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Abstract. We consider the large-scale regularity of solutions to second-order
linear elliptic equations with random coefficient fields. In contrast to previ-

ous works on regularity theory for random elliptic operators, our interest is

in the regularity at the boundary: We consider problems posed on the half-
space with homogeneous Dirichlet boundary conditions and derive an associ-

ated C1,α-type large-scale regularity theory in the form of a corresponding

decay estimate for the homogenization-adapted tilt-excess. This regularity
theory entails an associated Liouville-type theorem. The results are based on

the existence of homogenization correctors adapted to the half-space setting,

which we construct – by an entirely deterministic argument – as a modification
of the homogenization corrector on the whole space. This adaption procedure

is carried out inductively on larger scales, crucially relying on the regularity
theory already established on smaller scales.

1. Introduction

Classical counterexamples in the theory of the second-order linear elliptic equa-
tion

−∇ · (a∇u) = 0 on Rd(1)

demonstrate that uniform ellipticity and boundedness of the coefficient field a are
not sufficient to ensure Lipschitz continuity of weak solutions: It is well-known that
for any Hölder exponent 0 < α ≤ 1 there exists a uniformly elliptic coefficient field a
and an associated weak solution u ∈ H1

loc(Rd) which fails to be Hölder continuous
with exponent α (see e. g. the example of Meyers [25, Example 3]). For second-
order linear elliptic systems, the celebrated counterexample of De Giorgi (see e. g.
[17, Section 9.1.1]) shows that weak solutions may even locally fail to be bounded.

Hölder regularity of a function u is equivalent to suitable approximability of u
by polynomials, a property that may be rephrased in terms of a decay estimate
for the associated tilt-excess. An interesting consequence of quantitative regularity
estimates on large scales are Liouville principles: Liouville principles provide a char-
acterization of the dimension of the space of solutions on Rd which satisfy a given
polynomial growth restriction. In fact, the abovementioned classical counterex-
amples to regularity are at the same time counterexamples to the corresponding
Liouville principles.

These classical counterexamples to regularity share the feature of imposing a
certain large-scale structure on the coefficient field a: For example, both in the
counterexample of Meyers and in the counterexample of De Giorgi the coefficient
field a has a purely radial structure. In a series of recent works [12, 22, 8, 7,
18, 14], it has been established that the coefficient fields which constitute such
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counterexamples are in fact in a certain sense necessarily “non-generic”: For random
coefficient fields – more precisely, coefficient fields chosen according to a stationary
and ergodic probability measure on the space of uniformly elliptic and bounded
coefficient fields (see below for a definition) – , almost surely a large-scale regularity
theory in the form of a corresponding decay estimate for the tilt-excess on large
scales and Liouville principles hold.

Motivated by these recent results, in the present work we consider the large-scale
boundary regularity of solutions to linear elliptic equations with random coefficient
fields in the case of Dirichlet boundary conditions. More precisely, we consider
solutions to the problem

−∇ · (a∇u) = 0 in Hd+,(2a)

u ≡ 0 on ∂Hd+,(2b)

with a being the restriction of a random coefficient field on the full space Rd to the
half-space

Hd+ := {(x1, . . . , xd) ∈ Rd : xd > 0}.

The main results of the present work are a “C1,α-type regularity theory on large
scales” for such solutions – in the form of a C1,α-type excess-decay estimate for the
tilt-excess on large scales – and an associated Liouville-type theorem.

Randomness in the coefficient field does not exclude the possible occurrence
of counterexamples to regularity on small scales. For this reason, one may only
hope to establish an improved regularity theory for such random elliptic operators
on large scales. A rigorous mathematical meaning to the notion of “large-scale
regularity” may be given in terms of corresponding decay estimates for the tilt-
excess: The classical notion of tilt-excess compares a solution of the elliptic equation
−∇ · (a∇u) = 0 to e. g. the space of affine polynomials x 7→ ξ · x+ c in the squared
energy norm. For a function u, the tilt-excess on the ball {|x| < r} is defined as

Exc(r) := inf
ξ∈Rd

 
{|x|<r}

|∇u− ξ|2 dx.

Differentiability properties of the function u are then encoded in decay properties
of the tilt-excess in the radius r. For solutions to the Laplace equation −∆u = 0
on Rd, the tilt-excess displays decay in the radius r according to

Exc(r) ≤
( r
R

)2

Exc(R)

for any pair of radii 0 < r ≤ R. When valid for balls {|x − x0| < r} around any
center x0 ∈ Rd, this excess-decay property entails C1,1-regularity of solutions. It is
now intuitive to give a meaning to the notion of large-scale regularity of a function
u by asking for appropriate excess-decay on large scales, i. e. excess-decay for radii
larger than a certain minimal radius r∗.

This classical definition of tilt-excess is, however, not the appropriate quantity
in the framework of random coefficient fields a on Rd: In this case, one does not
expect the fluctuations of ∇u around some constant value ξ to be small. It is
therefore necessary to suitably adapt the notion of tilt-excess to this setting. In [18],
motivated by a similar ansatz of Avellaneda and Lin [10] in the context of periodic
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homogenization, Gloria, Neukamm, and Otto have introduced the homogenization-
adapted notion of tilt-excess

Exc(r) := inf
ξ∈Rd

 
{|x|<r}

|∇u−∇(ξ · x+ φξ)|2 dx.

Here, φξ is the so-called homogenization corrector (see below for a definition). We
would like to emphasize that the “corrected affine polynomial” ξ · x + φξ may be
regarded as a perturbation of the original polynomial ξ · x, while at the level of the
gradient ξ +∇φξ is typically not a perturbation of ξ.

In the half-space setting, the Dirichlet boundary conditions on ∂Hd+ introduce
further restrictions on solutions u of the problem (2): It will turn out that the solu-
tions may be approximated in terms of a multiple of just the perturbed coordinate
function xd + φHd (with φHd denoting the homogenization corrector adapted to the
Dirichlet boundary condition on ∂Hd+), lifting the need to consider perturbations
of general affine functions ξ · x. The appropriate notion of tilt-excess in our setting
of the equation (2) is therefore given by the formula (3) below. Omitting for the
moment the precise assumptions on the random coefficient field, our main result
with respect to the large-scale regularity of solutions to the problem (2) may be
phrased as follows:

“Theorem”. Define the tilt-excess of a function u on the half-ball

B+
r := {|x| < r} ∩Hd+

as

ExcH(r) := inf
b∈R

 
B+
r

|∇u− b(ed +∇φHd )|2 dx.(3)

Let 0 < α < 1 and let a be a random coefficient field subject to our assumptions on
the random coefficient field stated below. Then almost surely, the following holds:

i) There exists a homogenization corrector φHd which solves the corrector equa-
tion

−∇ · (a∇φHd ) = ∇ · (aed) in Hd+,(4a)

φHd = 0 on ∂Hd+,(4b)

and satisfies the sublinear growth condition

lim
r→∞

1

r

( 
B+
r

|φHd |2 dx
)1/2

= 0.

ii) There exists a finite r∗ such that any weak solution to the problem (2)
satisfies the excess-decay estimate

ExcH(r) .
( r
R

)2α

ExcH(R)

for any pair of radii R ≥ r ≥ r∗.

The classical (zeroth-order) Liouville theorem states that any solution u to the
Laplace equation −∆u = 0 on Rd with sublinear growth at infinity must be con-
stant. More generally, any harmonic function on Rd which satisfies a growth condi-
tion of the form |u(x)| . 1+ |x|k+α (with k ∈ N0, 0 < α < 1) is equal to a harmonic
polynomial of order less or equal to k. For the Laplacian on the half-space with ho-
mogeneous Dirichlet boundary conditions, half-space-adapted Liouville principles
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are available: The first-order Liouville principle states that any solution u to the
equation −∆u = 0 on Hd+ with u ≡ 0 on ∂Hd+ and with subquadratic growth in the
sense

|u(x)| . 1 + |x|1+α(5)

for some α < 1 is a multiple of the coordinate function

x 7→ xd.

In the present work, for random coefficient fields we shall similarly characterize
the subquadratically growing solutions u to the equation −∇ · (a∇u) = 0 with
homogeneous Dirichlet boundary conditions on ∂Hd+:

“Theorem”. Let a be a random coefficient field subject to our assumptions on the
random coefficient field stated below. Then almost surely, the following assertion
holds: Any weak solution u to the problem (2) which satisfies a growth condition of
the form

lim
r→∞

1

r1+α

( 
B+
r

|u|2 dx
)1/2

= 0

for some α ∈ (0, 1) is a multiple of the “perturbed coordinate function”

x 7→ xd + φHd (x).

This Liouville principle is a simple consequence of the excess-decay estimate on
large scales.

For the results of our present work, by a random coefficient field we shall under-
stand a coefficient field chosen at random according to some probability measure
〈·〉 (which is also called “ensemble” in this context) on the space of coefficient fields
on Rd. Our two main assumptions on the ensemble are the following:

• The assumption of stationarity (shift-invariance), stating that the measure
〈·〉 is invariant under simultaneous spatial translation of all coefficient fields.
• The assumption of ergodicity, which requires that any shift-invariant ran-

dom variable must be 〈·〉-almost surely constant, corresponding to a quali-
tative assumption on decorrelation on large scales. In the present work, we
will need a slightly strengthened (slightly quantified) version of qualitative
ergodicity, expressed in form of the growth estimate for the corrector (11)
below.

In addition, we shall assume that the probability measure 〈·〉 is supported on uni-
formly elliptic and bounded coefficient fields: We require that there exists a constant
λ > 0 such that almost surely for almost every x ∈ Rd the estimates

|a(x)v| ≤ |v|,(6a)

a(x)v · v ≥ λ|v|2(6b)

hold for every v ∈ Rd. Note that the choice |a(x)v| ≤ |v| for the upper bound is out
of convenience and does not lead to a loss of generality, as given a general upper
bound it may be enforced by rescaling.
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Figure 1. Two examples of random coefficient fields.

To name a few examples, our results in the present work are in particular appli-
cable to the following cases of ensembles of random coefficient fields:

• Ensembles for which a(x) is either equal to a positive definite matrix a1

or equal to another positive definite matrix a2, depending on whether x is
contained in a random set of balls of a given fixed radius, the centers of the
balls being chosen according to a Poisson point process (see the left picture
in Figure 1).
• Stationary ensembles with finite range of dependence (i. e. ensembles for

which a|U and a|V are stochastically independent for any two sets U, V ⊂
Rd with dist(U, V ) ≥ c) subject to uniform ellipticity and boundedness
conditions. Note that the previous case is a particular case of this.
• Coefficient fields of the form ξ(ã(x)), where ã denotes a matrix-valued sta-

tionary Gaussian random field subject to the decorrelation estimate

|Cov(ã(x), ã(y))| ≤ C

|x− y|β

for some β ∈ (0, d) and where ξ : Rd×d → Rd×d is a Lipschitz map taking
values in a bounded uniformly elliptic subset of the matrices of dimension
d× d (see the right picture in Figure 1).

That our results apply to the second example – i. e. that condition (11) below is
satisfied almost surely for such ensembles – follows e. g. from the estimates in [19].
That our results are applicable to the third example is shown in [13].

Generally speaking, the improvement in the regularity of solutions to elliptic
equations with random coefficient fields on large scales may be viewed as a homog-
enization effect: Classical results in qualitative stochastic homogenization state
that on large scales the behavior of the second-order linear elliptic equation with
a random coefficient field is close to the behavior of a constant-coefficient equation
[24]. In fact, Avellaneda and Lin had established Liouville-type theorems [11] and
regularity results [10] for periodic coefficient fields – i. e. in the context of periodic
homogenization – long before the first works on random coefficient fields.

To the best of our knowledge, the first result on improved large-scale regularity
properties of random elliptic operators has been derived by Benjamini, Duminil-
Copin, Kozma, and Yadin [12] in the form of a zeroth-order Liouville theorem in
the context of random walks in random environments. Their result holds under
the assumptions of stationarity and qualitative ergodicity and includes the case
of percolation, i. e. also suitable coefficient fields which are not uniformly elliptic.
In the work of Marahrens and Otto [22], a large-scale C0,α-type regularity theory
for any α < 1 was developed, assuming a quantification of ergodicity in the form
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of a logarithmic Sobolev inequality. In the work of Armstrong and Smart [8], a
large-scale C0,1-type regularity theory has been established under the assumption
of finite range of dependence. Motivated by [7], Gloria, Neukamm, and Otto [18]
derived a large-scale C1,α-type regularity theory in the form of a corresponding
excess-decay estimate and a Liouville principle; their result is applicable in the case
of just stationarity and qualitative ergodicity of the ensemble. Finally, the picture
of large-scale regularity was mostly completed by Otto and the first author [14],
who developed a Ck,α-type large-scale regularity theory and associated Liouville
principles, assuming only a slight quantification of ergodicity. Later, another proof
for such a large-scale Ck,α-type regularity theory was given by Armstrong, Kuusi,
and Mourrat [5]; while the results of [5] are stated under the assumption of finite
range of dependence of the ensemble, as also mentioned in [5] it is apparent from
their proof and [7] that their arguments also apply to settings with weak quantita-
tive decorrelation. Recently, a large-scale Ck,α regularity theory for random elliptic
operators on Bernoulli percolation clusters has been developed by Armstrong and
Dario [4].

The periodic (and almost periodic) homogenization of boundary value problems
for the elliptic equation −∇·(a∇u) = f has a long history. Avellaneda and Lin [10]
have derived a C0,1 regularity theory up to the boundary in the context of periodic
homogenization with Dirichlet boundary conditions. In their work, they also adapt
the homogenization correctors to the Dirichlet boundary conditions, however only
locally and in a different way on every scale. For Neumann boundary conditions,
the corresponding regularity result has been obtained by Kenig, Lin, and Shen [21].
In the almost periodic case, a C0,1 regularity theory for Dirichlet and Neumann
boundary conditions has been established by Armstrong and Shen [9]; though not
mentioned in the paper, their arguments – reminiscent of the ones in [7] – likely
also apply to the setting of stochastic homogenization.

Rates of convergence for the periodic homogenization of elliptic equations on
bounded domains have been established by Avellaneda and Lin [10] and Kenig,
Lin, and Shen [20] in the Dirichlet and Neumann case, respectively. Higher-order
approximations for periodic homogenization problems on bounded domains with
Dirichlet boundary conditions have been obtained via boundary layer correctors
by Allaire and Amar [3] in the case of polygonal domains with rational slopes;
Gérard-Varet and Masmoudi [15] have treated the case of polygonal domains with
diophantine normals.

Basically, the introduction of boundary layer correctors leads to a homogeniza-
tion problem with oscillating boundary data. In the case of oscillating Dirichlet
boundary data on general (even smooth) domains, the convergence properties may
be drastically worse compared to the case of smooth boundary data: A recent re-
sult by Aleksanyan [1] shows that the convergence may be arbitrarily slow. For
uniformly convex domains, rates of convergence may be obtained as shown by
Gérard-Varet and Masmoudi [16]. In the recent work by Armstrong, Kuusi, Mour-
rat, and Prange [6], improved convergence rates have been derived; for d ≥ 4, their
rates reach the optimal exponent from the model case of constant coefficients (a
case that was treated by Aleksanyan, Shahgholian and Sjölin [2]). The subsequent
improvement of [6] by Shen and Zhuge [26] provides the optimal convergence rates
also in the case d = 2, 3. Note that the latter paper also establishes convergence
rates in the Neumann case which are optimal for d ≥ 3.
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Let us recall some basic concepts and notions from homogenization of linear
elliptic equations of the form (1) on the whole space. Homogenization occurs for
elliptic PDEs of the form (1) in case of periodic or random coefficient fields a. In
these cases, the large-scale behavior of the equation is captured by an effective
equation of the form −∇ · (ahom∇uhom) = 0, where ahom is a constant effective
coefficient. It is a simple observation that while affine functions x 7→ ξ · x + c
solve constant-coefficient equations of the form −∇ · (ahom∇uhom) = 0, they are in
general not solutions to the original equation −∇ · (a∇u) = 0. One may therefore
attempt to “correct” the affine function by adding a perturbation φξ which accounts
for the oscillations in the coefficient field a and which ensures that the resulting
function x 7→ ξ · x+ c+ φξ solves the equation −∇ · (a∇u) = 0. This ansatz leads
to the notion of homogenization correctors, which by definition are solutions to the
equation

−∇ · (a∇φξ) = ∇ · (aξ).(7a)

Obviously, the corrector φξ may be chosen to depend linearly on ξ; we shall denote
the corrector corresponding to a coordinate function x 7→ xi (i. e. to ξ = ei) also
by φi. In view of the heuristics that ξ · x + φξ should be a perturbation of the
polynomial ξ ·x, correctors are required to grow sublinearly, i. e. to satisfy a bound
of the form |φξ(x)| � |x| for large |x|.

The effective coefficient ahom is determined by the following heuristics: Consider
an affine function x 7→ ξ · x in the homogenized picture and the corresponding
“corrected affine function” x 7→ ξ ·x+φξ(x) in the microscopic (non-homogenized)
picture. Then, the flux in the homogenized picture ahom∇(ξ · x) = ahomξ should
correspond to the average of the flux in the microscopic (non-homogenized) picture
a∇(ξ · x + φξ(x)) = a(ξ + ∇φξ(x)). In stochastic homogenization, by ergodicity
spatial averaging corresponds to taking the expectation. Therefore, the effective
coefficient is determined by the formulas

ahomei = E[a(ei +∇φi)].(7b)

Let us mention that like in periodic homogenization, the homogenized coefficient
ahom satisfies bounds similar to (6); see e. g. [18].

In quantitative homogenization, it is convenient to introduce a dual quantity
to the corrector φi, namely a vector potential σijk for the flux correction a(ei +
∇φi) − ahomei (i. e. a vector potential for the difference between the flux in the
microscopic picture and the flux in the homogenized picture in the case of the
macroscopic affine function x 7→ xi). The vector potential σijk is skew-symmetric
in the last two indices – i. e. it satisfies σijk = −σikj – and its defining equation
reads

(7c) ∇k · σijk = ej · (a(ei +∇φi)− ahomei).
Approximating a solution u by the two-scale expansion

u2−scale := uhom +

d∑
i=1

φi∂iuhom,(8)

a simple computation shows that the error w := u− u2−scale satisfies the equation

−∇ · (a∇w) = ∇ ·

(
d∑
i=1

(φia− σi)∂i∇uhom

)
.
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Homogenization effects are then encoded in terms of growth estimates for the cor-
rector (φ, σ): The previous formula allows one to turn estimates on the corrector
(φ, σ) into estimates for the homogenization error. Introducing the notation

(9) δR :=
1

R

( 
{|x|<R}

|(φ, σ)|2 dx

)1/2

as a measure for the sublinearity of the corrector at scale R, the qualitative con-
vergence

lim
R→∞

δR = 0

is sufficient for homogenization to occur. In fact, an estimate of the form

sup
R≥r∗

δR ≤
1

C(d, λ, α)

is sufficient for a C1,α-type excess-decay estimate on scales larger than r∗ as shown
in [18]. In the same work, the almost sure existence of correctors subject to this
condition of qualitatively sublinear growth has been established, assuming only
stationarity and qualitative ergodicity of the ensemble. The higher-order regularity
theory in [14] relies on the slight quantification of sublinear growth of the corrector

(10)

∞∑
m=0

δ2m <∞.

To ensure the (almost sure) existence of correctors with this quantified sublinear
growth, replacing the assumption of just qualitative ergodicity by a very mild as-
sumption on decay of correlations is sufficient, see e. g. [13]. In the case of ideal
decorrelation – e. g. finite range of dependence – and d ≥ 3, δr behaves like 1

r and
therefore δ2m behaves like 2−m , see [19].

Turning our attention to homogenization in the half-space setting, it becomes
apparent that the homogeneous Dirichlet boundary conditions on ∂Hd+ introduce
further restrictions on the affine polynomials which are necessary to describe the
behavior of solutions to the equation−∇·(a∇u) = 0 on Hd+: Basically, the boundary
conditions exclude all polynomials ξ · x with ξ · ei 6= 0 for some i 6= d from playing
a relevant role in the approximate description of solutions.

As a second difference to the whole-space case, correcting the remaining relevant
affine polynomial x 7→ xd with the whole-space corrector φd leads to a violation of
the boundary conditions on ∂Hd+. It becomes therefore necessary to construct a

corrector φHd which is adapted to the half-space setting (i. e. satisfies the homoge-
neous Dirichlet boundary conditions on ∂Hd+). In the present work, we shall present
an entirely deterministic argument which modifies a given whole-space corrector φd
to yield a corrector φHd that satisfies the Dirichlet boundary conditions on ∂Hd+.
The only condition that we need to impose on the whole-space corrector (φ, σ) is
the (slightly stronger) condition on quantitative sublinearity

(11)

∞∑
m=0

mδ
1/3
2m <∞.
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Note that this condition is implied by an estimate of the form

δr .
1

| log r|6+ε
for large r

for arbitrarily small ε > 0. Again, a very mild assumption on decorrelation is
sufficient to ensure the almost sure existence of whole-space correctors with this
growth property [13]. Note that as the vector potential for the flux correction σdjk
is defined in terms of the corrector φd, after modifying φd to obtain φHd we also need
to construct an appropriately adjusted vector potential σH

djk.
Notation. Throughout the paper, we denote the number of spatial dimensions

by d. The notation Hd+ is used for the half-space {x ∈ Rd : xd > 0}. By Br,
we denote the ball of radius r centered at the origin. The half-ball of radius r
centered at the origin – i. e. the set {x ∈ Rd : |x| < r, xd > 0} is denoted by B+

r ;
correspondingly, the notation B−r is used for the set −B+

r . By Br(x) we denote the
ball of radius r with center x. For two sets M and N , the set {m ∈M : m /∈ N} is
denoted by M \N .

When it is not important to keep track of constants, we use the notation “.” to
mean “up to a constant depending on d, λ”. The notation C(d, λ, α) is also used to
denote a generic constant depending on the quantities in the brackets. By “a� b”
we mean a ≤ 1

C(d,λ)b for some large enough constant C(d, λ).

For a measurable set A ⊂ Rd, we denote its d-dimensional Lebesgue measure by
|A|. By

´
A
f dx we denote the Lebesgue integral of the function f over the set A.

By
ffl
A
f dx we denote the average integral, i. e. 1

|A|
´
A
f dx.

For a vector or tensor, the subscripts before a comma refer to components and
the subscripts after a comma refer to a scale (not to taking a partial derivative):
For example, σH

djk,M refers to the component djk of a modified vector potential for

the flux correction which has been adapted on scales ≤ 2Mr0 (with r0 denoting the
base scale, see Section 2.1 below).

The function space Ck,α (with k ∈ N0 and α ∈ (0, 1]) consists of the functions
whose derivatives up to order k are (locally) Hölder continuous with exponent α.
The (possibly weak) partial derivative with respect to the jth coordinate will be

denoted by ∂j . By Ḣ1
0 (Hd+), we denote the space of locally integrable functions

v with square-integrable gradient and vanishing trace on ∂Hd+, equipped with the

norm ||v||Ḣ1
0 (Hd+) := (

´
Hd+
|∇v|2 dx)1/2.

2. Main Results

Our first main theorem ensures the existence of half-space-adapted homogeniza-
tion correctors with the appropriate (sublinear) growth behavior. The key assump-
tion of the theorem is the existence of correctors on the whole space which are
sublinear in the mildly quantified sense (11).

Theorem 1. Let a : Rd → Rd×d be a uniformly elliptic and bounded coefficient
field in the sense (6). Assume that for this coefficient field a there exists a whole-
space corrector (φ, σ) satisfying the corrector equations (7) and the growth condition
(11). Then there exists a half-space-adapted corrector (φH, σH) with the following
properties:

i) For i 6= d, the correctors φHi and σH
i coincide with the restriction of the

whole-space correctors to the half-space φi|Hd+ and σi|Hd+ .
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ii) The corrector φHd is adapted to the half-space setting in the sense

−∇ · (a∇φHd ) = ∇ · (aed) in Hd+,(12a)

φHd ≡ 0 on ∂Hd+.(12b)

iii) σH
d is a vector potential for the flux correction corresponding to xd + φHd in

the sense that it is skew-symmetric and satisfies

∇k · σH
djk = ej · (a(ed +∇φHd )− ahomed).(13)

iv) The corrector grows sublinearly in the sense that

δHr :=
1

r

( 
B+
r

|(φH, σH)|2 dx+

 
B−r

d−1∑
i=1

|φi|2 dx

)1/2

satisfies

lim
r→∞

δHr = 0.

In particular, for any 0 < α < 1 there exists a finite radius r∗ for which
the condition (15) below is satisfied.

In fact, our proof shows that a quantitative estimate on the sublinear growth of
the whole-space corrector in the form

δr ≤
C

rγ

for some γ ∈ (0, 1] may be turned into an estimate on the half-space-adapted
corrector of the form

δHr ≤
C̃

rγ/3
.(14)

This bound is a consequence of more precise estimates on the right-hand sides of
the inequalities (47), (49), and (51) in the proof below. However, one should not
expect the estimate (14) to be optimal, which is why we did not emphasize this
quantitative bound in our theorem.

Our second main theorem transfers regularity properties from the constant-
coefficient equation −∇·(ahom∇uhom) = 0 to the equation with possibly oscillating
coefficients −∇ · (a∇u) = 0. The key requirement of the theorem is that approx-
imate homogenization has occurred, as assessed by the sublinearity condition for
the half-space-adapted corrector (15). In this case, a large-scale regularity theory
in the form of a corresponding decay estimate for the tilt-excess becomes available.
As a second consequence, we infer a mean-value property for a-harmonic functions.

Theorem 2. Let a : Rd → Rd×d be a coefficient field satisfying the uniform ellip-
ticity and boundedness assumptions (6). For any fixed Hölder exponent 0 < α < 1
there exists a constant Cα(d, λ) such that the following statements hold:

Suppose that for some radius R > 0 there exist half-space-adapted homogenization
correctors (φH, σH) which satisfy the defining equations of the corrector (7) on B+

R ,
for which φHd satisfies homogeneous Dirichlet boundary conditions on ∂Hd+ ∩ BR,

and for which φHi for i 6= d is the restriction of a corrector φi on BR to B+
R . Suppose
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furthermore that the correctors (φH, σH) are sublinear on larger scales in the sense
that the quantity

δHr :=
1

r

( 
B+
r

|(φH, σH)|2 dx+

 
B−r

d−1∑
i=1

|φi|2 dx

)1/2

satisfies an estimate of the form

δHr ≤
1

Cα(d, λ)
for all r ≥ r∗(15)

for some radius 0 < r∗ < R.
Let u ∈ H1(B+

R) be an a-harmonic function with homogeneous Dirichlet bound-
ary conditions on ∂Hd+, i. e. let u be a solution to the problem

−∇ · (a∇u) = 0 in B+
R ,

u ≡ 0 on ∂Hd+ ∩BR.

Introduce the half-space-adapted tilt-excess

ExcH(r) := inf
b∈R

 
B+
r

|∇u− b(ed +∇φHd )|2 dx.

Then for any r ∈ [r∗, R] the excess-decay estimate

ExcH(r) .
( r
R

)2α

ExcH(R)(16)

is satisfied.
Furthermore, for r ∈ [r∗, R] the mean-value property 

B+
r

|∇u|2 dx ≤ CMean(d, λ)

 
B+
R

|∇u|2 dx(17)

holds for some constant CMean(d, λ) depending only on the dimension d and the
ellipticity constant λ.

Finally, for all r ∈ [r∗, R] the tilt-excess functional 
B+
r

|∇u− b(ed +∇φHd )|2 dx

is coercive as a function of b ∈ R in the sense 
B+
r

|∇u− b(ed +∇φHd )|2 dx ≥ c(d, λ)|b− bmin|2(18)

for some bmin ∈ R.

Combining Theorem 1 with Theorem 2 yields the following Liouville principle:

Corollary 1.1. Let a : Rd → Rd×d be a coefficient field which is uniformly elliptic
and bounded in the sense (6). Suppose that for the coefficient field a homogenization
correctors (φ, σ) exists which satisfy the corrector equations (7) and the growth
condition (11). Then, there exists a sublinearly growing homogenization corrector
on the half-space φHd in the sense that it satisfies (12) and

lim
r→∞

1

r

( 
{|x|<r}

|φHd |2 dx
)1/2

= 0.
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Furthermore, any a-harmonic function u ∈ H1
loc(Hd+) with homogeneous Dirichlet

boundary conditions on ∂Hd+ and subquadratic growth in the sense

lim
r→∞

1

r1+α

( 
B+
r

|u|2 dx
)1/2

= 0(19)

for some 0 < α < 1 must be of the form

u = b · (xd + φHd )

for some b ∈ R.

2.1. Strategy for the construction of half-space-adapted correctors. In the
present section we give an exposition of our strategy for the construction of half-
space-adapted homogenization correctors (Theorem 1). At several points, it will be
important to keep track of certain constants in the estimates:

• CMean(d, λ), which comes from the mean-value property (17),
• CP (d), which we take to be an upper bound for the Poincaré constant of

the unit ball in Rd with homogeneous Dirichlet boundary conditions and
the Poincaré constant of the unit half-ball B+

1 with homogeneous Dirichlet
boundary conditions on ∂Hd+ ∩B1,
• and CI(d), which comes from the constant-coefficient regularity estimate

(39) below.

We assume that all of these constants are larger than 1.

Step 1: Construction of a sublinear φHd up to a certain scale.

Our approach for the construction of the half-space-adapted corrector φHd is to
adapt the whole-space corrector φd to the Dirichlet boundary conditions on ∂Hd+.
We would like to achieve this by subtracting from φd a sublinearly growing function
ϕ̃ that is a-harmonic on Hd+ and equals φd on the boundary, i. e. by setting φHd :=
φd − ϕ̃ with ϕ̃ being a sublinearly growing solution to the problem

−∇ · (a∇ϕ̃) = 0 in Hd+,(20a)

ϕ̃ = φd on ∂Hd+.(20b)

As (20a) is a linear equation, we can decompose the right-hand side in (20b)
into contributions from dyadic annuli, solve the corresponding problems, and then
add the solutions to obtain ϕ̃. We will show that this sum converges and sums to
a sublinearly growing function.

Pursuing this strategy, let r0 = 2m0 , m0 ∈ N, be a generic dyadic radius. Let
{ηm| − 1 ≤ m} be a radial partition of unity with supp η−1 ⊂ {x ∈ Rd : |x| ≤ r0}
and supp ηm ⊂ {x ∈ Rd : r02m−1 ≤ |x| ≤ r02m+1} for m ≥ 0; suppose that
ηm satisfies an estimate of the form |∇ηm| ≤ 4

r02m . Also, for Lm ∈ (0, r02m+1]

consider one-dimensional cutoff functions Sm(x) = Sm(xd) satisfying Sm(x) = 1
for |xd| ≤ Lm and Sm(x) = 0 for |xd| ≥ 2Lm; suppose that |∇Sm| ≤ 2

Lm
. Note

that we shall later choose Lm � r02m+1.
Introducing the cutoffs χm(x) := ηm(x)Sm(x), we then consider the Lax-Milgram

solutions ϕm ∈ H1
0 (Hd+) to the problem

−∇ · (a∇ϕm) = ∇ · (a∇(χmφd)) in Hd+,(21a)

ϕm = 0 on ∂Hd+.(21b)
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Defining ϕΣ
M :=

∑M
m=−1 ϕm and ϕ̃Σ

M := ϕΣ
M +

∑M
m=−1 χmφd, we see that

φHd,M := φd − ϕ̃Σ
M

solves the corrector equation (12a) in Hd+ with homogeneous Dirichlet boundary

conditions on ∂Hd+ ∩Br02M .

In order to estimate the size of the modification ϕ̃Σ
M on a half-ball B+

r , we will
first deduce an estimate for the “near-field contributions”, i. e. the ϕm for which
the inclusion suppχm ⊆ B16r holds. As we shall see, this is easily done with the
standard energy estimate for the equation (21) and an appropriate estimate for
χmφd. The energy norm of the term χmφd in turn may be made small by an
appropriate choice of Lm.

Lemma 2.1. Let the assumptions of Theorem 1 be satisfied. Let m ≥ −1. Then
there exists Lm � r02m+1 and a constant C1(d, λ) such that the following is true:
For any r > 0 the estimates( 

B+
r

|∇(χmφd)|2 dx
)1/2

≤ C1(d, λ)

(
r02m+1

r

)d/2
δ

1/3
r02m+1(22)

and ( 
B+
r

|∇ϕm|2 dx
)1/2

≤ C1(d, λ)

(
r02m+1

r

)d/2
δ

1/3
r02m+1(23)

hold. In particular, for any r ≥ 1
16r02m+1 the function ϕm satisfies the bound( 

B+
r

|∇ϕm|2 dx
)1/2

≤ C2(d, λ) min

{
1,

(
r02m+1

r

)d/2}
δ

1/3
r02m+1(24)

with C2 := CMeanC18d.

However, we will need the estimate (24) on B+
r also for the “far-field contri-

butions”, i. e. for the ϕm for which suppχm ∩ B+
4r = ∅ holds. For such m with

r02m+1 ≥ 16r, the estimate (24) will be established in Step 3 below.

Step 2: Construction of a sublinearly growing σH
d up to a certain scale.

Having constructed a corrector φHd,M which satisfies the homogeneous Dirichlet

boundary conditions on ∂Hd+ ∩B2Mr0 , we need to construct a corresponding vector

potential σH
d,M for the flux correction, as the vector potential for the flux correction

depends on the corrector through its defining equation (7c). Again, our approach
is to adapt the vector potential σd to take into account the modification φHd,M −φd
of the corrector by adding a correction ψjk,M : We construct sublinearly growing
functions ψjk,M that satisfy

−∇k · ψjk,M = ej ·
(
a(ed +∇φHd,M )− a(ed +∇φd)

)
in Hd+(25)

and define

σH
djk,M := σdjk − ψjk,M .

Note that in order to ensure the skew-symmetry of σH
d,M , we need to construct the

(ψjk,M )jk as skew-symmetric. It turns out that a suitable ansatz is

ψjk,M := ∂kvj,M − ∂jvk,M(26)
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with v,M : Hd+ → Rd solving the equation

−∆vj,M = ej · (a(ed +∇φHd,M )− a(ed +∇φd)) in Hd+,(27a)

vj,M = 0 for j 6= d on ∂Hd+,(27b)

∂dvd,M = 0 on ∂Hd+.(27c)

First, note that the skew-symmetry of ψjk,M is built into the ansatz (26). Further-
more, differentiating the equation (27), we infer

−∆(∇k · vk,M ) = 0 in Hd+,(28a)

∇k · vk,M = 0 on ∂Hd+.(28b)

By the Liouville principle for harmonic functions with homogeneous Dirichlet bound-
ary conditions on Hd+, sublinear growth of ∇k · vk,M entails that ∇k · vk,M ≡ 0.
This leads, as desired, to the conclusion

−∇k · ψjk,M =

d∑
k=1

(∂k∂jvk,M − ∂2
kvj,M )

= ∂j(∇k · vk,M )−∆vj,M

= ej · (a(ed +∇φHd,M )− a(ed +∇φd)).

To summarize, in order to obtain a solution to (25) it suffices to construct solutions
vj,M to (27) for which ∇k · vk,M is a sublinearly growing function (note that we
shall actually prove the stronger statement of sublinear growth of ∇vk,M ).

To construct such a solution vj,M , notice that, as φHd,M − φd is a-harmonic on

Hd+, we may rewrite the right-hand side in (27a) as

ej · (a(∇φHd,M −∇φd)) = ej · a(∇φHd,M −∇φd) + xj∇ · (a(∇φHd,M −∇φd))
= ∇ · (xja(∇φHd,M −∇φd)).

Our strategy, just like in Step 1, is now to work with a decomposition into con-
tributions from dyadic annuli: Reusing the partition of unity ηm from Step 1, we
consider the Lax-Milgram solutions vnj,M of the problems

−∆vnj,M = ∇ · (ηnxja(∇φHd,M −∇φd)) in Hd+,(29a)

vnj,M = 0 for j 6= d on ∂Hd+,(29b)

∂dv
n
d,M (x) = 0 on ∂Hd+.(29c)

Here, in order to find the solutions vnj,M for j 6= d we apply Lax-Milgram to the space

Ḣ1
0 (Hd+). To find the solution vnd,M , we apply Lax-Milgram to the space of locally

integrable functions v with square-integrable gradient subject to the constraintffl
B+
r0
v dx = 0; we equip this space with the norm ||v|| := (

´
Hd+
|∇v|2 dx)1/2.

In order to obtain vj,M , we intend to sum all of the contributions. However,
to ensure that on a half-ball B+

r the “far-field contributions” – i. e. the vnj,M with

2n+1r0 ≥ 16r – do not destroy the smallness of the sum
∑∞
n=−1∇vnj,M , we must

enforce “quadratic” behavior of vnj,M around the origin by subtracting off the linear
growth of vnj,M : Set

bnj,M =:

{
0 if n = −1
∇vnj,M (0) if n 6= −1

.(30)
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Notice that bnjk,M = 0 unless n 6= −1 and either j = d and k 6= d or j 6= d and k = d.
We then obtain the following estimate which in particular shows that vnj,M −bnj,M ·x
indeed displays quadratic behavior in the interior {|x| < 2nr0}:

Lemma 2.2. Let the assumptions of Theorem 1 be satisfied. Let M ≥ −1 and
n ≥ −1. Then for any r ≥ r0 and any j, k ∈ {1, ..., d} we have the estimate

1

r

( 
B+
r

|∂k(vnj,M − bnj,M · x)|2 dx
)1/2

≤ C3(d, λ) min

{
1,
r02n+1

r

} 
B+

r02n+1

|∇φHd,M −∇φd|2 dx

1/2

with C3(d, λ) := 4C4CI .

This estimate immediately enables us to pass to the limit N → ∞ in the sum∑N
n=−1(vnj,M − bnj,M · x).

Lemma 2.3. Let the assumptions of Theorem 1 be satisfied and let the Lm be cho-
sen as in Lemma 2.1. Then for r ≥ r0 and j ∈ {1, ..., d} the series

∑∞
n=−1(vnj,M −

bnj,M ·x) converges absolutely in H1(B+
r ) to a limit vj,M . For this limit, the function

ψjk,M = ∂kvj,M − ∂jvk,M satisfies the equation

−∇k · ψjk,M = ej · a(∇φHd,M −∇φd) in Hd+(31)

and for any r ≥ r0 and any j, k ∈ {1, ..., d} we have the estimate

1

r

( 
B+
r

|ψjk,M |2 dx
)1/2

≤ 2C3(d, λ)

∞∑
n=−1

min

{
1,
r02n+1

r

}

×

 
B+

r02n+1

|∇φHd,M −∇φd|2 dx

1/2

.(32)

Step 3: Inductively building a sublinear corrector on larger scales.

Notice that in the previous two steps the radius r0 was arbitrary. In the present
step, we now choose r0 independently of m in such a way that the estimate (24)
does not only hold for r ≥ 1

16r02m+1, but more generally for arbitrary r ≥ r0.
To extend the inequality (24) for ϕm+1 to arbitrary r ≥ r0, we shall crucially rely

on the mean-value property (17) for a-harmonic functions for radii r ∈ [r0, r02m].
To this aim, we proceed by induction in m; to show (24) for ϕm+1, we shall use
the already-constructed corrector (φHd,m, σ

H
d,m) and establish that it satisfies the

estimate (15), which by Theorem 2 entails the mean-value property (17) for a-
harmonic functions on scales r ∈ [r0, r02m] with R = r02m.

We therefore have to choose the dyadic radius r0 = 2m0 in such a way that we
obtain a bound which guarantees for all m that the smallness condition (15) is
satisfied by (φHd,m, σ

H
d,m).

Lemma 2.4. Let the assumptions of Theorem 1 be satisfied – in particular, sup-
pose that for the coefficient field a there exist whole-space correctors which satisfy
the quantitative sublinear growth condition (11) – and let the Lm be chosen as in
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Lemma 2.1. Then there exists r0 > 0 independent of M ∈ {−1, 0, 1, 2, . . .} with the
following property: If the ϕm satisfy the estimate( 

B+
r

|∇ϕm|2 dx
)1/2

≤ C2 min

{
1,

(
r02m+1

r

)d/2}
δ

1/3
r02m+1(33)

for all r ≥ r0 and all m ∈ {−1, . . . ,M} (recall the definition C2 := CMeanC18d),
then (φHd,M , σ

H
d,M ) satisfies the smallness condition (15) for α = 1/2 and all r ≥ r0,

i. e. we have

δHr ≤
1

C 1
2
(d, λ)

.

As a consequence, in this case ϕM+1 also satisfies the estimate (33) for all r ≥ r0.

Note that the start of the induction – i. e. the estimate (33) for m = −1 – is
provided by Lemma 2.1.

Step 4: Passage to the limit in M .

In the last step, we pass to the limit M →∞ to obtain the half-space-adapted cor-
rectors φHd and σH

d as the limits of the sequences φHd,M and σH
d,M , thereby establishing

Theorem 1.

3. Adaption of the Correctors to the Half-Space Setting

3.1. Step 1 – Estimates for the modification of the corrector φd in the
near-field case. Lemma 2.1 is basically a consequence of appropriate energy es-
timates for the defining equation of ϕm and a suitable bound for χmφd.

Proof of Lemma 2.1. Let us abbreviate R := r02m+1. Testing (21a) with ϕm, mak-
ing use of the fact that ϕm vanishes on ∂Hd+, and estimating using the uniform
ellipticity and boundedness of a yields(ˆ

Hd+
|∇ϕm|2 dx

)1/2

.

(ˆ
B+
R

|φd∇χm|2 dx

)1/2

+

(ˆ
B+
R

|χm∇φd|2 dx

)1/2

.(34)

We treat the two terms on the right hand side separately. For the first, using our
definition of χm and Lm ≤ R, we find that(ˆ

B+
R

|φd∇χm|2 dx

)1/2

.
Rd/2

Lm

( 
B+
R

|φd|2 dx

)1/2

≤ R
d+2
2

Lm
δR.(35)

Let us now even-reflect χm such that it is defined on Rd. We may then test the
corrector equation (7a) with χ2

m(φd + xd). After using Young’s inequality and the
uniform ellipticity of a, this yieldsˆ

Rd
χ2
m|∇φd + ed|2 dx .

ˆ
Rd
|∇χm|2|φd + xd|2 dx.(36)

Now notice that we have suppχm ⊂ [−R,R]d−1 × [−2Lm, 2Lm]; in particular, on
suppχm we have |xd| ≤ 2Lm. The triangle inequality in L2(BR) along with Young’s
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inequality, the estimate (36), and the bound |∇χm| ≤ C
Lm

then yieldˆ
BR

|χm∇φd|2 dx .
ˆ
BR

χ2
m dx+

ˆ
BR

χ2
m|∇φd + ed|2 dx

(36)

. | suppχm|+
1

L2
m

ˆ
suppχm

|φd|2 + |xd|2 dx

. | suppχm|+
Rd

L2
m

 
BR

|φd|2 dx

. Rd−1Lm +
Rd+2

L2
m

δ2
R.

The second term on the right-hand side of (34) is therefore estimated by(ˆ
B+
R

|χm∇φd|2 dx

)1/2

. R(d−1)/2L1/2
m +

R(d+2)/2

Lm
δR.(37)

Together, (37), (35), and (34) give that( 
B+
r

|∇ϕm|2 dx
)1/2

+

( 
B+
r

|∇(χmφd)|2 dx
)1/2

.

(
R

r

)d/2
R

Lm
δR +

(
R

r

)d/2(
Lm
R

)1/2

.

Choosing Lm := εR = εr02m+1, we can optimize this expression in ε. Plugging in

the optimal ε = δ
2/3
R yields( 

B+
r

|∇ϕm|2 dx
)1/2

+

( 
B+
r

|∇(χmφd)|2 dx
)1/2

≤ C1

(
r02m+1

r

)d/2
δ

1/3
r02m+1 .

This directly gives (22) and (23). By the definition of C2, for r ≥ 1
16r02m+1 this

also entails the estimate (24). �

3.2. Step 2 – Estimates for the modification of the vector potential σ. The
following bound forms the basis for the estimates on the size of the modification
ψjk of the flux correction σd. It is obtained by an energy estimate for vnj,M and a
mean-value property of harmonic functions.

Lemma 3.2. Using the notation from Section 2.1, let M ≥ −1, n ≥ −1, and
abbreviate R := r02n+1. Then there exists a constant C4 = C4(d) such that for any
r ≥ 1

16R the estimate( 
B+
r

|∇vnj,M − bnj,M |2 dx
)1/2

≤ C4R

( 
B+
R

|∇φHd,M −∇φd|2 dx

)1/2

holds.

Proof. Notice that the weak formulation of equation (29) readsˆ
Hd+
∇vnj,M · ∇w dx = −

ˆ
Hd+

ηnxja(∇φHd,M −∇φd) · ∇w dx

for any test function w ∈ H1
0 (Hd+) in case j 6= d respectively any w ∈ H1(Hd+) in

case j = d. In this weak formulation, no boundary terms appear: For j 6= d, this is a
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consequence of the homogeneous Dirichlet boundary conditions satisfied by the test
functions on ∂Hd+. For j = d, this is a consequence of the homogeneous Neumann

boundary condition ∂dv
n
d,M = 0 on ∂Hd+ and the fact that xd = 0 on ∂Hd+. Testing

this weak formulation with vnj,M and using the property supp ηn ⊂ {|x| ≤ R} of the

cutoff ηn as well as the boundedness of a (see (6)), we obtain the energy estimate(ˆ
Hd+
|∇vnj,M |2 dx

)1/2

≤ R

(ˆ
B+
R

|∇φHd,M −∇φd|2 dx

)1/2

.(38)

Using the fact that for n 6= −1 the functions ∂kv
n
j,M are harmonic in {|x| < R

4 }
with homogeneous Dirichlet or Neumann boundary conditions on ∂Hd+ ∩{|x| < R

4 }
(depending on j and k) and therefore satisfy a mean-value property, we deduce by
(30)

|bnj,M | ≤ |∇vnj,M (0)| ≤ C(d)

( 
BR/4

|∇vnj,M |2 dx

)1/2

≤ C(d)R

( 
B+
R

|∇φHd,M −∇φd|2 dx

)1/2

.

The lemma is now an easy consequence of these two estimates. �

Our next goal is to prove Lemma 2.2. To this aim, recall the following basic
fact about harmonic functions: For any harmonic function w on B+

R with either
homogeneous Dirichlet or homogeneous Neumann boundary conditions on ∂Hd+ ∩
BR, for any r ∈ (0, R/4] we have( 

B+
r

|w − w(0)|2 dx
)1/2

≤ CI(d)
r

R

( 
B+
R

|w|2 dx

)1/2

.(39)

This inequality follows from the regularity estimate (56) below and the Caccioppoli
estimate for harmonic function on B+

R with homogeneous Neumann or Dirichlet
boundary conditions on ∂Hd+∩BR (for the Dirichlet case, see Lemma 4.1; the proof
in the Neumann case is completely analogous).

Proof of Lemma 2.2. For a given radius r, we separately consider the case of a
“near-field contribution” – defined as contributions for which n satisfies r02n+1 ≤
16r – and the case of a “far-field contribution”, i. e. the case r02n+1 > 16r. Notice
that, since r ≥ r0, n = −1 always corresponds to a near-field contribution.

For the near-field contributions, by Lemma 3.2 we have the estimate

1

r

( 
B+
r

|∂k(vnj,M − bnj,M · x)|2 dx
)1/2

≤ C4
r02n+1

r

 
B+

r02n+1

|∇φHd,M −∇φd|2 dx

1/2

≤ 16C4 min

{
1,
r02n+1

r

} 
B+

r02n+1

|∇φHd,M −∇φd|2 dx

1/2

.(40)
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Next we address the far-field contributions, i. e. the contributions with r02n+1

r > 16.

Notice that ∂kv
n
j,M −bnjk,M is harmonic in B+

r02n−1 and satisfies either homogeneous

Dirichlet or homogeneous Neumann boundary conditions on ∂Hd+ ∩ Br02n−1 (de-
pending on j and k). Furthermore, we have ∂kv

n
j,M (0)− bnjk,M = 0 and r ≤ r02n−3.

Therefore, an application of (39) to w := ∂kv
n
j,M − bnjk,M followed by Lemma 3.2 –

the latter applied with r := r02n−1 and R := r02n+1 – yields the desired bound

1

r

( 
B+
r

|∂k(vnj,M − bnj,M · x)|2 dx
)1/2

≤ CI
1

r02n−1

 
B+

r02n−1

|∂kvnj,M − bnjk,M |2 dx

1/2

≤ 4C4CI

 
B+

r02n+1

|∇φHd,M −∇φd|2 dx

1/2

.

�

Proof of Lemma 2.3. By Lemma 2.2, for any r > 0 absolute convergence in H1(B+
r )

of the series
∞∑

n=−1

(vnj,M − bnj,M · x)

towards a limit vj,M follows once we have established an estimate of the form

∞∑
n=−1

 
B+

r02n+1

|∇φHd,M −∇φd|2 dx

1/2

<∞.(41)

Note that since vnj,M is a weak solution of (29), the difference vnj,M − bnj,M ·x is also

a weak solution of (29). One may therefore pass to the infinite sum in the weak
formulation of the problems (29) (with vnj,M replaced by vnj,M −bnj,M ·x) to conclude

that the limit vj,M is a weak solution of the equation (27). Here, as test functions
one uses smooth functions with bounded support in Rd (case j = d) respectively
with compact support in Hd+ (case j 6= d).

Lemma 2.2 also implies the bound

1

r

( 
B+
r

|∂kvj,M |2 dx
)1/2

≤ C3(d, λ)

∞∑
n=−1

min

{
1,
r02n+1

r

} 
B+

r02n+1

|∇φHd,M −∇φd|2 dx

1/2

.

Thus, the estimate (32) is a direct consequence of Lemma 2.2. Furthermore, once
we have established an estimate of the form (41), this bound also entails sublinear
growth of the function ∇k · vk,M in the sense

lim
r→∞

1

r

( 
B+
r

|∇k · vk,M |2 dx
)1/2

= 0.
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Recalling the derivation of (25) in the discussion of Step 2 in Section 2.1, we then
deduce that ψjk,M indeed satisfies (31).

It therefore only remains to show (41). For any m ∈ {−1, . . . ,M}, the bounds
(22) and (23) – applied with r := r02n+1 – entail that

 
B+

r02n+1

|∇ϕm|2 dx

1/2

+

 
B+

r02n+1

|∇(χmφd)|2 dx

1/2

. 2d(m−n)/2δ
1/3
r02m+1 .

Taking the sum with respect to m and recalling that φHd,M −φd = −
∑M
m=−1(ϕm +

χmφd), we get

 
B+

r02n+1

|∇φHd,M −∇φd|2 dx

1/2

. 2−dn/2
M∑

m=−1

2dm/2δ
1/3
r02m+1 .

This directly implies (41). �

3.3. Step 3 – Estimates for the modification of the corrector φd in the
far-field case.

Proof of Lemma 2.4. For the moment, let r0 = 2m0 > 0 be an arbitrary dyadic
radius for which the ϕm with m ∈ {−1, . . . ,M} satisfy (33) for all r ≥ r0. By the
triangle inequality in L2(B+

r ) and the Poincaré inequality on B+
r with homogeneous

Dirichlet boundary conditions on ∂Hd+∩Br, writing φd−ϕ̃Σ
M = (1−

∑M
m=−1 χm)φd−

ϕΣ
M we get

1

r

( 
B+
r

∣∣φd − ϕ̃Σ
M

∣∣2 + |σd − ψ,M |2 dx
)1/2

≤ 1

r

( 
B+
r

|(φd, σd)|2 dx
)1/2

+
1

r

( 
B+
r

|ψ,M |2 dx
)1/2

(42)

+ CP

( 
B+
r

|∇ϕΣ
M |2 dx

)1/2

.

Notice that for r ≥ r0 Lemma 2.3 yields

1

r

( 
B+
r

|ψ,M |2
)1/2

≤ 2d2C3

∞∑
n=−1

min

{
1,
r02n+1

r

} 
B+

r02n+1

|∇ϕ̃Σ
M |2 dx

1/2

.(43)
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Using our assumption that the ϕm with m ∈ {−1, . . . ,M} satisfy (33) for any
r ≥ r0 – and therefore in particular for r := r02n+1 – gives that

∞∑
n=−1

min

{
1,
r02n+1

r

} 
B+

r02n+1

|∇ϕΣ
M |2 dx

1/2

≤ C2

M∑
m=−1

∞∑
n=−1

min
{

1, 2
d(m−n)

2

}
δ

1/3
r02m+1

≤ C2

M∑
m=−1

(
m+ 1 +

1

1− 2−d/2

)
δ

1/3
r02m+1 .(44)

Furthermore, we may use that χm is supported in B+
r02m+1 \ B+

r02m−1 for m 6= −1

and (22) (applied with r := r02n+1) to get that

M∑
m=−1

∞∑
n=−1

min

{
1,
r02n+1

r

} 
B+

r02n+1

|∇(χmφd)|2 dx

1/2

≤
M∑

m=−1

∞∑
n=m−1

 
B+

r02n+1

|∇(χmφd)|2 dx

1/2

≤ C1

M∑
m=−1

∞∑
n=m−1

2
d(m−n)

2 δ
1/3
r02m+1

≤ C1

M∑
m=−1

2d/2

1− 2−d/2
δ

1/3
r02m+1 .(45)

Then, continuing (43) with (44) and (45) yields

1

r

( 
B+
r

|ψ,M |2 dx
)1/2

≤ 2d2C3(C1 + C2)

M∑
m=−1

(
m+ 1 +

2d/2

1− 2−d/2

)
δ

1/3
r02m+1

≤ 2d2C3(C1 + C2)

M+m0+1∑
k=m0

(
k +

2d/2

1− 2−d/2

)
δ

1/3

2k
.

To treat the other term of (42) we again use (33), which gives( 
B+
r

|∇ϕΣ
M |2 dx

)1/2

≤ C2

M∑
m=−1

min

{
1,

(
r02m+1

r

)d/2}
δ

1/3
r02m+1

≤ C2

M+m0+1∑
k=m0

δ
1/3

2k
.
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So, for r ≥ r0 we arrive at

1

r

( 
B+
r

∣∣φd − ϕ̃Σ
M

∣∣2 + |σd − ψ,M |2 dx
)1/2

≤ 2δr + 2d2C3(C1 + C2)

∞∑
k=m0

(
k +

2d/2

1− 2−d/2

)
δ

1/3

2k

+ CPC2

∞∑
k=m0

δ
1/3

2k
.(46)

As a consequence of the estimate (46), our assumption (11) allows us to choose
r0 = 2m0 large enough – independently of M – such that for (φHd,M , σ

H
d,M ) the

estimate (15) is satisfied for α = 1/2 and r ≥ r0.

Thus, we infer the estimate (33) for ϕM+1: The case r02(M+1)+1

r ≤ 16 has already
been treated in Lemma 2.1; it just remains to extend the estimate to the case
r02(M+1)+1

r > 16. As (φHd,M , σ
H
d,M ) is a half-space-adapted corrector on B+

R with R :=

r02M which satisfies (15) for α = 1/2 and r ≥ r0, Theorem 2 is applicable and yields
the mean-value property (17) for a-harmonic functions on B+

r02M
with homogeneous

Dirichlet boundary conditions on ∂Hd+ ∩Br02M . Since ϕM+1 is indeed a-harmonic

in B+
r02M

with homogeneous Dirichlet boundary conditions on ∂Hd+ ∩ Br02M , we

deduce for r ∈ [r0, r02M ] using in the second step the estimate (23) for r := r02M

( 
B+
r

|∇ϕM+1|2 dx
)1/2

≤ CMean

 
B+

r02M

|∇ϕM+1|2 dx

1/2

≤ CMeanC12dδ
1/3

r02(M+1)+1 .

This shows (33) for ϕM+1 and r ∈ [r0, r02M ]. �

3.4. Step 4 – Passage to the limit M →∞.

Proof of Theorem 1. Let the Lm be chosen as in Lemma 2.1. Let r0 = 2m0 be
chosen as in Lemma 2.4. By Lemma 2.4, the estimate (33) then holds for all
m ≥ −1 (the start of the induction – i. e. (33) for m = −1 – is provided by Lemma
2.1).

For i 6= d we then choose φHi := φi|Hd+ and σH
ijk := σijk|Hd+ . By our assumption

(11), we therefore have to verify the assertion on sublinear growth iv) in our theorem
only for φHd and σH

d .
Part 1: The corrector φHd .
We first show that the series

∑∞
m=−1 ϕm converges absolutely in H1(B+

r ) for all

r ≥ r0. By the Poincaré inequality for functions in H1(B+
r ) with homogeneous

Dirichlet boundary conditions on ∂Hd+ ∩Br, it suffices to calculate (using (33))

∞∑
m=−1

( 
B+
r

|∇ϕm|2 dx
)1/2

≤ C2

∞∑
m=−1

δ
1/3
r02m+1 ≤ C2

∞∑
k=m0

δ
1/3

2k

and to use the summability of the {δ1/3

2k
}k (see (11)).
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Again, combining (33) with the Poincaré inequality yields for the sum ϕ :=∑∞
m=−1 ϕm = limM→∞ ϕΣ

M

1

r

( 
B+
r

|ϕ|2 dx
)1/2

≤ sup
M

1

r

( 
B+
r

|ϕΣ
M |2 dx

)1/2

≤ CPC2

∞∑
k=m0

min

{
1,

(
2k

r

)d/2}
δ

1/3

2k
(47)

for all r ≥ r0.
Next, we show that {

∑M
m=−1 χmφd}M forms a Cauchy sequence in H1(B+

r ) for
all r ≥ r0. Using the fact that χmφd vanishes outside of Br02m+1 \Br02m−1 (except
for m = −1, for which χ−1φd vanishes outside of Br0), the Poincaré inequality for
functions in H1(Br02m+1) that vanish on ∂Br02m+1 ∩Hd+ yields that for any r > 0(ˆ

Br

|χmφd|2 dx
)1/2

. r

(ˆ
Br

|∇(χmφd)|2 dx
)1/2

.(48)

Using (22) and again suppχm ⊂ Br02m+1 \Br02m−1 , we see that

∞∑
m=−1

( 
Br

|∇(χmφd)|2 dx
)1/2

≤ 2dC1

∞∑
m=−1

min

{
1,

(
r02m+1

r

)d/2}
δ

1/3
r02m+1

≤ 2dC1

∞∑
k=m0

min

{
1,

(
2k

r

)d/2}
δ

1/3

2k
.(49)

So,
{∑M

m=−1 χmφd

}
M

forms a Cauchy sequence in H1(B+
r ).

The function ϕ̃ := ϕ +
∑∞
m=−1 χmφd = limM→∞ ϕ̃Σ

M is a weak solution of the

problem (20): (20) is satisfied on Br by all ϕ̃Σ
M for which r02M ≥ r holds. Thus,

(20) carries over to the limit M → ∞ for arbitrarily big radii r. Therefore (20)
holds globally for the limit ϕ̃, which entails that φHd = φd − ϕ̃ solves (12).

By (47), (48), and (49), our assumption (11) implies that ϕ̃ and, therefore,
φHd = φd − ϕ̃ are sublinear in the sense

lim
r→∞

1

r

( 
Br

|φHd |2 dx
)1/2

= 0.

Part 2: The vector potential σH
d .

We now show that {ψjk,M}M forms a Cauchy sequence in L2(B+
r ) for all r ≥ r0;

furthermore, we show that the limit ψjk has sublinear growth. To this aim, observe
that the differences vnj,M+1 − vnj,M are weak solutions to the problem

−∆(vnj,M+1 − vnj,M ) = −∇ · (ηnxja∇(ϕM+1 + χM+1φd)) in Hd+,
(50a)

vnj,M+1 − vnj,M = 0 if j 6= d on ∂Hd+,(50b)

∂d(v
n
d,M+1 − vnd,M ) = 0 on ∂Hd+.(50c)

To shorten the subsequent computations, let us use the convention vnj,−2 ≡ 0 and
bnj,−2 = 0; then (50) holds also for M = −2.
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Estimating analogously to the proof of Lemma 2.2 – note that the only difference
between the equation satisfied by vnj,M and the equation satisfied by vnj,M+1 − vnj,M
is the right-hand side – , we deduce that for any r ≥ r0

1

r

( 
B+
r

|∂k
(
vnj,M+1 − vnj,M − (bnj,M+1 − bnj,M ) · x

)
|2 dx

)1/2

≤ C3 min

{
1,
r02n+1

r

} 
B+

r02n+1

|∇(ϕM+1 + χM+1φd)|2 dx

1/2

.

Taking the sum with respect to n, we deduce that the limits vj,M of the series∑∞
n=−1(vnj,M − bnj,M · x) satisfy

1

r

( 
B+
r

|∂k(vj,M+1 − vj,M )|2 dx
)1/2

≤ C3

∞∑
n=−1

min

{
1,
r02n+1

r

} 
B+

r02n+1

|∇(ϕM+1 + χM+1φd)|2 dx

1/2

.

Taking the sum with respect to M and estimating the right-hand side by the in-
equality (33) and the estimate (22) – both inequalities applied with r replaced by
r02n+1 and m replaced by M + 1 – (note again that χM+1φd vanishes on B+

r02n+1

in case r02M+1−1 ≥ r02n+1 and M + 1 6= −1), we infer

1

r

∞∑
M=−2

( 
B+
r

|∂k(vj,M+1 − vj,M )|2 dx
)1/2

(51)

≤ C3(C2 + 2dC1)

∞∑
n=−1

min

{
1,
r02n+1

r

} ∞∑
M=−2

min
{

1, 2d(M+1−n)/2
}
δ

1/3

r02M+1+1 .

Now, by this estimate, it is sufficient to show
∞∑

n=−1

∞∑
M=−2

min
{

1, 2d(M+1−n)/2
}
δ

1/3

r02M+1+1 <∞(52)

in order to obtain both the Cauchy sequence property of ∇vj,M in L2(Br) and the
sublinearity property

lim
r→∞

1

r

( 
B+
r

|∂kvj |2 dx
)1/2

≤ lim
r→∞

sup
M≥−1

1

r

( 
B+
r

|∂kvj,M |2 dx
)1/2

= 0.

Note that by ψjk := ∂kvj − ∂jvk and σH
djk = σdjk − ψjk, this estimate then directly

implies the desired result

lim
r→∞

1

r

( 
B+
r

|σH
d |2 dx

)1/2

= 0.

Furthermore, the ψjk,M are solutions to the equation (25). Since we can pass to the
limit M →∞ in the weak formulation of (25) for any smooth compactly supported
test function, this shows that the limit σH

djk := limM→∞(σdjk − ψjk,M ) solves the

equation (13).
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However, to see that (52) holds, we just need to estimate

∞∑
n=−1

∞∑
M=−2

min
{

1, 2d(M+1−n)/2
}
δ

1/3

r02M+1+1

≤
∞∑

M=−2

(
M + 2 +

1

1− 2−d/2

)
δ

1/3

r02M+1+1 =

∞∑
k=m0

(
k −m0 +

1

1− 2−d/2

)
δ

1/3

2k

and use the summability property (11). This finishes the proof of our theorem. �

4. Proofs of the Regularity Results Theorem 2 and Corollary 1.1

In the proof of Theorem 2, we shall need the following Caccioppoli inequality.

Lemma 4.1. Let a be a coefficient field satisfying the ellipticity and boundedness
assumptions (6). For any a-harmonic function u on B+

R subject to homogeneous

Dirichlet boundary conditions on ∂Hd+ ∩ ∂B+
R , the estimate( 

B+
R/2

|∇u|2 dx

)1/2

.
1

R

( 
B+
R

|u|2 dx

)1/2

.(53)

holds.

Proof. Testing the equation

−∇ · (a∇u) = 0 in B+
R

with η2u, where η is a radial cut-off with η ≡ 1 in BR/2, η ≡ 0 outside of BR,

0 ≤ η ≤ 1 everywhere, and |∇η| ≤ 3
R , we get

ˆ
B+
R

η2∇u · a∇u+ 2ηu∇η · a∇u dx = 0.

Note that the boundary terms vanish as η2u is zero on ∂B+
R . Using the uniform

ellipticity of a and Young’s inequality allows us to write

λ

ˆ
B+
R

η2|∇u|2 dx ≤ 2

ˆ
B+
R

|ηu∇η · a∇u| dx ≤
ˆ
B+
R

λ

2
η2|∇u|2 +

2

λ
|∇η|2u2 dx.

The properties of η finish the argument. �

The following classical regularity properties of constant-coefficient elliptic equa-
tions will play a crucial rule in the derivation of the excess-decay estimate.

Lemma 4.2. Let v be a weak solution to the constant-coefficient equation −∇ ·
(ahom∇v) = 0 in B+

R′ with homogeneous Dirichlet boundary conditions on ∂B+
R′ ∩

∂Hd+, where ahom is a positive definite matrix. Then there exists some β = β(d, λ) >

0 such that for any positive ρ ≤ 1
2R
′ and any positive r ≤ 1

2R
′ the following
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estimates hold:

r2 sup
B+
r

|∇2v|2 .
( r
R′

)2
 
B+

R′

|∇v|2 dx,(54a)

ˆ
B+

R′\B
+

R′−2ρ

|∇v|2 dx . R′
( ρ
R′

)β ˆ
∂B+

R′

|∇tanv|2 dS,(54b)

sup
B+

R′−ρ

(|∇2v|2 +
1

ρ2
|∇v|2) .

1

ρ2

(
R′

ρ

)d  
B+

R′

|∇v|2 dx.(54c)

Proof. For the third estimate, notice that if x′ ∈ S where S = B+
R′−ρ ∩ {xd ≥

ρ
2}

then v is ahom-harmonic on Bρ/2(x′). Therefore, for these x′ we have the inner
regularity estimate

sup
y∈Bρ/4(x′)

ρ2|∇2v(y)|2 + sup
y∈Bρ/4(x′)

|∇v(y)|2 . 1

ρd

ˆ
Bρ/2(x′)

|∇v|2 dx,(55)

which follows by an iterated use of the Caccioppoli inequality on balls to derive an
Hk estimate for k large enough and a subsequent use of the Sobolev embedding.

For x′ ∈ S∂ , where S∂ = ∂Hd+ ∩ B+
R′−ρ, we get an analogous estimate for half-

balls: In this case, the result can also be shown by proving Hk regularity estimates
for k large enough followed by the Sobolev embedding. The derivation of Hk-type
regularity estimates is again standard: One may proceed by repeatedly using the
Caccioppoli estimate for v and its tangential (higher) derivatives ∂i1 . . . ∂ik−1

v with
i1, . . . , ik−1 6= d. To obtain estimates on higher derivatives which involve multiple
derivatives in the normal direction ed – only estimates for derivatives containing
a single normal derivative are provided by the aforementioned applications of the
Caccioppoli inequality – one directly uses the equation satisfied by v. Thus, for
x′ ∈ S∂ we have

sup
y∈B+

ρ/2
(x′)

ρ2|∇2v(y)|2 + sup
y∈B+

ρ/2
(x′)

|∇v(y)|2 . 1

ρd

ˆ
B+
ρ (x′)

|∇v|2 dx.(56)

The estimate (54a) is an immediate consequence of (56) with ρ := R′ and x′ = 0.
To obtain (54c) let

s = sup
x′∈S

sup
y∈Bρ/4(x′)

(|∇2v(y)|2 +
1

ρ2
|∇v(y)|2),

s∂ = sup
x′∈S∂

sup
y∈B+

ρ/2
(x′)

(|∇2v(y)|2 +
1

ρ2
|∇v(y)|2).

Using (55) and (56), we may then write

sup
x∈B+

R′−ρ

(|∇2v|2 +
1

ρ2
|∇v|2) ≤ max{s, s∂}

. sup
x′∈S∪S∂

1

ρd+2

ˆ
Bρ(x′)∩Hd+

|∇v|2 dx . 1

ρ2

(
R′

ρ

)d  
B+

R′

|∇v|2 dx,

finishing the proof of (54c).
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Finally, for the inequality (54b) we first extend v to BR′ by odd-reflection. The
extended v satisfies the elliptic equation

−∇ · (ãhom∇v) = 0 in BR′

with

(ãhom)ij =



(ahom)ij for xd > 0,

(ahom)ij for xd < 0 and i 6= d, j 6= d,

−(ahom)ij for xd < 0 and i = d, j 6= d,

−(ahom)ij for xd < 0 and i 6= d, j = d,

(ahom)ij for xd < 0 and i = j = d.

If we then let v̄ be the harmonic extension of v|∂BR′ to BR′ , we have the estimate

||∇v̄||L2/(1−β)(BR′ )
. R′

1/2−dβ/2||∇tanv||L2(∂BR′ )
, provided that β > 0 is not too

large. Furthermore, Meyers’ estimate [23] states that for any β > 0 small enough
(depending on d and λ), the solution v − v̄ to the equation

−∇ · (ãhom∇(v − v̄)) = ∇ · (ãhom∇v̄) in BR′ ,

v − v̄ = 0 on ∂BR′

satisfies the bound ||∇(v − v̄)||L2/(1−β)(BR′ )
. ||ãhom∇v̄||L2/(1−β)(BR′ )

. Combining
this estimate with the bound on v̄ yields that

||∇v||L2/(1−β)(B+

R′ )
. R′

1/2−dβ/2||∇tanv||L2(∂B+

R′ )
.

It then follows by Hölder’s inequality that(ˆ
B+

R′\B
+

R′−2ρ

|∇v|2 dx

)1/2

≤ |B+
R′ \B

+
R′−2ρ|

β/2

(ˆ
B+

R′

|∇v|2/(1−β) dx

)(1−β)/2

. (R′)1/2−β/2ρβ/2

(ˆ
∂B+

R′

|∇tanv|2 dS

)1/2

,

concluding the proof of (54b). �

We now turn to the proof of the excess-decay estimate.

Proof of Theorem 2.
Step 1:
In the first step of the proof, we show that for each r < R there exists b ∈ R such
that the estimate 

B+
r

|∇u− b(ed +∇φHd )|2 dx

.

(( r
R

)2 (
1 + δ2

)
+

(
R

r

)d
δ2β/(d+2+β)

) 
B+
R

|∇u|2 dx(57)

is valid, with the abbreviation

δ := max
{
δH2r, δ

H
R

}
.

In the proof, for convenience we make use of the Einstein summation convention,
i. e. whenever an index appears twice in an expression, summation with respect to
the index is implied.
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Note that for r ∈
[
R
4 , R

]
the estimate trivially holds for b = 0. It is therefore

sufficient to show (57) for r ≤ R/4. To do this, we first choose a radius R′ ∈ (R2 , R)
such that

(58)

ˆ
∂B+

R′

|∇tanu|2 dx . 1

R

ˆ
B+
R\B

+
R/2

|∇u|2 dx . 1

R

ˆ
B+
R

|∇u|2 dx.

We know that such a radius exists by writing the middle integral in polar coordi-
nates and using that ∇tanu = 0 on ∂Hd+ ∩BR.

Let v be the ahom-harmonic function that coincides with u on ∂B+
R′ . To show

the estimate (57) we compare ∇u to ∇v corrected as suggested by the two-scale
expansion (8). Notice that, due to the boundary conditions of v, we know that
∇v(0) only has a normal component. This observation allows us to write

ˆ
B+
r

|∇u− ∂dv(0)(ed +∇φHd )|2 dx

.
ˆ
B+
r

|(∇v −∇v(0))(id +∇φH)|2 dx+

ˆ
B+
r

|∇u− ∂iv(ei +∇φHi )|2 dx.(59)

Notice that the second term on the right hand side is the gradient of the “homoge-
nization error” coming from the ansatz for v given by the two-scale expansion; see
(8). To estimate this term, we first derive an estimate for

w := u− (v + ηφHi ∂iv),

where η is a cut-off with 0 ≤ η ≤ 1, η ≡ 1 in B+
R′−2ρ, η ≡ 0 outside of B+

R′−ρ, and

|∇η| ≤ C
ρ . We will later optimize the width of the boundary-layer introduced by

ρ, but for the moment we only assume that 0 < ρ ≤ 1
4R
′. The function w satisfies

the equation

−∇ · (a∇w) = ∇ · ((1− η)(a− ahom)∇v + (φHi a− σH
i )∇(η∂iv)) in B+

R′ .(60)

To see this, one uses that u is a-harmonic, that φHi solves the corrector equation
(7a) on B+

R′ , and the defining property (7c) of σH, which gives

−∇ · (a∇w)

= ∇ ·
(
a∇v + η∂iva∇φHi

)
+∇ · (φHi a∇(η∂iv))

= ∇ ·
(
(1− η)a∇v + η∂iva(ei +∇φHi )

)
+∇ · (φHi a∇(η∂iv))

= ∇ · ((1− η)a∇v) +∇(η∂iv) · a(ei +∇φHi ) +∇ · (φHi a∇(η∂iv))

= ∇ · ((1− η)(a− ahom)∇v) +∇(η∂iv) · (a(ei +∇φHi )− ahomei)
+∇ · (φHi a∇(η∂iv))

= ∇ · ((1− η)(a− ahom)∇v) +∇(η∂iv) · (∇ · σH
i ) +∇ · (φHi a∇(η∂iv)).

To complete the calculation, we use the skew-symmetry of the vector potential σH
ijk

in the form ∇(η∂iv) · (∇ · σH
i ) = −∇ · (σH

i ∇(η∂iv)).
Notice that, due to the cut-off η, the boundary conditions of φHd , and the bound-

ary conditions of v, w satisfies homogeneous Dirichlet boundary conditions on ∂B+
R′ .
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Therefore, the standard energy estimate for the equation (60) reads

(ˆ
B+

R′

|∇w|2 dx

)1/2

≤ 1

λ

(ˆ
B+

R′

|(1− η)(a− ahom)∇v + (φHi a− σH
i )∇(η∂iv)|2 dx

)1/2

.

The boundedness of a and ahom and the properties of η then imply

ˆ
B+

R′−2ρ

|∇u− ∂iv(ei +∇φHi )|2 dx

.
ˆ
B+

R′\B
+

R′−2ρ

|∇v|2 dx+

ˆ
B+

R′−ρ

|(φH, σH)|2(|∇2v|2 +
1

ρ2
|∇v|2) dx.(61)

Due to the conditions that we have placed on r, ρ, and R′ we have r ≤ R′ − 2ρ.
Therefore the second term on the right hand side of (59) can be estimated by the
formula (61). This yields

ˆ
B+
r

|∇u− ∂dv(0)(ed +∇φHd )|2 dx

.
ˆ
B+
r

|∇v −∇v(0)|2|id +∇φH|2 dx

+

ˆ
B+

R′−B
+

R′−2ρ

|∇v|2 dx+

ˆ
B+

R′−ρ

|(φH, σH)|2(|∇2v|2 +
1

ρ2
|∇v|2) dx

≤ r2 sup
B+
r

|∇2v|2
ˆ
B+
r

|id +∇φH|2 dx

+

ˆ
B+

R′\B
+

R′−2ρ

|∇v|2 dx+ sup
B+

R′−ρ

(|∇2v|2 +
1

ρ2
|∇v|2)

ˆ
B+
R

|(φH, σH)|2 dx.(62)

To further process this estimate, we exploit that v solves the constant-coefficient
equation −∇ · (ahom∇v) = 0 in B+

R′ with homogeneous Dirichlet boundary condi-
tions on ∂Hd+∩BR′ ; thus the estimates (54) are available. Furthermore, notice that
the difference v − u solves

−∇ · (ahom∇(v − u)) = ∇ · (ahom∇u) in B+
R′ ,

v − u = 0 on ∂B+
R′ .

Testing this equation with v − u and using Young’s inequality yields

(63)

ˆ
B+

R′

|∇v|2 dx ≤ 2

ˆ
B+

R′

|∇u|2 dx+ 2

ˆ
B+

R′

|∇(v − u)|2 dx .
ˆ
B+

R′

|∇u|2 dx.
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Applying (54) and (63) to the equation (62), and using that R′ ∈ (R2 , R) as well as

(58) and the equality ∇tanu = ∇tanv on ∂B+
R′ , gives that

 
B+
r

|∇u− ∂dv(0)(ed +∇φHd )|2 dx

.

(( r
R

)2
 
B+
r

|id +∇φH|2 dx

+

(
R

r

)d(( ρ
R

)β
+

(
R

ρ

)d+2

(δHR)2

)) 
B+
R

|∇u|2 dx.(64)

Now, we choose a specific ρ. Recall that we required 0 < ρ ≤ 1
4R
′. By varying

ρ subject to this condition, we can obtain ρ
R = s for any s ∈ (0, 1

8 ]. We select ρ

to satisfy ρ
R = min{(δHR)2/(d+2+β), 1

8}. Plugging this into (64) and using δHR ≤ 1
(which we may assume by choosing Cα(d, λ) large enough) results in

 
B+
r

|∇u− ∂dv(0)(ed +∇φHd )|2 dx

.

(( r
R

)2
 
B+
r

|id +∇φH|2 dx+

(
R

r

)d
(δHR)2β/(d+2+β)

)  
B+
R

|∇u|2 dx.

For the first integral on the right hand side, notice that xd + φHd is a-harmonic in
B+

2r and vanishes on ∂Hd+. So, to estimate
ffl
B+
r
|ed +∇φHd |2 dx we may use (53). To

handle the terms of the form ei+∇φHi for i 6= d, we use the whole-space Caccioppoli
estimate. We find that

 
B+
r

|id +∇φH|2 dx .
 
B+
r

|ed +∇φHd |2 dx+

d−1∑
i=1

 
Br

|ei +∇φHi |2 dx

.
1

r2

( 
B+

2r

|xd + φHd |2 dx+

d−1∑
i=1

 
B2r

|xi + φHi |2 dx

)
.(65)

Young’s inequality yields

1

r2

( 
B+

2r

|xd + φHd |2 dx+

d−1∑
i=1

 
B2r

|xi + φHi |2 dx

)
.
(
1 + (δH2r)

2
)
.(66)

We can then conclude that 
B+
r

|∇u− ∂dv(0)(ed +∇φHd )|2 dx

.

(( r
R

)2 (
1 + δ2

)
+

(
R

r

)d
δ2β/(d+2+β)

) 
B+
R

|∇u|2 dx,(67)

where we have used the notation δ := max{δH2r, δHR}.

Step 2: Proof of the half-space excess-decay.
For any two radii r̃ and R̃ with r∗ ≤ r̃ ≤ R̃ ≤ R, we can rephrase (67) in terms of the
half-space-adapted tilt-excess: Notice that for any b ∈ R the function u−b(xd+φHd )
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is a-harmonic on B+

R̃
with homogeneous Dirichlet boundary conditions on ∂Hd+∩BR.

Applying (67) to u− b(xd + φHd ) and taking the infimum with respect to b yields

ExcH(r̃) ≤ C(d, λ)

( r̃

R̃

)2 (
1 + δ2

)
+

(
R̃

r̃

)d
δ2β/(d+2+β)

ExcH(R̃).

Letting θ = r̃/R̃ and using δ ≤ 1 gives that

(68) ExcH(r̃) ≤ C(d, λ)
(

2θ2 + δ2β/(d+2+β)θ−d
)

ExcH(R̃),

where the fixed constant C(d, λ) comes from (67) and where we have used δ ≤
1

Cα(d,λ) ≤ 1 (the latter inequality holding w. l. o. g.).

We now choose θ and the constant Cα(d, λ) in the smallness condition (15) in
such a way that

(69) C(d, λ)(2θ2 + δ2β/(d+2+β)θ−d) ≤ θ2α

is satisfied. To do this we first select θ ∈ (0, 1) such that 2C(d, λ)θ2 ≤ 1
2θ

2α

holds. We then select the constant Cα(d, λ) in (15) to be large enough to ensure
C(d, λ)δ2β/(d+2+β)θ−d ≤ 1

2θ
2α. This entails the estimate

ExcH(θR̃) ≤ θ2αExcH(R̃)(70)

for all R̃ ∈ [ 1
θ r
∗, R].

The half-space excess-decay estimate for arbitrary r,R with r∗ ≤ r ≤ R follows
by iterating the estimate (70). As this procedure is both straightforward and a
standard argument, we omit it.

Step 3: Proof of the coercivity of the excess expression.
As the left-hand side of (18) is a second-order polynomial in b, to establish the
desired result it is sufficient to show an estimate of the form 

B+
r

|b(ed +∇φHd )|2 dx ≥ 1

2d+2
|b|2.(71)

We take η to be a cutoff with η ≡ 1 in B+
r/2, η ≡ 0 outside B+

r , 0 ≤ η ≤ 1

everywhere, and |∇η| ≤ 2
r . We then have 

B+
r

|b(ed +∇φHd )|2 dx ≥ |b|2
 
B+
r

η|ed +∇φHd |2 dx

≥ |b|2
 
B+
r

η dx

∣∣∣∣ed +
1ffl

B+
r
η dx

 
B+
r

η∇φHd dx
∣∣∣∣2

≥ |b|2
 
B+
r

η dx

∣∣∣∣ed − 1ffl
B+
r
η dx

 
B+
r

φHd∇η dx
∣∣∣∣2.(72)

Notice that the second of the above inequalities follows from an application of
Jensen’s inequality. Also, in the third inequality the boundary term has vanished
due to the Dirichlet boundary conditions satisfied by φHd .

Another use of Hölder’s inequality yields that

1ffl
B+
r
η dx

∣∣∣∣ 
B+
r

φHd∇η dx
∣∣∣∣ ≤ 2d+1δHr .
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We may assume that Cα(d, λ) in (15) is chosen large enough to ensure that 2d+1δHr ≤
1
2 . Estimating

ffl
B+
r
η dx ≥ ( 1

2 )d, we see that (71) now follows from (72).

Step 4: Proof of the mean-value property.
Let r∗ ≤ r ≤ R; denote by bρ the value of b for which the infimum in the definition

of the tilt-excess ExcH(ρ) is attained. We then have 
B+
r

|∇u|2 dx . ExcH(r) + |br|2

. ExcH(R) + |br|2

.
 
B+
R

|∇u|2 dx+ |bR|2 + |br − bR|2.(73)

Here, we have used (65), (66), and δH2r ≤ 1
Cα(d,λ) ≤ 1 for the first inequality, the

half-space excess-decay for α = 1
2 for the second, and the definition of the half-space

excess and Young’s inequality for the third.
To complete our argument it remains to estimate |bR|2 and |br − bR|2. First, by

the coercivity (71) and the triangle inequality, we easily infer

|bR|2 .
 
B+
R

|bR(ed +∇φHd )|2 dx . ExcH(R) +

 
B+
R

|∇u|2 dx .
 
B+
R

|∇u|2 dx.

To estimate |br − bR|, let ρ ∈ [max{r∗, R/2}, R]. Then the coercivity property
(71) and the triangle inequality entail

|bρ − bR|2 .
 
B+
ρ

|(bρ − bR)ed + (bρ − bR)∇φHd |2 dx

. ExcH(ρ) + ExcH(R)

.
 
B+
R

|∇u|2 dx.

Choose N ∈ N0 such that R
2N+1 ≤ r ≤ R

2N
. The triangle inequality, the coercivity

(71), and the half-space excess-decay for α = 1
2 then allows us to write

|br − bR|2 ≤

(
|br − bR2−N |+

N∑
n=1

|bR2−n − bR2−(n−1) |

)2

.

(
N∑
n=0

(
ExcH(R2−n)

)1/2
)2

.

(
N∑
n=0

2−n/2ExcH(R)1/2

)2

. ExcH(R).

In total, (73) therefore entails the desired mean-value property. �

Using the half-space excess-decay we may now prove our first-order Liouville result.

Proof of Corollary 1.1. The Caccioppoli estimate from Lemma 4.1 shows that the
growth condition (19) implies that

lim
R→∞

1

R2α

 
B+
R

|∇u|2 dx = 0.
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This, in turn, gives that

lim
R→∞

1

R2α
ExcH(R) = 0.

By Theorem 1 and Theorem 2 there exists a radius r∗ > 0 such that the excess-
decay (16) holds for R ≥ r ≥ r∗. In particular, keeping r fixed and passing to the

limit R→∞, we deduce ExcH(r) = 0 for any r ≥ r∗. Since the coercivity property
(18) implies that the infimum in the definition of the excess is attained and since
we have u = 0 on ∂Hd+, we find that

∀r ≥ r∗ there exists b ∈ R such that u(x) = b(xd + φHd ) in B+
r .

By the coercivity property (18), b does not depend on r ≥ r∗. Therefore, we have
u(x) = b(xd + φHd ) in Hd+. �
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