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Abstract

This paper considers the Dirichlet problem

−div(a∇ua) = f on D, ua = 0 on ∂D,

for a Lipschitz domain D ⊂ R
d, where a is a scalar diffusion function. For a fixed f , we discuss

under which conditions is a uniquely determined and when can a be stably recovered from the
knowledge of ua. A first result is that whenever a ∈ H1(D), with 0 < λ ≤ a ≤ Λ on D, and
f ∈ L∞(D) is strictly positive, then

‖a− b‖L2(D) ≤ C‖ua − ub‖1/6H1

0
(D)

.

More generally, it is shown that the assumption a ∈ H1(D) can be weakened to a ∈ Hs(D), for
certain s < 1, at the expense of lowering the exponent 1/6 to a value that depends on s.

1 Introduction

Let D be a bounded domain (open, connected set) in R
d, d ≥ 2. We assume throughout the paper

that, at a minimum, D is Lipschitz. We define the set of scalar diffusion coefficients

A := {a ∈ L∞(D) : λ ≤ a ≤ Λ} , (1.1)

where λ,Λ are fixed positive constants. For f ∈ H−1(D) (the dual of H1
0 (D)) and a ∈ A, we

consider the elliptic problem

− div(a∇ua) = f on D, ua = 0 on ∂D, (1.2)

written in the usual weak form: ua ∈ H1
0 (D) is such that

∫

D

a∇ua · ∇v = 〈f, v〉H−1(D),H1
0 (D), v ∈ H1

0 (D). (1.3)

HereH1
0 (D) is equipped with the norm ‖v‖H1

0 (D) = ‖∇v‖L2(D). The Lax-Milgram theory guarantees

that there is a unique solution ua ∈ H1
0 (D) of the above problem.
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1521067 and DMS 1254618; the DARPA Grant HR0011619523 through Oak Ridge National Laboratory,
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The main interest of the present paper is to understand, for a given f , the conditions under
which the diffusion coefficient a is uniquely determined from the solution ua to (1.3), and if so,
whether a can be stably recovered if ua is known. After having fixed f , we systematically denote
by ua the solution of (1.3). We are therefore interested in the stable inversion of the map

a 7→ ua (1.4)

which acts from A to H1
0 (D). By stability, we mean that when ub is close to ua, say in the H1

0 (D)
norm, then it follows that b is close to a in some appropriate Lp(D) norm. The results of this paper
will prove such stable inversion but only when certain restrictions are placed on the right side f
and further only when the map (1.4) is restricted to certain subclasses of A.

Problems of this type are referred to as parameter estimation, or the identifiability problem in
the inverse problems literature, see e.g. [6, 1, 19, 16, 15] and the references therein. Parameter
estimation/identification for elliptic partial differential equations and their numerical recovery from
the (partial) knowledge of ua is an extensively studied subject that has been formulated in several
settings. Examples of such settings are the identifiability of the diffusion coefficient a in the problem
−div(a∇u) = 0 from the Neumann boundary data g on ∂D, see [17], or the recovery of a from the
solution u to equation (1.2) supplemented by Dirichlet boundary data, see [15].

Let us make a few elementary remarks about the Dirichlet boundary data setting studied here.
These remarks extend to other settings as well. For a ∈ A, we denote by Ta the elliptic operator
u 7→ −div(a∇u) which is an isomorphism from H1

0 (D) to H−1(D), and by Sa its inverse. Then, it
is not difficult to check, see Lemma 2.1 in §2, that the map a 7→ Sa is bi-Lipschitz from L∞(D) to
L(H−1(D),H1

0 (D)), with bounds

λ2‖Sa − Sb‖L(H−1(D),H1
0 (D)) ≤ ‖a− b‖L∞(D) ≤ Λ2‖Sa − Sb‖L(H−1(D),H1

0 (D)), a, b ∈ A. (1.5)

Therefore, any a ∈ A can be stably identified in the L∞ norm from the inverse operator Sa, that is,
if we knew the solution to (1.3) for all possible right sides then a is uniquely determined. Note that
(1.5) also means that, for any a, b ∈ A, there exists a right side f = f(a, b), with ‖f‖H−1(D) = 1,
for which we have the Lipschitz bound

‖a− b‖L∞(D) ≤ Λ2‖ua − ub‖H1
0 (D). (1.6)

The f for which (1.6) holds depends on a and b. Our objective is to fix one right side f and
study the stable identifiability of a from ua. It is well known that identifiabiliy cannot hold for an
arbitrary right side f , even when f is smooth. For example, if u is any function in H1

0 (D) such
that ∇u is identically 0 on an open set D0 ⊂ D, then setting f = −div(a∇u) for some fixed a ∈ A,
we find that u = ua = ub for any b ∈ A which agrees with a on D \D0. The above example can be
avoided by assuming that f is strictly positive. However, even in the case that f is strictly positive,
we do not know a proof of identifiabilty under the general assumption that a ∈ A, except in the
univariate setting.

In this paper, we show that for strictly positive f ∈ L∞(D), identifiability and stability hold,
for a certain range of s > 0, in the restricted classes As ⊂ A , where

As := As,M := {a ∈ A : ‖a‖Hs(D) ≤ M}. (1.7)

Here, M > 0 is arbitrary but enters in the value of the stability constants. Under such conditions,
we establish results of the form (see for example 4.5)

‖a− b‖L2(D) ≤ C‖ua − ub‖αH1
0 (D), a, b ∈ As, (1.8)

2



where the exponent 0 < α < 1 depends on s and the constant C depends on λ,Λ, α,M,D, f . Some
elementary observations in the univariate case, see §6, show that when f = 1 and As includes
discontinuous functions, the exponent α cannot be larger than 1/3.

There are several existing approaches to establish identifiability. For the most part, they are
developed for the Neumann problem

− div(a∇ua) = f on D, a
∂ua
∂n

= g on ∂D, (1.9)

where n denotes the outward pointing normal to ∂D. Some approaches use singular perturbation
arguments, see [2], or the long time behavior of the corresponding unsteady equations, see [14].
Some results rely on the observation that once u = ua is given, (1.9) may be viewed as a transport
equation for the diffusion a, see [22, 23], and the identifiability of a from ua is proven under
the assumptions that a is prescribed on the inflow boundary (the portion of the boundary where
∂ua
∂n < 0) and

inf
D

max{|∇ua|,∆ua} > 0. (1.10)

Other approaches to identifiability use variational methods, see [16], or least-squares techniques,
see [11, 18, 20, 9]. These approaches impose strong regularity assumptions on a and ua as well as
the assumption

∇ua · τ > 0, (1.11)

for a given τ ∈ R
d, or the less restrictive condition (1.10). Rather than directly proving a stability

estimate, they derive numerical methods for actually finding the diffusion coefficient a from the
solution ua over triangulation Th of D with mesh size h. One typical reconstruction estimate, see
Theorem 1 in [9], is the following. Let r ≥ 1 and let Ah and Vh be the sets of continuous piecewise
polynomials on Th of degree r and r + 1, respectively. If (1.11) holds, and if ua ∈ W r+3(L∞(D))
and a ∈ Hr+1(D), then

‖a− ah‖L2(D) ≤ C
(

hr + ‖ua − uob‖L2(D)h
−2

)

, (1.12)

where uob ∈ L2(D) is an observation of ua, and ah ∈ Ah is a numerical reconstruction of a via least
squares type approach from the observation uob. As shown in Remark 4.1, the inequality (1.12)
leads to a stability estimate of the form

‖a− b‖L2(D) ≤ C‖ua − ub‖αL2(D), α :=
r

r + 2
, a, b ∈ Ar+1, (1.13)

whenever in addition ua, ub ∈ W r+3(L∞(D)) and condition (1.11) holds. Note that α approaches
1 as r → ∞.

In summary, the majority of the existing stability estimates are derived for solutions to the
Neumann problem (1.9). As illustrated by (1.13), they rely on strong regularity assumptions on
the diffusion coefficients a and on the solutions ua, as well as conditions on ua such as (1.11) or
(1.10). However, one should note that high order smoothness of ua generally does not hold, even
for smooth a and f , when the domain D does not have a smooth boundary.

In this paper, we pursue a variational approach, where we use appropriate test functions v in
(1.3) to derive continuous dependence estimates. We combine these with known elliptic regularity
results and obtain direct comparison between ‖a − b‖L2(D) and ‖∇ua − ∇ub‖L2(D) under milder
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smoothness assumptions for the diffusion coefficient a, the domain D, and on the right side f , and
with no additional smoothness assumptions on ua and no conditions such as (1.10) or (1.11).

We mention two special cases of our results. The first, see Corollary 3.8, says that if D is an
arbitrary Lipschitz domain, then for any f ∈ L∞(D) satisfying f ≥ cf > 0 on D, we have the
stability bound

‖a− b‖L2(D) ≤ C‖ua − ub‖1/6H1
0 (D)

, a, b ∈ A1. (1.14)

We can weaken the smoothness assumption to the classes As, for s < 1. We have two types of
results. In Corollary 4.4, we prove estimates of the form

‖a− b‖L2(D) ≤ C‖ua − ub‖αH1
0 (D), a, b ∈ As, (1.15)

with α depending on s, for all 1/2 < s < 1 under the additional assumption that the diffusion
coefficients are in VMO and the domain D is C1. In Corollary 4.5, we prove for a general Lipschitz
domain D, that (1.15) holds for a certain range of s∗ < s < 1 where we do not require the diffusion
coefficients are in VMO but now s∗ depends on properties of the domain D.

Estimates like (1.13) have a weaker norm on the right side then those in our results. However,
let us remark that any such estimate can be transformed into an estimate between ‖a − b‖L2(D)

and ‖ua − ub‖L2(D), if the solutions ua and ub have more regularity such as the condition ua and
ub belong to H1+t(D) for some t > 0. For this, one uses the interpolation inequality

‖v‖H1(D) ≤ C‖v‖θL2(D)‖v‖1−θ
H1+t(D)

, v ∈ H1+t(D), (1.16)

where θ := t
1+t and C0 depends only on D and t. Hence, under the assumption that ua, ub ∈

H1+t(D), taking v = ua − ub, we obtain

‖ua − ub‖H1
0 (D) ≤ C0 max{‖ua‖H1+t(D), ‖ub‖H1+t(D)}1−θ‖ua − ub‖θL2(D), (1.17)

which combined with (1.15) leads to

‖a− b‖L2(D) ≤ C‖ua − ub‖αθL2(D). (1.18)

Here C depends on the constant in (1.15), C0, and max{‖ua‖H1+t(D), ‖ub‖H1+t(D)}
α

1+t .
Let us additionally note that as r → ∞, the result in (1.13) leads to better exponents then in

our results. This is caused, at least in part, by the fact that our starting point is (1.14) which does
not use higher smoothness than a, b ∈ H1(D).

Our paper is organized as follows. In §2, we use a variational approach to establish a weighted
L2 estimate

‖a− b‖L2(w,D) ≤ C‖ua − ub‖1/2H1
0 (D)

, a, b ∈ A1, (1.19)

where the weight is given by w = a|∇ua|2 + fua. In order to remove the weight in the above
estimate, in §3, we introduce the positivity condition

PC(β): a|∇ua(x)|2 + f(x)ua(x) ≥ cdist(x, ∂D)β , a.e on D, (1.20)

for some β ≥ 0 and c > 0, see Definition 3.1. Under this condition, we prove the stability estimate

‖a− b‖L2(D) ≤ C‖ua − ub‖αH1
0 (D), α =

1

2(β + 1)
, a, b ∈ A1. (1.21)
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Notice that the smaller the β, the stronger the stability estimate.
We go further in §3 and investigate which regularity assumptions guarantee that the positivity

condition PC(β) holds, and thereby obtain results in which this condition is not assumed but
rather implied by the regularity assumptions on a. In particular, we prove that condition PC(2)
is valid for the entire class a ∈ A, provided f ∈ L2(D) with f ≥ cf > 0. We also show that certain
smoothness conditions on the diffusion coefficient a, the right side f , and the domain D imply the
positivity condition PC(0). However, as discussed in §3.1.2, PC(β) does not generally hold for
β < 2 without additional regularity assumptions on the domain D.

In §4, we use interpolation arguments to obtain results under weaker assumptions than a, b ∈ A1.
In §5, we provide stability estimates in the case when a is piecewise constant which is not covered
by our general stability results. Finally, in §6, we provide stability estimates in the one dimensional
case for f = 1 and general a, b ∈ A. In this simple case, we also establish converse estimates which
show that the Hölder exponent α in (1.8) cannot be above the value 1

3 when a and b have low
smoothness.

We conclude this introduction by stating some natural open problems in relation with this
paper:

(i) While the identifiability problem is solved in this paper under mild regularity assumptions,
it is still not known whether there exists an f for which the mapping a 7→ ua is injective from
A to H1

0 (D) for a general multivariate Lipschitz domain D.

(ii) The best possible value α∗ = α∗(s) of the exponent α in (1.8) is generally unknown. In
particular, we do not know if there exists some finite s0 such that α∗(s) = 1 when s ≥ s0.

(iii) All our results are confined to the case of scalar diffusion coefficients. Similar stability es-
timates for matricial coefficients would require considering the solutions ua and ub for more
than one right side f . However we are not aware of results that solve this question.

2 First estimates

We begin by briefly discussing the stability properties of the maps a 7→ Ta and a 7→ Sa.

Lemma 2.1. For any a, b ∈ A, we have

‖Ta − Tb‖L(H1
0 (D),H−1(D)) = ‖a− b‖L∞(D), (2.1)

and
λ2‖Sa − Sb‖L(H−1(D),H1

0 (D)) ≤ ‖a− b‖L∞(D) ≤ Λ2‖Sa − Sb‖L(H−1(D),H1
0 (D)). (2.2)

Proof: For the proof of (2.1), we observe on the one hand that

|〈(Ta − Tb)u, v〉H−1(D),H1
0 (D)| ≤ ‖a− b‖L∞(D)‖u‖H1

0 (D)‖v‖H1
0 (D), u, v ∈ H1

0 (D), (2.3)

which shows that the right quantity dominates the left one in (2.1). On the other hand, for any
x ∈ D and ε > 0 small enough so that the open ball B(x, ε) of radius ε centered at x is a subset of
D, we consider the function u = ux,ε defined by

u(y) = max{0, 1 − ε−1|x− y|}. (2.4)
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For such a function, we find that

〈(Ta − Tb)u, u〉H−1(D),H1
0 (D) = Cx,ε‖u‖2H1

0 (D), Cx,ε := |B(x, ε)|−1

∫

B(x,ε)

(a(y)− b(y))dy. (2.5)

By Lebesgue theorem, this shows that

‖Ta − Tb‖L(H1
0 (D),H−1(D)) ≥ a(x)− b(x), a.e. x ∈ D. (2.6)

Since we can interchange the role of a and b, this shows that the left quantity dominates the right
one in (2.1). For the proof of (2.2), we observe that Ta(Sa − Sb)Tb = Tb − Ta, which yields

λ2‖Sa − Sb‖L(H−1(D),H1
0 (D)) ≤ ‖Ta − Tb‖L(H1

0 (D),H−1(D)) ≤ Λ2‖Sa − Sb‖L(H−1(D),H1
0 (D)), a, b ∈ A.

(2.7)
Combined with (2.1), this gives (2.2). ✷

As observed in the introduction, the above result does not meet our objective, since we want to
fix the right side f ∈ H−1(D) and then study the stable identifiability of a from ua for all a ∈ A.
For such an f , let ua, ub be the two corresponding solutions to (1.3), for a, b ∈ A. We use the
notation

δ := a− b, E := ua − ub

throughout the paper and we define the linear functional L : H1
0 (D) → R,

L(v) :=

∫

D

δ∇ua · ∇v, v ∈ H1
0 (D).

By subtracting the two weak equations (1.3) for a and b, we derive another representation of L,

L(v) = −
∫

D

b∇E · ∇v, v ∈ H1
0 (D). (2.8)

The following theorem gives two basic estimates for bounding the difference δ = a − b. The first
one illustrates that difficulties arise when a− b changes sign, while the second puts forward the role
of the weight w = a|∇ua|2 + fua.

Theorem 2.2. Let D be a Lipschitz domain. Consider equation (1.3) with diffusion coefficients a
and b. The following two inequalities hold for δ := a− b.

(i) For any a, b ∈ A and f ∈ H−1(D), we have
∣

∣

∣

∣

∣

∣

∫

D

δ|∇ua|2
∣

∣

∣

∣

∣

∣

≤ Λ‖f‖H−1(D)‖E‖H1
0 (D).

(ii) For any a, b ∈ A1 and f ∈ L∞(D), we have

∫

D

δ2

a2

(

a|∇ua|2 + fua

)

≤ C0‖E‖H1
0 (D), (2.9)
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where
C0 := C‖f‖L∞(D)(1 +max{‖∇a‖L2(D), ‖∇b‖L2(D)}), (2.10)

and C is a constant depending only on D, d, λ,Λ.

Proof: To prove (i), we take v = ua ∈ H1
0 (D) and obtain

L(ua) =

∫

D

δ|∇ua|2.

Using this in (2.8) yields

∫

D

δ|∇ua|2 = −
∫

D

b∇E · ∇ua ≤ Λ‖ua‖H1
0 (D)‖E‖H1

0 (D). (2.11)

If we take v = −ua, we derive the same estimate for the negative of the left side of (2.11) which
yields (i).

To prove (ii), we define δ̄ := δ/a which belongs to H1(D) since a, b ∈ A1. Integrating by parts,
we have for any v ∈ H1

0 (D),

L(v) =

∫

D

δ̄a∇ua · ∇v = −
∫

D

∇δ̄ · ∇uaav −
∫

D

δ̄div(a∇ua)v. (2.12)

Since f = −div(a∇ua), this gives

L(v) =
1

2

∫

D

δ̄a∇ua · ∇v − 1

2

∫

D

∇δ̄ · ∇uaav +
1

2

∫

D

δ̄fv, v ∈ H1
0 (D). (2.13)

Now, we chose v = δ̄ua ∈ H1
0 (D) to obtain

L(δ̄ua) =
1

2

∫

D

δ̄2a|∇ua|2 +
1

2

∫

D

δ̄2fua. (2.14)

Inserting (2.14) into (2.8) results in

1

2

∫

D

δ̄2a|∇ua|2 +
1

2

∫

D

δ̄2fua = −
∫

D

b∇E · ∇(δ̄ua) ≤ Λ‖∇(δ̄ua)‖L2(D)‖E‖H1
0 (D). (2.15)

Now, we resort to the estimate (see e.g. Chapter 8 in [12])

‖ua‖L∞(D) ≤ C‖f‖L∞(D),

where C depends only on λ,Λ and D (throughout the rest of this proof C > 0 will be a generic
constant that depends on at most d,D, λ,Λ). We use this result together with the energy estimate

‖∇ua‖L2(D) ≤ ‖f‖H−1(D) ≤ C‖f‖L∞(D)
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to obtain the bound

‖∇(δ̄ua)‖L2(D) ≤
∥

∥

∥

∥

δ

a

∥

∥

∥

∥

L∞(D)

‖∇ua‖L2(D) +
∥

∥

∥

ua
a

∥

∥

∥

L∞(D)
‖∇δ‖L2(D) +

∥

∥

∥

∥

δ

a2

∥

∥

∥

∥

L∞(D)

‖ua‖L∞(D) ‖∇a‖L2(D)

≤ 2Λλ−1‖∇ua‖L2(D) + λ−1‖ua‖L∞(D)‖∇δ‖L2(D) + 2Λλ−2‖ua‖L∞(D)‖∇a‖L2(D)

≤ C‖f‖L∞(D)(1 + max{‖∇a‖L2(D), ‖∇b‖L2(D)}). (2.16)

Finally, plugging this estimate into (2.15), we derive that
∫

D

δ2

a
|∇ua|2 +

∫

D

δ2

a2
fua =

∫

D

δ̄2a|∇ua|2 +
∫

D

δ̄2fua ≤ 2Λ‖∇(δ̄ua)‖L2(D)‖E‖H1
0 (D)

≤ C‖f‖L∞(D)(1 + max{‖∇a‖L2(D), ‖∇b‖L2(D)})‖E‖H1
0 (D),

and the proof is completed. ✷

Note that when a ≤ b or b ≤ a a.e. on D and condition (1.11) holds in the sense that
∇ua · τ ≥ c > 0, then part (i) gives the stability estimate

‖a− b‖L1(D) ≤ C‖f‖H−1(D)‖ua − ub‖H1
0 (D).

However, we can not claim such a result if the difference (a− b) changes sign on a subset of D with
a positive measure. In the sequel of the paper, we will not use (i), and instead rely only on (ii).

3 Improvements of Theorem 2.2

Theorem 2.2 is not satisfactory as it stands, since we want to replace the left side of (2.9), by
‖a − b‖2L2(D). Obviously, this is possible when there exists a constant c > 0 such that the weight
satisfies

a|∇ua|2 + fua ≥ c a.e. on D. (3.1)

In order to understand this condition, suppose that f does not change sign. In that case, the
weak maximum principle [12] guarantees that ua has the same sign as f and therefore the product
uaf ≥ 0. Hence, (3.1) requires that ua and |∇ua| do not vanish simultaneously. We prove in §3.1
that such a constant c exists provided certain (strong) smoothness assumptions for the diffusion
coefficient a, the right side f , and the domain D hold. However, in order to allow milder regularity
assumptions, we introduce the following weaker positivity condition.

Definition 3.1 (Positivity Condition). We say that (D, f, a) satisfy the positivity condition PC(β)
if there exists a constant c > 0 such that

a(x)|∇ua(x)|2 + f(x)ua(x) ≥ cdist(x, ∂D)β , a.e. x ∈ D. (3.2)

Notice the positivity condition PC(0) is (3.1). In Lemma 3.7, we show that for every Lipschitz
domain D and a ∈ A, we have that (D, a, f) satisfies the positivity condition PC(2) provided f
is strictly positive and in L2(D). In fact, in this case, the constant c in (3.2) is uniform over the
class A. In addition, we provide examples which show that additional regularity assumptions are
required for (D, a, f) to satisfy the positivity condition PC(β) if β < 2. For now, we prove the
following theorem which shows how a positivity condition PC(β) guarantees a stability estimate
of the type we want.
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Theorem 3.2. Let D be a Lipschitz domain. Assume that a, b ∈ A1, f ∈ L∞(D) and denote by
ua, ub the corresponding solutions to (1.3). If (D, a, f) satisfies the positivity condition PC(β) for
β ≥ 0, then we have

‖a− b‖L2(D) ≤ C
√

1 + C0‖ua − ub‖
1

2(β+1)

H1
0 (D)

, (3.3)

where C0 is the constant from (2.10) and C is a constant depending only on D, d, λ,Λ, and c the
constant in (3.2).

Proof: We recall the notation δ = a − b, E = ua − ub, and start with the weighted L2 estimate
(2.9) provided in Theorem 2.2, namely

∫

D

δ2

a2
w ≤ C0‖E‖H1

0 (D), w := a|∇ua|2 + fua, (3.4)

where C0 is the constant in (2.10). This proves the result in the case ‖E‖H1
0 (D) = 0 since w > 0 on

D. Therefore, in going further, we assume ‖E‖H1
0 (D) > 0.

The presence of the non-negative weight w is handled by decomposing the domain D into two
sets

Dρ := {x ∈ D : dist(x, ∂D) ≥ ρ} and Dc
ρ := D \Dρ,

where ρ > 0 is to be chosen later. The triplet (D, a, f) satisfies the positivity condition PC(β),
which guarantees that w ≥ cρβ on Dρ. Hence, we deduce that

∫

Dρ

δ2 ≤ Λ2c−1ρ−β

∫

D

δ2

a2
w ≤ Λ2c−1C0ρ

−β‖E‖H1
0 (D). (3.5)

On Dc
ρ, the Lipschitz regularity assumption on ∂D implies the existence of a constant B such that

|Dc
ρ| ≤ Bρ. As a consequence, we obtain

∫

Dc
ρ

δ2 ≤ 4Λ2|Dc
ρ| ≤ 4Λ2Bρ. (3.6)

Combining the last two estimates with the choice ρ = ‖E‖
1

β+1

H1
0 (D)

proves (3.3) and ends the proof.
✷

3.1 The positivity condition PC(0)

In view of the exponent in (3.3), the strongest stability occurs when β = 0. In this section, we show
that if (D, a, f) are sufficiently smooth then PC(0) is satisfied. We denote by Ck,α(D), k ∈ N0,
0 < α ≤ 1, the Hölder spaces equipped with the semi-norms

|f |Ck,α(D) := sup
|γ|=k

sup
x,y∈D, x 6=y

{ |∂γf(x)− ∂γf(y)|
|x− y|α

}

,

and norms
‖f‖Ck,α(D) := sup

|γ|≤k
‖∂γf‖L∞(D) + |f |Ck,α(D).

9



3.1.1 Sufficient conditions

The following lemma gives a sufficient condition for (D, a, f) to satisfy the positivity condition
PC(0).

Lemma 3.3. Assume that for some α > 0, D is a C2,α domain and f ∈ C0,α(D) with f ≥ cf > 0.
Furthermore, assume that the diffusion coefficient a belongs to A∩ C1,α(D), with

‖a‖C1,α(D) ≤ A. (3.7)

Then, the triplet (D, a, f) satisfies the positivity condition PC(0), with constant c depending on
D,λ,Λ, ‖f‖C0,α , cf and A.

Proof: We have that

a(x)|∇ua(x)|2 + f(x)ua(x) ≥ min{λ, cf}
(

|∇ua(x)|2 + ua(x)
)

,

since ua ≥ 0 according to the weak maximum principle [12]. We proceed by showing that |∇ua|2 +
ua ≥ c, a.e. on D. We do this by contradiction. Assume that there exists a sequence {an}n≥0 of
diffusion coefficients an ∈ A with ‖an‖C1,α(D) ≤ A such that, for each n ≥ 0, there exists xn ∈ D
with

|∇uan(xn)|2 + uan(xn) ≤
1

n
. (3.8)

Note that the assumptions of the theorem imply that the equation (1.3) holds in the strong sense.
Then, the classical Schauder estimates, see [12], tell us that

‖uan‖C2,α(D) ≤ C, (3.9)

where C depends on A, D, α, λ and Λ. Then by compactness, up to a triple subsequence extraction,
we may assume that

(i) an converge in C1 towards a limit a∗,

(ii) uan converges in C2 towards a limit u∗,

(iii) xn converges in D towards a limit x∗.

Therefore, the equation
− a∗∇u∗ −∇a∗ · ∇u∗ = f, (3.10)

is satisfied on D, with homogeneous boundary conditions, and we have

u∗(x∗) = 0 and ∇u∗(x∗) = 0. (3.11)

The first equality shows that x∗ lies on the boundary, due to the strong maximum principle, and
therefore the second equality contradicts the Hopf lemma, see [12]. ✷

We have the following corollary.
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Corollary 3.4. Assume that for some α > 0, D is a C2,α domain, f ∈ C0,α(D) with f ≥ cf > 0
and the diffusion coefficient a ∈ A ∩ C1,α(D), with ‖a‖C1,α(D) ≤ A . Furthermore, assume that
b ∈ A1. Let ua and ub be the corresponding solutions to (1.3), then

‖a− b‖L2(D) ≤ C0‖ua − ub‖1/2H1
0 (D)

, (3.12)

where C0 = C‖f‖1/2L∞(D)(1 + max{‖∇a‖L2(D), ‖∇b‖L2(D)})1/2 and C is a constant depending only

on D, d, λ,Λ, cf , ‖f‖C0,α , and A. In particular, under the same assumptions on D, f , and b, we
have the estimate

‖a− b‖L2(D) ≤ Cs‖ua − ub‖1/2H1
0 (D)

, a ∈ As, (3.13)

for all s > 1 + d
2 .

Proof: The inequality (3.12) follows from Theorem 3.2 and Lemma 3.3, while (3.13) follows by
the Sobolev embedding of Hs into the relevant Hölder spaces. ✷

3.1.2 The condition PC(β), β < 2, requires smooth domains

In this section, we show that we cannot expect the triplet (D, a, f) to satisfy a positivity condition
PC(β), β < 2, without additional regularity assumptions on the domain D. We consider the
problem,

−∆u = 1, on D = (0, 1)d, (3.14)

u = 0, on ∂D,

corresponding to the case a = 1, f = 1, D = (0, 1)d. We begin with the following lemma.

Lemma 3.5. The solution u to (3.14) is in the Hölder space C1,α(D) for all 0 < α < 1.

Proof: The solution u can be expanded in the eigenfunction basis

u(x) =
∑

n∈Nd

cnsn(x), sn(x) :=
d
∏

i=1

sin
(

πnixi

)

, x = (x1, . . . , xd), (3.15)

with coefficients cn, n = (n1, . . . , nd), given by the formula

cn =











4d

π2+d(n2
1+···+n2

d)n1...nd
, if all ni are odd,

0, otherwise.

To prove the stated smoothness for the partial derivative ∂u
∂x1

, we first show that

∑

n∈Nd

1

(n2
1 + · · ·+ n2

d)n2 . . . nd
< ∞. (3.16)

For this, we use the fact that, for any A > 0,

∑

k≥1

(A+ k2)−1 ≤
∞
∫

0

(A+ t2)−1dt =
π

2
√
A
,

11



and thus

∑

n∈Nd

1

(n2
1 + · · ·+ n2

d)n2 . . . nd
≤ π

2

∑

(n2,...,nd)∈Nd−1

1

n2 . . . nd

√

n2
2 + · · ·+ n2

d

≤ π

2(d− 1)
1
2

∑

(n2,...,nd)∈Nd−1

1

(n2 . . . nd)
1+ 1

d−1

=
π

2(d− 1)
1
2

(

∑

k≥1

k−1− 1
d−1

)d−1
< ∞,

where we have used the inequality between the arithmetic and geometric mean of n2
2, . . . , n

2
d.

From (3.16), we can differentiate u termwise and obtain that ∂u
∂x1

is continuous. The same holds

for all other partial derivatives, and thus u ∈ C1(D). In order to prove that u belongs to the Hölder
space C1,α(D) for sufficiently small α > 0, it suffices to check in addition that

∑

n∈Nd

nα
i

(n2
1 + · · · + n2

d)n2 . . . nd
< ∞, i = 1, . . . , d.

Each term in this series is less than 1

(n2
1+···+n2

d)
1−α

2 n2...nd

. We thus proceed to a similar computation

using the fact that
∑

k≥1

(A+ k2)−1+α
2 ≤ C

(
√
A)1−α

,

and derive that
∑

n∈Nd

nα
i

(n2
1 + · · ·+ n2

d)n2 . . . nd
≤ C

(

∑

k≥1

k−1− 1−α
d−1

)d−1
< ∞,

since α < 1. ✷

The above lemma allows us to show that the positivity condition PC(β) does not hold for
β < 2, and in particular when β = 0 when D = (0, 1)d.

Proposition 3.6. Let D = (0, 1)d and a = f = 1, with d ≥ 2. Then the triplet (D, a, f) does not
satisfy the positivity condition PC(β) if β < 2.

Proof: As shown in Lemma 3.5, the solution u to (3.14) is in the class C1,α(D) for all 0 < α < 1,
and therefore ∇u can be continuously extended up to the boundary ∂D. Since the tangential
derivatives of u vanish on the boundary, it follows that when x∗ is a corner of the cube [0, 1]d, then
∇u(x∗) = 0. By Hölder regularity, we find that

|∇u(x)| ≤ Cdist(x, x∗)α and |u(x)| ≤ Cdist(x, x∗)1+α, x ∈ D, (3.17)

and therefore
a(x)|∇ua(x)|2 + f(x)ua(x) ≤ Cdist(x, x∗)2α, x ∈ D, (3.18)

for all 0 < α < 1. Thus, PC(β) cannot hold for any β < 2. ✷
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3.2 The positivity condition PC(2)

In this section, we show that the triplet (D, a, f) satisfies the positivity condition PC(2) for any
Lipschitz domain D, any a ∈ A, and any f ∈ L2(D), with f ≥ cf > 0. For this, we use the lower
bounds on the Green functions established in [13].

Lemma 3.7. Let D be a Lipschitz domain, a ∈ A, and f ∈ L2(D) with f ≥ cf > 0. Then
the triplet (D, a, f) satisfies the positivity condition PC(2) with a constant c only depending on
λ,Λ, d,D, cf .

Proof: In this proof, C denotes a generic constant only depending on D,λ,Λ, d, cf . We recall that
for every y ∈ D, there exists a unique Green’s function Ga(·, y) ∈ W 1

0 (L1(D)), such that
∫

D

∇Ga(x, y)∇v(x) dx = v(y), v ∈ C∞
0 (D).

One can show that

Ga(x, y) ≥ C|x− y|−(d−2), for |x− y| ≤ 1

2
ρ(x), d ≥ 2,

where ρ(x) := dist(x, ∂D). A proof of this fact in the case d ≥ 3 can be found in [13, Theorem
1.1]. The same proof holds also in the case d = 2, utilizing the regularity properties of the two
dimensional Green’s function discussed in [7].

Now, given any x ∈ D, let B(x, ρ(x)/2) ⊂ D be the ball centered at x with radius ρ(x)/2. Since
Ga(x, y) ≥ 0, x, y ∈ D, we have

ua(x) =

∫

D

f(y)Ga(x, y) dy ≥
∫

B

f(y)Ga(x, y) dy

≥ C

∫

B(x,ρ(x)/2)

|x− y|−(d−2) dy ≥ Cρ2(x) = C[dist(x, ∂D)]2,

and the desired result follows. ✷

We have the following corollary.

Corollary 3.8. Let D be a Lipschitz domain, a, b ∈ A1, f ∈ L∞(D) with f ≥ cf > 0, and
ua, ub ∈ H1

0 (D) be the corresponding solutions to (1.3), then we have

‖a− b‖L2(D) ≤ C
√

1 + C0‖ua − ub‖1/6H1
0 (D)

, (3.19)

where C0 is the constant in (2.10) and C is a constant depending only on D, d, λ,Λ and the minimum
cf of f .

Proof: The proof follows from Theorem 3.2 and Lemma 3.7. ✷

4 Finer estimates for parameter recovery

We have proved Corollary 3.8 for Lipschitz domains D under the assumptions that a, b ∈ A1 and
f ∈ L∞(D), with f ≥ cf > 0. In this section, we shall weaken the smoothness assumption on a
and b at the expense of decreasing the exponent 1/6 appearing on the right side of (3.19).
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4.1 Finer estimates

Our method for reducing the smoothness assumptions on the diffusion coefficients in the stability
Theorem 3.2 will be based on interpolation. We recall that if a ∈ Hs(D), where D ⊂ R

d is a
bounded Lipschitz domain, then for each t > 0, there is a function at ∈ H1(D) satisfying the
inequality

‖a− at‖L2(D) + t‖∇at‖L2(D) ≤ Cts‖a‖Hs(D), (4.1)

where the constant C depends only on D. Note that the standard construction of at is a local
mollification of a, and therefore at ∈ A whenever a ∈ A.

Our stability estimate relies on the following result which can be derived from Theorem 2.1 in
[4]:

Lemma 4.1. Given a, b ∈ A, assume that for some 0 < θ ≤ 1 there exists a constant M such that

‖∇ua‖L2/(1−θ)(D) ≤ M.

Then,
‖ua − ub‖H1

0 (D) ≤ λ−1(2Λ)1−θM‖a− b‖θL2(D). (4.2)

Proof: We take p = 2
1−θ in Theorem 2.1 of [4], then for q = 2

θ , we have from (2.2) of [4]

‖ua − ub‖H1
0 (D) ≤ λ−1M‖a− b‖θLq(D). (4.3)

Since ‖a− b‖Lq(D) ≤ ‖a− b‖2/qL2(D)(2Λ)
1−2/q , the lemma follows. ✷

This motivates the following definition.

Definition 4.2 (Gradient Condition). We say that a function u ∈ H1
0 (D) satisfies the gradient

condition GC(θ,M), 0 < θ ≤ 1, if

‖∇u‖L2/(1−θ)(D) ≤ M. (4.4)

We now prove our main result regarding stable recovery of parameters provided that ua satis-
fies the gradient condition GC(θ,M). Later, in §4.2, we elaborate on what classical smoothness
conditions on the diffusion coefficient a ∈ A guarantees that this gradient condition holds.

Theorem 4.3. Let D be a Lipschitz domain, f ∈ L∞(D) with f ≥ cf > 0, and a, b ∈ As for some
1/2 < s ≤ 1. Let ua, ub ∈ H1

0 (D) be the corresponding solutions to (1.3). If ua, ub both satisfy the
gradient condition GC(θ,M) for some 1−s

s < θ ≤ 1, then we have

‖a− b‖L2(D) ≤ C

√

1 + (‖a‖Hs(D) + ‖b‖Hs(D))
1
3s ‖ua − ub‖

1
6
− 1−s

6sθ

H1
0 (D)

, (4.5)

where C is a constant depending only on D, d, θ, λ,Λ, the minimum cf of f , ‖f‖L∞(D), and M .

Proof: We use the notation

E := ua − ub, Et := uat − ubt , δ := a− b, δt := at − bt,
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where at, bt ∈ A1 are the functions satisfying (4.1). Throughout the proof C > 0 will be a generic
constant that depends on at most D, d, θ, λ,Λ, M , ‖f‖L∞(D), and the minimum cf of f . In what
follows, the value of C may change at each appearance. We denote by

M0 := ‖a‖Hs(D) + ‖b‖Hs(D) ≥ ‖a‖L2(D) + ‖b‖L2(D) ≥ 2λ|D|1/2. (4.6)

It follows from (4.1) that
‖δ − δt‖L2(D) ≤ CM0t

s. (4.7)

We want to bound ‖δ‖L2(D). For this, we define the set Dρ := {x ∈ D : dist(x, ∂D) ≥ ρ}, with
the value of ρ > 0 to be chosen shortly. Using (4.7), we find that

‖δ‖2L2(D) = ‖δ‖2L2(Dc
ρ)
+ ‖δ‖2L2(Dρ)

≤ ‖δ‖2L2(Dc
ρ)
+ 2‖δ − δt‖2L2(D) + 2‖δt‖2L2(Dρ)

≤ ‖δ‖2L2(Dc
ρ)
+ CM2

0 t
2s + 2‖δt‖2L2(Dρ)

. (4.8)

To estimate the two norms above, we proceed as in the proof of Theorem 3.2. First, for a, b ∈ A
and a Lipschitz domain D we have

‖δ‖2L2(Dc
ρ)

=

∫

Dc
ρ

δ2 ≤ 4Λ2|Dc
ρ| ≤ Cρ; (4.9)

see (3.6). Since at and bt are in A1, according to Lemma 3.7, (D, at, f) and (D, bt, f) satisfiy the
positivity condition PC(2) with a constant c only depending on λ,Λ,D, d. Hence (3.5) holds with
β = 2 and therefore, we have

‖δt‖2L2(Dρ)
=

∫

Dρ

δ2t ≤ Cρ−2(1 + max{‖∇at‖L2(D), ‖∇bt‖L2(D)})‖Et‖H1
0 (D).

This, together with (4.1) implies that

‖δt‖2L2(Dρ)
≤ Cρ−2(1 +M0t

s−1)‖Et‖H1
0 (D). (4.10)

We substitute (4.9) and (4.10) into (4.8) to arrive at

‖δ‖2L2(D) ≤ Cρ+ CM2
0 t

2s + Cρ−2(1 +M0t
s−1)‖Et‖H1

0 (D). (4.11)

We now proceed to estimate ‖Et‖H1
0 (D) by taking advantage of the gradient condition GC(θ,M)

satisfied by ua and ub. Since ua satisfies the gradient condition GC(θ,M) and at ∈ A, it follows
from the stability estimate (4.2) that

‖ua − uat‖H1
0 (D) ≤ C‖a− at‖θL2(D) ≤ C(M0t

s)θ. (4.12)

The same estimate holds with a replaced by b, and therefore

‖Et‖H1
0 (D) ≤ ‖uat − ua‖H1

0 (D) + ‖ua − ub‖H1
0 (D) + ‖ub − ubt‖H1

0 (D) ≤ C(M0t
s)θ + ‖E‖H1

0 (D). (4.13)

Placing this estimate into (4.11) gives

‖δ‖2L2(D) ≤ Cρ+ CM2
0 t

2s + Cρ−2(1 +M0t
s−1)(Mθ

0 t
sθ + ‖E‖H1

0 (D)). (4.14)
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To finish the proof, we consider two cases.

Case 1: ‖E‖H1
0 (D) > 0. First, we choose t so that Mθ

0 t
sθ = ‖E‖H1

0 (D), i.e. t := ‖E‖
1
sθ

H1
0 (D)

M
−1/s
0 ,

so that the two terms in the last bracketed sum of (4.14) are equal. Since

‖E‖H1
0 (D) ≤ C, (4.15)

and M0 ≥ C (because of (4.6)), this choice of t satisfies

1 ≤ CM0t
s−1. (4.16)

Next, we choose ρ such that ρ3 = M0t
s−1‖E‖H1

0 (D) = M
1/s
0 ‖E‖

sθ+s−1
sθ

H1
0 (D)

. This choice balances the

first and last terms on the right side of (4.14) and therefore gives

‖δ‖2L2(D) ≤ CM
1
3s
0 ‖E‖

sθ+s−1
3sθ

H1
0 (D)

+ C‖E‖
2
θ

H1
0 (D)

. (4.17)

Since sθ+s−1
3s ≤ 2, the inequalities (4.15) and (4.16) show that the first term in the sum on the right

can be absorbed into the second, and the theorem follows.
Case 2: ‖E‖H1

0 (D) = 0. For any sufficiently small t > 0, we choose ρ such that ρ3 = M1+θ
0 tsθ+s−1

so that the first and last terms in (4.14) balance. Then, (4.14) gives

‖δ‖2L2(D) ≤ CM
1+θ
3

0 t
sθ+s−1

3 + CM2
0 t

2s.

Since by assumption, θ > 1−s
s , we have tsθ+s−1 → 0 as t → 0, and therefore (4.5) holds in this case

as well. ✷

Note that the proof of the above theorem relies on the fact that (D, at, f) and (D, bt, f) both
satisfy the positivity condition PC(2) for a uniform constant c. The proof can be easily modified to
cover the case where (D, at, f) and (D, bt, f) satisfy the positivity condition PC(β) with a uniform
constant c for any given 0 ≤ β < 2.

Remark 4.1. As noted in the introduction, a typical result based on least squares or variational
techniques for finding the diffusion coefficient a is estimate (1.12). For clarity, we focus here on the
results from [16, 9], where the approximation ah ∈ Ah is computed solely based on the knowledge of
uob. Therefore any two diffusion coefficients a and b with the same observed uob will have the same
approximant ah, generated by the above process. If we take uob = ua in (1.12), we obtain the bound

‖a− ah‖L2(D) ≤ Chr. (4.18)

On the other hand, we can view ua = uob as an observation of ub and in this case obtain from
(1.12), the bound

‖b− ah‖L2(D) ≤ C(hr + h−2‖ua − ub‖L2(D)). (4.19)

Hence,
‖b− a‖L2(D) ≤ Chr + C(hr + h−2‖ua − ub‖L2(D)). (4.20)

If we chose h, such that hr = h−2‖ua − ub‖L2(D), we obtain the estimate

‖b− a‖L2(D) ≤ C‖ua − ub‖
r

r+2

L2(D). (4.21)
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Besides working with Neumann boundary conditions, there are two major distinctions between (4.21)
and our results. The first is the L2(D) norm that appears on the right side in place of our H1

0 (D)
norm. Recall that we have already mentioned (see (1.18)) how one can derive bounds of the form
(4.21) from our results. The second distinction is the much more demanding regularity assumption
placed on a, b as well as on ua, ub. Namely, (4.21) is proved in the above references under the
regularity requirements a, b ∈ Hr+1(D) and ua, ub ∈ W r+3(L∞(D)) with r ≥ 1. Whereas, in
our treatment, stability estimates are available solely under the much weaker stability assumption
a, b ∈ Hs(D), s∗ < s ≤ 1, where s∗ < 1.

4.2 The gradient condition GC(θ,M)

The statement of Theorem 4.3 relies on the assumption that the solutions ua and ub satisfy the
gradient condition GC(θ,M). Finding sufficient conditions that ensure GC(θ,M) is a well studied
question in harmonic analysis and partial differential equations. We recall, two classes of diffusion
coefficient for which such condition holds.

4.2.1 VMO diffusion coefficients

We start with the following result from [3].

Result 1. If D is a C1 domain, the diffusion coefficient a is in VMO ∩ A, and the right side
f = div(g), with g ∈ Lp(D), then there exists a unique weak solution ua to (1.3) such that ∇ua ∈
Lp(D), 1 < p < ∞, and

‖∇ua‖Lp(D) ≤ C‖g‖Lp(D), (4.22)

with C depending only on D, d, p, λ,Λ and the VMO modulus of a.

Recall that the VMO modulus ν(a, ·) of a is defined by

ν(a, t) := sup
|Q|≤t

1

|Q|

∫

Q

|a− aQ|, aQ :=
1

|Q|

∫

Q

a, t > 0,

where the supremum is taken over all cubes Q with measure at most t. In order to show that ua
satisfies the gradient condition GC(θ,M), we need to consider a subclass of diffusion coefficients
a, for which the estimate (4.22) is uniform for all functions in this class. For this, we consider a
non-decreasing continuous function Φ(t), t ≥ 0, with Φ(0) = 0, and introduce the class AΦ defined
as

AΦ := {a ∈ A : ν(a, t) ≤ Φ(t), t > 0}. (4.23)

Likewise, for s > 0, we define the class

As,Φ := As ∩ AΦ. (4.24)

An examination of the proofs in [3] and [10] shows that for all a ∈ AΦ the constant in (4.22)
is uniformly bounded, with a bound, depending on Φ, D, d, λ, Λ. Therefore, according to the
estimate (4.22), for each 0 < θ < 1, the solution ua satisfies the gradient condition GC(θ,M) with
M only depending on θ, D, d, λ, Λ, Φ, and f . As a consequence, we deduce the following corollary
of Theorem 4.3.
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Corollary 4.4. Let D be a C1 domain, f ∈ L∞(D) with f ≥ cf > 0 and Φ(t), t ≥ 0, be a
non-decreasing continuous function with Φ(0) = 0. Furthermore, assume that a, b ∈ As,Φ for some
1
2 < s ≤ 1. Then there exists a constant C only depending on D, d, λ, Λ, f , and Φ such that

‖a− b‖L2(D) ≤ C

√

1 + (‖a‖Hs(D) + ‖b‖Hs(D))
1
3s ‖ua − ub‖rH1

0 (D) (4.25)

for every r < 2s−1
6s .

✷

4.2.2 General diffusion coefficients

Again, we start with the following gradient estimate.

Result 2 (see [21, 4]). If D is any Lipschitz domain, then there is a value P > 2, depending on
D, such that whenever a ∈ A and f ∈ W−1(Lp(D)), with 2 ≤ p < P , then

‖∇ua‖Lp(D) ≤ C‖f‖W−1(Lp(D)),

with C depending only on d,D, λ,Λ, p.

It follows from the above result that ua satisfies condition GC(θ,M) for 0 < θ < P−2
P , where M

depends on d,D, λ,Λ, and f . Therefore, Result 2 and Theorem 4.3 lead to the following corollary.

Corollary 4.5. Let D be a Lipschitz domain, f ∈ L∞(D) with f ≥ cf > 0 and let P > 2 be the
constant in Result 2. Assume that a, b ∈ As with P

2(P−1) < s ≤ 1. Then, there exists a constant C
only depending on D, d, s, λ, Λ, and f such that

‖a− b‖L2(D) ≤ C

√

1 + (‖a‖Hs(D) + ‖b‖Hs(D))
1
3s ‖ua − ub‖rH1

0 (D), (4.26)

for every r < 1
6 − P (1−s)

6(P−2)s .

5 Piecewise constant diffusion coefficients

Piecewise constant diffusion coefficients are often used in numerical simulation. This case is not
covered by the discussions in the preceding sections because such diffusion coefficients do not satisfy
the regularity assumptions considered there. In this section, we derive some elementary results for
piecewise constant parameters a, subordinate to a fixed partition. We assume for simplicity that
the domain D = (0, 1)d and Pn is the partition of D into nd disjoint cubes of side length 1/n. The
derivations that follow can be generalized to other settings. We denote by An the set of all diffusion
coefficients a defined on D that are piecewise constant functions subordinate to Pn. We continue
to make the assumption that each a ∈ An satisfies λ ≤ a ≤ Λ for fixed 0 < λ < Λ, and therefore
can be written as

a :=
∑

Q∈Pn

aQχQ, (5.1)

where aQ ∈ [λ,Λ], and χQ is the characteristic function of the cube Q.
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Lemma 5.1. Let D = (0, 1)d and f ∈ L2(D). If the diffusion coefficient a ∈ An is given by (5.1),
then for each cube Q ∈ Pn, the solution ua to (1.3) satisfies the equation

− aQ∆ua(x) = f(x), a.e. x ∈ Q. (5.2)

Proof: Let a ∈ An and Q ∈ Pn. Following the proof of the interior regularity theorem, see [8], one
can show that ua ∈ W 2(L2(O)) on each open set O strictly contained in Q. If in (1.3), we take v
smooth and compactly supported on Q and integrate by parts, we find

− aQ

∫

Q

∆uav =

∫

Q

fv. (5.3)

It follows that −aQ∆ua = f at every point x in the interior of Q which is a Lebesgue point of both
f and ∆ua. In particular, this holds almost everywhere on Q. ✷

Theorem 5.2. Let D = (0, 1)d and f ∈ L2(D) with f ≥ cf > 0 on D. Let a, b ∈ An be diffusion
coefficients and ua, ub be the corresponding solutions to (1.3) on D. Then for each Q ∈ Pn, we have

|aQ − bQ| ≤ Cn
d+2
2 ‖∇ua −∇ub‖L2(Q), (5.4)

where C depends only on cf and Λ. Therefore,

‖a− b‖L2(D) ≤ Cn‖ua − ub‖H1
0 (D). (5.5)

Proof: From Lemma 5.1, we know that for each Q ∈ Pn, we have

aQ − bQ = ∆(ua − ub)
aQbQ
f

, a.e. on Q. (5.6)

We now assume without loss of generality that aQ > bQ. Therefore, we have that ∆(ua−ub) > 0 on
Q since f > 0. Recall that there exist functions ϕQ ∈ C∞

c (Q) (for example the standard mollifier
supported in Q), such that

∫

Q

ϕQ = 1 and

‖∇ϕQ‖L2(Q) ≤ C0n
d+2
2 , (5.7)

with C0 an absolute constant. Then multiplying (5.6) by such a ϕQ and integrating over Q yields

aQ − bQ =

∫

Q

∆(ua − ub)
aQbQ
f

ϕQ ≤ aQbQ
cf

∫

Q

∆(ua − ub)ϕQ = −aQbQ
cf

∫

Q

∇(ua − ub)∇ϕQ,

where we used integration by parts to get the last equality. The boundedness of a and b yields

aQ − bQ ≤ C‖∇(ua − ub)‖L2(Q)‖∇ϕQ‖L2(Q) (5.8)

≤ Cn
d+2
2 ‖∇(ua − ub)‖L2(Q).

This proves (5.4). To prove (5.5), we square (5.4) integrate over Q to find
∫

Q

|a− b|2 ≤ Cnd+2‖∇(ua − ub)‖2L2(Q)n
−d = Cn2‖∇(ua − ub)‖2L2(Q). (5.9)

If we add these estimates up over all Q ∈ Pn and take a square root, we arrive at (5.5). ✷
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6 The univariate case

In the univariate case, several stability results, mainly for the Neumann problem, are available,
see for example, [19]. Here, we will discuss the one dimensional Dirichlet problem with diffusion
coefficients a ∈ A and the domain D = (0, 1). In this case, under certain assumptions on f , we
will be able to improve the Lipschitz exponent in the inverse parameter estimate and also provide
limits to how large this Lipschitz exponent can be.

Notice that in this case, one needs some assumptions on f to guarantee that a is uniquely
determined from the solution ua, as the following example, taken from [19], shows. The function

u(x) =

{

x, x ∈ [0, 12 ],
1− x, x ∈ (12 , 1],

is a solution on D to the problem

−(au′)′ = 2δ1/2, u(0) = u(1) = 0,

with diffusion coefficient a ≡ 1 or any a of the form

a =

{

q, on [0, 12 ],
2− q, on (12 , 1],

where 0 < q < 2. Here δ1/2 is the delta distribution with weight 1 at 1/2.
In going further, we consider the case f = 1, noting that the derivations below can be generalized

to other settings. We determine the solution ua and show that estimate (3.19) in Corollary 3.8 can
be improved. We use the notation A := 1/a, B := 1/b, where a, b ∈ A. Now, (1.3) becomes

1
∫

0

au′av
′ =

1
∫

0

v, v ∈ H1
0 (0, 1), (6.1)

and one checks that the solution to (6.1) is

ua(x) = −
x
∫

0

A(t)(t− γa) dt, where γa :=

1
∫

0

A(t)t dt

1
∫

0

A(t) dt

∈ (0, 1). (6.2)

This gives
−A(x)(x − γa) = u′a(x). (6.3)

6.1 An upper bound

To bound ‖a − b‖L2(0,1) in terms of ‖u′a − u′b‖L2(0,1), it is sufficient to bound ‖A − B‖L2(0,1). Let
us set η := γa − γb, and E′(x) := u′a(x) − u′b(x). Without loss of generality, we may assume that
η ≥ 0, since otherwise we can reverse the roles of a and b. The following lemma gives an estimate
for η.
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Lemma 6.1. We have
η ≤ c0‖E′‖2/3L2(0,1)

, (6.4)

where the constant c0 depends only on λ and Λ.

Proof: The estimate obviously holds if η = 0, so we assume that η > 0. We consider an interval I
of length 2cη centered at γa with c := λ

2(λ+Λ) < 1/2. We have for x ∈ I ∩ (0, 1)

|u′a(x)− u′b(x)| = |(x− γb)B(x)− (x− γa)A(x)| ≥ (1− c)B(x)η − cA(x)η

≥
(

1− c

Λ
− c

λ

)

η =
η

2Λ
.

Squaring this estimate and integrating over I ∩ (0, 1) gives

η2

4Λ2
|I ∩ (0, 1)| ≤ ‖u′a − u′b‖2L2(0,1)

= ‖E′‖2L2(0,1)
,

and since |I ∩ (0, 1)| ≥ cη, the proof is completed. ✷

The following lemma gives an upper bound for the norm ‖A−B‖L2(0,1).

Lemma 6.2. For every ρ > 0, we have

‖A−B‖2L2(0,1)
≤ C

ρ2
‖E′‖4/3L2(0,1)

+ 8λ−2ρ, (6.5)

where C depends only on λ and Λ. In particular, if ‖E′‖L2(0,1) = 0, then A = B a.e in (0, 1).

Proof: First, let us observe that

(A(x)−B(x))(x−γa) = A(x)(x−γa)−B(x)(x−γb)+B(x)(γa−γb) = −E′(x)+B(x)(γa−γb). (6.6)

We now consider an interval J of length 2ρ centered at γa. Then, using (6.6) on Jc, where Jc is
the complement of J in (0, 1) (which might be empty), we have

ρ|(A(x) −B(x)| ≤ |E′(x)| + λ−1η, x ∈ Jc,

and therefore
ρ2|(A(x) −B(x)|2 ≤ 2|E′(x)|2 + 2λ−2η2, x ∈ Jc.

We integrate the latter inequality over Jc to obtain

‖A−B‖2L2(Jc) ≤
2

ρ2
‖E′‖2L2(0,1)

+
2λ−2

ρ2
η2. (6.7)

Meanwhile, for x ∈ J ∩ (0, 1), we have |A(x)−B(x)| ≤ 2λ−1 and therefore

‖A−B‖2L2(J∩(0,1))
≤ 8λ−2ρ. (6.8)

Combining this with (6.7), we obtain

‖A−B‖2L2(0,1)
≤ 2

ρ2
‖E′‖2L2(0,1)

+
2λ−2

ρ2
η2 + 8λ−2ρ

≤ 2

ρ2
‖E′‖2L2(0,1)

+
2c20
ρ2λ2

‖E′‖4/3L2(0,1)
+ 8λ−2ρ,
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where we have used Lemma 6.1. Since |u′a(x)− u′b(x)| = |(x− γb)B(x)− (x− γa)A(x)| ≤ 2λ−1, we
have that ‖E′‖L2(0,1) ≤ 2λ−1, and the first term of the above inequality is absorbed by the second
term. Hence, we get

‖A−B‖2L2(0,1)
≤ C

ρ2
‖E′‖4/3L2(0,1)

+ 8λ−2ρ,

where C depends only on λ and Λ. This proves the first part of the lemma. When ‖E′‖L2(0,1) = 0,

‖A−B‖2L2(0,1)
≤ 8λ−2ρ,

for all ρ > 0 and so A = B a.e. in (0, 1). ✷

We can now prove the following stability estimate in the one dimensional case.

Theorem 6.3. For any a, b ∈ A, the solutions ua, ub to (1.3) with f = 1 satisfy the estimate

‖a− b‖L2(0,1) ≤ C‖ua − ub‖2/9H1
0 (0,1)

, (6.9)

where C depends only on λ and Λ. In particular, if ua = ub on (0, 1), then a = b a.e in (0, 1).

Proof: If ‖ua − ub‖H1
0 (0,1)

= 0, it follows from Lemma 6.2 that a = b, a.e. on (0, 1), and therefore

(6.9) holds. When ‖E′‖L2(0,1) = ‖u′a − u′b‖L2(0,1) > 0, we choose ρ = ‖E′‖4/9L2(0,1)
in Lemma 6.2 to

derive the desired estimate. ✷

6.2 A lower bound

In this section, we show that the exponent in estimates of the form (6.9) cannot be greater than
1/3.

Theorem 6.4. Consider equation (1.3) with domain D = (0, 1) and right side f = 1. There are
diffusion coefficients a, b ∈ A, such that the corresponding solutions ua, ub, satisfy the inequality

‖a− b‖L2(D) ≥ c‖ua − ub‖1/3H1
0 (D)

, (6.10)

where c is a constant, depending only on λ and Λ.

Proof: We define the following diffusion coefficients

1

a(x)
:= A(x) =

{

1, for 0 < x ≤ α,

2, for α < x < 1,

1

b(x)
:= B(x) =

{

1, for 0 < x ≤ β,

2, for β < x < 1,

where α, β ∈ (0, 1), and compute

‖A−B‖L2(0,1) = |α− β|1/2. (6.11)

Let g(t) := 1−t2/2
2−t . Then, a simple calculation gives

γa = g(α), γb = g(β), (6.12)
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where γa and γb are defined by (6.2). We denote by α0 the point where g achieves its minimum in
(0, 1). Then, we have

g′(α0) = 1− 2α0 + α2
0/2 = 0 and α0 = 2

√
2− 2. (6.13)

We fix α as α0. Since g(α0) = α0, we have γa = α0.
We now bound η := γa − γb = α0 − γb from above. In fact, using (6.11) and (6.13), we have

|η| = g(β)− g(α0) =
(α0 − β)2

2(2 − β)
<

1

2
(α0 − β)2 =

1

2
‖A−B‖4L2(0,1)

. (6.14)

Recall that

E′(x) = −(A(x) −B(x))(x − γa) +B(x)(γa − γb) = −(A(x)−B(x))(x− α0) +B(x)η. (6.15)

Therefore, using (6.11) and (6.14) , we have

‖E′‖2L2(0,1)
≤ 2

1
∫

0

(A(x)−B(x))2(x− α0)
2 dx+ 2η2

1
∫

0

B2(x) dx

≤ 2

∣

∣

∣

∣

∣

∣

β
∫

α0

(x− α0)
2 dx

∣

∣

∣

∣

∣

∣

+ 8η2 =
2

3
|β − α0|3 + 8η2 =

2

3
‖A−B‖6L2(0,1)

+ 8η2

≤ 2

3
‖A−B‖6L2(0,1)

+ 2‖A −B‖8L2(0,1)
≤ C‖A−B‖6L2(0,1)

, (6.16)

where C depends only on λ,Λ. This completes the proof. ✷
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