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Abstract. We design a numerical scheme for transport equations with oscillatory periodic scattering co-

efficients. The scheme is asymptotic preserving in the diffusion limit as Knudsen number goes to zero. It

also captures the homogenization limit as the length scale of the scattering coefficient goes to zero. The

proposed method is based on the construction of multiscale finite element basis and a Galerkin projection

based on the even-odd decomposition. The method is analyzed in the asymptotic regime, as well as validated

numerically.

1. Introduction

We study in this paper the linear transport equation with fast oscillatory scattering coefficients in the

fluid regime.

ε∂tf + v · ∇xf =
1

ε
σδLf , (t, x, v) ∈ [0,∞)× Ω× V . (1.1)

Here Ω ⊂ Rd is the spatial domain and V is the velocity space. For transport equation, the velocity space

is typically given by S, the unit sphere in Rd. The function f(t, x, v) ≥ 0 is the distribution function which

gives the particle density on the phase space (x, v). More generally, we may use a variable ξ to label certain

physical state of the particle so that f = f(t, x, ξ) and the transport term takes the form v(ξ) · ∇xf where

v(ξ) is the velocity of a ξ-state particle.

The linear transport equation has been extensively used to describe dynamics of identical particles such

as neutrons, photons and phonons in an environment. The particles are free streaming (the advection term

v · ∇xf in (1.1)) unless they interact (scatter) with the background media, modeled by the collision term on

the right hand side, L being the collision operator and the amplitude σδ (always strictly positive), known

as the scattering coefficient, is spatially dependent. In this paper we study the case that the scattering

coefficient is highly oscillatory, with length scale indicated by δ � 1: for instance σδ(x) = σ(x/δ) with

σ periodic. The dimensionless parameter ε in the equation, known as the Knudsen number, characterizes

the ratio between the mean-free path of the particle with the macroscopic length scale. Thus a smaller ε

indicates stronger interaction between particles and the media.

The specific form of the collision operator Lf depends on the detailed modeling of the interaction of the

particles with the media, but in general, it satisfies the following properties, as for the cases of radiative

transfer equations and neutron transport equations:

(1) The null space of L has dimension 1. We denote NullL = span{F(v)} with F , normalized, referred

as the Maxwellian, which is the equilibrium state of the collision operator;

(2) Boundedness: ‖L‖L2
F−1
≤ 1;

(3) Dissipativeness: ∃ c0 > 0 such that for any f ,
∫
V
fL(f) 1

F dv ≤ − c02 ‖f − ρF‖
2
L2(F−1) ≤ 0, where

ρ =
∫
V
fFdv;
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(4) Boundedness of the generalized inverse L−1: ∃C0 ≥ 0 such that ‖L−1(h)‖L2
F−1
≤ C0‖h‖L2

F−1
for all

h ⊥ NullL.

For the ease of the presentation, we in this paper study the simplest case:

Lf = 〈f〉v − f ,

where 〈·〉v stands for average with respect to the v variable (or if ξ is used, the average is then taken over the

ξ variable). Physically, this represents that after the collision, the velocity of the particle becomes uniformly

random in the velocity space. It is clear that F , the Maxwellian, is a constant function in velocity variable

in this case.

The transport equation with multiscale scattering coefficients involves two small parameters: ε, the Knud-

sen number, small in the fluid regime, which restricts the time step size of the discretization, and δ, the

oscillation parameter of the scattering coefficients, that typically requires fine spatial discretization. Our

goal is to design an algorithm that overcomes the restrictions on discretization and captures the correct

asymptotic limit for both parameters. It will turn out that capturing the correct asymptotic limit in zero

limit of ε is aligned with designing asymptotic preserving (AP) scheme, while recovering the correct limit in

the zero limit of δ is connected to numerical homogenization.

1.1. Diffusion limit of transport equations. If we start with the equation:

∂tf + v · ∇xf = σδLf , (1.2)

and perform the parabolic scaling, which is to set

t→ t

ε2
, x→ x

ε
, (1.3)

we obtain (1.1) after the non-dimensionalization. It is well known that in the zero limit of ε, the distribution

function stabilizes and converges to the Maxwellian, in the kernel of the collision operator. Since in our case,

the kernel of L consists of constant functions in v, we could set f → ρδ(t, x)F(ξ). With the standard Hilbert

expansion technique, it could be shown rigorously that ρδ solves the heat equation:

∂tρ
δ − C∇x ·

(
1

σδ
∇xρδ

)
= 0 , (1.4)

with C depending on collision kernel and the dimension of the velocity space. In the case of isotropic collision

operator with 2D velocity space we use below, C is given by 1
2 . The heat equation, therefore is termed the

diffusion limit of the transport equation. Such limit of the transport equation has been known for a long

time, and rigorously proved in [39] for Cauchy problem and in [5] for bounded domain with well-prepared

boundary and initial data.

Capturing such asymptotic limit in numerical discretization is not trivial. The small Knudsen number

appears in front of the transport and the collision operator, making the two terms stiff. In computation, in

order to capture accurate solution when stiff terms present, the standard approaches would require a refined

time discretization step size: ∆t < ε, which leads tremendous computational cost.

The so-called asymptotic preserving (AP) is a property of a numerical method that is able to capture

the asymptotic limit with the discretization not refining the small scales of the problem. The framework is

designed for all types of discretization, but up to now most progress has been limited to the time domain

treatment. Spatial domain discretization requires intricate boundary layer and interface analysis, and only

limited studies have been carried out [20,31,32]. To relax the time discretization requirements, the focus has

been placed on obtaining uniform stability for all CFL number. Most AP schemes that have been designed

exploit implicit treatment that enlarges the stability region. The first such type of scheme appeared in [30]

for the transport equation computation and was later on summarized and defined by Jin in [26]. A vast
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literature followed the line and were devoted to design AP schemes for varies kinetic equations, and for the

Boltzmann equation specifically, BGK penalization [15], exponential Wild sum [9, 33, 40] and micro-macro

decomposition [6, 29] are the three major strategies. The underlying idea of them all is to find solvers that

employ implicit treatment at the cost of explicit discretization. For transport equation we refer to [34]

where a preconditioner is designed for the implicit scheme to accelerate the convergence of the iterative

solution. For further discussion on asymptotic preserving schemes, we refer to reviews [10,27] for Boltzmann

equation, [8] for plasma and [24] for hyperbolic type equations in general.

In this paper, to get over the difficulty placed on time domain discretization, we follow the idea proposed

in [28] and utilize the even-odd decomposition with implicit treatments. The details are given in Section 2.1.

1.2. Heterogeneous media with high oscillations. Albeit the long history of deriving the diffusion limit

for the transport equation with smooth media, the asymptotic limit in the case of heterogeneous media is

much less understood. The usual diffusion limit requires smoothness of the scattering coefficient σδ, which

might not hold for the highly oscillatory media in our case. The resonances between ε and δ may lead

to intricate phenomena, and depending on the scaling between δ and ε, different types of limit could be

obtained. In the steady case (without ∂t term), the authors in [3] studied the spectrum of the steady state

for δ = ε, and in the evolution case, Dumas and Golse derived in [11] the homogenized limit for the transport

equation with δ � 1 but ε = 1; Goudon and Mellet focused on combining the homogenization limit and

the diffusion limit with δ = ε � 1 in [18, 19]. A recent paper by Ben Addullah etc. [1] studied the periodic

oscillatory media for transport equation with δ � ε, in which case a drift-diffusion limit was obtained.

Despite the results on the analytic level, either formal or rigorous, the corresponding numerics has barely

been touched. The small oscillatory factor δ in the media produces fast oscillations in the solution along

spatial domain, and without special treatment, the brute-force numerical algorithm requires ∆x < δ. Com-

pared with the difficulty brought by the small ε, this difficulty is even more severe: since a small spatial

discretization may impose further restrictions of the time step size; and at the same time increases the

memory cost of the numerical computation.

It is natural to consider borrowing ideas from numerical homogenization for elliptic and parabolic type

equations, where the focus has been put on capturing the correct homogenization limit as δ → 0, with

the spatial discretization not resolving the fine spatial scale. During the past two decades, mainly for

elliptic/parabolic type of equations, numerical analysts have developed a variety of schemes achieving such

goal from several aspects. Many successful algorithms are designed, including multiscale finite element

method [14, 21, 23], heterogeneous multiscale method [2, 12, 13, 36], proper orthogonal decomposition [35],

and harmonic mapping [37]. Related to our situation, many such works are based on constructing localized

basis functions [4,16,17,38] that captures the oscillation of the media. The detailed algorithm vary but the

main idea behind them all is to upscale the problem and explore the low rank structure in the solution space.

Similar methods have not been carried out for the transport equation to the best of our knowledge.

Finite difference (the so-called SN , the discrete ordinate method) and spectral method (the so-called PN )

are standard for velocity domain discretization and along spatial domain, finite volume or upwind discrete

Galerkin [20,25] is mostly used. It is obvious that these methods, if used, require ∆x < δ. To overcome such

difficulty, the basis construction techniques from numerical homogenization need to be employed. In this

paper we look for getting better basis functions for expanding the solution space that have the information

from the oscillatory media embedded in.

1.3. Contributions of the current work. In this work, we will focus on the case ε� δ � 1 with ε and

δ unrelated (but both small). We leave the study of other regimes (e.g., δ � ε� 1 or ε = Cδ � 1 for some

constant C) for future works.
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Our goal is to design a fast and accurate numerical scheme for the transport equation with highly oscil-

latory media in the diffusion regime. The difficulty is two-fold: the time discretization restriction from the

Knudsen number ε, and the space discretization restriction from the oscillatory factor in the media δ. Our

aim is to design a numerical scheme that behaves well in both the highly oscillatory and the fluid regimes.

More precisely, a desirable algorithm would

1. capture the diffusion limit with fixed discretization in the zero limit of the Knudsen number;

2. relax the discretization from the oscillation indicator δ while maintaining the macroscopic quantities.

We will follow the principles of AP and numerical homogenization, that is to look for implicit solvers

and apply upscaled basis functions. However, a straightforward combination is not sufficient to capture

the limiting regime when both ε and δ are small. If we simply use the basis obtained from numerical

homogenization, in the limit ε→ 0, the scheme does not converge to that of the homogenized heat equation.

Considering the fact that the even and odd parts of the solution play different roles in the diffusion

limit, we treat them differently in the Galerkin projection to incorporate the scattering coefficient σδ. As

will be shown later, such special and dedicate treatment is the key that allows one to preserve the correct

discretization in the limiting heat equation regime, and it is the main contribution of the current paper.

In the following, we describe our numerical method in Section 2, and the convergence of the scheme is

analyzed in Section 3. In Section 4 we conclude with some numerical examples.

2. Numerical method

We prescribe the algorithm in this section. To be more specific, we discuss the numerical method for

the problem in two spatial dimension with particles traveling at the same speed so only the direction of the

velocity differs. Problem in other dimensions could be treated similarly. We write the radiative transfer

equation as

εaδ∂tf + aδ cos ξ∂xf + aδ sin ξ∂yf =
1

ε
Lf , (x, ξ) = (x, y, ξ) ∈ Ω⊗ (−π, π] . (2.1)

where aδ = 1
σδ

= a(x
δ ) is the inverse scattering coefficient, which is periodic with period δ. We use aδ instead

of σδ so that the resulting diffusion limit takes the usual form of heat equation with oscillatory coefficient,

as will be shown below. We have assumed periodic coefficient aδ = a(x
δ ); it is straightforward to extend to

two scale coefficients aδ = a(x, xδ ) where a(x, ·) is periodic. For simplicity we take the collision operator

Lf =
1

2π

∫
fdξ − f . (2.2)

The velocity domain is represented using the angle ξ ∈ (−π, π]: v = (cos ξ, sin ξ) gives the velocity. For

arbitrary small but fixed δ, in the zero limit of ε (recall that we consider the regime ε� δ � 1 in this work),

the transport equation converges to the following heat equation with highly oscillatory diffusion coefficient:

∂tρ
δ =

1

2
∇x ·

(
aδ∇xρ

δ
)
, (2.3)

where f(t,x, ξ) → ρδ(t,x) as ε → 0, having its velocity dependence vanishing in the diffusion limit. The

solution is still highly oscillatory in x due to the heterogeneity in space.

Sending δ → 0, we will obtain the homogenized limiting heat equation. As δ → 0, ρδ → ρ where ρ solves

the homogenized heat equation with a smooth media:

∂tρ =
1

2
∇x · (ahom∇xρ) . (2.4)

Here ahom is the homogenized coefficient, which could be obtained by solving the cell problem [7]

e · ahome = inf
χe

∫
Γ

a(y)
∣∣∇χe(y) + e

∣∣2 dy, ∀|e| = 1, e ∈ R2. (2.5)
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where Γ is the unit cell of the periodic coefficient a. The homogenized coefficient ahom is a 2× 2 matrix and

in general is not isotropic.

We seek for an algorithm that is accurate across regimes with the discretization independent on the

external parameters such as ε and δ. More precisely, we look for a numerical scheme that captures accurate

numerical solutions both in the kinetic regime with ε = O(1), and in the fluid regime with ε→ 0; with either

smooth media where δ = O(1) or highly oscillatory media with δ → 0.

Under the Galerkin framework, we construct some basis functions first and then project the original

equation (2.1) onto the finite dimensional space expanded by them. The convergence will simply be governed

by the effectiveness of the basis functions. However, it turns out directly performing the projection is not

going to maintain the AP property, and a reformulation is needed. Below we first describe the even-odd

reformulation of the equation, and the associated discretization. It will be followed by the basis construction

in subsections 2.2 and 2.3.

2.1. Reformulation via even-odd decomposition. The even-odd decomposition for the transport equa-

tion has been used for obtaining AP property by many studies, see [28, 29]. It turns out also useful in our

context to capture simultaneously the diffusion and homogenization limits. Let us define the even and the

odd part of the solution:

fE =
1

2
[f(t, x, ξ) + f(t, x,−ξ)] , fO =

1

2
[f(t, x, ξ)− f(t, x,−ξ)] . (2.6)

It is obvious that f = fE + fO. With such decomposition we reformulate the equation (2.1) as:
Even: aδ∂tf

E +
aδ

ε
v · ∇xfO =

1

ε2

(
〈fE〉ξ − fE

)
;

Odd: aδ∂tf
O +

aδ

ε
v · ∇xfE = − 1

ε2
fO.

(2.7)

Note in particular that the average in collision operator acting on the odd function gives 〈fO〉ξ = 0.

To ensure the asymptotic preserving property, implicit treatment has to be applied on stiff terms, and

here we will treat both the convection and the reaction terms implicitly. Thus the resulting scheme is fully

implicit. Taking backward Euler for example, given the value of fE,n and fO,n at time step tn, we solve for

the functions at the new time step by

Even: aδfE,n+1 +
∆t

ε2
fE,n+1 − ∆t

ε2
〈fE,n+1〉ξ = aδfE,n − ∆t

ε
aδv · ∇xf

O,n+1 ,

Odd: aδfO,n+1 +
∆t

ε2
fO,n+1 = aδfO,n − ∆t

ε
aδv · ∇xf

E,n+1 .

(2.8)

Here ∆t is the time step size.

To turn the above semi-discrete equation into a fully discretized system, we now employ discretization

in spatial and velocity domain. Under the general Galerkin framework, we expand the solutions with pre-

constructed basis functions:

fE ∼ fEM,N =

M,N∑
m,n=1

αmnφm(x)pn(ξ) , fO ∼ fOM,N =

M,N∑
m,n=1

βmnφm(x)pn(ξ) , (2.9)

Here we choose M basis functions {φm(x)} in spatial domain and N basis functions {pn(ξ)} in velocity space

respectively.

To update αmn and βmn, we substitute the ansatz into (2.8) and project the equation onto the finite

dimensional space span{φm(x)pn(ξ),m = 1, . . . ,M, n = 1, . . . , N}. In fact the projection is not unique as

we may change the form of the equations (2.8) before the projection. For consistency with the asymptotic

limit, we divide the even equation with aδ before the Galerkin projection while keeping the form of the odd
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equation in the projection. We emphasize that for the spatial and velocity discretization, the even and odd

equations are treated differently. This is crucial for the scheme to capture both diffusion and homogenization

limits, as will be shown below; see also Remark 2.1.

In a concise matrix form, we arrive at the discrete system{
Φ⊗ I +

∆t

ε2
Σinv ⊗ (I− P)

}
· ~αn+1 = (Φ⊗ I) · ~αn −

{
∆t

ε
Ξx ⊗ Fcos +

∆t

ε
Ξy ⊗ Fsin

}
· ~βn+1 (2.10)

for the even function and{
Σ⊗ I +

∆t

ε2
Φ⊗ I

}
· ~βn+1 = (Σ⊗ I) · ~βn −

{
∆t

ε
Σx ⊗ Fcos +

∆t

ε
Σy ⊗ Fsin

}
· ~αn+1 (2.11)

for the odd function. In this formulation we have used various mass and stiffness matrices that given by:

Σmn = 〈aδφm , φn〉x , Φmn = 〈φm , φn〉x , (2.12)

Σxmn = 〈φm , aδ∂xφn〉x , Σymn = 〈φm , aδ∂yφn〉x ,

Ξxmn = 〈φm , ∂xφn〉x , Ξymn = 〈φm , ∂yφn〉x ,

Σinv
mn = 〈(aδ)−1φm , φn〉x ,

on the spatial domain and

Imn = 〈pm , pn〉ξ , Bmn = −〈Lpm , pn〉ξ (2.13)

Fcos
mn = 〈cos ξ pm , pn〉ξ , Fsin

mn = 〈sin ξ pm , pn〉ξ ,

Pmn = 〈pm〉ξ〈pn〉ξ

on the velocity domain. The coefficients α and β needed to be ordered in a consistent way:

~α = [α11 , α12 , · · · , α1N , α21 , · · · , α2N , · · · , αMN ]T , ~β = [β11 , β12 , · · · , β1N , · · · , βMN ]T .

The basis functions along the velocity domain determine the structure of I, B, P and the two flux terms

Fcos and Fsin, while Σ, Φ, Σinv and the four flux terms Σx, Σy, Ξx and Ξy are determined by the basis

construction along the spatial domain. To avoid confusion we use Greek letters for x and Latin letters for

ξ. Note that the flux matrices are in general not symmetric or anti-symmetric, due to the presence of aδ.

Remark 2.1. If we keep the form of the even equation in the projection, we will get the following updating

formula instead (cf. (2.10)):{
Σ⊗ I +

∆t

ε2
Φ⊗ (I− P)

}
· ~αn+1 = (Σ⊗ I) · ~αn −

{
∆t

ε
Σx ⊗ Fcos +

∆t

ε
Σy ⊗ Fsin

}
· ~βn+1 . (2.14)

In terms of computation this formulation might be easier than (2.10) since we save the computation of three

more terms: Ξx, Ξy and Σinv. However, as will be seen in Section 3, such discretization fails to capture the

asymptotic limit, and also leads to an asymmetric discretization of the limiting heat equation.

In the following two subsections we briefly describe the basis function construction along x and ξ respec-

tively, and the associated numerical integration called for in evaluating the coefficients in (2.12) and (2.13).

These basis need to be constructed such that: (1) the corresponding matrices enjoy simple structure, and

(2) the high oscillation in the scattering coefficient is captured.
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2.2. Basis functions in ξ. To construct basis functions along the velocity space, we use the standard

Pn method. This is a well-accepted method for kinetic type of equations, especially for radiative transfer

equations.

In short, Pn method uses the Legendre polynomials as basis functions. They are a set of orthogonal

polynomials in a bounded domain with uniform weight functions:

1

2π

∫ π

−π
pn(ξ)pm(ξ)dξ = δmn . (2.15)

Here pn is a normalized (n − 1)-th order polynomial in ξ, and they are orthogonal with respect to each

other. Some advantages of the method are immediate. The set simultaneously diagonalizes two operators

in the equation: both I and B are diagonal matrices. I being diagonal is easy to see due to the definition,

and B is diagonal mainly due to the structure of the collision operator. The Legendre polynomials are the

eigenfunctions of L:

Lpn(ξ) = λnpn(ξ) , (2.16)

and for the collision term in equation (2.1) specifically, we have:

Lpn(ξ) =

0 , n = 1 ,

−pn(ξ) , n 6= 1 .
(2.17)

And thus:

B =


0 · · · · · · · · ·
0 1 0 · · ·
...

. . .
. . .

...

0 · · · 0 1

 , P =


1 0 · · · · · ·
0 0 0 · · ·
...

. . .
. . .

...

0 · · · 0 0

 , (2.18)

meaning B is an identify matrix except the (1, 1)-entry is changed zero, and P is a zero matrix except the

(1, 1)-entry is 1. This prior knowledge saves us from performing numerical integration for assembling stiffness

matrices. The flux terms, however, requires numerical integration.

In 1D, the form of the flux term could be further simplified. It reads as

F = 〈ξpn(ξ) , pm(ξ)〉ξ . (2.19)

According to the definition of the Legendre polynomial, the set satisfies the recurrence relation, and the flux

matrix F is a tridiagonal matrix.

In higher dimensions the flux terms no longer have such good structure and to precompute the flux terms

Fcos and Fsin, one needs to perform numerical integration. Here we utilize another hidden benefit of using

orthogonal polynomial: the numerical integral is highly accurate with the Gaussian quadratures. Suppose we

sample K grid points on the velocity domain, the Gaussian quadratures are then the zeros for the (K−1)-th

Legendre polynomials. We denote the sample points and the associated weights {ξk , wk} with k = 1, · · ·K,

then the integrations are computed as:

Fcos
mn = 〈cos ξ pm(ξ) , pn(ξ)〉ξ ∼

K∑
k=1

cos ξkpm(ξk)pn(ξk)wk . (2.20)

The same computation holds true for Fsin. This finishes our preparation on the velocity domain.
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2.3. Basis functions in x. For constructing basis functions along the spatial domain, we borrow ideas

from numerical homogenization to characterize the highly oscillatory media.

The numerical homogenization and upscaling has been studied thoroughly for elliptic / parabolic type

equations with highly oscillatory heterogeneous media. Among many techniques in numerical homogeniza-

tion, we choose to use the multiscale finite element method (MsFEM) to construct basis functions. The

possible adaptation of other techniques will be left to future research.

The idea of MsFEM is to decompose the domain into nested grids, with the basis functions constructed

on coarse mesh using fine grids. The basis functions, by construction, expand the null space of the elliptic

operator patchwisely. As shown in (2.3), in the limiting regime, the elliptic operator for the diffusion equation

is ∇x · (ahom∇x·). Following MsFEM, we construct a nested coarse-fine grids system with DH ∈ Dh. Here

DH = {x1 , · · · ,xN} is the collection of coarse grid points with mesh size H and Dh collects all fine grid

points with mesh size h. Typically H is assumed not to resolve the fine scale δ but h, the fine mesh needs

to. The subdomains are referred to the triangulations formed by the coarse grid points DH , for example

we could use TH = {Dk
H , 1 ≤ k ≤ K} to denote the finite set of Dk

H , compact triangles or quadrilaterals

constructed using coarse grid points. Here we assume there are K subdomains in total, and the union of

these K subdomains covers the closure of the entire domain D. The intersection of different triangles or

quadrilaterals is either empty, a common node or a common edge. Similarly we denote Th the collections of

the triangulation on the fine scale Th = {Dk
h, 1 ≤ k ≤ Kh}.

The essential idea is to precompute the Multi-scale Finite Element Basis (MsFEB) in these subdomains

using fine grid points, and assemble the stiffness matrix with them. The Galerkin formulation is performed

on these basis functions that are associated with coarse mesh. Suppose patch Dm
H has d nodal grid points,

denoted as x1, . . . ,xd, then in this patch, we construct d basis functions, with each one being associated

with one nodal grid point: −∇x · (aδ∇xφ
l
m) = 0 , x ∈ Dm

H ,

φlm(x) = ψlm(x) , x ∈ ∂Dm
H , l = 1, · · · d .

Here the boundary condition ψlm is set such that it sets 1 at grid point xl and 0 for all others from the same

patch:

ψlm(xj) = δlj , (2.21)

and ψlm(xj) is affine on the boundary, i.e., they are taken to be hat functions, restricted to the patch Dm
H .

As seen in the formulation, the equation is computed in subdomain Dm
H , with boundary conditions that the

basis function “picks up” one nodal point of the patch. Obviously the basis functions φlm computed here

resembles the hat functions (restricted in a single patch) in the standard FEM that also takes value 1 or 0

at nodal grid points, but these basis functions have more details embedded and thus the coarse mesh size H

does not need to resolve the oscillation parameter δ.

Remark 2.2. In the framework of MsFEM, other choices of the functions ψlm are possible: After we fix

the nodal values as (2.21), several possibilities exists for the choice of boundary values on the edge of the

patch; such as the linear boundary conditions (which is what we used above)and the oscillatory boundary

conditions (that is to compute the elliptic equation confined on the edges for the boundary values). Another

choice recommended in [21] is to use the over-sampling technique: we first compute basis functions on an

enlarged patch with linear boundary conditions, and then restrict the solutions obtained in the original smaller

subdomain Dk
H . We have chosen the linear boundary conditions here for simplicity, while other choices are

possible.
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Each nodal grid point, if not on the boundary, appear in multiple patches, and after the computation of

all basis functions in all patches, for each nodal grid point xl, we sum them up and obtain:

φl =
∑

m:xl∈DmH

φlm . (2.22)

They serve as the basis functions in the Galerkin formulation. Detailed construction could be found in the

original paper [21]. With these basis functions constructed, we are ready to assemble the stiffness matrices

in (2.10) and (2.11). Here we need to compute Σ, Σx, Σy, Σinv, Ξx and Ξy. To obtain the numerical

integration, considering the basis functions are defined on fine grid points in local patches, we could simply

use the very basic trapezoidal rule, for example:

Σmn = 〈aδφm , φn〉x ∼
∑
k∈Th

∣∣Dk
h

∣∣ (aδφmφn) ∣∣Dkh (2.23)

Once the basis functions are constructed and the stiffness matrices are assembled, there are no further

use of the fine grid points and we could neglect them. This finishes our preparation in the spatial domain.

With the stiffness matrices computed in (2.20) and (2.23) we evolve equation (2.10) and (2.11) for the

projection coefficients ~αn+1 and ~βn+1.

3. Convergence

The success of the method lies in the two main ingredients. The different treatments of the even and

the odd equation shown in (2.10) and (2.11), and the construction of the basis functions discussed in sub-

section 2.3. In this section we discuss the properties of the scheme, mainly to show that it is asymptotic

preserving and captures the homogenized limit. These two properties combined ensures the convergence of

the method with the discretization H and ∆t relaxed from both the two small scales δ and ε respectively.

To justify this numerical method we need to show the error

Error = f − fEM,N − fOM,N (3.1)

is small where fEM,N and fOM,N , defined in (2.9), are determined by the coefficients ~α and ~β through updat-

ing (2.10) and (2.11). Since the result is trivial for ε ∼ δ = O(1), we only focus on the case where parameters

are small. As mentioned, we assume the regime that 1� δ � ε.

Generally speaking it is not easy to control the error in (3.1), especially given the undetermined role of

the two parameters in (2.10) -(2.11). As seen before, the basis functions φm are constructed in a special

way such that the oscillation in the media gets embedded in: they are constructed as a-harmonic function in

each element. To estimate the error, we will resort to the diffusion limit for which the basis functions work

well as in standard MsFEM method.

To this end, we first write the error term as:

‖f − fEM,N − fOM,N‖ ≤ ‖f − ρδ‖︸ ︷︷ ︸
term I

+ ‖ρδ − ρ‖︸ ︷︷ ︸
term II

+ ‖ρ− fEM,N − fOM,N‖︸ ︷︷ ︸
term III

. (3.2)

where ρδ solves the diffusion limit (2.3) and ρ is the solution to the homogenized heat equation limit (2.4).

We summarize the three terms below and lay out the strategy for the proof. Without further notice, the

norm of the error terms will always be choose as L2 norm, either L2(dx) or L2(dxdv) depending on the

contexts.

• Term I: it is the comparison between the solution to the transport equation with the diffusion limit.

For fixed δ and small ε, it is expected to be as small as O(ε) in the asymptotic limit. We cite in the

next theorem the classical result from [5].
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Theorem 3.1. Let f and ρδ solve equation (2.1) and (2.3) respectively, with periodic boundary conditions.

Assume the initial data for f has no dependence on v, we have

‖f − ρδ‖L2(dxdv) = O(ε) ,

Remark 3.1. The periodic boundary condition excludes the complexity of the boundary layer effect, which

we will not address in this work. The requirement of initial data independent on v also exclude the initial

layer. When initial layer exists, due to the exponential decay, it induces an error of order O(e−t/ε
2

).

• Term II: it represents the homogenization error. With δ → 0, the standard homogenization theory

of heat equation [7] indicates that the error here is of order O(δ).

• Term III: this is the error coming from numerical discretization. Typical brute-force analysis would

pessimistically give error bounds depending on ∆x
δ or ∆t

ε . As will be shown later this is not the case

due to the special design of the scheme: we demonstrate that the method captures the numerical

homogenization limit with fixed discretization, besides being asymptotic preserving. Theorem 3.3

guarantees that this error can be bounded by O(ε+
√
δ + ∆t+H2).

We summarize the result here first by collecting the estimates for the three error terms.

Theorem 3.2. Let f be the solution to the equation (2.1) with initial data independent of v and in C3.

Let fEM,N + fOM,N be the numerical approximation computed through (2.10) and (2.11). Given oscillatory but

periodic scattering coefficient σ(x) = σ(x/δ), we have:

‖f − fEM,N − fOM,N‖L2(dxdv) ≤ O(ε+
√
δ + ∆t+H2) . (3.3)

This result could be improved in 1D, as seen in Remark 3.3. For later convenience, we first study the

discretization of ρ and ρδ. Following the philosophy of asymptotic preserving scheme, we characterize the

limiting numerical scheme as ε→ 0. The error analysis of the third term will follow from the approximation

error of the limiting scheme to the homogenized heat equation.

3.1. Multiscale finite element method for the heat equation. Let us take a detour and recall the

Galerkin approximation for the heat equation using the multiscale finite element basis constructed before.

While our scheme does not converge to a standard MsFEM scheme, it will be useful to compare with it. In

MsFEM, we approximate the solution to the heat equation as

ρδ ∼ ρδM =

M∑
m=1

ηmφm . (3.4)

In the Galerkin framework, we project (2.3) onto the finite dimensional space spanned by {φm}, and the

numerical scheme reads:

Φ · ∂t~η −
1

2
A · ~η = 0 , (3.5)

where ~η = [η1 , · · · , ηM ]T and

Φnm = 〈φm , φn〉x ,

Anm = 〈∇x · (aδ∇xφm) , φn〉x = −〈aδ∇xφm ,∇xφn〉x . (3.6)

Note that the definition of Φ is the same as the mass matrix defined in (2.12). The stiffness matrix A,

by definition, is symmetric. The equation (3.5), as a semi-discretization of the heat equation, provides the

evolution of ~η, the projection coefficients for ρδ.
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For a full discretization, we suppose at time step tn we have ρδ,nM ready. The simplest method for updating

for the new time ρδ,n+1
M equation (3.5) that avoids parabolic time step size restriction is the backward Euler

method:

Φ~ηn+1 = Φ~ηn +
∆t

2
A~ηn+1 . (3.7)

For updating (3.7), one needs to find a numerical solver that efficiently and accurately invert Φ− ∆t
2 A.

We also discretize the homogenized heat limit (2.4). Following the standard Galerkin formulation, we use

the simplest finite elements, namely when it is confined in l-th patch, it satisfies:−∇x · (ahom∇xφ̄
l
m) = 0 , x ∈ Dm

H ,

φ̄lm(x) = ψlm(x) , x ∈ ∂Dm
H , l = 1, · · · d .

In 1D, they are simply the hat function. For simplicity of the analysis, we assume that ψlm is linear on the

boundary for higher dimensional cases, so that φ̄l constructed similarly as (2.22) are also (higher dimensional)

hat functions. The following lemma is from the standard MsFEM analysis

Lemma 3.1. Define the homogenized stiffness and mass matrices:

(Ahom)nm = −〈ahom∇xφ̄m ,∇xφ̄n〉x , (Φhom)nm = 〈φ̄m , φ̄n〉x , (3.8)

we then have

|(Ahom)nm − Anm| = O(
√
δ) , |(Φhom)nm − Φnm| = O(δ),

where A and Φ are defined in (3.6).

Proof. We first recall from standard periodic homogenization (e.g., [7] or in the context of MsFEM [23]) of

elliptic equations

‖φm(x)− φ̄m(x)− δχx(x/δ)∂xφ̄m(x)− δχy(x/δ)∂yφ̄m(x)‖H1(dx) =

O(δ) , 1D

O(
√
δ) , higher D

, (3.9)

where χx and χy are correctors for the periodic homogenization. The lower rate of convergence in higher

dimension is caused by boundary layers. The limits Ahom = limδ→0 A and Φhom = limδ→0 Φ thus follow since

φm → φ̄m, ∇φm → ∇φ̄m and a∇φm ⇀ ahom∇φ̄m as δ → 0. The convergence rate also follows from (3.9)

easily. �

This naturally leads to the consistency of MsFEM to the homogenized heat equation. The proof is

straightforward based on the previous Lemma, which we omit here.

Proposition 3.1. As δ → 0, the multiscale finite element method for the equation (2.3) converges to the

following scheme:

Φhom~η
n+1 = Φhom~η

n +
∆t

2
Ahom~η

n+1 . (3.10)

The limiting scheme is a consistent and stable discretization of the homogenized heat equation (2.4).

3.2. Term III: numerical homogenization and AP. This subsection is devoted to showing the AP

property, namely we would like to control the error between the transport equation numerical solution and

the heat equation numerical solution, and the error should be independent of either ε or δ.

Before we turn to the limiting numerical scheme in the diffusion limit, let us characterize the limit of the

coefficients in the following Lemma, which is analogous to Lemma 3.1 for MsFEM.
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Lemma 3.2. Define Ξxhom, Ξyhom, Σxhom and Σyhom the same way as defined in (2.12) with φm replaced by

φ̄m, then

Ξxhom = lim
δ→0

Ξx , Ξyhom = lim
δ→0

Ξy , (3.11)

Σxhom = lim
δ→0

Σx , Σyhom = lim
δ→0

Σy . (3.12)

Furthermore, let

D = (Ξx · Φ−1 · Σx) + (Ξy · Φ−1 · Σy) , (3.13)

then the limit Dhom = limδ→0 D exists and is given by

Dhom = (Ξxhom · Φ−1
hom · Σ

x
hom) + (Ξyhom · Φ

−1
hom · Σ

y
hom) . (3.14)

As δ → 0, we have

|(Dhom)nm − Dnm| = O(
√
δ). (3.15)

Proof. The proof is similar to Lemma 3.1: By using (3.9)

Σxmn → 〈φ̄m, (ahom∇φ̄n)x〉x = (Σxhom)mn ; Ξxmn → 〈∂xφ̄m, φ̄n〉x = (Ξxhom)mn ,

with convergence rate O(
√
δ) and similarly for y direction. Here (ahom∇φ̄n)x denotes the x-component of the

vector field ahom∇φ̄n, which is axxhom∂xφ̄n + axyhom∂yφ̄n. The conclusion for D then follows immediately. �

We now ready to state the main result of this section, which concerns the limiting scheme of (2.10)

and (2.11) as ε and δ go to 0. The result is analogous to Proposition 3.1.

Theorem 3.3. Consider the scheme (2.10) and (2.11) for fEM,N and fOM,N with the multiscale finite ele-

ment basis, as ε → 0, δ → 0, the scheme converges to a consistent and stable numerical methods for the

homogenized heat equation (2.4). More specifically,

(1) ~βε,δ → 0, as ε→ 0;

(2) αε,δm,n → 0 for all m with n > 1 as ε→ 0;

(3) In the zero limit of ε, αε,δ·,1 → αδ·,1 that satisfies:

Φ · ~αδ,n+1
1 = Φ · ~αδ,n1 +

∆t

2
D · ~αδ,n+1

1 , (3.16)

where ~αδ1 = [αδ1,1 , α
δ
1,1 , · · · , αδM,1].

(4) The convergence of ~β and α is of O(ε), meaning ~βε,δ = O(ε), αε,δm,n = O(ε) for all m and n > 1,

and ~αε,δ·,1 − ~αδ·,1 = O(ε).

(5) In the zero limit of δ, the scheme for ~αδ1 converges to that of ~α1 that satisfies:

Φhom · ~αn+1
1 = Φhom · ~αn1 +

∆t

2
Dhom · ~αn+1

1 . (3.17)

(6) The convergence is of O(
√
δ), meaning: ~αδ1 − ~α1 = O(

√
δ).

(7) The scheme (3.17) is a consistent and stable scheme for the homogenized heat equation (2.4) with

the convergence rate being O(∆t+H2).

In summary, αε,δ discretizes the limiting equation (2.4) with error O(ε+
√
δ+ ∆t+H2), where the first two

terms are approximation error and the last two are discretization error.

The scheme (3.17) is not the same as the scheme (3.10) for the homogenized heat equation, which is the

homogenized limit of the MsFEM scheme (3.5). In general, the matrices Ahom and Dhom are not the same.

In fact, the scheme (3.17) is not even a Galerkin scheme. To analyze the scheme, we will treat it more like a

finite difference approximation to the homogenized heat equation. The consistency is given by the following

lemma.
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Lemma 3.3. Let f be a function in C3. Let

fn = f(xn) , gn = axxhom∂xf(xn) + axyhom∂yf(xn).

Denote ~f = [f1 , · · · , fn] and ~g = [g1 , · · · , gn]. then

Φ−1
hom · Σ

x
hom · ~f − ~g = O(H2) , (3.18)

where H is the coarse mesh size of the discretization. Similarly, Φ−1
hom ·Σ

y
hom is an O(H2) approximation to

ayxhom∂x + ayyhom∂y.

Proof. Note that Φhom is invertible with bounded inverse of O(1), it thus suffices to show that

Σxhom · ~f − Φhom · ~g = O(H2) , (3.19)

meaning for each entry we need to show:(
Σxhom · ~f

)
m

=
∑
n

fn〈φ̄m , axxhom∂xφ̄n + axyhom∂yφ̄n〉x (3.20)

is close enough to:

(Φhom · ~g)m =
∑
n

gn〈φ̄m , φ̄n〉x . (3.21)

Since φ̄ is piecewise bilinear function in 2D, for f in C3, standard interpolation results yield that

f −
∑
n

fnφ̄n = O(H2) , axxhom∂xf + axyhom∂yf −
∑
n

gnφ̄n = O(H2) . (3.22)

As a result, we have∑
n

fn〈φ̄m , axxhom∂xφ̄n + axyhom∂yφ̄n〉x = −
∑
n

fn〈axxhom∂xφ̄m + axyhom∂yφ̄m , φ̄n〉x

= −〈axxhom∂xφ̄m + axyhom∂yφ̄m , f〉x +O(H2)

= 〈φ̄m , axxhom∂xf + axyhom∂yf〉x +O(H2)

=
∑
n

gn〈φ̄m , φ̄n〉x +O(H2) ,

which completes the proof. �

Remark 3.2. Following the same proof, we could see that O(H2) error is produced if we use the following

discretization for the approximation to the corresponding differential operator:

∂x → −Φ−1
hom · Ξ

x
hom (3.23)

∂y → −Φ−1
hom · Ξ

y
hom . (3.24)

Note that the derivatives are on the second argument in the inner product thereby gives a negative sign.

Combined with the previous lemma, this means for f ∈ C2,

Φ−1
hom · Dhom = Φ−1

hom · Ξ
x
hom · Φ−1

hom · Σ
x
hom + Φ−1

hom · Ξ
y
hom · Φ

−1
hom · Σ

y
hom (3.25)

approximates ∇ · (ahom∇) with O(H2) accuracy.

With this lemma we could show the proof for Theorem 3.3.

Proof of Theorem 3.3. We first perform asymptotic expansion of the two equations in (2.11) and (2.10). To

do that we also need to asymptotically expand ~α and ~β:

~αε,δ = ~α0,δ + ε~α1,δ + · · · , (3.26)

~βε,δ = ~β0,δ + ε~β1,δ + · · · . (3.27)
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We plug the expansion back into (2.11) and (2.10), and match by the order of ε, then we get:

• Leading order of (2.11):

(Φ⊗ I) · (~β0,δ)n+1 = −ε(Σx ⊗ Fcos + Σy ⊗ Fsin) · (~α0,δ)n+1 . (3.28)

Then (~β0,δ)n+1 = O(ε) is immediate if (~α0,δ)n+1 can be shown to be at most O(1).

• Leading order of (2.10) [
Σinv ⊗ (I− P)

]
· (~α0,δ)n+1 = 0 . (3.29)

Since Σinv is not singular this indicates that (~α0,δ)n+1 is in the null space of I− P. Considering the

formula in (2.18) it is easy to see that:

α0,δ
m,n = 0 , ∀n ≥ 2 ,m ≥ 1 . (3.30)

Therefore (2) is shown, which indicates that the information in ~α0,δ could be compressed into ~α0,δ
1 .

• Applying P on both sides of (2.10)

(Φ⊗ P) · (~α0,δ)n+1 = (Φ⊗ P) · (~α0,δ)n − ∆t

ε
(Ξx ⊗ PFcos + Ξy ⊗ PFsin) · (~β0,δ)n+1 . (3.31)

Here we have used the fact that P is a projection and thus P(I− P) = 0.

Combining (3.28) and (3.31), one has:

(Φ⊗P)·(~α0,δ)n+1 = (Φ⊗P)·(~α0,δ)n+∆t[(Ξx·Φ−1·Σx)⊗(P·Fcos·Fcos)+(Ξy ·Φ−1·Σy)⊗(P·Fsin·Fsin)]·(~α0,δ)n+1 .

Due to (3.30), all elements in ~α0,δ diminish as ε→ 0 except the ~α0,δ
1 term. For conciseness of the notation

we denote it ~αδ1. Considering

P · Fcos · Fcos = P · Fsin · Fsin =
1

2
Id ,

where Id stands for identity matrix, we compress all n ≥ 2 terms in ~α and have:

Φ · ~αδ,n+1
1 = Φ · ~αδ,n1 +

1

2
∆t
[
(Ξx · Φ−1 · Σx) + (Ξy · Φ−1 · Σy)

]
· ~αδ,n+1

1

= Φ · ~αδ,n1 +
1

2
∆tD · ~αδ,n+1

1 ,

which shows (3). The convergence rate stated in (4) comes from the asymptotic expansion (3.26). To show

it rigorously one also needs to write down the equation for ~α1,δ and show the boundedness, which we will

neglect the details here.

Then (5) is obvious according to Lemma 3.2, and the convergence rate stated in (6) comes from subtracting

the two schemes (3.16) and (3.17):

Φhom · (~αn+1 − ~αδ,n+1) + (Φhom − Φ) · ~αδ,n+1

=Φhom · (~αn − ~αδ,n) + (Φhom − Φ) · ~αδ,n +
∆t

2
Dhom · (~αn+1 − ~αδ,n+1) +

∆t

2
(Dhom − D) · ~αδ,n+1

Assuming that ~αδ,n+1 = O(1), it is clear the error cumulated is governed by Dhom − D, which is of O(
√
δ).

Finally to show (7) that (3.17) is a consistent scheme for the limit heat equation. To do that we plug the

exact solution to the homogenized heat equation (2.4) into the scheme. Suppose u(tn) is the true solution

at time tn and ~u(tn) the list of evaluation of u(tn) at the grid points, then:

Φhom · ~u(tn+1)− Φhom · ~u(tn)− ∆t

2
Dhom · ~u(tn+1)

=Φhom · [~u(tn) + ∆t∂t~u(tn) + · · · ]− Φhom · ~u(tn)− ∆t

2
Dhom · [~u(tn) + ∆t∂t~u(tn) + · · · ]

=∆tΦhom ·
[
∂t~u(tn)− 1

2
Φ−1

homDhom~u(tn)

]
+O((∆t)2) .
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By Lemma 3.3 and Remark 3.2, it is shown that Φ−1
homDhom presents an O(H2) approximation to ∇·(ahom∇)

given u ∈ C2(dx), and this leads to the final error term:

Φhom · ~u(tn+1)− Φhom · ~u(tn)− ∆t

2
Dhom · ~u(tn+1)

=∆tΦhom ·
[
∂tu(tn)− 1

2
∇ · (ahom∇u(tn))

]
+ ∆t2 + ∆tH2

=O(∆tH2 + (∆t)2) .

This indicates that the cumulative O(1) time truncation error is O(H2 + ∆t). Stability is immediate due to

the implicit time discretization, and this finishes the proof for the theorem. �

Remark 3.3. To show (4), we used the fact that Dhom − D = O(
√
δ) in higher dimension. This could be

imporved to Dhom − D = O(δ) in 1D.

Remark 3.4. As stated in Remark 2.1, it is possible to keep the aδ on the left side of the even equation, but

if we follow the proof shown above, an asymmetric formulation will be obtained for the limiting heat equation.

Indeed, Equation (3.28) is kept, and Equation (3.29) will be changed to:

[Φ⊗ (I− P)] · ~αn+1 = 0 , (3.32)

which leads to the same conclusion that ~αn+1 is in the null space of I − P. In order to close the system,

instead of applying P onto (2.10), we do so to (2.14):

(Σ⊗ P) · ~αn+1 = (Σ⊗ P) · ~αn −
{

∆t

ε
Σx ⊗ PFcos +

∆t

ε
Σy ⊗ PFsin

}
· ~βn+1 . (3.33)

and plugging in (3.28), one has:

Σ · ~αn+1
1 = Σ · ~αn1 + ∆t

[
(Σx · Φ−1 · Σx) + (Σy · Φ−1 · Σy)

]
· ~αn+1

1 ,

Note that according to the definition of Σxmn = 〈φm , aδ∂xφn〉x, it is not a symmetric matrix. The scheme

above is roughly speaking a discretization for:

aδ∂tρ = aδ∇x · (aδ∇xρ) .

Aside from the fact that MsFEM convergence is unknown to this equation, the numerical solution also fails

to respect the symmetry, which is undesirable.

4. Numerical example

In this section we report several numerical tests to demonstrate the effectiveness of our method for

transport equation with multiscale scattering coefficient.

4.1. 1D example. In the first example we set the media as:

a = 1.1 + sin (10πx) , with x ∈ [−1, 1]

The media is periodic with ten periods in the domain [−1, 1]. We first check the consistency. We compute

the equation with Nx set as 50, 100 and 200 respectively, and we do not observe difference in the numerical

solution. We note here that having Nx = 50 means putting five points in one period and the solution looks

very under-resolved, but still at the discrete point, the numerical solution very well captures the result given

by a much more resolved Nx = 200 case. We also test such consistency on the transport equation level and

numerically we observe that by setting Nx = 100 and Nx = 200 we obtain the same solution.
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Figure 1. The numerical solution is captured well with under-resolved grid points for both

heat limit and the transport equation. The transport equation (shown on the right) is

computed with ε = 1.
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Figure 2. With shrinking Knudsen number ε, the numerical solution for the transport

equation converges to that to of the heat equation. Here the heat equation is computed with

full-resolved mesh while for the computation of the transport equation, we use Nx = 100

mesh points.

Then we test the convergence towards the heat limit with the Knudsen number converging to zero. Nu-

merical solution provided by the under-resolved scheme for the transport equation converges to the resolved

numerical solution to the heat limit, see in Figure 2.

The same process is repeated with a even more challenging media set as:

a = 1.1 + sin (20πx) , with x ∈ [−1, 1]
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Here the oscillation in the media is even stronger. We put 20 periods in the domain of [−1, 1]. The consistency

is plotted in Figure 3 where we show numerical results provided by setting Nx equal to 50, 100 and 200

respectively. On average with 50 grid points, one period gets about 2.5 grid points and the solution is well

below being resolved. Still we see the numerical solution is captured very well at the discrete points. Same

consistency is observed numerically for the transport equation as well. The convergence of under-resolved

transport equation computed with our method towards the heat limit is demonstrated in Figure 4.
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Figure 3. The numerical solution is captured well with under-resolved grid points for both

heat limit and the transport equation. The transport equation (on the right) is computed

with ε = 1.
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Figure 4. With shrinking Knudsen number ε, the numerical solution for the transport

equation converges to that to of the heat equation. The convergence rate is about O(ε).

Here the heat equation is computed with full-resolved mesh while for the computation of

the transport equation, we use the under-resolved Nx = 100 mesh points.

4.2. 1D example, convergence in δ. In this example we check the convergence in δ. Since we are in 1D,

the analytical homogenized coefficient could be explicitly expressed, and the error, according to Theorem 3.1
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and Remark 3.3 should be of order O(δ). In the domain [−1, 1], we set the media as:

a(x) =
1

cos(2πx/δ) + 4
(4.1)

and thus a∗ = 1
4 . The regime being studied in this paper requires ε � δ, and thus we choose δ =

[1/8, 1/24, 1/40, 1/56] and ε = 2−10. H = 1/32 while h = 1/1280. We plot the solution with various δ

at T = 0.1 together with the solution to the homogenized heat solution in Figure 5 and we also show the

convergence rate.
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Figure 5. The plot on the left panel shows the solution to ρ with different δ compared

with the homogenized heat equation limit. On the right we plot the convergence rate in

terms of δ. It shows O(δ) convergence. This is aligned with our prediction in 1D.

4.3. 2D example. In the third example we check the solution behavior in 2D. We still have periodic media

set as:

a(x, y) = 1.1 + sin (2πx) sin (10πy) , with (x, y) ∈ [−1, 1]× [−1, 1] .

Here the oscillation along y is much heavier than that in x. The media is plotted in Figure 6.

Figure 6. The media is periodic but highly oscillatory in both directions and the oscillation

in y direction is very strong. We put 10 periods along y.
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To test the consistency of the method we compute the heat equation limit with N = 50 and N = 100.

The differences between the two solutions are negligible, as shown in Figure 7.
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Figure 7. Compare the numerical solution to the heat limit equation using Nx = 50 and

Nx = 100. Here by setting Nx = 50 we obtain an under-resolved solution. The error shown

in the right panel suggest 0.05 out of 1.5 error.

In Figure 8 and 9 we show the convergence of the transport equation with highly oscillatory media towards

the heat limit with the same oscillatory media.
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Figure 8. We compare the solution to the transport equation with ε = 0.01 (left panel)

with the solution to the heat limit (middle panel), and it is very well captured. The error

is plotted in the right panel.

4.4. Benchmark example for symmetric and asymmetric formulations. In this example we adopt

the media used in [14,22]:

a(x, y) =
2 + 1.8 sin (10πx)

2 + 1.8 cos (10πy)
+

2 + sin (10πy)

2 + 1.8 sin (10πx)
.

The media is plotted in Figure 10.

As mentioned in Remark 3.4 before, the asymmetric formulation of the heat equation is not preferred, we

here plot the solution to the limiting heat equation using both the symmetric and asymmetric formulation.
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Figure 9. With shrinking Knudsen number ε, the numerical solution for the transport

equation gradually converges to that to of the heat equation. We also plot two intersections:

the middle panel we show the solution with along x direction at y = 0 and the right panel

shows the comparison of the solution along y direction at x = 0. The solution along x is

smooth since the oscillation is not as strong. Along y direction, the solution experience

some big jumps but they are all captured well.

Compare the two numerical results shown in Figure 11, it is obvious the asymmetric formulation failed to

maintain the symmetric solution profile. We then demonstrate the AP property in Figure 12, where the

error obtained using different ε is shown. We also show the convergence of the solution to the transport

equation to that of the heat equation on two intersections ((x = 0, y) and (x, y = 0)).
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