz function G(x) is RZ,
which seems not completely consistent with the nonnegative stoichiometric compati-
bility class of the equilibrium, i.e., /(x*) NRY, the domain of the complex balanced
MAS. Actually, the domain of the complex balanced MAS can shrink to the positive
stoichiometric compatibility class of the equilibrium, .7 (x*) NRZ, as long as the ini-

tial point is selected carefully [10]. The reason is that lim,_,o, G(z) = >\, zf and
dG(x)
dt

<0, as long as the energy value at an initial point, evaluated by G(z), is lower
than lim,_,0, G(x) = > 1, xf, then the trajectory will not run towards zero point. A
feasible initial points set is {xo|G(xo)<lim,_0, G(z)} NS (x*) NRL,.

2.2. Motivation statement. The pseudo-Helmholtz function G(z) exhibits
high efficacy in characterizing the asymptotic stability of a complex balanced equi-
librium, but it is not in general Lyapunov function for systems that are not complex
balanced. In order to reach the latter purpose, it is necessary to develop new Lya-
punov functions. Due to high relevance between complex balanced equilibria and
general ones (the former is a subset of the latter), a possible solution to find the
new Lyapunov function is to extend the pseudo-Helmholtz function to a more general
form. A naive extension is to multiply every term in the function G(z) by a positive

number d;, i =1,--- ,n, then we get a new function
(6) Ge(w) =Y di(w; —2; —xin=t), x €RLy,d; € Rsg.
i=1 ¢

Clearly, like G(x), this extension also has a strict minimum 0 at *, which indicates
that G.(x) satisfies the necessary condition to behave as a Lyapunov function, and is
thus potential for stability analysis for some MASs. Following this superficial motiva-
tion, we will discuss a more general extension of the pseudo-Helmholtz function so that
more MASs may be served, and analyze its properties from viewpoint of becoming
the Lyapunov function in the following.

3. Generalized pseudo-Helmholtz function. A more general extension of
the pseudo-Helmholtz function is to further set the number of terms in G(z) not
fixed. This leads to the definition of the generalized pseudo-Helmholtz function.
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DEFINITION 7 (Generalized pseudo-Helmholtz function). Let z* € RZ be an equi-}
librium of a MAS (X,C,R,K) governed by (3). The function G : RZ, — R>q given
by

- L z*
7 G = di(xf —x; —x;ln =%
(7) (@)= Y dilal i =i 3
is called the generalized pseudo-Helmholtz function, where d;>0, 71 < --- < 7, and

{m, -, 7} CT=A{L,---,n}.
REMARK 5. For any x € RY, the generalized pseudo-Helmholtz function satisfies
G(z) > 0 with equality hold if and only if (xr,-+ ,@;,)" = (aF -+ 2t )T,

T1? ? Tp
For simplicity but without loss of generality, we set {r1,--- , 7} = {1,--- ,p} in
(8) for the subsequent analysis, i.e., keeping the first p terms of G.(x). As a result,

p *

(8) Gla) = dila} — 2 —z;In ).

i=1 v

Denote (z1,--+,2p) =2y and (Tpy1, -+ ,2Tn)| = a1, then V 21 € RY,” the func-

tion G(z) attains the minimum 0 at z = (2% ", 2] )T. This implies that the equilib-

rium
*
x| T
X - *
T

is not the strict minimum point for the generalized pseudo-Helmholtz function. At
this point, G‘(x) seems not able to behave as a Lyapunov function. However, if the
degree of freedom of the concerning MAS is p, and the remaining n — p state variables
may be determined uniquely by those free p variables, then G () may be a Lyapunov
function. We analyze the number of non-free variables in a MAS (X,C, R, K) through
considering the law of mass conservation.

DEFINITION 8 (Mass conservation law [13]). The law of conservation of mass statesf

that mass in an isolated system is neither created nor destroyed by chemical reactions
or physical transformations. For a MAS (X,C,R,K) governed by (3), this means that
there exists a m-dimensional positive vector p € RZ, such that p'S =0, and p is
called a conserved vector.

REMARK 6. Clearly, p € Ker(ST). Moreover, for a mass-conserved MAS, there
must exist a conserved vector, the most simple candidate for which is the vector M of
molecular weight M; of the species X;, i =1,--- n.

We then define an important concept, conserved matrix, that will play a key role
on the subsequent analysis.

DEFINITION 9 (Conserved Matrix). Consider a mass-conserved MAS (X,C, R, K}
governed by (3) with rank(S) = s. Assume that there exist q linearly independent vec-
tors & € RZy (m =1,--+ ,q) in Ker(ST), where 1 < ¢ < dim (Ker(S")) =n — s,
then the matriz C € Riéq equipped with &,, as column vectors is called a conserved
matriz for (X,C,R,K).

REMARK 7. For a mass-conserved MAS, the conserved matriz is not unique, but
all of them are full column rank. Under the influence of the same conserved matriz C,
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the state of the MAS in 7 (x*)NRY, is constrained by this matriz and the equilibrium

point x* according to CTax = CTx*. For a MAS not admitting the mass conservation
law, the conserved matrixz does not exist. In this case, ¢ = 0.

Based on the conserved matrix, we can be aware of the number of non-free vari-
ables in a mass-conserved MAS.

THEOREM 2. For a mass-conserved MAS (X,C,R,K) described by (3), C € RZ5?
(g>0) is a conserved matriz and x* is an equilibrium point, then in .7 (x*)NRY, there
are at least ¢ non-free state variables, and moreover, these variables are uniquely
determined by other n — q state variables and x* but independent of the selection of

C.

Proof. For this mass-conserved MAS, Vz € . (z*) NR%, we have CTx = C'Tz*.

Note that rank(C) = ¢ (1 < ¢ < dim (Ker(S"))), so there exist at least ¢ non-free
state variables among all n variables contained in the MAS. For simplicity but without
loss of generality, the last ¢ state variables from ,_44+1 to z, are thought as non-free
variables, then we get

(9) Clz=[C C]] BL] =C'z, +Clar =C"a",

T
where O, € quo(nfq), C)l € RY)? are two sub-blocks of CT, x| = (21, ,Tn_y) "
and r1 = (Tp_g41,° - , @) . Since C is full column rank, C,| is invertible. Also,

utilizing CTz* = C}' 2% + C, 2%, the last equality of (9) may be rewritten as
(10) o =C; 1O (@1 — z1) + 2,

which indicates that 1 is uniquely determined by C, x* and x| .

Since the conserved matrix C' is not unique for the MAS, we need to further
prove the above equality independent of C. Assume that C’' € R’;Eq is another
conserved matrix for the MAS under consideration, which has the same dimension as
C. Likewise, we utilize the conservation relation C’ Te=0c' T:c*, and further partition

C' according to the same pattern as C, then we obtain
. S X
xr=C" C') (28 —x))+ak.
By combining it with (10), we get C;7TCf (z* —z,) = €', '] (#% — z.). This
means that whatever the conserved matrix is, C;” T O, (#% — z) is always equal
to C”T_TC”lT(xj_ — 21). Therefore, T is uniquely determined by z* and z; but
independent of the selection of C, which completes the proof. O

Based on this theorem, we can thus address the issue that the generalized pseudo-
Helmholtz function has a strict minimum 0 at z* through setting p =n — ¢ in (8).

THEOREM 3. For a mass-conserved MAS (X,C,R,K) captured by (3), let x* be

an equilibrium, and C € Rgéq be a conserved matrix. Then the generalized pseudo-

Helmholtz function given by
~ e z*
(11) G(z) = Z di(x] —x; —z;1n x—z), Vo € RY, and VYd;>0,
i=1 '

has a strict minimum at x* within &7 (z*) NRY,, while

(12) VG(:L‘) - diag(dla e 7dn—q7 07 T 70)VG(’JJ)
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Proof. From Remark 5, we have G(z) > 0 with equality hold if x| = 2% € RZ“
and 27 € RZ ) may be arbitrary in its domain. Also from Theorem 2, we get that z
is uniquely determined by z* in . (z*) NRZ, i.e., 7 = x*. This means that G(z)
has a strict minimum at z* in .(z*) N RZ,. It is straightforward to obtain (12) if
G(z) and G(z) in (5) are both taken partial derivative with respect to . |

REMARK 8. The more the linearly independent conserved vectors are for a mass-
conserved MAS, the more sparse the diagonal matriz diag(di,- - ,dn—g,0,---,0) is,
which implies that the dynamical equation (3) of this MAS is more reduced. However,
it is extremely difficult for a MAS to find a mazimum linear independence group of all
conserved vectors, i.e., maximizing q. In fact, this is not necessary, since a portion
of linear independence group, such as a conserved vector composed of the molecular
weight of all species, is enough to work as a conserved matriz to derive nice properties
of the generalized pseudo-Helmholtz function, like strict convexity at equilibrium.

REMARK 9. If the MAS does not support the mass conservation law, the general-
ized pseudo-Helmholtz function reduce to the naive extension of the pseudo-Helmholtz
function, i.e., G.(x) in (6) which, obviously, can behave as a Lyapunov function.

The generalized pseudo-Helmholtz function, as discussed in Remark 5, is nonneg-
ative and has lower bound only at the equilibrium, so it may be a Lyapunov function.

However, it is still needed the time derivative of G(z) to follow G(z) < 0, i.e., we
should have

G(z) = VT G(z)Su(z)
(13) =V G(z)diag(dy, - ,dn_g,0,---,0)Sv(zx)
<0.

where the second equality is based on (12). As one might know, G(z) is an available
Lyapunov function for complex balanced MASs, and its time derivative follows G () =
VTG(x)Sv(x). However, in the result of (13) there exists a diagonal matrix between
VTG(z) and Sv(x). In order to fully utilize the performance of G(z) as a Lyapunov
function, we manage to eliminate the diagonal matrix diag(di,---,dn—q,0,---,0)
through defining reconstruction notation in the next section.

4. Reconstruction. In this section, the reconstruction notation will be defined
for characterizing stability of equilibria in some MASs.

4.1. Definition. The reconstruction concept has some relevance to the realiza-
tion notation proposed in [25]. We firstly revisit the realization definition.

DEFINITION 10 (Realization). Given a nonnegative autonomous polynomial sys-
tem & = f(x) with f : RZy — R™ to be locally Lipschitz, if there exists a MAS
(X,C,R,K) modeled by & = Sv(zx) such that f(z) = Sv(x), then the autonomous
polynomial system is kinetically realizable, and the MAS (X,C,R,K) is termed as a
kinetic realization, or realization for short, of this polynomial system.

We then give the definition of reconstruction following that of realization.

DEFINITION 11. For a mass-conserved MAS (X,C,R,K) described by & = Sv(x),
let z* € RZ be an equilibrium and C' € RZ7 be a conserved matriz. If there exists
a positive diagonal matriz Dy = diag(dy, -+ ,dn—q) and a MAS (X,C,R,K) given by
&= S‘ﬁ(i’) (the parameters follow the same symbols as for (X,C,R,K) but with a hat
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above) such that
(14) DSv(z) = [k%@)} ,

where

(15) D= B} 0<”ég)xq} , #=x, €RYY, § €z and i : RY? — R,

then (é?,(f, 72716) is called a reconstruction of QXA,C,AR,IC), and D is termed as the
reconstructing matriz from (X,C,R,K) to (X,C,R,K).

Note that the state variables Z in the reconstructed system is actually the projec-
tion of z onto the first n — ¢ coordinations, and (14) holds for all  in .(z*) NRE,,.
Some examples of reconstructions are given in the subsequent Table 1.

REMARK 10. The relation (14) can be equivalently expressed as
(16) D1 Syv(x) = So(i),

where Sy € Z=DXT comes from S = (S], Sy ) 7. In addition, since Dy and C,| are
both invertible, the reconstructing matriz D is invertible with the inverse matriz to be

Dl_l O(n—g)xq
—C;TCZTDfl Cf'l'

s

(17) D! =

The nonsingular property of D is quite important that will be used to eliminate the
diagonal matriz diag(dy,-- - ,dn—q,0,---,0) in the result of é(x) in (13).

REMARK 11. Ifthe MAS (X,C, R,K) dose not support the mass conservation law,
i.e., ¢ =0, then D = Dy = diag(dy,--- ,dy). In this case, the reconstruction means
to make a positive diagonal transformation from the right hand side of the differential
equation & = Sv(x) to that of & = SO(&). At this time, the reconstruction is the same
with the well-known linear conjugacy concept [1/—16] which defines a linear transfor-
mation & = Dx, and then by substituting x = D~1% into i = Sv(x) and dynamical
equivalence to & = Si(z) produces the relation DSv(D~'2) = So(&). Further, if
Vi, d; =1, then the reconstruction will have the same effect as the realization.

From Definition 11, apparently, for a MAS even though under the same recon-
structing matrix, there may exist a few parametrically and/or structurally different
reconstructions that are dynamically equivalent. This property is the same as in
the realization concept. However, unlike realization the notion of reconstruction only
characterizes a binary relation between MASs, but not between the MAS and a general
polynomial system. Therefore, there are at least two M ASs involved when we mention
reconstruction. The whole process seems to reconstruct a new MAS from a known
one. The reconstruction notation together with the generalized pseudo-Helmholtz
function will play an important role on capturing the stability of some MASs.

4.2. Reconstruction for characterizing stability. In this subsetion, we will
characterize stability of equilibria in MASs utilizing the reconstruction strategy.

LEMMA 1. Assume that (A?, é, 7@, IC) 1s a reconstruction of a mass-conserved MAS
(X,C,R,K) under the reconstructing matriz D given by (15), and their dynamical
equations are & = SU(Z) and (3), respectively. If z* € R, is an equilibrium in
(X,C,R,K), then &* = x*, € RL? is an equilibrium in (X,C,R,K).
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Proof. Since z* € RZ is an equilibrium in (X,C, R, K), we get Sv(z*) =0, i.e.,
D, S1v(z*) = 0,,_g. From (10) we have Dy Syv(z*) = So(z* ). Therefore, #* = z* is
an equilibrium in (X C, R, /C) O

THEOREM 4. For a mass-conserved MAS (X,C,R,K) modeled by (3) with an
equilibrium x* € R, assume that the MAS (X,C,R,K) in the form of & = St(i)
is its reconstruction, bridged by the reconstructing matriz D defined in (15), then
&* € RY,? is an equilibrium in (2\?,6,7@, l@) If ©* is stable rendered by a Lyapunov
function V : RZ;? — Rso with V € €% and its Hessian matriz to be a (n — q)-
dimensional positive diagonal matriz, then x* is stable in (X,C,R,K).

Proof. According to Lemma 1, 2* is naturally an equilibrium in (X,C, R, K). As
V € €2 is a Lyapunov function to render the system ()2, C, R, IC) stable at £*, we have
V(ﬁc) > 0 with equality holding if and only if £ = &*, and moreover, VV(@*) =054
and V § € R%,%, if § # &*, then VV(§) # 0,,_, and AV (§)/3; is strictly increasing.
In addition,

(18) W) _ 979 (3)80(2) = VTV (2)DiSio(z) <0,

where D; and S; are given according to (16). Construct the following %2 function
V: RTZLO — RZO as

(19) Vie) = [ VTV () Dady,

where Dy = [D1,0(,—4)xq] and y € RZ, with 7 to be the projection of y onto the
first n — ¢ coordinates. Note that x* and = are vectors, so the integral is over the line
connecting these two points.

It is clear that V(z*) = 0 and VV (z*) = DJ VV(&*) = 0,,. Utilizing the mean
value theorem of integrals, we can rewrite (19) as

V(z) = VTV () Dol — 2%) Zdav;% o),

where 7 € . (2*) NRZ, lies between z* and z, and Z is the projection of Z onto the
oV (z)

first n — g coordinates. Since =5z~ is strictly increasing and VV(@*) = 05,4, we have
6;&(?) (x; —xf) > 0. Therefore, V(z) = 0 if and only if , = z%, but T may be
arbitrary, where ; = (z1,--- ,xn_q)T and 7 = (Tn—gt1, ,T,) . Also since zT

is uniquely determined by 2 in #(2*) NRZ,, we have V(z) = 0 iff = z*. Again
from (19) we can write the Hessian matrix of V' (z) to be

. 9%V (&)
H(V(z)) = [dlag (dz 932 ) O(nq)xq] . =1, ,n—q.

OqX(nfq) quq

Since the Hessian matrix of V(Z) is a positive diagonal matrix, V = € .#(z*) NRZ, the

Hessian matrix H(V (x)) is semi-positive definite. This means that V(x) is a convex

function in & (z*) NRZ,, and z* is a minimum point for V(z), i.e., V(z) > V(z*).
10



Therefore, we have V() > 0 with equality hold iff = z*. Further, we have

dv(z) _
et V'V (z)Sv(x)
= V'V(&)DySv(x)
=VV(@) [D1 Opm—g)xq] [gj v(z)
= V' V(2)D,S1v(x)
<0.

where the last inequality holds from (18). Moreover, when x = z*, we get d‘;(tm) =0.

Hence, z* is a stable equilibrium in the original MAS (X,C,R,K) with V(z) as the
Lyapunov function. 0

COROLLARY 1. Consider a mass-conserved MAS (X,C,R,K) described by (3)
with x* € R, as an equilibrium. Let ()E,CA,’}AQ,I@) be a reconstruction. If i* € RY
is a complex balanced equilibrium in the reconstructed system , then x* is stable in the
original MAS.

Proof. From Theorem 1, the complex balanced system (X,C,R,K) is locally

asymptotically stable at #* with G(&) defined like (5) as the Lyapunov function.
2/ 4

Note that G € €2 and % = diag(1/%1,- -+ ,1/&,—4), which satisfy the conditions

requested by Theorem 4, therefore, (X,C, R, K) is stable at z*. 0

In the following special case, the stability properties can be transferred mutually
between the original network and the reconstruction.

PROPOSITION 1. Consider a MAS (X,C,R,K) with the linear kinetics & = Px,
where P € R™ ™ is a Metzler matriz. Assume that x* € RZ, is an equilibrium
in (X,C,R,K) and (X,C,R,K) is a reconstruction of (X,C,R,K) under a positive
diagonal matriz D, then (X,C, R, K) is stable at x* if and only zf(/?, C, 7A2, I@) is stable
at 2% € RZ,.

Proof. Clearly, £* is an equilibrium in (22 , C, 7%, I@) Note that the reconstruction
(/\A’, C, R, I@) induces a linear kinetic dynamics &= DPz, in which DP is also a Metzler
matrix. Based on the D-stability of matrices [19], the system (X,C, R, K) is stable at
z* if and only if (XA,CA,7A€, /@) is stable at Z*. d

As can be seen from Corollary 1 and Proposition 1, the stability properties are
retained from the reconstruction to the original network usually requesting the former
to have special network structure. As far as the current technique is concerned, it
is difficult to say that a stable reconstruction with a general structure must lead to
a stable original network. We place this issue as a possible point of future research.
The high validity of complex balancing in the reconstruction for stability retainment
motivates us to further use this strategy to characterize asymptotic stability of the
original network.

5. Asymptotic stability characterized through complex balanced re-
construction. In Theorem 4, we are able to characterize stability of equilibrium
points in MASs, but fail to capture local asymptotic stability. Here, the stability
of an equilibrium means that the system trajectory runs in a bounded ball centered
around this equilibrium while the local asymptotic stability means that the system
trajectory will asymptotically converge to this equilibrium if the trajectory starts
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from a neighborhood of the equilibrium. The main reason is that there may exist
multiple equilibria in the MAS so that the time derivative of the Lyapunov function
is negative semidefinite with respect to the concerning equilibrium. In this section,
we will address this issue to characterize the local asymptotic stability of some MASs
through setting the reconstruction to have a complex balancing structure. We firstly
introduce a special reconstruction.

5.1. Reverse reconstruction. Reverse reconstruction is a generalized MAS
[13], obtained from the reconstruction for a given MAS, which is defined as follows.

DEFINITION 12. Given a mass-conserved MAS (X,C,R,K), let (X,C,R,K) de-
note its reconstruction under the reconstructing matriz D defined in (10) A MAS
(X,C,R,K) is the reverse reconstruction of (X,C,R,K) with respect to (X,C,R,K)

k;
if its complexes set C = szl{Z.j7Z,j} and reactions set R = szl{ Z.; — ij }
satisfy

(i) 7 =7

(i) Z;=24, Zi;=2;+4 D72, — Zj), kj=hk;, Vj=1,- 7

REMARK 12. The dynamics of the reverse reconstruction (X,(f R, I€) follows
(20) i = So(z)

where S € R"DX7§5(.) is a 7-dimensional vector valued function, and % is the
projection of & onto ztself It is clear from the reverse reconstruction definition that
S = D78 and #(z) = 0(2).

REMARK 13. The underlying CRN in the reverse reconstruction does not fit into
the CRN class defined in Definition 1, since the elements in Z'j are not necessarily
nonnegative integer. However, this change does not invalidate the subsequent results.
The main reason is that the reverse reconstruction belongs to generalized MASs, but
some results of CRN theory (used for the subsequent analysis) [9], like power-law
rate functions, definitions of stoichiometric subspace and stoichiometric compatibility
classes, carry over to the case of generalized mass action kinetics [13,18].

PROPOSITION 2. For a mass-conserved MAS (X,C, R, K) with dynamics (3) and
an equilibrium x* € RY, let (2\? C, R, l@) be its reconstruction bridged by the recon-
structing matriz D defined in (15) and (A?,CN, R, K) be its reverse reconstruction with
respect to (X,C, R, IC) Then #* = % € R%,? is an equilibrium in (X,C,R,K), and
the dynamics of (X,C,R, I@) is equivalent to that of (X,C,R,K) at the first n — q
species.

Proof. Remark 12 reveals that S = D;'S and 4(Z) = o(&). Hence, Dy *So(2) =
S5(z). Further, utilizing (14) we get

Sole) = |_erane | Sita)

where E,_, is a (n — ¢)-dimensional unit matrix. Therefore, Sjv(z) = So(). Note

that the left term measures the dynamics of (X C,R,K) at the first n — ¢ species,

ie., &) (t) = Siv(xz). We thus obtain &, (t) = Z(t). Sv( *) = 0,4 is straightforward

since Sv(z*) = 0,,. Therefore, the results are true. d

COROLLARY 2. Assume that (X,C,R,K), (/'%,CA’,’/AQ, I@), (22,C~7 R,K) and D have

the same meanings with those in Proposition 2. If x* € R%y is an equilibrium in
12



(X,C,R,K), then the reconstruction and reverse reconstruction systems have the com-
mon equilibrium point 3* = #* = %, and moreover, Im(S) = Im(D; ' 5).

Reverse reconstruction is a very special MAS, which has the same dynamics with
that of the original MAS at the first n — ¢ species. Therefore, if an equilibrium point
in the original network system is locally asymptotically stable whose first n — ¢ en-
tries are naturally locally asymptotically stable, then this stability behavior can be
potentially characterized based on an similar analysis in the reverse reconstruction
and on how stability properties are retained under the adopted nonsingular transfor-
mation. We tackle these tasks in the following by using a particular network class for
reconstruction, i.e., so-called complex balanced MASs, for which the local asymptotic
stability has been proved in Theorem 1.

5.2. Complex balanced reconstruction. Assaid in Corollary 1, when a mass-
conserved MAS has a complex balanced MAS as a reconstruction, then its equilibrium
must be stable. We thus set the reconstruction to be a complex balanced system
for further analysis. This kind of reconstructions is referred to as the complex bal-
anced reconstruction in the context. For simplicity of symbols, we denote the set
of MASs admitting complex balanced reconstructions by AGom, i.e., for any mass-
conserved MAS (X,C, R,K) € ACom, there exist a complex balanced MAS, denoted
by (X,Cc,Re, Ke), and a reconstructing matrix D defined in (15) satisfying

(21) DSv(z) = [chi(j;)] :

where S’c € 7Z(n—9)xic,

In the case of existence of multiple equilibria in a MAS, the key to extend stability
of equilibrium to asymptotic stability is to identify that there is only/at most an
equilibrium in each positive stoichiometric compatibility class. The main reason is
that the state of the MAS will evolve only in a stoichiometric compatibility class,
as given in Remark 1. We try to reach this conclusion for the reverse reconstruction
firstly, since its dynamics links that of the original MAS in Ao by a constant matrix.

As one may know, there exists a close relation between equilibria for a complex
balanced MAS, shown as follows.

LEMMA 2 ( [10,13]). For any complex balanced MAS (X,Cc,Re,Ke) admitting
an equilibrium &* € R79, the concentration vector 21 € RZ? is another equilibrium
if and only if

At )
Ln (i) € Ker( g)
2

REMARK 14. This lemma suggests that if a complex balanced MAS is conservative
then it must admit multiple equilibrium points. However, mass conservation law is
not necessary to say the existence of multiple equilibria in a complex balanced system.
It is still possible to possess multiple equilibria for the complex balanced MAS even if
mass conservation does not hold. Of course, whatever the case is, if there are multiple
equilibria in a complex balanced MAS, then each equilibrium is in its individual positive
stoichiometric compatibility class.

We reach the following proposition to approach the result that each positive sto-
ichiometric compatibility class in the reverse reconstruction of a MAS (X,C,R,K) €
NCom contains only an equilibrium.
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PROPOSITION 3. For a mass-conserved MAS (X,C,R,K) admitting an equilib-
rium =¥ € R, let (X,C,R,K) be its reconstruction bridged by the reconstructing
matriz D given in (15), i.e., satisfying (14). Assume that o € RZ, represents any
initial state of (X,C,R,K), then forV &y € RL;? there exists a unique p € Ker(ST)
such that

(22) D1 [&* - Exp(u) — @] € Im(S),

where T* is the vector of the first n — q entries in x*.

Proof. Clearly, * is an equilibrium in (2\? ,CA,7A€,l€), we thus define a function
¢p, :R" %= R as

n—q

(23) ooy (u) =Y dil@Texp(u;) — do,uql.

i=1
Following the almost completely same proof as in Appendiz B of [10] where the func-
tion Y 1" [#Fexp(u;) — Zo,u;] was proved strictly convex, ¢p, (u) in (23) can be proved
strictly convex and lim,_, o ¢p, (au) = oo for any u # 0,_,. Note that the gradient
of pp, (u) takes

Vop,(u) = Di[z* - Exp(u) — &o]

and Ker(ST) R"~9. In the same way as in [10], we can prove that there exists a
unique 1 € Ker(S") such that Vo, (u)u = 0 for any u € Ker(ST), so Vip, (1) €
Im(S). Namely, for any & € R”;? there exists a unique pu € Ker(ST) such that

Dy [2* - Exp(p) — &o] € Im(S),

which completes the proof. ]

We then give an important result about the reverse reconstruction for a MAS in
‘/1/(10111'

THEOREM 5. Consider a mass-conserved MAS (X,C,R,K) € Ncom governed by
(3) @ithAan chuilibm’um z* € RY,. Let o € RY, represent any of its initial state,
(X,Cc,Re, Ke) be a complex balanced reconstruction with D given by (15) as the
reconstructing matriz, and (X,Cc,Rc,Kc) be the corresponding reverse reconstruc-
tion. Then ¥V Z¢ € RZB‘I there exists a unique equilibrium &' in (X,Cc,Re,Ke) such
that &' € S (%) NRZ.

Pmof; According to Proposition 3, for any JA?OA: zo, € RY,? there exists a unique
1 € Ker(SZ) such that Dy [2*-Exp(u)—#o] € Im(S¢), which together with Corollary 2
yields [* - Exp(u) — 9] € Im(Sg). Note that 2* and &* are an equilibrium in
(X,Cc,Re,Ke) and (X,Cc,Re,Kc), respectively. Set &7 = #* - Exp(u), which
naturally satisfies 27 € RZ;?, then we get u = Ln(f—l) € Ker(SZ,). Further based
on Lemma 2, we obtain that & is an equilibrium in (QE’,CACJAEC,ICC), so z1 is an
equilibrium in (X,Cc, Re, K¢). Therefore, 27 € S (Z0) NRL%. The uniqueness of
v guarantees that Z' is a unique equilibrium in ¢ (o) NRZ Y. O

REMARK 15 (Robustness of the first n — ¢ species at equilibrium). This theorem
means that the reverse reconstruction of a mass-conserved MAS (X,C,R,K) € Ncom
admitting an equilibrium x* € RY and starting from any initial sate xo € RY, must
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contain an equilibrium, and moreover, contains precisely an equilibrium &t € RZ,?
in each positive stoichiometric compatibility class. However, it should be noted that
z' does not guarantee to map an equilibrium in the original system, since from the
fact Syv(zt) = So(it) = 0,,_, the last q species in xt can not guarantee to be positive
despite being arbitrary. If there exist multiple equilibria in (X,C, R,K) mapped from
Z', the concentrations of the first n — q species at these different equilibria will be
robust with respect to the last q species in the initial state xg, i.e., robust with respect

to xo,. Specially, if dim (Im(S’c)) =n—gq, then p = 0,_4. At this time, 331 =z,
which indicates the concentrations of the first n — q species will keep unchanged at all
of different equilibria, i.e., absolute concentration robustness [22].

5.3. Asymptotic stability characterized for M ASs in Ao,. Now we can
characterize the local asymptotic stability of any MAS in A¢ep, utilizing the complex
balanced reconstruction strategy.

THEOREM 6. For any mass-conserved MAS (X,C,R,K) € Acom described by
(3), assume that (X,Cc,Rc,Kc) is its complex balanced reconstruction with D given
by (15) as the reconstructing matriz, and (X,Cc, Re, K¢) is the corresponding reverse
reconstruction. Let x* € RZ be an equilibrium in (X,C,R,K), then z* € R ? is
locally asymptotically stable with respect to all initial conditions in Sc(Z*) NRY
near T*.

Proof. From Syv(z*) = So(&*), * is an equilibrium in (X, Cc, Ro, K¢).  Further
based on Theorem 5, Z* is the unique equilibrium in .%o () N RZ,?. For the reverse
reconstruction (X, Cc, Re, K¢) , take the generalized pseudo-Helmholtz function G(z)
as the Lyapunov function, which is naturally positive definite with respect to £ — &*,
as said in Theorem 3. Further, we have its time derivative as

G(F) = VT C(#)Scic(F) = VI GE)D1Scic(F) = VT G(#)Scbe ().

Note that the pseudo-Helmholtz function G(&) is a valid Lyapunov function for a
complex balanced MAS to suggest the local asymptotic stability at the equilibrium
[10,13], so ¥ & we have V' G(#)Scic(2) < 0 with equality hold at equilibria of
the complex balanced reconstruction (2&' .Co, Re, ICC), i.e., at equilibria of the reverse
reconstruction (/'E' .Cc, Re, I@C) Since it is impogsible for 5’70(&*) NRZ;? to include
other equilibrium of the reverse reconstruction, é(i{:) < 0 with equality hold if and
only if £ = z* in this positive stoichiometric compatibility class. Therefore, T* is
locally asymptotically stable with all initial conditions in S (z*) "RY,? near z*. O

REMARK 16. Theorem 6 indicates that for the reverse reconstruction (/'f’, Ce,Re, I&c),l
Ve, ¢>0, 3 6(e)>0 such that every solution of T = Scvc(¥) having initial condition
within distance §(€), i.e., |Zo—z*||<d(€), and g € S (Z*)NRL,?, the equilibrium T*
remains within distance €, i.e., | —&*||<e for all t > 0 and lim;_, ||Z(t) — Z*|| < €.

THEOREM 7. For a mass-conserved MAS (X,C,R,K) € NCom, let 2* € RZ, be
any equilibrium, then it is locally asymptotically stable.

Proof. Assume 9 € RZ to be an initial point for the MAS (X, C, R, K) such that
To = w0, € So(T*)NRL. From Theorem 6 there must exist a neighbourhood of z*
so that if Z( is in this neighbourhood then z*, i.e., 7 , is locally asymptotically stable.

This means that, based on Remark 16 and Proposition 2, V €,¢'>0, 3 §(¢)>0, when
lzo, — 2% ||<d(€) we have ||z — 2% ||<e for all £ > 0 and lim;_,o ||z () — 27 || < €.
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From (10), we get
—T AT
ler =27l < C7 G |- fler — 27|l

lz — "l <\ T+ ICTTCT)? - flos — ]l
Note that /1 + ||Cr " C[T||2 is a constant, so we have ¥ ¢ = /1 + [|Cr " O} [|2e>0

and €] = /1 + ||C TCT||2¢/>0, 3 6(e1)>0, when ||z —2*||<d(e1) we have ||z —2* | <e;
for all ¢ > 0 and lim;_, o ||2(t) — 2*|| < €}. This implies that the arbitrary equilibrium
x* in (X,C, R, K) is locally asymptotically stable. 0

Hence,

Although all of the above results, including the reverse reconstruction possessing
an equilibrium in each positive stoichiometric compatibility class, the local asymp-
totic stability of any MAS in AGom, etc., are achieved under the condition of mass
conservation in the network, they also apply to the case that mass conservation is not
admitted by the network. For the latter, the case will become simpler since the recon-
structing matrix is a positive diagonal matrix. There will be no dimension reduction
in the reconstruction and the corresponding reverse reconstruction compared to the
original network. In that case, the reconstruction concept has the same signification
as the linear conjugacy proposed in [14-16], as stated in Remark 11. However, there
is a large difference in using Lyapunov function to characterize asymptotic stability
of the MAS between these two strategies. The current reconstruction strategy uses
the extension of the pseudo-Helmholtz function as the Lyapunov function while the
latter uses the traditional pseudo-Helmholtz function. Intuitively, the extension of the
pseudo-Helmholtz function and the generalized one lay a basis for deeper studies. In
the case that the mass conservation law is admitted, these two concepts are completely
different. The utilization of the mass conservation law will reduce the complexity of
the dynamical model greatly. In this case there will be no definition for the linear
conjugacy.

6. Systematic method to find complex balanced reconstructions and
cases studies. This section contributes to designing algorithm to compute the com-
plex balanced reconstructions for a MAS in AGom, and then illustrating the proposed
algorithm through some representative examples.

6.1. Algorithm for finding complex balanced reconstructions. Finding
complex balanced reconstructions for a MAS (X,C,R,K) € Nom means to design
D,Ce,Re and K¢ such that
(24) ?1%“111(?0*) = Scic(),

Bcvc (l‘ ) = Oé,

where B¢ and #* are the incident matrix and complex balanced equilibrium in the
complex balanced MAS (/\A,’ .Cc, Re, l@c), respectively. Every MAS with the dynamics
& = Scic(Z) is a reconstruction needed to be found. Essentially, it is to find realiza-
tions with a complex balancing structure for the nonnegative autonomous polynomial
system with the vector field of D1.Sjv(z). Therefore, the known algorithms for find-
ing realizations [16,24—26] naturally constitute the base to achieve complex balanced
reconstructions.

Note that the dynamics # = Sv(x) is expressed in a reaction centered formulation,
which is structure-hidden. To reflect the underlying CRN structure, we use complex
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centered formulation [25] instead of the current one through substituting (1) into the
dynamical equation, and then replacing Bv(z) by LW¥(z), where L € R*¢ is the
Kirchhoff matrix that stores the reaction rate coefficients according to

kxp p#m,

(25) Lyr = c
g - Zl;é,r Liz p=m,

with k,(p, 7 =1,--- , c) indicating the reaction rate coefficient of reaction Z., — Z.,,,
and ¥(x) € R¢ is a polynomial vector with the pth entry to be

(26) WAx%zIIxLR

Clearly, L is column conservative, constrained by 1/ L =0/, and ¥(z) can be solely
identified by Z. In (25), krp, = 0 when Z.;, — Z., is not existing. Note that these re-
action rate coefficients are identified by two complexes, which are essentially the same
with those in (2) identified by reactions. Utilizing the complex centered formulation,
we can rewrite the complex balanced reconstruction condition (24) as

ZoLeWo (i)

DZL¥(z) = 5
q

b

@7) LeWe(i*) = 0,

rr =0 TO (& —2) + 2%,

where the third constraint serves for eliminating those non-free species in the complex
balanced reconstruction. Therefore, the essence of finding complex balanced recon-
structions is to find complex balanced realizations, uniquely characterized by the pair
(ZC, fLC), for the nonnegative autonomous polynomial system with the vector field of
DZL¥(z) under given D.

There exist a few optimization based algorithms to find realizations, like mini-
mizing/maximizing the sum of reaction rate coefficients [25], minimizing/maximizing
the number of reactions [24, 26], minimizing the deficiency of weakly reversible real-
izations [16], etc. Some linear programming and mixed-integer linear programming
problems are designed towards these objects. Here, for simplicity we use the strategy
of minimizing the sum of reaction rate coeflicients to design algorithm for finding
complex balanced reconstructions. In addition, we calculate the conserved matrix C'
for the original MAS (X,C, R, K) beforehand, which may be easily obtained through
solving the linear system of equations S'¢ = 0,., and then following Definition 9.

With the above information, we can design the linear programming problem to-
wards solving complex balanced reconstructions for the kinetic system & = ZLW¥(x)
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to be
é

(P1) min Z zC: [A/CM

Di,Lc po gt

ZeLeWe(2)
Oq

et =C 1O (&% — &) + at,

s.t. 15TEC =0/,

Lo, >0, Vp#m pr=1-,

LeWo(a*) = 0,

GSdiS%, ’L.:l,n-’n—q,

DZL¥(z) =

)

o

where D = diag(d;) and L are the decision variables, and € > 0is a given very small
positive number. Once Z and L are given, then z*, i.e., £* = 2% , may be calculated
based on ZLW(x*) = 0,,. These parameters together with a given ¢ are known data
for (P1). The pair (ZC, ﬁc) solved from (P1), namely, represents the desired complex
balanced reconstruction.

6.2. Cases studies. In this subsection, some examples of MASs and their com-
plex balanced reconstructions computed through solving the linear programming (P1)
are shown. Table 1 reports the computation results of complex balanced reconstruc-
tions for 6 MASs. The first two examples are two-species CRNs, and the third and
fourth examples are three-species but having the conserved matrices of rank 1 and 2,
respectively. The fifth and sixth CRNs contain four species. Clearly, every MAS has a
complex balanced reconstruction, and for the first, second, fourth and sixth examples
the complex balanced reconstructions are even detailed balanced. The reconstructing
matrix in each case is also reported in Table 1.

7. Conclusions. This paper has developed the generalized pseudo-Helmholtz
function for stability analysis for general MASs, which fully utilizes the fact that
the pseudo-Helmholtz function is a valid Lyapunov function for characterizing local
asymptotic stability for complex balanced MASs. To match the use of the generalized
pseudo-Helmholtz function as the Lyapunov function, the notions of reconstruction
and reverse reconstruction for the original network have been defined in succession
through an invertible matrix storing a positive diagonal matrix and the conserved
matrix that captures mass conservation of the original network. These two kinds of
defined networks will retain some properties of the original one, such as their equi-
librium obtained from the concentrations of the first n — ¢ species of the equilibrium
in the original network, the dynamics of the reverse reconstruction bridged to that
of the original network by a constant matrix, etc. We have subsequently proved
that if the original network has a complex balanced reconstruction, then it is stable.
The asymptotic stability of the original network has been further reached based on
the complex balanced reconstruction strategy in which the corresponding reverse re-
construction is proved to possess only an equilibrium in each positive stoichiometric
compatibility class, and thus to be asymptotically stable. To facilitate applications of
the proposed reconstruction strategy, a constructive approach is proposed to compute
complex balanced reconstructions for general MASs.
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TABLE 1
Some mass action systems and their complex balanced reconstructions

{ No { MAS { Equilibrium { Complex Balanced Reconstruction { Reconstructing Matrix
. (X,C,R,K) x* (X,Co,Ro, Ko) D
1
s> 92X 0.01 . 0.011
X1 2X2 H b'e 28 ———= ox [0 01 0}
1 — —— 2X1
1 2 0.008 0.009 1 1
Xy —> X
2X,
0.02
2 21 H 2X; /= X, [0.101 ﬂ
1 0.02
1
X1+ Xg —> 2X5
9 0.09
X1+ Xg —> X3 X]+Xg ——=2
0.
X1 X2 H 0.09 0.01 0 0
3 10 i X1 <—— X2 0 001 o0
1 7 1 1 1
71 3
1 0.06 || 0.09
0.09
p'e
3 §%}
2
X1+ X2 > X3 0.5 0.04 0.01 0 0
4 1 0.5 X3 —= o 1 1 2
2X3 ———> 2X1 +2Xg 0.5 0.02 1 2 3
3.1
3.1 4X3 — > 2Xo
4X3 ——> X5 +2X3
5 0.3077 5 1 0 0 0
5 Xy —>= X1+ X2 0.8077 10.6 0o 2 o0 o0
: o o0 2 o0
2.8 10.6 1.0128 < o 9 29
X4 ——> X| ——> 2X3 0.6 1
9.1 2.8
X1+ X4 ——> 2Xy Xy —/———= X1 + X4
9.1
1
R X1+ X
X1 ——= X3 1 2
' 1 0.01 0 0 0
. N 1 0.01 || 0.01 0 001 0 0
Xog =——= X4 2 1 1 11
1 2 0.02 0.02 1 2 1 2
. X1 2] Xo
X1+ Xg —> X3 + X4 0.02 0.02

3 & represents zero complex.
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