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Abstract: A stochastic LQ problem with multiplicative noises and transmission delay is studied

in this paper, which does not require any definiteness constraint on the cost weighting matrices. From

some abstract representations of the system and cost functional, the solvability of this LQ problem

is characterized by some conditions with operator form. Based on these, necessary and sufficient

conditions are derived for the case with a fixed time-state initial pair and the general case with all the

time-state initial pairs. For both cases, a set of coupled discrete-time Riccati-like equations can be

derived to characterize the existence and the form of the delayed optimal control. In particular, for

the general case with all the initial pairs, the existence of the delayed optimal control is equivalent to

the solvability of the Riccati-like equations with some algebraic constraints, and both of them are also

equivalent to the solvability of a set of coupled linear matrix equality-inequalities. Note that both the

constrained Riccati-like equations and the linear matrix equality-inequalities are introduced for the

first time in the literature for the proposed LQ problem. Furthermore, the convexity and the uniform

convexity of the cost functional are fully characterized via certain properties of the solution of the

Riccati-like equations.

Key words: stochastic linear-quadratic optimal control, transmission delay, forward-backward

stochastic difference equation, convexity
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1 Introduction

Linear-quadratic (LQ, for short) optimal control was pioneered by Kalman [17] in 1960, which is now

a classical yet fundamental problem in control theory. Extension to stochastic LQ problems was first

carried out by Wonham [37] in 1968, and has received considerable interests and efforts since then. A

common assumption of most literature on stochastic LQ problems is that the state weighting matrices

are nonnegative definite and the control weighting matrices are positive definite. Contrary to this,

Chen, Li and Zhou [10] revealed in 1998 that a stochastic LQ problem with multiplicative noises might

still be solvable even if the cost weighting matrices are indefinite. More about this kind of LQ problems

can be found in [1] [4] [14] [29] and references therein. Recently, some researchers are interested in

the so-called mean-field LQ problems [24] [25] [30] [35] [40] [41]. An important feature of mean-field

control problems is that the expected values of the state and control enter nonlinearly into the cost

functional, which will bring new phenomena and new theoretical difficulties.
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Note that all the aforementioned papers are free of time delay. If time delay happens to appear in the

system state, the control input or the information-transmission channel, it is much more complicated

and challenging to design the optimal control of the corresponding LQ problems. Such kind of LQ

problems have been extensively studied since 1970’s; see, for example, [5] [11] [18] [33] [43] or other

related literature [6] [19] [22] [31]. Concerned with a deterministic LQ problem with input delay, it

is shown [33] that the delayed optimal control is obtained by invoking the Smith predictor theory,

and that the optimal gains are same to those of the LQ problem without input delay. Unfortunately,

the results about deterministic LQ problems (with input delay) cannot be directly generalized to the

stochastic setting. In [43], the authors considered a discrete-time stochastic LQ problem with input

delay and multiplicative noises, and showed that the optimal control (if exists) is a linear feedback of

d-step-lagged conditional expectation of current states and that the optimal gains are computed via a

set of coupled discrete-time Riccati-like equations. Here, the set of discrete-time Riccati-like equations

differs significantly from what we have in hand the standard discrete-time Riccati equation.

It is worth pointing out that the stochastic systems with multiplicative noises have been extensively

studied in the past half century. From the viewpoint of mathematics, almost all the theories about

stochastic differential equations (SDEs, for short) are for the case with multiplicative noises, and there

are lots of practical motivations to study such kind of SDEs. The study of controlled systems with

multiplicative noises is also popular in the control community; a recent small collection in the literature

related to our paper includes [1] [4] [8] [9] [10] [14] [15] [24] [26] [29] [36] [40].

In this paper, a general discrete-time stochastic LQ problem with multiplicative noises and trans-

mission delay is thoroughly investigated, whose cost weighting matrices for the state and control are

allowed to be indefinite. Apart from intending to generalize the existing results [5] [11] [18] [33] [43] to

the joint case with indefiniteness and time delay, the topic of this paper is also partially motivated by

recent progresses in network control system and other related areas. Transmission delay, or sometimes

called as communication delay, is a key feature of network control systems [7] [13] [34], which is gen-

erally caused by the limited bit rate of communication channels. In fact, transmission delay has been

extensively studied in the areas such as discrete-event dynamic systems [45], multi-agent systems [21]

[32] [20], networked mobile robots [38], receding horizon control [16], flexible spacecraft [12], and so

on. Furthermore, such kind of delays are also related to the measurement delays [2] [3] [23] [28] [46],

which arise in measurement channels.

The contents of this paper are as follows. For the completeness and parallel to that in [42], the

considered problem (Problem (LQ)) is converted in Section 3 to a quadratic optimization problem in

the Hilbert space. By this reformulation, we can derive some abstract conditions on the solvability of

Problem (LQ), which gives us an overall perspective of Problem (LQ) and motivates the analysis of

the sections followed. This part of work is a discrete-time version (with state transmission delay) of

the results in [42], and the backward stochastic difference equations (BS∆Es, for short) are involved

here.

In Section 4, for the case with a fixed time-state initial pair, the solvability of Problem (LQ) at that

initial pair is equivalent to that a stationary condition and a convexity condition are satisfied, with

the backward state of a forward-backward stochastic difference equation (FBS∆E, for short) being

involved in the stationary condition. Further, a set of coupled discrete-time Riccati-like equations is

introduced, by which we can express the backward state of the FBS∆E via its forward state. Moreover,

equivalent characterizations of the stationary condition and the convexity condition are derived via

certain properties of the solution of the Riccati-like equations.

In Section 5, for the case with all the time-state initial pairs, the following facts are shown to be

equivalent: (i) Problem (LQ) is finite; (ii) Problem (LQ) is solvable; (iii) a set of constrained coupled

discrete-time Riccati-like equations is solvable; (iv) a set of coupled linear matrix equality-inequalities

(LMEIs, for short) is solvable. Moreover, the unique solvability of Problem (LQ) at the initial pair (t, x)

is shown to be equivalent to the unique solvability at any initial pair (k, ξ) ∈ {t, ..., N − 1}×R
n, both
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of which are equivalent to the uniform convexity of the cost functional and the positive definiteness of

certain matrices involved in the constrained Riccati-like equations.

From our derived results, we have the following remarks.

• For Problem (LQ), the case with a fixed time-state initial pair differs significantly from the case

with all the time-state initial pairs; this can be seen from Theorem 4.12 and Theorem 5.4. Hence,

we separately discuss the two cases.

• By the stationary condition and a backward procedure of calculations, we can get the Riccati-like

equations (4.4)-(4.6) and express FBS∆E’s backward state via its forward state and the solution

of the Riccati-like equations. Due to the d-step-lagged information structure, the Riccati-like

equations are much more complicated than the standard discrete-time Riccati equation.

• The convexity of the cost functional is fully characterized in Theorem 4.9 via certain properties

of solution of the Riccati-like equations (4.4)-(4.6), which is proved by using a technique of

control shifting. To the best of our knowledge, this result seems to be the first one of equivalent

characterization on the convexity of the cost functional of LQ problem.

Based on this, necessary and sufficient conditions on the solvability of Problem (LQ) for a fixed

initial pair is presented.

• Note that the constrained Riccati-like equations (5.10)-(5.12) and the LMEIs (5.6)-(5.8) are

introduced for the first time, to the best of our knowledge. Furthermore, from a solution of the

LMEIs, an explicit procedure is presented to construct a solution of the constrained Riccati-like

equations. Such a procedure is potentially useful to study the algebraic Riccati-like equations

that we will encounter in the infinite-horizon version of Problem (LQ).

It is worth mentioning that there are linear equations in the set of Riccati-like equations and the

LMEIs contain equality constraints. Note that such new feature do not appear in deterministic

LQ problems (with time delay) and standard stochastic LQ problems.

In [43], stochastic LQ problems with multiplicative noises and input delay were investigated, whose

cost weighting matrices are assumed to be nonnegative definite. This paper is of general indefinite

case, and thus, differs substaintially from [43]. In the context of this paper, it is proved in [43] that (ii)

and (v) of Theorem 5.11 are equivalent for the nonnegative-definite case, which is the main result of

the finite-horizon LQ problem in [43]. Note that in [43], the case with a fixed initial pair and the case

with all the initial pairs are not differentiated, and no LMEIs are mentioned. Hence, the results of this

paper are broader than those of the finite-horizon LQ problem of [43]. Furthermore, the transmission

delay is studied in this paper, which is different from the input delay [43]; this is why the Riccati-like

equations of this paper are divided into several pieces.

The rest of this paper is organized as follows. Section 2 and Section 3 give the problem formulation

and an abstract consideration. In Section 4 and Section 5, the case with a fixed initial pair and the

case with all the initial pairs are investigated, respectively. Section 6 gives an example, and some

concluding remarks are given in Section 7.

2 Problem formulation

Consider the following controlled stochastic difference equation (S∆E, for short)

{
Xk+1 =

(
AkXk +Bkuk

)
+
(
CkXk +Dkuk

)
wk,

Xt = x, k ∈ Tt , {t, t+ 1, ..., N − 1}, t ∈ T , {0, 1, ..., N − 1},
(2.1)
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where Ak, Ck ∈ R
n×n, Bk, Dk ∈ R

n×m are deterministic matrices. The noise {wk, k ∈ T} is assumed

to be a martingale difference sequence defined on a probability space (Ω,F , P ) with

Ek+1[wk+1] = 0, Ek+1[(wk+1)
2] = 1, k ∈ T. (2.2)

Here, Ek+1 is the conditional mathematical expectation E[ · |Fk+1] with respect to Fk+1 = σ{wl, l =

0, 1, · · · , k}, and F0 is understood as {∅,Ω}. Introduce the following cost functional associated with

(2.1)

J(t, x;u) =
N−1∑

k=t

E
[
XT

k QkXk + uT
kRkuk

]
+ E

[
XT

NGXN

]
, (2.3)

where Qk, Rk, k ∈ Tt, G are deterministic symmetric matrices of appropriate dimensions. Note, here,

that we do not pose any definiteness constraints on the cost weighting matrices.

This paper is concerned with the case with transmission delay. For such kinds of time delays

and the related measurement delays, find [2] [3] [7] [12] [13] [16] [20] [21] [23] [28] [32] [34] [38] [45]

[46] in Introduction for their motivations and applications. Assume in this paper that there is a d-

step time delay in the transmission/measurement channel (d ≥ 2). Due to this, for k ∈ {t, ...t + d}

no new information is available and the controller’s decision information set remains Ft; and for

k ∈ Tt+d = {t+ d, ..., N − 1} the information set should be Fk−d. In this paper, we select

U t
ad =

(
l2F(t;R

m)
)d

× l2F(T
−d
t ;Rm) (2.4)

as the admissible control set, where

l2F (t;R
m) =

{
ζ ∈ R

m
∣∣ ζ is Ft-measurable, and E|ζ|2 < ∞

}
, t = 0, ..., N, (2.5)

and

l2F (T
−d
t ;Rm) =

{
ν = {νk, k ∈ T

−d
t }

∣∣ νk is Fk-measurable, and E|νk|
2 < ∞, k ∈ T

−d
t

}
(2.6)

with

T
−d
t = {t, ..., N − 1− d}.

Therefore, for any (ut, ..., uN−1) = u ∈ U t
ad, uk is Ft-measurable if k ∈ {t, ...t + d}, and uk is Fk−d-

measurable if k ∈ T
−d
t ; this reflects the property of causality.

The following optimal control problem will be studied in this paper.

Problem (LQ). For a time-state initial pair (t, x) ∈ T× l2F (t;R
n), find a ū ∈ U t

ad such that

J(t, x; ū) = inf
u∈Ut

ad

J(t, x;u). (2.7)

Remark 2.1. Noting that the initial pair (t, x) is specialized, hereafter the above problem will be

called as Problem (LQ) for the initial pair (t, x). Furthermore, any ū satisfying (2.7) is called an

optimal control of Problem (LQ) for the initial pair (t, x).

Definition 2.2. Problem (LQ) is said to be (uniquely) solvable at (t, x) if there exists a (unique)

ū ∈ U t
ad such that (2.7) holds.

In what follows, we shall review some knowledge on matrix. Recall the pseudo-inverse of a matrix.

By [27], for a given matrix M ∈ R
n×m, there exists a unique matrix in R

m×n denoted by M † such

that
{

MM †M = M, M †MM † = M †,

(MM †)T = MM †, (M †M)T = M †M.
(2.8)

This M † is called the Moore-Penrose inverse of M . The following lemma is from [1].
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Lemma 2.3. Let matrices L, M and N be given with appropriate size. Then, LXM = N has a

solution X if and only if LL†NMM † = N . Moreover, the solution of LXM = N can be expressed as

X = L†NM † + Y − L†LYMM †, where Y is a matrix with appropriate size.

If M = I in Lemma 2.3, then LL†N = N is equivalent to Ran(N) ⊂ Ran(L). Here, Ran(N) is the

range of N . The following is the so-called extended Schur’s lemma.

Lemma 2.4. Let S = ST ∈ R
n×n,W = WT ∈ R

m×m, H ∈ R
m×n. Then

[
S HT

H W

]
≥ 0

if and only if

S −HTW †H ≥ 0, W ≥ 0, WW †H = H.

3 An abstract consideration

For the completeness of theory, in this section, we convert Problem (LQ) to a quadratic optimization

problem in Hilbert space, based on which some necessary conditions and sufficient conditions are given

on the solvability of Problem (LQ). This part of work is a discrete-time version (with state transmission

delay) of the results in [42], which will give us an overall perspective of Problem (LQ) and will motivate

the analysis of the following sections.

To begin with, for k, l ∈ Tt, let




Φ(k, ℓ) = (Ak + wkCk)(Ak−1 + wk−1Ck−1) · · · (Aℓ + wℓCℓ), k > ℓ,

Φ(k, k) = Ak + wkCk,

Φ(k, ℓ) = I, k < ℓ.

From (2.1), we have

Xk+1 = Φ(k, t)x+
k∑

ℓ=t

Φ(k, ℓ+ 1)(Bℓ + wℓDℓ)uℓ, k ∈ Tt. (3.1)

For any x ∈ l2F(t;R
n) and u ∈ U t

ad, define the following operators




Γtx =
{(

(Γtx)t, ..., (Γ
tx)N−1

) ∣∣∣ (Γtx)k = Φ(k − 1, t)x, k ∈ Tt

}
,

Γ̂tx = Φ(N − 1, t)x,

Ltu =
{(

(Ltu)t, ..., (L
tu)N−1

) ∣∣∣ (Ltu)t = 0, (Ltu)k =
k−1∑

ℓ=t

Φ(k − 1, ℓ+ 1)(Bℓ + wℓDℓ)uℓ, k ∈ Tt+1

}
,

L̂tu =
N−1∑

ℓ=t

Φ(N − 1, ℓ+ 1)(Bℓ + wℓDℓ)uℓ.

Hence,

Xk = (Γtx)k + (Ltu)k, k ∈ Tt, (3.2)

and

XN = Γ̂tx+ L̂tu. (3.3)

It is not hard to see that the operators
{

Γt : l2F(t;R
n) 7→ l2F(Tt;R

n), Γ̂t : l2F(t;R
n) 7→ l2F(N ;Rn),

Lt : U t
ad 7→ l2F (Tt;R

n), L̂t : U t
ad 7→ l2F(N ;Rn)

(3.4)
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are all bounded and linear. Notice that the spaces in (3.4) are all Hilbert spaces. Therefore, the

corresponding adjoint operators uniquely exist. For η ∈ l2F (N ;Rn) and ξ ∈ l2F(Tt;R
n), introduce the

following BS∆E

{
Vk = AT

k EkVk+1 + CT
k Ek(Vk+1wk) + ξk,

VN = η, k ∈ Tt.
(3.5)

Proposition 3.1. Let V 0 be the solution of (3.5) with η = 0 and V 00 be the solution of (3.5) with

ξ = 0. Then the adjoint operators Γt∗, Lt∗, Γ̂t∗ and L̂t∗are given, respectively, by

Γt∗ξ = V 0
t , (3.6)

(Lt∗ξ)k = BT
k Ek−dV

0
k+1 +DT

k Ek−d(V
0
k+1wk), k ∈ Tt, (3.7)

Γ̂t∗η = V 00
t , (3.8)

and

(L̂t∗η)k = BT
k Ek−dV

00
k+1 +DT

k Ek−d(V
00
k+1wk), k ∈ Tt. (3.9)

In (3.7), (3.9), Ek−d is understood as Et if k ∈ {t, ..., t+ d− 1} (i.e., k − d < t).

Proof. From (3.5) and by substituting Xk+1, we have

E
[
ηTXN − V T

t x
]
=

N−1∑

k=t

E

[
V T
k+1Xk+1 − V T

k Xk

]

=

N−1∑

k=t

E

[(
AT

k Vk+1 + CT
k (Vk+1wk)− Vk

)T
Xk

]

+
N−1∑

k=t

E

[(
BT

k Vk+1 +DT
k (Vk+1wk)

)T
uk

]

= −
N−1∑

k=t

E
[
ξTk Xk

]
+

N−1∑

k=t

E

[(
BT

k Ek−dVk+1 +DT
k Ek−d(Vk+1wk)

)T
uk

]
. (3.10)

Letting η = 0, u = 0 in (3.10), from (3.2) we have

〈Γtx, ξ〉 =
N−1∑

k=t

E
[
ξTk (Γ

tx)k
]
=

N−1∑

k=t

E
[
ξTk Xk

]
= E

[
xTV 0

t

]
= 〈x, V 0

t 〉,

which implies (3.6). Letting x = 0, η = 0 in (3.10), the following equation holds

〈Ltu, ξ〉 =
N−1∑

k=t

E
[
(Ltu)Tk ξk

]
=

N−1∑

k=t

E
[
XT

k ξk
]
=

N−1∑

k=t

E

[
uT
k

(
BT

k Ek−dV
0
k+1 +DT

k Ek−d(V
0
k+1wk)

)]
.

Hence, the adjoint operator Lt∗ of L is given by (3.7).

Letting ξ = 0, u = 0 in (3.10), we have

〈Γ̂tx, η〉 = E
[
ηTXN

]
= E

[
xTV 00

t

]
= 〈x, V 00

t 〉.

Then, the adjoint operator Γ̂t∗ of Γ̂t is given by (3.8). Furthermore, letting ξ = 0, x = 0 in (3.10), it

holds that

〈L̂tu, η〉 = E
[
ηTXN

]
=

N−1∑

k=t

E

[
uT
k

(
BT

k Ek−dV
00
k+1 +DT

k Ek−d(V
00
k+1wk)

)]
.
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We therefore have (3.9).

We further use the convention
{

(QX)k = QkXk, k ∈ Tt, ∀X ∈ l2F(Tt;R
n),

(Ru)k = Rkuk, k ∈ Tt, ∀u ∈ U t
ad.

Then, the cost functional J(t, x;u) has the following form

J(t, x;u) = 〈Q(Γtx+ Ltu),Γtx+ Ltu〉l2
F
(Tt;Rn) + 〈Ru, u〉Ut

ad

+ 〈G(Γ̂tx+ L̂tu), Γ̂tx+ L̂tu〉l2
F
(N ;Rn)

= 〈Θt
1u, u〉Ut

ad
+ 2〈Θt

2x, u〉Ut

ad
+ 〈Θt

3x, x〉l2
F
(t;Rn) (3.11)

with




Θt
1 = R+ Lt∗QLt + L̂t∗GL̂t,

Θt
2 = Lt∗QΓt + L̂t∗GΓ̂t,

Θt
3 = Γt∗QΓt + Γ̂t∗GΓ̂t.

In (3.11), the inner products are for different Hilbert spaces.

Based on above preparations, we have the following result.

Proposition 3.2. The following statements hold.

(i) Let u, v ∈ U t
ad and λ ∈ R. Then

J(t, x;u + λv)− J(t, x;u) = λ2〈Θt
1v, v〉Ut

ad
+ 2λ〈Θt

1u+Θt
2x, v〉Ut

ad
.

(ii) Problem (LQ) is (uniquely) solvable at (t, x) if and only if Θt
1 ≥ 0 and there exists a (unique)

ū ∈ U t
ad such that

Θt
1ū+Θt

2x = 0.

(iii) If Θt
1 > aI for some a > 0, then J(t, x;u) admits a unique minimizer ū

ūk = −((Θt
1)

−1Θt
2x)k, k ∈ Tt.

In addition, if

Qk ≥ 0, Rk > 0, k ∈ Tt, G ≥ 0, (3.12)

then, Θt
1 > aI for some a > 0.

Proof. (i) follows from (3.11), which implies (ii) and (iii).

Some calculations show

(Θt
1u)k = Rkuk +BT

k Ek−dV
1
k+1 +DT

k Ek−d(V
1
k+1wk), k ∈ Tt, (3.13)

and

(Θt
2x)k = BT

k Ek−dV
2
k+1 +DT

k Ek−d(V
2
k+1wk), k ∈ Tt, (3.14)

where V 1, V 2 are given by
{

V 1
k = AT

k EkV
1
k+1 + CT

k Ek(V
1
k+1wk) + (QLtu)k,

V 1
N = GL̂tu, k ∈ Tt,

(3.15)

and
{

V 2
k = AT

k EkV
2
k+1 + CT

k Ek(V
2
k+1wk) + (QΓtx)k,

V 2
N = GΓ̂tx, k ∈ Tt.

(3.16)

Hence, we have the following results.
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Corollary 3.3. Let u, v ∈ U t
ad and λ ∈ R. Then,

J(t, x;u+ λv) − J(t, x;u) = λ2J(t, 0; v) + 2λ

N−1∑

k=t

E

[(
Rkuk +BT

k Zk+1 +DT
k Zk+1wk

)T
vk

]
, (3.17)

where
{

Zk = QkXk +AT
k EkZk+1 + CT

k Ek(Zk+1wk),

ZN = GXN , k ∈ Tt

with X is given in (2.1).

Proof. From Proposition 3.2, we need only to derive the expression of Θt
1u + Θt

2x. In fact, from

(3.13)-(3.16) we have

(Θt
1u+Θt

2x)k = Rkuk +BT
k Ek−d(V

1
k+1 + V 2

k+1) +DT
k Ek−d

(
(V 1

k+1 + V 2
k+1)wk

)
, k ∈ Tt.

Noting (3.2) and (3.3), we will have (3.17).

4 Problem (LQ) for a fixed time-state initial pair

In this section, we will study Problem (LQ) for the fixed initial pair (t, x), and the general case of

Problem (LQ) for all the initial pairs will be introduced and studied in the next section. Throughout

this section, Problem (LQ) for the fixed initial pair (t, x) will be simply denoted as Problem (LQ)tx.

Throughout this paper, Ek−d is understood as Et if k ∈ {t, ..., t + d − 1} (i.e., k − d < t). From

Proposition 3.2 and Corollary 3.3, the following theorem is straightforward.

Theorem 4.1. The following statements are equivalent.

(i) Problem (LQ)tx is solvable.

(ii) The following assertions hold.

a) There exists a ut,x,∗ ∈ U t
ad such that the stationary condition

Rku
t,x,∗
k +BT

k Ek−dZ
t,x,∗
k+1 +DT

k Ek−d(Z
t,x,∗
k+1 wk) = 0, a.s., k ∈ Tt (4.1)

is satisfied, where Zt,x,∗ is the backward state of the following FBS∆E





Xt,x,∗
k+1 =

(
AkX

t,x,∗
k +Bku

t,x,∗
k

)
+
(
CkX

t,x,∗
k +Dku

t,x,∗
k

)
wk,

Zt,x,∗
k = QkX

t,x,∗
k +AT

k EkZ
t,x,∗
k+1 + CT

k Ek(Z
t,x,∗
k+1 wk),

Xt,x,∗
t = x, Zt,x,∗

N = GXt,x,∗
N , k ∈ Tt.

(4.2)

b) The convexity condition

inf
u∈Ut

ad

J(t, 0;u) ≥ 0 (4.3)

holds.

Under any of the above conditions, ut,x,∗ in (ii) is an optimal control of Problem (LQ)tx.
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4.1 Stationary condition

By the stationary condition (4.1) and a backward procedure of calculations, we can get the following

discrete-time Riccati-like equations





P
(0)
k = Qk +AT

k

(
P

(0)
k+1 + P

(1)
k+1

)
Ak + CT

k P
(0)
k+1Ck,

P
(i)
k = AT

k P
(i+1)
k+1 Ak, i = 1, ..., d− 1,

P
(d)
k = −HT

k W
†
kHk,

P
(0)
N = G, P

(j)
N = 0, j = 1, ..., d,

k ∈ Tt+d = {t+ d, ..., N − 1},

(4.4)





P
(0)
k = Qk +AT

k

(
P

(0)
k+1 + P

(1)
k+1

)
Ak + CT

k P
(0)
k+1Ck,

P
(i)
k = AT

k P
(i+1)
k+1 Ak, i = 1, ..., k − t− 1,

P
(k−t)
k = AT

k P
(k+1−t)
k+1 Ak −HT

k W
†
kHk,

k ∈ {t+ 2, ..., t+ d− 1},

(4.5)

and





{
P

(0)
t+1 = Qt+1 +AT

t+1

(
P

(0)
t+2 + P

(1)
t+2

)
At+1 + CT

t+1P
(0)
t+2Ct+1,

P
(1)
t+1 = AT

t+1P
(2)
t+2At+1 −HT

t+1W
†
t+1Ht+1,

P
(0)
t = Qt +AT

t

(
P

(0)
t+1 + P

(1)
t+1

)
At + CT

t P
(0)
t+1Ct −HT

t W
†
t Ht,

(4.6)

where

Wk =





Rk +
∑d

i=0 B
T
k P

(i)
k+1Bk +DT

k P
(0)
k+1Dk, k ∈ Tt+d,

Rk +
∑k+1−t

i=0 BT
k P

(i)
k+1Bk +DT

k P
(0)
k+1Dk, k ∈ {t, ..., t+ d− 1},

(4.7)

and

Hk =





∑d

i=0 B
T
k P

(i)
k+1Ak +DT

k P
(0)
k+1Ck, k ∈ Tt+d,

∑k+1−t
i=0 BT

k P
(i)
k+1Ak +DT

k P
(0)
k+1Ck, k ∈ {t, ..., t+ d− 1}.

(4.8)

Furthermore, the backward state of FBS∆E (4.2) can be expressed via the forward state and the

solution of (4.4)-(4.6). Due to the d-step-lagged information structure, the Riccati-like equations are

much more complicated than the standard discrete-time Riccati equation. In fact, we have the following

equivalent characterization of the stationary condition.

Theorem 4.2. The following statements are equivalent.

(i) The stationary condition of (4.1) is satisfied for some ut,x,∗ ∈ U t
ad.

(ii) The following condition

HkEk−dX
t,x,∗
k ∈ Ran(Wk), a.s., k ∈ Tt (4.9)

is satisfied, where Wk, Hk, k ∈ Tt, are given in (4.7) and (4.8), and Xt,x,∗ is given by the forward S∆E

of





Xt,x,∗
k+1 =

(
AkX

t,x,∗
k +Bku

t,x,∗
k

)
+
(
CkX

t,x,∗
k +Dku

t,x,∗
k

)
wk,

Zt,x,∗
k = QkX

t,x,∗
k +AT

k EkZ
t,x,∗
k+1 + CT

k Ek(Z
t,x,∗
k+1 wk),

Xt,x,∗
t = x, Zt,x,∗

N = GXt,x,∗
N , k ∈ Tt

(4.10)
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with

ut,x,∗
k = −W †

kHkEk−dX
t,x,∗
k , k ∈ Tt. (4.11)

Furthermore, the backward state Zt,x,∗ of (4.10) has the following expression

Zt,x,∗
k =





P
(0)
k Xt,x,∗

k + P
(1)
k Ek−1X

t,x,∗
k + · · ·+ P

(k−t)
k EtX

t,x,∗
k , k ∈ {t, ..., t+ d− 1},

P
(0)
k Xt,x,∗

k + P
(1)
k Ek−1X

t,x,∗
k + · · ·+ P

(d)
k Ek−dX

t,x,∗
k , k ∈ Tt+d,

(4.12)

where P (i), i = 0, ..., d, are given in (4.4)-(4.6).

Proof. See Appendix A.

Remark 4.3. If x in (4.10) is 0, then Xt,0,∗
k = 0, k ∈ Tt. In this case, the condition (4.9) is

naturally satisfied.

Remark 4.4. From the proof of Theorem 4.2, we know that the key technique is to decouple the

FBS∆E (4.2) by virtue of (4.1), i.e., find the expression (4.12). Due to the delayed information

structure, at k ∈ {t, ..., t+ d} the decision information set remains Ft. For k ∈ {t, ..., t+ d− 1}, Zt,x,∗
k

is a linear function of Xt,x,∗
k ,Ek−1X

t,x,∗
k , · · · , P

(k−t)
k EtX

t,x,∗
k , which differs from the case of k ∈ Tt+d.

This is why the Riccati-like equations are divided into several pieces (4.4)-(4.6). Letting k = t, t + 1,

then k − t− 1 in (4.5) will be 0 and 1. Hence, (4.6) is not a special form of (4.5).

Remark 4.5. Substituting (4.11) into the forward S∆E of (4.10), we have

{
Xt,x,∗

k+1 =
(
AkX

t,x,∗
k −BkW

†
kHkEk−dX

t,x,∗
k

)
+
(
CkX

t,x,∗
k −DkW

†
kHkEk−dX

t,x,∗
k

)
wk,

Xt,x,∗
t = x, k ∈ Tt.

(4.13)

Taking conditional expectations in both sides of all the equations of (4.13), we have

{
Ek+1−dX

t,x,∗
k+1 = AkEk+1−dX

t,x,∗
k −BkW

†
kHkEk−dX

t,x,∗
k ,

Et−dX
t,x,∗
t = x, k ∈ Tt.

For k ∈ Tt+d and by successive iterations, it holds

Ek+1−dX
t,x,∗
k+1 = AkAk−1 · · ·Ak+1−dX

t,x,∗
k+1−d −BkW

†
kHkEk−dX

t,x,∗
k

−
d−2∑

i=0

Ak · · ·Ak−iBk−i−1W
†
k−i−1Hk−i−1E(k−i−1)−dX

t,x,∗
k−i−1,

which is eventually a linear function of Xt,x,∗
k+1−d, ..., X

t,x,∗
t . Similar expressions can be derived for the

case of k ∈ {t, ..., t+d−1}. Combining this and (4.13), we can get all the values of Ek−dX
t,x,∗
k , k ∈ Tt.

Hence, the control (4.11) can be easily implemented.

The following result shows that the solution of (4.4)-(4.6) can be calculated through a set of

Riccati-like equations.

Proposition 4.6. Let





P̄
(0)
k = Qk +AT

k

(
P̄

(0)
k+1 + P̄

(1)
k+1

)
Ak + CT

k P̄
(0)
k+1Ck,

P̄
(i)
k = AT

k P̄
(i+1)
k+1 Ak, i = 1, ..., d− 1,

P̄
(d)
k = −H̄T

k W̄
†
k H̄k,

P̄
(0)
N = G, P̄

(j)
N = 0, j = 1, ..., d,

k ∈ Tt,

(4.14)
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where




W̄k = Rk +
∑d

i=0 B
T
k P̄

(i)
k+1Bk +DT

k P̄
(0)
k+1Dk,

H̄k =
∑d

i=0 B
T
k P̄

(i)
k+1Ak +DT

k P̄
(0)
k+1Ck,

k ∈ Tt.

Then for (4.4)-(4.6) it holds that

P
(i)
k =





P̄
(i)
k , k ∈ Tt+d, i = 0, ..., d,

P̄
(i)
k , k ∈ {t+ 2, ..., t+ d− 1}, i = 0, ..., k − t− 1,

P̄
(k−t)
k + · · ·+ P̄

(d)
k , k ∈ {t, ..., t+ d− 1}, i = k − t.

(4.15)

Proof. P
(i)
k = P̄

(i)
k follows from their expressions for the case with k ∈ Tt+d, i = 0, ..., d and the

case with k ∈ {t+ 2, ..., t+ d− 1}, i = 0, ..., k − t− 1. For k = t+ d− 1 and i = d− 1,

P
(d−1)
t+d−1 = AT

t+d−1P
(d)
t+dAt+d−1 −HT

t+d−1W
†
t+d−1Ht+d−1

= AT
t+d−1P̄

(d)
t+dAt+d−1 − H̄T

t+d−1W̄
†
t+d−1H̄t+d−1

= P̄
(d−1)
t+d−1 + P̄

(d)
t+d−1.

Furthermore, we have

P
(d−2)
t+d−2 = AT

t+d−2P
(d−1)
t+d−1At+d−2 −HT

t+d−2W
†
t+d−2Ht+d−2

= AT
t+d−2

(
P̄

(d−1)
t+d−1 + P̄

(d)
t+d−1

)
AT

t+d−2 − H̄T
t+d−2W̄

†
t+d−2H̄t+d−2

= P̄
(d−2)
t+d−2 + P̄

(d−1)
t+d−2 + P̄

(d)
t+d−2,

where we have used the properties

Ht+d−2 =

d−1∑

i=0

BT
t+d−2P

(i)
t+d−1At+d−2 +DT

t+d−2P
(0)
t+d−1Ct+d−2

=

d∑

i=0

BT
t+d−2P̄

(i)
t+d−1At+d−2 +DT

t+d−2P̄
(0)
t+d−1Ct+d−2

= H̄t+d−2

and Wt+d−2 = W̄t+d−2. By induction, we can achieve the conclusion.

Remark 4.7. (4.14) with W̄k > 0, k ∈ Tt, is first introduced in [43], which characterizes the unique

solvability of stochastic LQ problem with input delay. We here will investigate Problem (LQ) with

information transmission delay, and intend seeking more general conditions to ensure the solvability

of Problem (LQ) for the case with a fixed initial pair and the case with all the initial pairs.

4.2 Convexity

We now study the convexity condition. In what follows, the functional u 7→ J(t, x;u) is called convex

if (4.3) holds.

Lemma 4.8. For any u ∈ U t
ad, it holds that

J(t, 0;u) =

N−1∑

k=t

E

{
(Ek−dX

0
k)

THT
k W

†
kHkEk−dX

0
k + 2(HkEk−dX

0
k)

Tuk + uT
kWkuk

}
(4.16)
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with X0 given by
{

X0
k+1 =

(
AkX

0
k +Bkuk

)
+
(
CkX

0
k +Dkuk

)
wk,

X0
t = 0, k ∈ Tt.

(4.17)

Proof. See Appendix B.

As Wk, k ∈ Tt, are symmetric, there exist orthogonal matrices Fk, k ∈ Tt, such that

Wk = FT
k

[
Σk 0

0 0

]
Fk, k ∈ Tt.

In the above, Σk ∈ R
rk×rk is a diagonal matrix with rk being the rank of Wk, whose diagonal elements

are the nonzero eigenvalues of Wk. Hence, we have

W †
k = FT

k

[
Σ−1

k 0

0 0

]
Fk, k ∈ Tt.

Moreover, Fk can be decomposed as FT
k = [(F

(1)
k )T (F

(2)
k )T ], where the lines of F

(2)
k ∈ R

(m−rk)×m

form a basis of Ker(Wk) (the kernel of Wk). Let

Fkuk =

[
F

(1)
k uk

F
(2)
k uk

]
, Lk , FkHk =

[
F

(1)
k Hk

F
(2)
k Hk

]
,

[
L
(1)
k

L
(2)
k

]
.

Hence, (7.10) becomes to

J(t, 0;u) =
N−1∑

k=t

E

[(
F

(1)
k uk +Σ−1

k L
(1)
k Ek−dX

0
k

)T
Σk

(
F

(1)
k uk +Σ−1

k L
(1)
k Ek−dX

0
k

)]

+ 2

N−1∑

k=t

E

[
(L

(2)
k Ek−dX

0
k)

TF
(2)
k uk

]
. (4.18)

Note that the space spanned by lines of F
(1)
k is Ran(Wk), the range of Wk. Let U t

ad(Ker) be a subset of

U t
ad such that for any u ∈ U t

ad(Ker), uk ∈ Ker(Wk), k ∈ Tt. Similarly, U t
ad(Ran) is defined as a subset

of U t
ad such that for any u ∈ U t

ad(Ran), uk ∈ Ran(Wk), k ∈ Tt.

By the above preparations, we have the following theorem, which gives necessary and sufficient

conditions on the convexity of u 7→ J(t, x;u). To the best of our knowledge, it seems to be the first

result to equivalently characterize the convexity of LQ problem.

Theorem 4.9. The following statements are equivalent.

(i) u 7→ J(t, x;u) is convex.

(ii) The following assertions hold.

a) The solution of Riccati-like equation set (4.4)-(4.6) has the property Wk ≥ 0, k ∈ Tt.

b) For any u ∈ U t
ad, the condition

HkEk−dX
0,u
k ∈ Ran(Wk), a.s., k ∈ Tt (4.19)

is satisfied, where X0,u is given by
{

X0,u
k+1 =

(
AkX

0,u
k +Bkv

u
k

)
+
(
CkX

0,u
k +Dkv

u
k

)
wk,

X0,u
t = 0, k ∈ Tt

(4.20)

with

vuk = uk −W †
kHkEk−dX

0,u
k , k ∈ Tt. (4.21)
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Proof. (i) ⇒ (ii). As u 7→ J(t, x;u) is convex, from (4.18) we have

J(t, 0;u) =

N−1∑

k=t

E

[(
F

(1)
k u

(1)
k +Σ−1

k L
(1)
k Ek−dX

0
k

)T
Σk

(
F

(1)
k u

(1)
k +Σ−1

k L
(1)
k Ek−dX

0
k

)]

+ 2

N−1∑

k=t

E

[
(L

(2)
k Ek−dX

0
k)

TF
(2)
k u

(2)
k

]

≥ 0,

where u
(1)
k and u

(2)
k are the projections of uk onto Ran(Wk) and Ker(Wk), respectively. Then, it holds

that

inf
u∈Ut

ad
(Ran)

J(t, 0;u)

= inf
u∈Ut

ad
(Ran)

N−1∑

k=t

E

[(
F

(1)
k uk +Σ−1

k L
(1)
k Ek−dX

0
k

)T
Σk

(
F

(1)
k uk +Σ−1

k L
(1)
k Ek−dX

0
k

)]

≥ 0. (4.22)

Introduce a set

Ũ t
ad(Ran) =

{
(F

(1)
t ut, ..., F

(1)
N−1uN−1)

∣∣u = {ut, ..., uN−1} ∈ U t
ad(Ran)

}
.

Note that for k ∈ Tt, the lines, α1
k, ..., α

rk
k , of F

(1)
k form a basis of Wk. For u = {ut, ..., uN−1} ∈

U t
ad(Ran), for each k ∈ Tt there exist λ1

k, ..., λ
rk
k ∈ R such that uk =

∑rk
i=1 λ

i
k(α

i
k)

T . Then,

F
(1)
k uk =

rk∑

i=1

λi
k




α1
k

...

αrk
k


 (αi

k)
T =




λ1
k

...

λrk
k


 , λk.

For k ∈ Tt+d+1 = {t+ d+ 1, ..., N − 1}, uk is Fk−d-measurable and E|uk|2 < ∞. This implies that λk

is Fk−d-measurable and E|λk|2 < ∞. Similar result holds for the case of k ∈ {t, ..., t+ d}. Therefore,

{
F

(1)
k uk

∣∣ u = {ut, ..., uN−1} ∈ U t
ad(Ran)

}
=

{
L2
F(t;R

rk), k ∈ {t, ..., t+ d},

L2
F(k − d;Rrk), k ∈ Tt+d+1.

Here, L2
F(t;R

rk) and L2
F(k − d;Rrk), k ∈ Tt+d, are similarly defined as (2.5). Therefore,

Ũ t
ad(Ran) = L2

F(t;R
rt)× · · · × L2

F(t;R
rt+d)× L2

F(t+ 1;Rrt+d+1)× · · · × L2
F(N − 1− d;RrN−1).(4.23)

Introduce a bounded linear operator from U t
ad(Ran) to Ũ t

ad(Ran)

Lu : (Lu)k = F
(1)
k uk +Σ−1

k F
(1)
k HkEk−dX

0
k , k ∈ Tt.

Here, X0 is the solution of (4.17). We now prove that L is a surjection. In fact, for any θ ∈ Ũ t
ad(Ran),

let




X̄0
k+1 =

{
AkX̄

0
k +Bk(F

(1)
k )T

[
θk − Σ−1

k F
(1)
k HkEk−dX̄

0
k

]}

+
{
CkX̄

0
k +Dk(F

(1)
k )T

[
θk − Σ−1

k F
(1)
k HkEk−dX̄

0
k

]}
wk,

X̄0
t = 0, k ∈ Tt

and

uk = (F
(1)
k )T

[
θk − Σ−1

k F
(1)
k HkEk−dX̄

0
k

]
, k ∈ Tt. (4.24)
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Note that u given in (4.24) is in U t
ad(Ran). As F

(1)
k (F

(1)
k )T = Irk , from (4.24) we have

θk = (Lu)k, k ∈ Tt.

Hence, L is a surjection defined from U t
ad(Ran) to Ũ t

ad(Ran). From this, (4.22) and the proof by

contradiction, we have Σk > 0, k ∈ Tt. This further implies Wk ≥ 0, k ∈ Tt. Then, a) is proved.

We now prove b). Note that (4.21) equals to

vuk = uk − (F
(1)
k )TΣ−1

k F
(1)
k HkEk−dX

0,u
k , k ∈ Tt.

For any u ∈ U t
ad, there exist u(1) ∈ U t

ad(Ran) and u(2) ∈ U t
ad(Ker) such that u = u(1) + u(2), i.e.,

uk = u
(1)
k + u

(2)
k , k ∈ Tt. From (4.18), for any u ∈ U t

ad we have

J(t, 0; vu) =

N−1∑

k=t

E

[(
F

(1)
k vuk +Σ−1

k F
(1)
k HkEk−dX

0,u
k

)T
Σk

(
F

(1)
k vuk +Σ−1

k F
(1)
k HkEk−dX

0,u
k

)]

+ 2

N−1∑

k=t

E

[
(F

(2)
k HkEk−dX

0,u
k )TF

(2)
k vuk

]

=
N−1∑

k=t

E

[(
F

(1)
k u

(1)
k

)T
Σk

(
F

(1)
k u

(1)
k

)]
+ 2

N−1∑

k=t

E

[(
(F

(2)
k )TF

(2)
k HkEk−dX

0,u
k

)T
u
(2)
k

]

≥ 0. (4.25)

In the above, we have used the properties F
(i)
k uk = F

(i)
k u

(i)
k , i = 1, 2, and F

(2)
k (F

(1)
k )T = 0. From

(4.25), we must have

(F
(2)
k )TF

(2)
k HkEk−dX

0,u
k = 0, a.s., k ∈ Tt. (4.26)

Otherwise, we can select some u such that J(t, 0; vu) < 0. In fact, assume there exist k1 ∈ Tt and

û ∈ U t
ad such that

c0 = E
∣∣(F (2)

k1
)TF

(2)
k1

Hk1Ek1−dX
0,û
k1

∣∣2 > 0.

Denote

c1 =
N−1∑

k=t

E

[(
F

(1)
k û

(1)
k

)T
Σk

(
F

(1)
k û

(1)
k

)]
,

c2 = 2

k1−1∑

k=t

E

[(
(F

(2)
k )TF

(2)
k HkEk−dX

0,û
k

)T
û
(2)
k

]
.

Introduce a new control

ũk =





û
(2)
k , k ∈ {t, ..., k1 − 1},

− 1+c1+c2
2c0

(F
(2)
k1

)TF
(2)
k1

Hk1Ek1−dX
0,û
k1

, k = k1,

0, k ∈ {k1 + 1, ..., N − 1},

which is in U t
ad(Ker). Then, we have

J(t, 0; vû
(1)+ũ) =

N−1∑

k=t

E

[(
F

(1)
k û

(1)
k

)T
Σk

(
F

(1)
k û

(1)
k

)]
+ 2

k1−1∑

k=t

E

[(
(F

(2)
k )TF

(2)
k HkEk−dX

0,û
k

)T
û
(2)
k

]

+ 2E
[(
(F

(2)
k1

)TF
(2)
k1

Hk1Ek1−dX
0,û
k1

)T
ũk1

]

= −
1 + c1 + c2

c0
E|(F

(2)
k1

)TF
(2)
k1

Hk1Ek1−dX
0,û
k1

|2 + c1 + c2
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= −1.

This contradicts the convexity of u 7→ J(t, x;u). Hence, we have (4.26). By multiplying F
(2)
k and

noting F
(2)
k (F

(2)
k )T = Im−rk , it holds that

F
(2)
k HkEk−dX

0,u
k = 0, a.s., k ∈ Tt, (4.27)

which is equivalent to (4.19).

(ii) ⇒ (i). From the condition (ii), (4.18), (4.19) and (4.27), we have for any u ∈ U t
ad

J(t, 0; vu) =

N−1∑

k=t

E

[(
F

(1)
k uk

)T
Σk

(
F

(1)
k uk

)]
+ 2

N−1∑

k=t

E

[(
(F

(2)
k )TF

(2)
k HkEk−dX

0,u
k

)T
uk

]

=

N−1∑

k=t

E

[(
F

(1)
k uk

)T
Σk

(
F

(1)
k uk

)]

≥ 0. (4.28)

We now show
{
vu

∣∣u ∈ U t
ad

}
= U t

ad, (4.29)

where vu is given by (4.21). For any ṽ ∈ U t
ad, let

uk = ṽk +W †
kHkEk−dX̃

0
k , k ∈ Tt, (4.30)

where {
X̃0

k+1 =
(
AkX̃

0
k +Bkṽk

)
+
(
CkX̃

0
k +Dkṽk

)
wk,

X̃0
t = 0, k ∈ Tt.

We then have from (4.21) (4.30) that vu = ṽ. Hence, (4.29) holds, which together with (4.28) implies

inf
u∈Ut

ad

J(t, 0;u) = inf
u∈Ut

ad

J(t, 0; vu) ≥ 0. (4.31)

This completes the proof.

In the proof of (ii) ⇒ (i) of Theorem 4.9, we have used a simple technique of control shifting

(u 7→ vu). To make it more clear, we state the following lemma, whose proof is omitted here. Firstly,

introduce a set; let L2(Tt;R
m×n) be a set of Rm×n-valued deterministic processes such that for any

ν = {νk, k ∈ Tt} ∈ L2(Tt;R
m×n),

∑N−1
k=t |νk|2 < ∞.

Proposition 4.10. For any Φ ∈ L2(Tt;R
m×n), the following assertions hold.

(i) The property {
u− ΦE·−dX

∣∣u ∈ U t
ad

}
= U t

ad

is satisfied, where u− ΦE·−dX is the control {uk − ΦkEk−dXk, k ∈ Tt} with




Xk+1 =
(
AkXk −BkΦkEk−dXk +Bkuk

)

+
(
CkXk −DkΦkEk−dXk +Dkuk

)
wk,

Xt = x, k ∈ Tt.

(ii) it holds that

inf
u∈Ut

ad

J(t, x;u) = inf
u∈Ut

ad

J(t, x;u − ΦE·−dX).

Furthermore, by some simple calculations, we can show that the convexity of u 7→ J(t, x;u) has a

semi-global property in the sense of the following result.

Proposition 4.11. If u 7→ J(t, x;u) is convex, then for any (k, ξ) ∈ Tt × R
n and u ∈ U t

ad,

u|Tk
7→ J(k, ξ;u|Tk

) is also convex. Here, Tk = {k, ..., N − 1}, and u|Tk
is the restriction of u on Tk.
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4.3 The solvability of Problem (LQ)tx

Noting (4.11) and (4.10), we have
{

Xt,x,∗
k+1 =

(
AkX

t,x,∗
k −BkW

†
kHkEk−dX

t,x,∗
k

)
+
(
CkX

t,x,∗
k −DkW

†
kHkEk−dX

t,x,∗
k

)
wk,

Xt,x,∗
t = x, k ∈ Tt

(4.32)

with property (4.9). Letting Xx,u = Xt,x,∗ +X0,u and from (4.20) (4.32), we have





Xx,u
k+1 =

(
AkX

x,u
k −BkW

†
kHkEk−dX

x,u
k +Bkuk

)

+
(
CkX

x,u
k −DkW

†
kHkEk−dX

x,u
k +Dkuk

)
wk,

Xx,u
t = x, k ∈ Tt.

(4.33)

From Theorem 4.1, Theorem 4.2 and Theorem 4.9, we then have the following necessary and sufficient

conditions on the existence of optimal control of Problem (LQ)tx.

Theorem 4.12. The following statements are equivalent.

(i) Problem (LQ)tx is solvable.

(ii) The following assertions hold

a) The solution of Riccati-like equation set (4.4)-(4.6) has the property Wk ≥ 0, k ∈ Tt.

b) For any u ∈ U t
ad, the condition

HkEk−dX
x,u
k ∈ Ran(Wk), a.s., k ∈ Tt (4.34)

is satisfied, where Xx,u is the solution of (4.33).

Under any of the above conditions, the following control

ut,x,∗
k = −W †

kHkEk−dX
t,x,∗
k , k ∈ Tt (4.35)

is an optimal control of Problem (LQ)tx, where Xt,x,∗ is given by (4.32).

Proof. The equivalence between (i) and (ii) follows from the construction ofXx,u. From Proposition

4.10, we have

inf
u∈Ut

ad

J(t, x;u) = inf
u∈Ut

ad

J(t, x; vu) (4.36)

with vu = {vuk = uk −W †
kHkEk−dX

x,u
k , k ∈ Tt}. Under any of (i) (ii) and similar to (7.10), we have

J(t, x; vu) = xTP
(0)
t x+

N−1∑

k=t

E

{
(Ek−dX

x,u
k )THT

k W
†
kHkEk−dX

x,u
k

+ 2(HkEk−dX
x,u
k )T vuk + (vuk )

TWkv
u
k

}

= xTP
(0)
t x+

N−1∑

k=t

E

{
uT
kWkuk + uT

k

(
HkEk−dX

x,u
k −WkW

†
kHkEk−dX

x,u
k

)}

= xTP
(0)
t x+

N−1∑

k=t

E
(
uT
kWkuk

)

≥ xTP
(0)
t x, (4.37)

where for u = 0 the equality holds. In the above, we have used the property (4.34), which is equivalent

to

(I −WkW
†
k )HkEk−dX

x,u
k = 0, a.s., k ∈ Tt.
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By (4.36) and (4.37), we then achieve the conclusion.

Introduce a set

It =
{
x
∣∣Problem (LQ)tx is solvable

}
.

Theorem 4.13. It is either empty or a linear subspace of Ker[(I −WtW
†
t )Ht].

Proof. Letting u = 0 in (4.33), we have Xx,0 = Xt,x,∗, which is given in (4.32). For x ∈ It 6= ∅, x

will be in Ker[(I −WtW
†
t )Ht]. Then, for x, x

′ ∈ It, α, β ∈ R, we have





αXx,0
k+1 + βXx′,0

k+1 =
[
Ak

(
αXx,0

k + βXx′,0
k

)
−BkW

†
kHk

(
αEk−dX

x,0
k+1 + βEk−dX

x′,0
k

)]

+
[
Ck

(
αXx,0

k + βXx′,0
k

)
−DkW

†
kHk

(
αEk−dX

x,0
k+1 + βEk−dX

x′,0
k

)]
wk,

αXx,0
t + βXx′,0

t = αx + βx′, k ∈ Tt.

Hence, αXx,0 + βXx′,0 = Xαx+βx′,0, which further implies

HkEk−dX
αx+βx′,0
k = αHkEk−dX

x,0
k+1 + βHkEk−dX

x′,0
k ∈ Ran(Wk), k ∈ Tt.

Combining with the convexity, we know that Problem (LQ) is solvable at (t, αx+ βx′).

To end this subsection, a sufficient condition is presented to ensure (4.34).

Theorem 4.14. If Ran(Hk) ⊂ Ran(Wk) (i.e., WkW
†
kHk = Hk), k ∈ Tt, then the condition (4.34)

is satisfied.

Proof. The proof is straightforward and hence, omitted here.

Combining the condition in Theorem 4.14 with a) of Theorem 4.12, we can obtain in the next

section much neater results of Problem (LQ) (for all the initial pairs).

4.4 The delay-free case

Let us revisit the standard discrete-time stochastic LQ problem without time delay.

Problem (LQ)dftx. For the initial pair (t, x) ∈ T× R
n, find a ū ∈ U t

ad such that

J(t, x; ū) = inf
u∈L2

F
(Tt;Rm)

J(t, x;u). (4.38)

In (4.38), J(t, x;u) is given in (2.3) and is subject to (2.1), and

L2
F(Tt;R

m) =
{
ν = {νk, k ∈ Tt}

∣∣ νk is Fk-measurable, k ∈ Tt, and E|νk|
2 < ∞, k ∈ Tt

}
.

Introduce the discrete-time Riccati equation

{
Pk = Qk +AT

k Pk+1Ak + CT
k Pk+1Ck −HT

k W
†
kHk,

PN = G, k ∈ Tt,
(4.39)

where




Wk = Rk +BT
k Pk+1Bk +DT

k Pk+1Dk,

Hk = BT
k Pk+1Ak +DT

k Pk+1Ck,

k ∈ Tt.

Let d = 0 in Theorem 4.12, we have the following result.
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Theorem 4.15. The following statements are equivalent.

(i) Problem (LQ)dftx is solvable.

(ii) The following assertions hold

a) The solution of Riccati equation (4.39) has the property Wk ≥ 0, k ∈ Tt.

b) For any u ∈ L2
F(Tt;R

m), the condition

HkX
x,u
k ∈ Ran(Wk), a.s., k ∈ Tt (4.40)

is satisfied, where Xx,u is the solution of the following S∆E

{
Xx,u

k+1 =
(
ĀkX

x,u
k +Bkuk

)
+
(
C̄kX

x,u
k +Dkuk

)
wk,

Xx,u
t = x, k ∈ Tt

(4.41)

with

Āk = Ak −BkW
†
kHk, C̄k = Ck −DkW

†
kHk, k ∈ Tt.

Firstly, let us take some observation. Let Vk = (I −W †
kWk)Hk, k ∈ Tt. Then, the condition (4.40)

is equivalent to

VkX
x,u
k = 0, a.s., k ∈ Tt.

Hence, at k, the attainable set of the system (4.41) is a subset of Ker(Vk). Similarly, (4.34) is relating

to the property of the attainable set of system (4.33). To get conditions of (4.34) (4.40) that are easier

to validated, we should in the future to study the attainable set of (4.41) and (4.33), which is further

related to the controllability of linear S∆Es.

Letting the initial pair (t, x) vary in the product space T×R
n, we get a family of LQ problems; from

Theorem 4.15, we have an equivalent characterization of the solvability of this family of LQ problems.

Proposition 4.16. The following statements are equivalent.

(i) For any (t, x) ∈ T× R
n, Problem (LQ)dftx is solvable.

(ii) The constrained Riccati equation





Pk = Qk +AT
k Pk+1Ak + CT

k Pk+1Ck −HT
k W

†
kHk,

PN = G,

W †
kWkHk = Hk, Wk ≥ 0,

k ∈ T

(4.42)

is solvable in the sense W †
kWkHk = Hk, Wk ≥ 0, k ∈ Tt, where





Wk = Rk +BT
k Pk+1Bk +DT

k Pk+1Dk,

Hk = BT
k Pk+1Ak +DT

k Pk+1Ck,

k ∈ T.

Proof. For any t ∈ T and letting k = t in (4.40), we have Htx ∈ Ran(Wt), which holds for any

x ∈ R
n; equivalently, we have Ran(Ht) ⊂ Ran(Wt) by considering the cases x = ei, i = 1, ..., n. Here,

ei is the n-dimensional vector, whose i-th entry is 1 and other entries are all 0. Combining this fact

and Theorem 4.15, we then achieve the result.

Remark 4.17. Proposition 4.16 is a main result of [1], which presents a necessary and sufficient

condition on the solvability of a family of LQ problems, that is,
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{Problem (LQ)dftx is solvable, for any (t, x) ∈ T× R
n}⇔ (4.42) is solvable.

In contrast, Theorem 4.15 just characterizes the solvability of Problem (LQ)dftx. The proof of Proposition

4.16 shows that Theorem 4.15 implies Proposition 4.16. However, the equivalence between (i) and (ii)

of Theorem 4.15 cannot be proved by virtue of Proposition 4.16. Hence, Theorem 4.15 is a new result

even for standard LQ problems; a key step to access to Theorem 4.15 is that we have obtained (for the

first time) an equivalent characterization of the convexity of the cost functional.

5 Problem (LQ) for all the time-state initial pairs

5.1 The solvability of Problem (LQ)

In this section, we will study Problem (LQ) for all the initial pairs. To begin with, we introduce

versions of Problem (LQ) (for the initial pair (t, x)). If k ∈ {t, ..., t+ d− 1}, let

Uk
ad =

{
u = {uk, uk+1, ..., uN−1}

∣∣u ∈
(
l2F(t;R

n)
)t+d−k

× l2F(T
−d
t ;Rm)

}
; (5.1)

if k ∈ Tt+d, let

Uk
ad =

{
u = {uk, uk+1, ..., uN−1}

∣∣u ∈ l2F(T
−d
k−d;R

m)
}
. (5.2)

In (5.2), l2F(T
−d
k−d;R

m) is a set of Rm-valued processes with T
−d
k−d = {k − d, ..., N − 1 − d} such that

for any its element ν = {νℓ, ℓ ∈ T
−d
k−d}, νℓ is Fℓ-measurable and

∑N−1−d
ℓ=k−d E|νℓ|2 < ∞.

Starting from the initial pair (k, ξ) ∈ Tt × R
n, (2.1) (2.3) become to

{
Xℓ+1 =

(
AℓXℓ +Bℓuℓ

)
+
(
CℓXℓ +Dℓuℓ

)
wℓ,

Xk = ξ, ℓ ∈ Tk = {k, ..., N − 1},
(5.3)

and

J(k, ξ;u) =
N−1∑

ℓ=k

E
[
XT

ℓ QℓXℓ + uT
ℓ Rℓuℓ

]
+ E

[
XT

NGXN

]
. (5.4)

Problem (LQ) for the initial pair (k, ξ) is referred to as the case that minimizes (5.4) over Uk
ad (subject

to (5.3)).

Definition 5.1. (i) Problem (LQ) is said to be finite at (k, ξ) ∈ Tt × R
n, if

inf
u∈Uk

ad

J(k, ξ;u) > −∞. (5.5)

Problem (LQ) is said to be finite if (5.5) holds for any initial pair (k, ξ) ∈ Tt × R
n.

(ii) Problem (LQ) is said to be (uniquely) solvable at (k, ξ) ∈ Tt × R
n if there exists a (unique)

ū ∈ Uk
ad such that

J(k, ξ; ū) = inf
u∈Uk

ad

J(k, ξ;u).

In this case, ū is called an optimal control of Problem (LQ) for the initial pair (k, ξ). Problem (LQ)

is said to be (uniquely) solvable if it is solvable at any initial pair (k, ξ) ∈ Tt × R
n.
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To study the finiteness of Problem (LQ), introduce the following coupled LMEIs (5.6)-(5.8)





P
(0)
k ≤ Qk +AT

k

(
P

(0)
k+1 + P

(1)
k+1

)
Ak + CT

k P
(0)
k+1Ck,

P
(i)
k = AT

k P
(i+1)
k+1 Ak, i = 1, ..., d− 1,[

−P
(d)
k HT

k

Hk Wk

]
≥ 0,

P
(0)
N ≤ G, P

(j)
N = 0, j = 1, ..., d,

k ∈ Tt+d,

(5.6)





P
(0)
k ≤ Qk +AT

k

(
P

(0)
k+1 + P

(1)
k+1

)
Ak + CT

k P
(0)
k+1Ck,

P
(i)
k = AT

k P
(i+1)
k+1 Ak, i = 1, ..., k − t− 1,[

AT
k P

(k+1−t)
k+1 Ak − P

(k−t)
k HT

k

Hk Wk

]
≥ 0,

k ∈ {t+ 2, ..., t+ d− 1},

(5.7)

and








P
(0)
t+1 ≤ Qt+1 +AT

t+1

(
P

(0)
t+2 + P

(1)
t+2

)
At+1 + CT

t+1P
(0)
t+2Ct+1,[

AT
t+1P

(2)
t+2At+1 − P

(1)
t+1 HT

t+1

Ht+1 Wt+1

]
≥ 0,

[
Qt +AT

t

(
P

(0)
t+1 + P

(1)
t+1

)
At + CT

t P
(0)
t+1Ct − P

(0)
t HT

t

Ht Wt

]
≥ 0,

(5.8)

where

Wk =





Rk +
∑d

i=0 B
T
k P

(i)
k+1Bk +DT

k P
(0)
k+1Dk, k ∈ Tt+d,

Rk +
∑k+1−t

i=0 BT
k P

(i)
k+1Bk +DT

k P
(0)
k+1Dk, k ∈ {t, ..., t+ d− 1},

and

Hk =





∑d
i=0 B

T
k P

(i)
k+1Ak +DT

k P
(0)
k+1Ck, k ∈ Tt+d,

∑k+1−t
i=0 BT

k P
(i)
k+1Ak +DT

k P
(0)
k+1Ck, k ∈ {t, ..., t+ d− 1}.

If exists, the solution of (5.6)-(5.8) is denoted as (P (0), ..., P (d)). Let

M =
{
(P (0), ..., P (d))

∣∣ (P (0), ..., P (d)) is a solution of (5.6)-(5.8)
}
. (5.9)

Based on the solution of (5.6)-(5.8), we have the following lemma, whose proof is similar to that of

Lemma 4.8 and is omitted here.

Lemma 5.2. Let (P (0), ..., P (d)) ∈ M 6= ∅. Then the following statements hold.

(i) For k ∈ Tt+d, it holds that

J(k, ξ;u) =

N−1∑

ℓ=k

E

{
XT

ℓ

[
Qℓ +AT

ℓ

(
P

(0)
ℓ+1 + P

(1)
ℓ+1

)
AT

ℓ + CT
ℓ P

(0)
ℓ+1Cℓ − P

(0)
ℓ

]
Xℓ

}

+

N−1∑

ℓ=k

E

{[
Eℓ−dXℓ

uℓ

]T [
−P

(d)
ℓ HT

ℓ

Hℓ Wℓ

][
Eℓ−dXℓ

uℓ

]}

+ ξT
( d∑

i=0

P
(i)
k

)
ξ + E

[
XT

N

(
G− P

(0)
N

)
XN

]
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≥ ξT
( d∑

i=0

P
(i)
k

)
ξ.

(ii) For k ∈ {t+ 1, ..., t+ d− 1}, it holds that

J(k, ξ;u) =

N−1∑

ℓ=k

E

{
XT

ℓ

[
Qℓ +AT

ℓ

(
P

(0)
ℓ+1 + P

(1)
ℓ+1

)
AT

ℓ + CT
ℓ P

(0)
ℓ+1Cℓ − P

(0)
ℓ

]
Xℓ

}

+

N−1∑

ℓ=t+d

E

{[
Eℓ−dXℓ

uℓ

]T [
−P

(d)
ℓ HT

ℓ

Hℓ Wℓ

][
Eℓ−dXℓ

uℓ

]}

+
t+d−1∑

ℓ=k

E

{[
EtXℓ

uℓ

]T [
AT

ℓ P
(ℓ+1−t)
ℓ+1 Aℓ − P

(ℓ−t)
ℓ HT

ℓ

Hℓ Wℓ

][
EtXℓ

uℓ

]}

+ ξT
( k−t∑

i=0

P
(i)
k

)
ξ + E

[
XT

N

(
G− P

(0)
N

)
XN

]

≥ ξT
( k−t∑

i=0

P
(i)
k

)
ξ.

(iii) It holds that

J(t, ξ;u) =

N−1∑

ℓ=t+1

E

{
XT

ℓ

[
Qℓ +AT

ℓ

(
P

(0)
ℓ+1 + P

(1)
ℓ+1

)
AT

ℓ + CT
ℓ P

(0)
ℓ+1Cℓ − P

(0)
ℓ

]
Xℓ

}

+

N−1∑

ℓ=t+d

E

{[
Eℓ−dXℓ

uℓ

]T [
−P

(d)
ℓ HT

ℓ

Hℓ Wℓ

] [
Eℓ−dXℓ

uℓ

]}

+

t+d−1∑

ℓ=t+1

E

{[
EtXℓ

uℓ

]T [
AT

ℓ P
(ℓ+1−t)
ℓ+1 Aℓ − P

(ℓ−t)
ℓ HT

ℓ

Hℓ Wℓ

][
EtXℓ

uℓ

]}

+ E

{[
Xt

ut

]T [
Qt + AT

t

(
P

(0)
t+1 + P

(1)
t+1

)
AT

t + CT
t P

(0)
t+1Ct − P

(0)
t HT

t

Ht Wt

][
Xt

ut

]}

+ ξTP
(0)
t ξ + E

[
XT

N

(
G− P

(0)
N

)
XN

]

≥ ξTP
(0)
t ξ.

Remark 5.3. The LMEIs (5.6)-(5.8) are such constructed that the inequalities of Lemma 5.2 are

satisfied. In this case, Problem (LQ) will be finite. Note that the LMEIs contain equality constraints;

such new feature does not appear in deterministic LQ problems (with time delay) and standard stochas-

tic LQ problems.

Based on above preparations, we have the following theorem, which gives several equivalent char-

acterizations on the solvability of Problem (LQ).

Theorem 5.4. The following statements are equivalent.

(i) Problem (LQ) is finite.

(ii) Problem (LQ) is solvable.

(iii) The solution of (4.4)-(4.6) has the property WkW
†
kHk = Hk,Wk ≥ 0, k ∈ Tt, namely, the
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constrained Riccati-like equation set





P
(0)
k = Qk +AT

k

(
P

(0)
k+1 + P

(1)
k+1

)
Ak + CT

k P
(0)
k+1Ck,

P
(i)
k = AT

k P
(i+1)
k+1 Ak, i = 1, ..., d− 1,

P
(d)
k = −HT

k W
†
kHk,

P
(0)
N = G, P

(j)
N = 0, j = 1, ..., d,

WkW
†
kHk = Hk,Wk ≥ 0,

k ∈ Tt+d,

(5.10)





P
(0)
k = Qk +AT

k

(
P

(0)
k+1 + P

(1)
k+1

)
Ak + CT

k P
(0)
k+1Ck,

P
(i)
k = AT

k P
(i+1)
k+1 Ak, i = 1, ..., k − t− 1,

P
(k−t)
k = AT

k P
(k+1−t)
k+1 Ak −HT

k W
†
kHk,

WkW
†
kHk = Hk,Wk ≥ 0,

k ∈ {t+ 2, ..., t+ d− 1},

(5.11)

and




{
P

(0)
t+1 = Qt+1 +AT

t+1

(
P

(0)
t+2 + P

(1)
t+2

)
At+1 + CT

t+1P
(0)
t+2Ct+1,

P
(1)
t+1 = AT

t+1P
(2)
t+2At+1 −HT

t+1W
†
t+1Ht+1,

P
(0)
t = Qt +AT

t

(
P

(0)
t+1 + P

(1)
t+1

)
At + CT

t P
(0)
t+1Ct −HT

t W
†
t Ht,

WkW
†
kHk = Hk,Wk ≥ 0, k = t, t+ 1

(5.12)

are solvable in the sense

WkW
†
kHk = Hk,Wk ≥ 0, k ∈ Tt.

(iv) M defined in (5.9) is nonempty.

Under any of the above conditions, an optimal control of Problem (LQ) for the initial pair (k, ξ) is

given by

uk,ξ,∗
ℓ = −W †

ℓ HℓEℓ−dX
k,ξ,∗
ℓ , ℓ ∈ Tk (5.13)

with
{

Xk,ξ,∗
ℓ+1 =

(
AℓX

k,ξ,∗
ℓ −BℓW

†
ℓ HℓEℓ−dX

k,ξ,∗
ℓ

)
+
(
CℓX

k,ξ,∗
ℓ −DℓW

†
ℓ HℓEℓ−dX

k,ξ,∗
ℓ

)
wℓ,

Xk,ξ,∗
k = ξ, ℓ ∈ Tk.

Furthermore, the corresponding optimal value is

V (k, ξ) =

{ ∑k−t
i=0 ξ

TP
(i)
k ξ, k ∈ {t, ..., t+ d− 1},

∑d

i=0 ξ
TP

(i)
k ξ, k ∈ Tt+d.

(5.14)

Proof. See Appendix C.

Corollary 5.5. Let Qk ≥ 0, Rk ≥ 0, G ≥ 0, k ∈ Tt. Then, Problem (LQ) is solvable, and the

corresponding Riccati-like equations (5.10)-(5.12) are solvable.

Proof. In this case, Problem (LQ) is finite, and the conclusion follows from Theorem 5.4.
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5.2 From the LMEIs to the Riccati-like equations

——construct the solution of (5.10)-(5.12)

In this subsection, a procedure is presented to construct the solution of Riccati-like equation set (5.10)-

(5.12) from an element (P̃ (0), ...P̃ (d)) of M (i.e., a solution of the LMEIs (5.6)-(5.8)). To do so, we

introduce an auxiliary LQ problem.

Specifically, introduce the following weighting matrices





Q̃k = Qk +AT
k

(
P̃

(0)
k+1 + P̃

(1)
k+1

)
Ak + CT

k P̃
(0)
k+1Ck − P̃

(0)
k , k ∈ Tt,

L̃k = H̃T
k ,





∑k+1−t
i=0 BT

k P̃
(i)
k+1Ak +DT

k P̃
(0)
k+1Ck, k ∈ {t, ..., t+ d− 1},

∑d
i=0 B

T
k P̃

(i)
k+1Ak +DT

k P̃
(0)
k+1Ck, k ∈ Tt+d,

R̃k = W̃k ,





Rk +
∑k+1−t

i=0 BT
k P̃

(i)
k+1Bk +DT

k P̃
(0)
k+1Dk, k ∈ {t, ..., t+ d− 1},

Rk +
∑d

i=0 B
T
k P̃

(i)
k+1Bk +DT

k P̃
(0)
k+1Dk, k ∈ Tt+d,

G̃ = G− P̃
(0)
N .

(5.15)

Furthermore, for each (k, ξ) ∈ Tt×R
n, let X be the solution of (5.3) and introduce the cost functional

J̃(k, ξ;u) according to three different situations. Case 1: k ∈ Tt+d, let

J̃(k, ξ;u) =

N−1∑

ℓ=k

E
[
XT

ℓ Q̃ℓXℓ + 2XT
ℓ L̃ℓuℓ + uT

ℓ R̃ℓuℓ

]
+ E

[
XT

N G̃XN

]

+

N−1∑

ℓ=k

E
[
− (Eℓ−dXℓ)

T P̃
(d)
ℓ Eℓ−dXℓ

]
; (5.16)

Case 2: k ∈ {t+ 1, ..., t+ d− 1}, let

J̃(k, ξ;u) =

N−1∑

ℓ=k

E
[
XT

ℓ Q̃ℓXℓ + 2XT
ℓ L̃

T
ℓ uℓ + uT

ℓ R̃ℓuℓ

]
+ E

[
XT

N G̃XN

]

+

N−1∑

ℓ=t+d

E
[
− (Eℓ−dXℓ)

T P̃
(d)
ℓ Eℓ−dXℓ

]

+

t+d−1∑

ℓ=k

E
[
(Eℓ−dXℓ)

T
(
AT

ℓ P̃
(ℓ+1−t)
ℓ+1 Aℓ − P̃

(ℓ−t)
ℓ

)
Eℓ−dXℓ

]
; (5.17)

Case 3: k = t, let

J̃(t, ξ;u) =
N−1∑

ℓ=t

E
[
XT

ℓ Q̃ℓXℓ + 2XT
ℓ L̃

T
ℓ uℓ + uT

ℓ R̃ℓuℓ

]
+ E

[
XT

N G̃XN

]

+
N−1∑

ℓ=t+d

E
[
− (Eℓ−dXℓ)

T P̃
(d)
ℓ Eℓ−dXℓ

]

+

t+d−1∑

ℓ=t+1

E
[
(Eℓ−dXℓ)

T
(
AT

ℓ P̃
(ℓ+1−t)
ℓ+1 Aℓ − P̃

(ℓ−t)
ℓ

)
Eℓ−dXℓ

]
. (5.18)

Corresponding to the above cost functional (5.16)-(5.18), the system (5.3) and the admissible control

set (5.1)-(5.2), we denote such an LQ problem as Problem (LQ)a for the initial pair (k, ξ).

The cost functional J̃(k, ξ;u) is such constructed in (5.16)-(5.18) that it is finite from below. This

is proved in the following proposition.

Proposition 5.6. For any (k, ξ) ∈ Tt × R
n, J̃(t, ξ;u) ≥ 0. Hence, Problem (LQ)a is finite.
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Proof. For (5.18), we have

J̃(t, ξ;u) =

N−1∑

ℓ=t+d

E

{
XT

ℓ Q̃ℓXℓ +

[
Eℓ−dXℓ

uℓ

]T [
−P̃

(d)
ℓ H̃T

ℓ

H̃ℓ W̃ℓ

][
Eℓ−dXℓ

uℓ

]}

+

t+d−1∑

ℓ=t+1

E

{
XT

ℓ Q̃ℓXℓ +

[
Eℓ−dXℓ

uℓ

]T [
AT

ℓ P̃
(ℓ+1−t)
ℓ+1 Aℓ − P̃

(ℓ−t)
ℓ H̃T

ℓ

H̃ℓ W̃ℓ

][
Eℓ−dXℓ

uℓ

]}

+ E

{[
Xt

ut

]T [
Q̃t H̃T

t

H̃t W̃t

] [
Xt

ut

]}
+ E

[
XT

NG̃XN

]

≥ 0.

The inequality above is due to the fact (P̃ (0), ..., P̃ (d)) ∈ M. Similarly, we can prove other cases.

Hence, J̃(k, ξ;u) ≥ 0 for any (k, ξ) ∈ Tt × R
n.

Let us make some observations about J̃(t, ξ;u). By adding to and subtracting

N−1∑

k=t

E

{ d∑

i=0

(Ek+1−iXk+1)
TU

(i)
k+1Ek+1−iXk+1 −

d∑

i=0

(Ek−iXk)
TU

(i)
k Ek−iXk

}

+

t+d−1∑

k=t

E

{ k+1−t∑

i=0

(Ek+1−iXk+1)
TU

(i)
k+1Ek+1−iXk+1 −

k−t∑

i=0

(Ek−iXk)
TU

(i)
k Ek−iXk

}

from J̃(t, ξ;u), we have

J̃(t, ξ;u) =
N−1∑

k=t+d

E

{
XT

k

[
Q̃k +AT

k

(
U

(0)
k+1 + U

(1)
k+1

)
AT

k + CT
k U

(0)
k+1Ck − U

(0)
k

]
Xk

+

d−1∑

i=1

(Ek−iXk)
T
[
AT

k U
(i+1)
k+1 Ak − U

(i)
k

]
Ek−iXk − (Ek−dXk)

T
(
U

(d)
k + P̃

(d)
k

)
Ek−dXk

+ 2(HkEk−dXk)
Tuk + uT

kWkuk

}

+

t+d−1∑

k=t+2

E

{
XT

k

[
Q̃k +AT

k

(
U

(0)
k+1 + U

(1)
k+1

)
AT

k + CT
k U

(0)
k+1Ck − U

(0)
k

]
Xk

+
k−t−1∑

i=1

(Ek−iXk)
T
[
AT

kU
(i+1)
k+1 Ak − U

(i)
k

]
Ek−iXk

+ (EtXk)
T
[
AT

k

(
U

(k+1−t)
k+1 + P̃

(k+1−t)
k+1

)
Ak −

(
U

(k−t)
k + P̃

(k−t)
k

)]
EtXk

+ 2(HkEtXk)
Tuk + uT

kWkuk

}

+ E

{
XT

t+1

[
Q̃t+1 +AT

t+1

(
U

(0)
t+2 + U

(1)
t+2

)
AT

t+1 + CT
t+1U

(0)
t+2Ct+1 − U

(0)
t+1

]
Xt+1

+ (EtXt+1)
T
[
AT

t+1

(
U

(2)
t+2 + P̃

(2)
t+2

)
At+1 −

(
U

(1)
t+1 + P̃

(1)
t+1

)]
EtX

0
t+1 + 2(Ht+1EtXt+1)

Tut+1

+ uT
t+1Wt+1ut+1

}
+ E

{
XT

t

[
Q̃t +AT

t

(
U

(0)
t+1 + U

(1)
t+1

)
AT

t + CT
t U

(0)
t+1Ct − U

(0)
t

]
Xt

+ 2(HtXt)
Tut + uT

t Wtut

}
+ ξTU

(0)
t ξ. (5.19)

In the above, (U (0), ..., U (d)) is to be determined and

Wk =





R̃k +
∑k+1−t

i=0 BT
k U

(i)
k+1Bk +DT

k U
(0)
k+1Dk, k ∈ {t, ..., t+ d− 1},

R̃k +
∑d

i=0 B
T
k U

(i)
k+1Bk +DT

k U
(0)
k+1Dk, k ∈ Tt+d,

(5.20)
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and

Hk =





∑k+1−t

i=0 BT
k U

(i)
k+1Ak +DT

k U
(0)
k+1Ck + L̃T

k , k ∈ {t, ..., t+ d− 1},
∑d

i=0 B
T
k U

(i)
k+1Ak +DT

k U
(0)
k+1Ck + L̃T

k , k ∈ Tt+d.
(5.21)

In fact, introduce the Riccati-like equation set




U
(0)
k = Q̃k +AT

k

(
U

(0)
k+1 + U

(1)
k+1

)
Ak + CT

k U
(0)
k+1Ck,

U
(i)
k = AT

k U
(i+1)
k+1 Ak, i = 1, ..., d− 1,

U
(d)
k = −P̃

(d)
k −HT

k W
†
kHk,

U
(0)
N = G̃, U

(j)
N = 0, j = 1, ..., d,

k ∈ Tt+d,

(5.22)





U
(0)
k = Q̃k +AT

k

(
U

(0)
k+1 + U

(1)
k+1

)
Ak + CT

k U
(0)
k+1Ck,

U
(i)
k = AT

k U
(i+1)
k+1 Ak, i = 1, ..., k − t− 1,

U
(k−t)
k = AT

k (P̃
(k+1−t)
k+1 + U

(k+1−t)
k+1 )Ak − P̃

(k−t)
k −HT

k W
†
kHk,

k ∈ {t+ 2, ..., t+ d− 1},

(5.23)

and 







U
(0)
t+1 = Q̃t+1 +AT

t+1

(
U

(0)
t+2 + U

(1)
t+2

)
At+1 + CT

t+1U
(0)
t+2Ct+1,

U
(1)
t+1 = AT

t+1(P̃
(2)
t+2 + U

(2)
t+2)At+1 − P̃

(1)
t+1 −HT

t+1W
†
t+1Ht+1,

U
(0)
t = Q̃t +AT

t

(
U

(0)
t+1 + U

(1)
t+1

)
At + CT

t U
(0)
t+1Ct −HT

t W
†
tHt,

(5.24)

with Wk,Hk being given by (5.20) (5.21); by analysis similar to (5.19), we then have the following

result.

Lemma 5.7. Let (U (0), ..., U (d)) be the solution of (5.22)-(5.24). Then,

J̃(k, ξ;u) =
N−1∑

ℓ=k

E

{
(Eℓ−dXℓ)

THT
ℓ W

†
ℓHℓEℓ−dXℓ + 2(HℓEℓ−dXℓ)

Tuk + uT
kWkuk

}
+ Π̃k(ξ),

where

Π̃k(ξ) =

{ ∑k−t

i=0 ξ
TU

(i)
k ξ, k ∈ {t, ..., t+ d− 1},∑d

i=0 ξ
TU

(i)
k ξ, k ∈ Tt+d.

Based on what we have prepared above, we can construct a solution of (5.10)-(5.12) from

(P̃ (0), ..., P̃ (d)) ∈ M.

Theorem 5.8. The following statements hold.

(i) The solution of Riccati-like equation set (5.22)-(5.24) has the property

Wk ≥ 0, WkW
†
kHk = Hk, k ∈ Tt.

(ii) Let P
(i)
k = P̃

(i)
k + U

(i)
k , k ∈ Tt, i = 0, ..., d. Then, such a (P (0), ..., P (d)) is a solution of the

constrained Riccati-like equation set (5.10)-(5.12).

Proof. From Proposition 5.6, Problem (LQ)a is finite for any initial pair (k, ξ) ∈ Tt × R
n; hence

it is solvable. Combining Lemma 5.7 and the part of proving the equivalence between (i) and (iii) of

Theorem 5.4, we must have (i) of this theorem. (ii) follows from some simple calculations.

Remark 5.9. By Theorem 5.8, we can construct a solution of the constrained Riccati-like equation

set from a solution of the LMEIs. This result is potentially useful to study the algebraic Riccati-like

equations that we will encounter in the infinite-horizon version of Problems (LQ). For more about

standard infinite-horizon stochastic LQ problems, we can refer to, for example, [4] [39].
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5.3 The unique solvability of Problem (LQ)

In the following, we will study the uniform convexity of the cost functional, which is motivated by

some results of [29]. The functional u 7→ J(t, x;u) is called uniformly convex if there exists a λ > 0

such that for any u ∈ U t
ad

J(t, 0;u) ≥ λ||u||2 = λ
N−1∑

k=t

E|uk|
2. (5.25)

From Proposition 3.2, Problem (LQ) will have a unique optimal control if u 7→ J(t, 0;u) is uniformly

convex.

Lemma 5.10. For Φ ∈ L2(Tt;R
m×n) and (4.17) with u ∈ U t

ad, there exist γ1, γ2 with property

0 < γ2 < γ1 such that

γ2

N−1∑

k=t

E|uk|
2 ≤

N−1∑

k=t

E|uk − ΦkEk−dX
0
k |

2 ≤ γ1

N−1∑

k=t

E|uk|
2. (5.26)

Proof. For Φ ∈ L2(Tt;R
m×n), define a bounded linear operator for U t

ad to U t
ad

Ou = u− ΦE·−dX
0, (5.27)

where u − ΦE·−dX
0 is the control {uk − ΦkEk−dX

0
k , k ∈ Tt}. Note that Ou = 0 implies u = 0, i.e.,

O is an injection. Let

pΦ(u) = ||Ou|| =

√√√√
N−1∑

k=t

E|uk − ΦkEk−dX0
k |

2,

which is indeed a norm on U t
ad. Furthermore, for any given u(n) ∈ U t

ad, we have when n 7→ ∞

pΦ(u
(n)) 7→ 0 ⇔ ||u(n)|| =

√√√√
N−1∑

k=t

E|u
(n)
k |2 7→ 0.

Therefore, pΦ( · ) is equivalent to the norm || · || on U t
ad. We then claim (5.26).

Theorem 5.11. The following statements are equivalent.

(i) Problem (LQ) is uniquely solvable at the initial pair (t, x).

(ii) Riccati-like equation set (5.10)-(5.12) is solvable, and Wk > 0, k ∈ Tt.

(iii) u 7→ J(t, x;u) is uniformly convex for u ∈ U t
ad.

(iv) For any k ∈ Tt, u 7→ J(k, ξ;u) is uniformly convex for u ∈ Uk
ad.

(v) Problem (LQ) is uniquely solvable at any initial pair (k, ξ) ∈ Tt × R
n.

Under any of the above conditions, the optimal control of Problem (LQ) for the initial pair (k, ξ)

is given by

uk,ξ,∗
ℓ = −W−1

ℓ HℓEℓ−dX
k,ξ,∗
ℓ , ℓ ∈ Tk (5.28)

with Xk,ξ,∗ given by

{
Xk,ξ,∗

ℓ+1 =
(
AℓX

k,ξ,∗
ℓ −BℓW

−1
ℓ HℓEℓ−dX

k,ξ,∗
ℓ

)
+
(
CℓX

k,ξ,∗
ℓ −DℓW

−1
ℓ HℓEℓ−dX

k,ξ,∗
ℓ

)
wℓ,

Xk,ξ,∗
k = ξ, ℓ ∈ Tk.
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Proof. (i) ⇒ (ii). This can be achieved by undating the proof of Theorem 4.2. Let ut,x,∗ be the

unique optimal control of Problem (LQ) for the initial pair (t, x). Noting (7.5) and that Theorem 4.1

is of necessary and sufficient conditions, we have

0 = Wku
t,x,∗
k +HkX

t,x,∗
k , k ∈ Tt.

As the optimal control uniquely exists, we must have that Wk is nonsingular, k ∈ Tt. Otherwise, any

controls of the following form

ût,x,∗
k = −W †

kHkX̂
t,x,∗
k +

(
I −W †

kWk

)
Υk, Υk ∈ Fk−d, k ∈ Tt (5.29)

is also an optimal control, where
{

X̂t,x,∗
k+1 =

(
AkX̂

t,x,∗
k +Bkû

t,x,∗
k

)
+
(
CkX̂

t,x,∗
k +Dkû

t,x,∗
k

)
wk,

X̂t,x,∗
t = x, k ∈ Tt.

Since Wk, k ∈ Tt, are all invertible, from (7.10) and (4.3) we have

J(t, 0;u) =
N−1∑

k=t

(uk +W−1
k HkEk−dX

0
k)

TWk(uk +W−1
k HkEk−dX

0
k) ≥ 0, (5.30)

where X0 is given in (4.17). Letting Φk = −W−1
k Hk, from Lemma 4.10 we know that the linear

operator O defined in (5.27) is a surjection from U t
ad to U t

ad. Noting that (5.30) holds for any u ∈ U t
ad,

we must have

Wk > 0, k ∈ Tt,

which implies (ii).

(ii) ⇒ (iii). Similarly to (5.30), it holds that

J(t, 0;u) =

N−1∑

k=t

(uk +W−1
k HkEk−dX

0
k)

TWk(uk +W−1
k HkEk−dX

0
k).

From Lemma 5.10, we have

J(t, 0;u) ≥ λmin

N−1∑

k=t

E|uk +W−1
k HkEtX

0
k |

2 ≥ λminγ2

N−1∑

k=t

E|uk|
2,

where λmin > 0 denotes the minimal eigenvalue among all the eigenvalues of Wk, k ∈ Tt. Hence,

u 7→ J(t, x;u) is uniformly convex.

(iii)⇒(iv). Let u 7→ J(t, x;u) be uniformly convex for u ∈ U t
ad. Now for any u = (uk, ..., uN−1) ∈

Uk
ad, let v = (0, ..., 0, uk, ..., uN−1) ∈ U t

ad. Then, we have

J(k, 0;u) = J(t, 0; v) ≥ λ

N−1∑

ℓ=t

E|vℓ|
2 = λ

N−1∑

ℓ=k

E|uℓ|
2.

Hence, u 7→ J(k, ξ;u) is uniformly convex.

(iv)⇒(v). From Proposition 3.2, Problem (LQ) for the initial pair (k, ξ) admits a unique optimal

control.

(v)⇒(i). This is clear.

Under any of the above conditions, we have (5.28).

Remark 5.12. The theorem above shows that Problem (LQ) is uniquely solvable at the initial pair

(t, x) if and only if Problem (LQ) is uniquely solvable at any initial pair (k, ξ) ∈ Tt × R
n. This result

links Section 4 with this section. Note, here, that the condition of uniform convexity plays a key role.
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6 Example

In this section, we shall present an example to illustrate the theory derived above.

Example 6.1. Consider a version of Problem (LQ) whose system matrices and weighting matrices

are

A0 =

[
−1.2 0.41

−0.3 0.89

]
, A1 =

[
2.32 −0.35

0.31 0.3

]
, A2 =

[
2.15 −0.3

1.2 4

]
, A3 =

[
−1.15 −0.23

−2 1

]
,

B0 =

[
2.25 0.6

−1.2 3

]
, B1 =

[
2.2 −1.32

0.5 3

]
, B2 =

[
5.15 0

0 5.6

]
, B3 =

[
1.35 1

−0.2 1

]
,

C0 =

[
2.6 1

−1.73 7.8

]
, C1 =

[
2.5 0.73

−1.47 5.2

]
, C2 =

[
2.6 1.63

−1 3.7

]
, C3 =

[
1.6 0.6

1 2.1

]
,

D0 =

[
2.4 1.93

1.07 3

]
, D1 =

[
2.8 1.03

−1.23 6

]
, D2 =

[
0.5 0.2

1.1 2.65

]
, D3 =

[
1.5 −1

−0.16 1.65

]
,

Q0 =

[
−2 0.8

0.8 −1.6

]
, Q1 =

[
4 0

0 0

]
, Q2 =

[
−0.5 0

0 1

]
, Q3 =

[
1 0

0 4

]
,

R0 =

[
−5 0

0 −4

]
, R1 =

[
−2 0.1

0.1 5

]
, R2 =

[
4 −0.3

−0.3 7

]
, R3 =

[
2 −0.3

−0.3 0

]
,

G =

[
2 −0.3

−0.3 0

]
.

Let N = 4 and d = 2 in (2.1) in (2.4). Find the optimal control.

In this case, the constrained Riccati-like equation set (5.10)-(5.12) becomes to




P
(0)
k = Qk +AT

k

(
P

(0)
k+1 + P

(1)
k+1

)
Ak + CT

k P
(0)
k+1Ck,

P
(1)
k = AT

k P
(i+1)
k+1 Ak,

P
(2)
k = −HT

k W
†
kHk,

P
(0)
4 = G, P

(1)
4 = P

(2)
4 = 0,

WkW
†
kHk = Hk,Wk ≥ 0,

k ∈ {2, 3},

(6.1)

and




{
P

(0)
1 = Q1 +AT

1

(
P

(0)
2 + P

(1)
2

)
A1 + CT

1 P
(0)
2 C1,

P
(1)
1 = AT

1 P
(2)
2 A1 −HT

1 W
†
1H1,

P
(0)
0 = Q0 +AT

0

(
P

(0)
1 + P

(1)
1

)
A0 + CT

0 P
(0)
1 C0 −HT

0 W
†
0H0,

WkW
†
kHk = Hk,Wk ≥ 0, k = 0, 1.

(6.2)

By some calculations, we have

W0 =

[
7926 4307

4307 1403

]
,W1 =

[
749.8 −120.6

−120.6 6637

]
,

W2 =

[
28.8150 5.7102

5.7102 151.0654

]
,W3 =

[
10.4510 −1.7355

−1.7355 4.3900

]
,

which are positive definite. Hence, (6.1)-(6.2) are solvable. Furthermore, the unique optimal control

is given by

u0,x,∗
k = −W−1

k HkEk−2X
0,x,∗
k , k ∈ {0, 1, 2, 3},
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where −W †
kHk, k = 0, 1, 2, 3, are

−W−1
0 H0 =

[
−1.5730 1.2102

1.0877 −2.9347

]
, −W−1

1 H1 =

[
−0.9460 0.0731

0.0572 −0.8292

]
,

−W−1
2 H2 =

[
−0.3940 −0.5321

−0.1330 −0.8525

]
, −W−1

3 H3 =

[
−0.0069 0.0791

1.1469 0.3861

]
,

and X0,x,∗ is given by

{
X0,x,∗

k+1 =
(
AkX

0,x,∗
k −BkW

−1
k HkEk−2X

0,x,∗
k

)
+
(
CkX

0,x,∗
k −DkW

−1
k HkEk−2X

0,x,∗
k

)
wk,

X0,x,∗
0 = x, k ∈ {0, 1, 2, 3}.

7 Conclusion

In this paper, an indefinite stochastic LQ problem with transmission delay and multiplicative noises

is studied. Based on some abstract consideration, necessary and sufficient conditions are given, re-

spectively, for the case with a fixed initial pair and the case with all the initial pairs. Further, a set

of constrained discrete-time Riccati-like equations and a set of linear matrix equality-inequalities are

introduced, which are used to characterize the existence of the delayed optimal control of Problem

(LQ). Moreover, the unique solvability of the delayed optimal control is also fully characterized. For

future research, the infinite-horizon stochastic LQ problem with input delay should be investigated.
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Appendix

A. Proof of Theorem 4.2

(i) ⇒ (ii). Let ut,x,∗ be an optimal control of Problem (LQ) for the initial pair (t, x). Then, we now

prove that (4.9) is satisfied with property (4.12). The following deduction is a variant of that in [43].

Firstly, let us begin with the cast k = N − 1. Noting Zt,x,∗
N = GXt,x,∗

N , we have

EN−1−dZ
t,x,∗
N = GAN−1EN−1−dX

t,x,∗
N−1 +GBN−1u

t,x,∗
N−1,

and

EN−1−d(Z
t,x,∗
N wN−1) = GCN−1EN−1−dX

t,x,∗
N−1 +GDN−1u

t,x,∗
N−1.

Hence, (4.1) for k = N − 1 reads as

0 = RN−1u
t,x,∗
N−1 +BT

N−1EN−1−dZ
t,x,∗
N +DT

N−1EN−1−d(Z
t,x,∗
N wN−1)

= WN−1u
t,x,∗
N−1 +HN−1EN−1−dX

t,x,∗
N−1.

As there exists a ut,x,∗ satisfies (4.1), from Lemma 2.3 we know that (4.9) holds for k = N − 1, and

that ut,x,∗
N−1 can be selected as

ut,x,∗
N−1 = −W †

N−1HN−1EN−1−dX
t,x,∗
N−1.

Furthermore,

Zt,x,∗
N−1 =

(
QN−1 + AT

N−1GAN−1 + CT
N−1GCN−1

)
Xt,x,∗

N−1 −HT
N−1W

†
N−1HN−1EN−1−dX

t,x,∗
N−1

= P
(0)
N−1X

t,x,∗
N−1 + P

(d)
N−1EN−1−dX

t,x,∗
N−1.

In view of P
(i)
N−1 = 0, i = 1, · · · , d− 1, we have (4.12) for k = N − 1.

Secondly, assume that for k ∈ {t+ d, ..., N − 1}

HℓEℓ−dX
t,x,∗
ℓ ∈ Ran(Wℓ), ℓ ∈ Tk+1 = {k + 1, ..., N − 1}, (7.1)

ut,x,∗
ℓ = −W †

ℓ HℓEℓ−dX
t,x,∗
ℓ , ℓ ∈ Tk+1, (7.2)

and

Zt,x,∗
ℓ+1 = P

(0)
ℓ+1X

t,x,∗
ℓ+1 + P

(1)
ℓ+1EℓX

t,x,∗
ℓ+1 + · · ·+ P

(d)
ℓ+1Eℓ+1−dX

t,x,∗
ℓ+1 , ℓ ∈ Tk+1.

Now we verify that these are also true for the case k. In fact, notice that

Ek−dZ
t,x,∗
k+1 =

d∑

i=0

P
(i)
k+1

(
AkEk−dX

t,x,∗
k +Bku

t,x,∗
k

)
, (7.3)
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and

Ek−d(Z
t,x,∗
k+1 wk) = P

(0)
k+1

(
CkEk−dX

t,x,∗
k +Dku

t,x,∗
k

)
. (7.4)

Then, (4.1) reads as

0 = Rku
t,x,∗
k +BT

k Ek−dZ
t,x,∗
k+1 +DT

k Ek−d(Z
t,x,∗
k+1 wk)

= Wku
t,x,∗
k +HkEk−dX

t,x,∗
k . (7.5)

This implies by Lemma 2.3 that (4.9) holds for k and that ut,x,∗
k can be selected as

ut,x,∗
k = −W †

kHkEk−dX
t,x,∗
k . (7.6)

Furthermore,

Zt,x,∗
k =

[
Qk +AT

k

(
P

(0)
k+1 + P

(1)
k+1

)
Ak + CT

k P
(0)
k+1Ck

]
Xt,x,∗

k +

d∑

i=2

AT
k P

(i)
k+1AkEk+1−iX

t,x,∗
k

−HT
k W

†
kHkEk−dX

t,x,∗
k

= P
(0)
k Xt,x,∗

k + P
(1)
k Ek−1X

t,x,∗
k + · · ·+ P

(d)
k Ek−dX

t,x,∗
k . (7.7)

Let us further investigate a special case k = t+ d of (7.7)

Zt,x,∗
t+d = P

(0)
t+dX

t,x,∗
t+d + P

(1)
t+dEt+d−1X

t,x,∗
t+d + · · ·+ P

(d)
t+dEtX

t,x,∗
t+d . (7.8)

Then, from a derivation similar to (7.3)-(7.6), we have that (4.9) holds for k = t+ d− 1 and

ut,x,∗
t+d−1 = −W †

t+d−1Ht+d−1EtX
t,x,∗
t+d−1.

Therefore,

Zt,x,∗
t+d−1 =

[
Qt+d−1 +AT

t+d−1

(
P

(0)
t+d + P

(1)
t+d

)
At+d−1 + CT

t+d−1P
(0)
t+dCt+d−1

]
Xt,x,∗

t+d−1

+

d−1∑

i=2

AT
t+d−1P

(i)
t+dAt+d−1Et+d−iX

t,x,∗
t+d−1

+
[
AT

t+d−1P
(d)
t+dAt+d−1 −HT

t+d−1W
†
t+d−1Ht+d−1

]
EtX

t,x,∗
t+d−1

= P
(0)
t+d−1X

t,x,∗
t+d−1 + P

(1)
t+d−1Et+d−2X

t,x,∗
t+d−1 + · · ·+ P

(d−1)
t+d−1EtX

t,x,∗
t+d−1. (7.9)

Note that the form of (7.9) is different from (7.7) and (7.8). Therefore, we further need deductions.

Assume that for k ∈ {t, ..., t+ d− 2} we have (7.1), (7.2) and

Zt,x,∗
k+1 = P

(0)
k+1X

t,x,∗
k+1 + P

(1)
k+1EkX

t,x,∗
k+1 + · · ·+ P

(k+1−t)
k+1 EtX

t,x,∗
k+1 .

Similar to (7.3)-(7.6), we have that (4.9) holds for k and ut,x,∗
k can be selected as

ut,x,∗
k = −W †

kHkEk−dX
t,x,∗
k .

Furthermore,

Zt,x,∗
k =

[
Qk +AT

k

(
P

(0)
k+1 + P

(1)
k+1

)
Ak + CT

k P
(0)Ck

]
Xt,x,∗

k +

k−t∑

i=2

AT
k P

(i)
k+1AkEk+1−iX

t,x,∗
k

+
[
AT

k P
(k+1−t)
k+1 Ak −HT

k W
†
kHk

]
EtX

t,x,∗
k

= P
(0)
k Xt,x,∗

k + P
(1)
k Ek−1X

t,x,∗
k + · · ·+ P

(k−t)
k EtX

t,x,∗
k .

By induction, we can prove (4.9), (4.11) and (4.12).

(ii) ⇒ (i). By Lemma 2.3 and reversing the proof of (i) ⇒ (ii), we can achieve the result.
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B. Proof of Lemma 4.16

By adding to and subtracting

N−1∑

k=t

E

{ d∑

i=0

(Ek+1−iX
0
k+1)

TP
(i)
k+1Ek+1−iX

0
k+1 −

d∑

i=0

(Ek−iX
0
k)

TP
(i)
k Ek−iX

0
k

}

+
t+d−1∑

k=t

E

{ k+1−t∑

i=0

(Ek+1−iX
0
k+1)

TP
(i)
k+1Ek+1−iX

0
k+1 −

k−t∑

i=0

(Ek−iX
0
k)

TP
(i)
k Ek−iX

0
k

}

from J(t, 0;u), we have (noting X0
t = 0)

J(t, 0;u) =

N−1∑

k=t+d

E

{
(X0

k)
T
[
Qk +AT

k

(
P

(0)
k+1 + P

(1)
k+1

)
AT

k + CT
k P

(0)
k+1Ck − P

(0)
k

]
X0

k

+

d−1∑

i=1

(Ek−iX
0
k)

T
[
AT

k P
(i+1)
k+1 Ak − P

(i)
k

]
Ek−iX

0
k − (Ek−dX

0
k)

TP
(d)
k Ek−dX

0
k

+ 2(HkEk−dX
0
k)

Tuk + uT
kWkuk

}

+
t+d−1∑

k=t+2

E

{
(X0

k)
T
[
Qk +AT

k

(
P

(0)
k+1 + P

(1)
k+1

)
AT

k + CT
k P

(0)
k+1Ck − P

(0)
k

]
X0

k

+

k−t−1∑

i=1

(Ek−iX
0
k)

T
[
AT

k P
(i+1)
k+1 Ak − P

(i)
k

]
Ek−iX

0
k

+ (EtX
0
k)

T
(
AT

k P
(k+1−t)
k+1 Ak − P

(k−t)
k

)
EtX

0
k + 2(HkEtX

0
k)

Tuk + uT
kWkuk

}

+ E

{
(X0

t+1)
T
[
Qt+1 +AT

t+1

(
P

(0)
t+2 + P

(1)
t+2

)
AT

t+1 + CT
t+1P

(0)
t+2Ct+1 − P

(0)
t+1

]
X0

t+1

+ (EtX
0
t+1)

T
(
AT

t+1P
(2)
t+2At+1 − P

(1)
t+1

)
EtX

0
t+1 + 2(Ht+1EtX

0
t+1)

Tut+1

+ uT
t+1Wt+1ut+1

}
+ E

{
(X0

t )
T
[
Qt +AT

t

(
P

(0)
t+1 + P

(1)
t+1

)
AT

t + CT
t P

(0)
t+1Ct − P

(0)
t

]
X0

t

+ 2(HtX
0
t )

Tut + uT
t Wtut

}

=

N−1∑

k=t

E

{
(Ek−dX

0
k)

THT
k W

†
kHkEk−dX

0
k + 2(HkEk−dX

0
k)

Tuk + uT
kWkuk

}
. (7.10)

This completes the proof.

C. Proof of Theorem 5.4

(i) ⇒ (ii)(iii). Consider Problem (LQ) for the initial pair (N − 1, ξ) with ξ ∈ R
n. Letting k = N − 1

in (4.4), similar to (7.10) we have

J(N − 1, ξ;uN−1) = uT
N−1WN−1uN−1 + 2(HN−1ξ)

Tuk + ξTHT
N−1W

†
N−1HN−1ξ

+ ξT
( d∑

i=0

P
(i)
N−1

)
ξ > −∞. (7.11)

As (7.11) holds for any ξ ∈ R
n and any uN−1 ∈ UN−1

ad , we must have

WN−1 ≥ 0, Ran(HN−1) ⊂ Ran(WN−1) (i.e.,WN−1W
†
N−1HN−1 = HN−1).
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Otherwise, if WN−1 has a negative eigenvalue, say µ, then for an eigenvector η of µ

J(N − 1, ξ;λη) = µλ2|η|2 + 2λ(HN−1ξ)
T η + ξT

( d∑

i=0

P
(i)
N−1

)
ξ → −∞, as λ → ∞. (7.12)

This contradicts the finiteness of Problem (LQ). Further, if Ran(HN−1) ⊂ Ran(WN−1), then there

exists a ξ0 ∈ R
n such that HN−1ξ0 ∈ Ker(Wk). Hence,

J(N − 1, ξ;−λHN−1ξ0) = −2λ|HN−1ξ0|
2 + ξT

( d∑

i=0

P
(i)
N−1

)
ξ → −∞, as λ → ∞.

This also contradicts the finiteness of Problem (LQ). We therefore have (7.12) and

J(N − 1, ξ;−W †
N−1Hkξ) = inf

uN−1

J(N − 1, ξ;uN−1) = ξT
( d∑

i=0

P
(i)
N−1

)
. (7.13)

Assume that for k ∈ Tt+d = {t+ d, ..., N − 1}

Wℓ ≥ 0, WℓW
†
ℓ Hℓ = Hℓ, ℓ ∈ Tk+1 = {k + 1, ..., N − 1}, (7.14)

and

J(ℓ, ξ;uℓ,ξ,∗) = inf
u∈Uℓ

ad

J(ℓ, ξ;u), ℓ ∈ Tk+1, ξ ∈ R
n. (7.15)

In (7.15), uℓ,ξ,∗ is given by

uℓ,ξ,∗
p = −W †

pHpEp−dX
k,ξ,∗
p , p ∈ Tℓ = {ℓ, ..., N − 1}

with
{

Xℓ,ξ,∗
p+1 =

(
ApX

ℓ,ξ,∗
p −BpW

†
pHpEp−dX

ℓ,ξ,∗
p

)
+
(
CpX

ℓ,ξ,∗
p −DpW

†
pHpEp−dX

ℓ,ξ,∗
p

)
wp,

Xℓ,ξ,∗
ℓ = ξ, p ∈ Tℓ.

We now prove that (7.14) and (7.15) also hold for the case ℓ = k. In fact, similarly to (7.10) we have

J(k, ξ;u) =

N−1∑

ℓ=k+1

E

{
(uℓ +W †

ℓ HℓEℓ−dXℓ)
TWℓ(uℓ +W †

ℓ HℓEℓ−dXℓ)
}

+ E

{
ξTHT

k W
†
kHkξ + 2(Hkξ)

Tuk + uT
kWkuk

}
+ ξT

( d∑

i=0

P
(i)
k

)
ξ

> −∞, (7.16)

which holds for any ξ ∈ R
n and any u ∈ Uk

ad. Let the elements uk+1, ..., uN−1 of u take the following

form

uℓ = −W †
ℓ HℓEℓ−dXℓ, ℓ ∈ Tk+1,

and denote such a u by û with its element uk being freely selected. Then, (7.16) becomes to

J(k, ξ; û) = E

{
ξTHT

k W
†
kHkξ + 2(Hkξ)

Tuk + uT
kWkuk

}
+ ξT

( d∑

i=0

P
(i)
k

)
ξ > −∞. (7.17)

By an analysis similar to that between (7.12) and (7.13), we have

Wk ≥ 0, WkW
†
kHk = Hk,
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and

J(k, ξ;uk,ξ,∗) = inf
u∈Uℓ

ad

J(k, ξ;u) = ξT
( d∑

i=0

P
(i)
k

)
ξ.

with uk,ξ,∗ being given by (5.13). By induction, we can get (ii) and (iii).

(ii) ⇒ (i). This is straightforward.

(ii) ⇒ (iii). By the proof of Theorem 4.2, we know

0 = Wℓu
k,ξ,∗
ℓ +HℓEℓ−dX

k,ξ,∗
ℓ , ℓ ∈ Tk. (7.18)

Note that (7.18) holds for any initial pair (k, ξ) and ℓ ∈ Tk. We must have

WkW
†
kHk = Hk, k ∈ Tt.

Wk ≥ 0, k ∈ Tt, is due to the convexity of u 7→ J(t, x;u).

(iii) ⇒ (ii). This is straightforward from

J(k, ξ;u) =
N−1∑

ℓ=k

E

{
(uℓ +W †

ℓ HℓEℓ−dXℓ)
TWℓ(uℓ +W †

ℓ HℓEℓ−dXℓ)
}
+ Πk(ξ),

where

Πk(ξ) =

{ ∑k−t
i=0 ξ

TP
(i)
k ξ, k ∈ {t, ..., t+ d− 1},∑d

i=0 ξ
TP

(i)
k ξ, k ∈ Tt+d.

(iii) ⇒ (iv). Let (P (0), ...P (d)) be the solution of Riccati-like equation set (4.4)-(4.5) with property

WkW
†
kHk = Hk,Wk ≥ 0, k ∈ Tt. From the extended Schur’s lemma, we know (P (0), ...P (d)) ∈ M.

Hence, M is nonempty.

(iv) ⇒ (i). Let (P (0), ...P (d)) ∈ M. Then, from Lemma 5.2, we know

J(k, ξ;u) ≥ Πk(ξ) > −∞.

Hence, Problem (LQ) is finite.
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