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A SPARSE DECOMPOSITION OF LOW RANK SYMMETRIC
POSITIVE SEMIDEFINITE MATRICES*

THOMAS Y. HOUt, QIN LI}, AND PENGCHUAN ZHANGT

Abstract. Suppose that A € RVX¥ is symmetric positive semidefinite with rank K < N. Our
goal is to decompose A into K rank-one matrices ZkK:1 gkgg where the modes {gk}kK:1 are required
to be as sparse as possible. In contrast to eigendecomposition, these sparse modes are not required
to be orthogonal. Such a problem arises in random field parametrization where A is the covariance
function and is intractable to solve in general. In this paper, we partition the indices from 1 to N
into several patches and propose to quantify the sparseness of a vector by the number of patches
on which it is nonzero, which is called patchwise sparseness. Our aim is to find the decomposition
which minimizes the total patchwise sparseness of the decomposed modes. We propose a domain-
decomposition type method, called intrinsic sparse mode decomposition (ISMD), which follows the
“local-modes-construction + patching-up” procedure. The key step in the ISMD is to construct
local pieces of the intrinsic sparse modes by a joint diagonalization problem. Thereafter, a pivoted
Cholesky decomposition is utilized to glue these local pieces together. Optimal sparse decomposition,
consistency with different domain decomposition, and robustness to small perturbation are proved
under the so-called regular-sparse assumption (see Definition 1.2). We provide simulation results
to show the efficiency and robustness of the ISMD. We also compare the ISMD to other existing
methods, e.g., eigendecomposition, pivoted Cholesky decomposition, and convex relaxation of sparse
principal component analysis [R. LAI, J. Lu, AND S. OSHER, Comm. Math. Sci., to appear; V. Q. VU,
J. CHo, J. LE1, AND K. ROHE, Fantope projection and selection: A near-optimal convex relazation
of sparse PCA, in Proceedings in Advances in Neural Information Processing Systems 26, 2013,
pp. 2670-2678].
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1. Introduction. Many problems in science and engineering lead to huge sym-
metric and positive semidefinite (PSD) matrices. Often they arise from the discretiza-
tion of self-adjoint PSD operators or their kernels, especially in the context of data
science and partial differential equations.

Consider a symmetric PSD matrix of size N x N, denoted as A. Since N is
typically large, this causes serious obstructions when dealing numerically with such
problems. Fortunately, in many applications the discretization A is low-rank or ap-
proximately low-rank, i.e., there exists {¢1,...,%x} C RN for K < N such that

K K
A=) i or ||A=Y ol <e
k=1

= k=1 2

respectively. Here, € > 0 is some small number and ||A||2 = Apmqez(A) is the largest
eigenvalue of A. To obtain such a low-rank decomposition/approximation of A, the
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most natural method is perhaps the eigendecomposition with {1 }X | as the eigen-
vectors corresponding to the largest K eigenvalues of A. An additional advantage
of the eigendecomposition is the fact that eigenvectors are orthogonal to each other.
However, eigenvectors are typically dense vectors, i.e., every entry is typically nonzero.

For a symmetric PSD matrix A with rank K < N, the aim of this paper is to
find an alternative decomposition

K
(1.1) A=Y "grgi.
k=1

Here the number of components is still its rank K, which is optimal, and the modes
{gk}le are required to be as sparse as possible. In this paper, we work on the sym-
metric PSD matrices, which are typically the discretized self-adjoint PSD operators
or their kernels. We could have just as well worked on the self-adjoint PSD operators.
This would correspond to the case when N = oco. Much of what will be discussed
below applies equally well to this case.

Symmetric PSD matrices/operators/kernels appear in many science and engineer-
ing branches, and various efforts have been made to seek sparse modes. In statistics,
sparse principal component analysis (PCA) and its convex relaxations [20, 45, 8, 39]
are designed to sparsify the eigenvectors of data covariance matrices. In quantum
chemistry, Wannier functions [41, 22] and other methods [33, 42, 32, 36, 24] have
been developed to obtain a set of functions that approximately span the eigenspace
of the Hamitonian, but are spatially localized or sparse. In numerical homogenization
of elliptic equations with rough coefficients [13, 14, 9, 35, 34], a set of multiscale basis
functions is constructed to approximate the eigenspace of the elliptic operator and is
used as the finite element basis to solve the equation. In most cases, sparse modes
reduce the computational cost for further scientific experiments. Moreover, in some
cases sparse modes have a better physical interpretation compared to the global eigen-
modes. Therefore, it is of practical importance to obtain sparse (localized) modes.

1.1. Our results. The number of nonzero entries of a vector ¥ € RY is called
its 1% norm, denoted by [[1)||g. Since the modes in (1.1) are required to be as sparse as
possible, the sparse decomposition problem is naturally formulated as the following
optimization problem:

K

K
(1.2) min Z llrllo subject to (s.t.) A= Zwkw{ .

N
Y1, P ER 1 1

However, this problem is rather difficult to solve because: first, minimizing {° norm
results in a combinatorial problem and is computationally intractable in general; sec-
ond, the number of unknown variables is K x N, where N is typically a huge number.
Therefore, we introduce the following patchwise sparseness as a surrogate of |10
and make the problem computationally tractable.

DEFINITION 1.1 (patchwise sparseness). Suppose that P = {P,}M_, is a dis-
joint partition of the N nodes, i.e., [N] ={1,2,3,...,N} = UM_, P,,. The patchwise
sparseness of ¥ € RN with respect to the partition P, denoted by s(1;P), is defined
as

s(p;P) =#{P € P: 9|, # 0}.
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Throughout this paper, [N] denotes the index set {1,2,3,...,N}; 0 denotes
the vectors with all entries equal to 0; |P| denotes the cardinality of a set P; and
Y|, € RI”l denotes the restriction of ¢» € RN on patch P. Once the partition P
is fixed, smaller s(i;P) means that v is nonzero on fewer patches, which implies a
sparser vector. With patchwise sparseness as a surrogate of the I° norm, the sparse
decomposition problem (1.2) is relaxed to

K

K
(1.3) min D s P) st A=l
k=1

RN
Y1, PKE 1

If {gx}i, is an optimizer for (1.3), we call them a set of intrinsic sparse modes
for A under partition P. Since the objective function of problem (1.3) only takes
nonnegative integer values, we know that for a symmetric PSD matrix A with rank
K, there exists at least one set of intrinsic sparse modes.

It is obvious that the intrinsic sparse modes depend on the domain partition P.
Two extreme cases would be M = N and M = 1. For M = N, s(; P) recovers
l#]lo, and the patchwise sparseness minimization problem (1.3) recovers the original
19 minimization problem (1.2). Unfortunately, it is computationally intractable. For
M = 1, every nonzero vector has sparseness one, and thus the number of nonzero
entries makes no difference. However, in this case problem (1.3) is computationally
tractable. For instance, a set of (unnormalized) eigenvectors is one of the optimizers.
We are interested in the sparseness defined in between, namely, a partition with a
meso-scale patch size. Compared to ||¢)]|o, the meso-scale partition sacrifices some
resolution when measuring the support, but makes the optimization (1.3) efficiently
solvable. Specifically, problem (1.3) with the following regular-sparse partitions enjoys
many good properties. These properties enable us to design a very efficient algorithm
to solve problem (1.3).

DEFINITION 1.2 (regular-sparse partition).  The partition P is regular-sparse
with respect to A if there exists a decomposition A = Zszl grgt such that all nonzero
modes on each patch Py, are linearly independent.

If two intrinsic sparse modes are nonzero on exactly the same set of patches, which
are called unidentifiable modes in Definition 3.6, it is easy to see that any rotation
of these unidentifiable modes forms another set of intrinsic sparse modes. From a
theoretical point of view, if a partition is regular-sparse with respect to A, the intrinsic
sparse modes are unique up to rotations of unidentifiable modes; see Theorem 3.7.
Moreover, as the partition gets refined, the original identifiable intrinsic sparse modes
remain unchanged, while the original unidentifiable modes become identifiable and
become sparser (in the sense of [° norm); see Theorem 3.9. In this sense, the intrinsic
sparse modes are independent of the partition that we use. From a computational
point of view, a regular-sparse partition ensures that the restrictions of the intrinsic
sparse modes on each patch P, can be constructed from rotations of local eigenvectors.
Following this idea, we propose the intrinsic sparse mode decomposition (ISMD); see
Algorithm 1. In Theorem 3.7, we have proved that the ISMD solves problem (1.3)
exactly on regular-sparse partitions. We point out that even when the partition is not
regular-sparse, numerical experiments show that the ISMD still generates a sparse
decomposition of A.

The ISMD consists of three steps. In the first step, we perform eigendecomposition
of A restricted on local patches {P,,}M_,, denoted as {A,.m}M_,, to get Aym =

m=1> m=1>
H,,HT. Here, columns of H,, are the unnormalized local eigenvectors of A on patch
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P,,. In the second step, we recover the local pieces of intrinsic sparse modes, denoted
by G, by rotating the local eigenvectors G,, = H,,D,,. The method to find the
right local rotations {D,,}M_, is the core of the ISMD. All the local rotations are
coupled by the decomposition constraint A = Zszl gkng and it seems impossible
to solve {D,,}M_, from this big coupled system. Surprisingly, when the partition is
regular-sparse, this coupled system can be decoupled, and every local rotation D,,
can be solved independently by a joint diagonalization problem (2.6). In the last
“patch-up” step, we identify correlated local pieces across different patches by the
pivoted Cholesky decomposition of a symmetric PSD matrix 2 and then glue them
into a single intrinsic sparse mode. Here, € is the projection of A onto the subspace
spanned by all the local pieces {G, }M_,; see (2.8). This step is necessary to reduce
the number of decomposed modes to the optimal K, i.e., the rank of A. The last step
also equips the ISMD with the power to identify long range correlation and to honor
the intrinsic correlation structure hidden in A. The popular I approach typically
does not have this property.

The ISMD has very low computational complexity. There are two reasons for
its efficiency: first, instead of computing the expensive global eigendecomposition,
we compute only the local eigendecompositions of {A,,.,}M_;; second, there is an
efficient algorithm to solve the joint diagonalization problems for the local rotations
{D,,}M_,. Moreover, because both performing the local eigendecompositions and
solving the joint diagonalization problems can be done independently on each patch,
the ISMD is embarrassingly parallelizable.

The stability of the ISMD is also explored when the input data A is mixed with
noises. We study the small perturbation case, i.e., A = A + e¢A. Here, A is the
noiseless rank-K symmetric PSD matrix, A is the symmetric additive perturbation,
and € > 0 quantifies the noise level. A simple thresholding step is introduced in
the ISMD to achieve our aim: to clean up the noise €A and to recover the intrinsic
sparse modes of A. Under some assumptions, we can prove that sparse modes {:q\;g}f:l,
produced by the ISMD with thresholding, exactly capture the supports of A’s intrinsic
sparse modes {g}X_,, and the error ||gx — gx| is small; see section 4.1 for a precise
description.

We have verified all the theoretical predictions with numerical experiments on
several synthetic covariance matrices of high dimensional random vectors. Without
parallel execution, for partitions with a large range of patch sizes, the computational
cost of the ISMD is comparable to that of the partial eigendecomposition [37, 27].
For certain partitions, the ISMD could be ten times faster than the partial eigende-
composition. We have also implemented the convex relaxation of sparse PCA [24, 39]
and compared these two methods. It turns out that the convex relaxation of sparse
PCA fails to capture the long range correlation, needs to perform (partial) eigende-
composition on matrices repeatedly for many times, and is thus much slower than the
ISMD. Moreover, we demonstrate the robustness of the ISMD on partitions which are
not regular-sparse and on inputs which are polluted with small noises.

1.2. Applications. The ISMD leads to a sparse-orthogonal matrix factorization
for any matrix. Given a matrix X € RV*M of rank K and a partition P of the index
set [INV], the ISMD tries to solve the following optimization problem:

(1.4)

K K
min E s(ge;P) st X = E gy, upup =0k V1<kk <K,
,,,,, erN
ugll’ ,ZIIEG]RM k=1 k=1
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where s(gi; P) is the patchwise sparseness defined in Definition 1.1. Compared to the
biorthogonal property of SVD, the ISMD requires orthogonality only in one dimension
and requires sparsity in the other dimension. The method to obtain the decomposi-
tion (1.4) consists of three steps: first, compute A = X X7 second, apply the ISMD
to A to get {gx}X_;; third, project X onto {gx}X_; to obtain {us}< .

The sparse-orthogonal matrix factorization (1.4) has potential applications in
statistics, machine learning, and uncertainty quantification. In statistics and machine
learning, latent factor models with sparse loadings have found many applications
ranging from DNA microarray analysis [11], facial and object recognition [40], web
search models [1], etc. Specifically, latent factor models decompose a data matrix
X € RVXM by the product of the loading matrix G € RY*X and the factor value
matrix U € RM*E | with possibly small noise £ € RVXM j

1.€.
(1.5) X=GUT +E.

7

The sparse-orthogonal matrix factorization (1.4) tries to find the optimal sparse load-
ings G under the condition that latent factors are normalized and uncorrelated, i.e.,
columns in U are orthonormal. In practice, the uncorrelated latent factors make lots
of sense, but are not guaranteed by many existing matrix factorization methods, e.g.,
nonnegative matrix factorization (NMF) [25], sparse PCA [20, 45, 8], or structured
sparse PCA [18].

In uncertainty quantification (UQ), we often need to parametrize a random field,
denoted as k(x,w), with a finite number of random variables. Applying the ISMD to
its covariance function, denoted by Cov(z,y), we can get a parametrization with K
random variables:

K
(1.6) Ro.w) = K@) + 3 gn(@)mew),

k=1

where %(z) is the mean field, the physical modes {gi}&_, are sparse/localized, and
the random variables {n; }<_ | are centered, uncorrelated, and have unit variance. The
parametrization (1.6) has a form similar to the widely used Karhenen-Loeve (KL)
expansion [21, 28], but in the KL expansion the physical modes {gi}_ | are eigen-
functions of the covariance function and are typically nonzero everywhere. Obtaining
a sparse parametrization is important to uncover the intrinsic sparse feature in a ran-
dom field and to achieve computational efficiency for further scientific experiments.
In [15], such sparse parametrization methods are used to design efficient algorithms
to solve partial differential equations with random inputs.

1.3. Connection with the sparse matrix factorization problem. Given a
matrix X € RV*M of M columns corresponding to M observations in RY, a sparse
matrix factorization problem is to find a matrix G = [g1,...,g,] € RV*" called the
dictionary, and a matrix U = [uy,...,u,] € RM*" called decomposition coefficients,
such that GUT approximates X well and the columns in G are sparse.

In [26, 43, 31], the authors formulated this problem as an optimization problem
by penalizing the 11 norm of G, i.e., |G|l1 := > ;_; llgkll1, to enforce the sparsity of
the dictionary. This can be written as

(1.7) min X = GUT|% + A|G]l1 st Jurll2 <1 VI<k<T,
GERNXT‘7UERMXT‘

where the parameter A > 0 controls to what extent the dictionary G is regularized.
We point out that the 11 penalty can be replaced by other penalties. For example,
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the structured sparse PCA [18] uses certain 11/12 norms of G to enforce sparsity with
specific structures, e.g., rectangular structure on a grid. Problem (1.7) is not jointly
convex in (G,U). Certain specially designed algorithms have been developed to solve
this optimization problem. We will discuss one of these methods in section 2.3.

There are two major differences between the optimization problem (1.4) and the
optimization problem (1.7). First, the ISMD, which is designed to solve (1.4), requires
that the decomposition coefficients U be orthonormal, while many other methods,
including sparse PCA and structured sparse PCA, which are designed to solve (1.7),
only normalize every column in U. One needs to decide whether the orthogonality
in U is necessary in her application and choose the appropriate method. Second, the
number of modes K in the ISMD must be the rank of the matrix, while the number of
modes r in problem (1.7) is picked by users and can be any number. In other words,
the ISMD is seeking an exact matriz decomposition, while other methods make a
trade-off between the accuracy || X — GUT||r and the sparsity ||G||; by recovering the
matrix approximately instead of obtaining an exact recovery. Although the ISMD can
be modified to do matrix approximation (with the orthogonality constraint on U; see
Algorithm 3), the optimal sparsity of the dictionary G is no longer guaranteed. Based
on these two differences, we recommend the ISMD for sparse matrixz factorization
problems where the orthogonality in decomposition coefficients U is required and an
exact (or nearly exact) decomposition is desired. In our upcoming papers [16, 17], we
will present our recent results on solving problem (1.7).

1.4. Outline. In section 2 we present our ISMD algorithm for low-rank matrices,
analyze its computational complexity, and talk about its relation with other methods
for sparse decomposition or approximation. In section 3 we present our main theoret-
ical results, i.e., Theorem 3.7. In section 4, we discuss the stability of the ISMD by
performing perturbation analysis. We also provide two modified ISMD algorithms:
Algorithm 2 for low-rank matrix with small noise, and Algorithm 3 for sparse matrix
approximation. Finally, we present a few numerical examples in section 5 to demon-
strate the efficiency of the ISMD and compare its performance with other existing
methods.

2. Intrinsic sparse mode decomposition. In this section, we present the
algorithm of the ISMD and analyze its computational complexity. Its relation with
other matrix decomposition methods is discussed at the end of this section. In the
rest of the paper, O(n) denotes the set of real unitary matrices of size n x n; I,, denotes
the identity matrix with size n x n.

2.1. The algorithm of ISMD. Suppose that we have one symmetric positive
symmetric matrix, denoted as A € RV>*¥ and a partition of the index set [N], denoted
as P = {P,}M_,. The partition typically originates from the physical meaning of
the matrix A. For example, if A is the discretized covariance function of a random
field on domain D C R?, P is constructed from certain domain partition of D. The
submatrix of A, with row index in P, and column index in P, is denoted as A,,,.
To simplify our notation, we assume that indices in [N] are rearranged such that A
is written as below:

,1411,\7412 00 7\714171\4 )

Agp 1 Agg  Aops

21 P N RE
e :

Aurr [ Anrz | T A

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 04/28/17 to 131.215.70.231. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

416 T.Y. HOU, Q. LI, AND P. ZHANG

Notice that when implementing the ISMD, there is no need to rearrange the indices
as above. The ISMD tries to find the optimal sparse decomposition of A with respect
to (w.r.t.) partition P, defined as the minimizer of problem (1.3). The ISMD consists
of three steps: local decomposition, local rotation, and global patch-up.

In the first step, we perform eigendecomposition

Km
(2.2) Apim = Ymihm iy ; = Hn HY

i=1

. 1/2 1/2 1/2
where K, is the rank of A,,.,, and H,, = [’Ym/,lhm,i ,"}/771/72}7/7,%2 . Vm/,Km hm. i, ). If
A is ill-conditioned, we truncate the small eigenvalues, and a truncated eigende-
composition is used as follows:

Km
(2.3) Apim > Ymihm il = Hy HY.
i=1

Let K@) = Z%Zl K,, be the total local rank of A. We extend columns of H,,
into RY by adding zeros, and get the block diagonal matrix

Hezt = diag{Hl, HQ, ey HM}
The correlation matrix with basis H..¢, denoted by A € RE®>*Kw  is such that
(2.4) A=H,  AHL,.

Since columns of H.,; are orthogonal and span a space that contains range(4), A
exists and can be computed blockwisely as follows:

, 911,\,412 12020 f\yvg ,
Aoi 1 Agg 1 Ao
(25) A= | SEETEITIE SR A () € REnE
. | | : |
CAan A T T A

where H! = (HL H,,)"*HZ is the (MoorePenrose) pseudoinverse of H,,.
In the second step, on every patch P,,, we solve the following joint diagonaliziation
problem to find a local rotation D,,:

M
(26) min ) Z Z ‘(VTanLV)i,jF )

VeO(K
€0l n=1 i#j

in which
(2.7) Yoim = A AT

We rotate the local eigenvectors with D,, and get G,, = H,,D,,. Again, we extend
columns of G,, into RY by adding zeros, and get the block diagonal matrix

Gezt = diag{Gl, GQ, ey GM}
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The correlation matrix with basis G, denoted by Q € RE®*Kw®) is such that
(2.8) A =G QGE,.

With A in hand, Q can be obtained as follows:

(2.9) Q=DTAD, D =diag{Dy,Ds,...,Dyx}.

Joint diagonalization has been well studied in the blind source separation (BSS) com-
munity. We present some relevant theoretical results in supplementary material SM2.
A Jacobi-like algorithm [5, 2], see Algorithm SM1 in the supplementary material, is
used in our paper to solve problem (2.6). For most cases, we may want to normalize
the columns of G.,; and put all the magnitude information in €, i.e.,

(2.10) Gewt = GeiE, Q= FEQET,

where F is a diagonal matrix, with E;; being the [? norm of the ith column of Gu,
Gleat, and Q will substitute the roles of G and € in the rest of the algorithm.

In the third step, we use the pivoted Cholesky decomposition to patch up the
local pieces G,,. Specifically, suppose the pivoted Cholesky decomposition of {2 is
given as
(2.11) Q=PLLTPT,
where P € RE®XE®) is a permutation matrix and L € RE® XK is a lower triangular
matrix with positive diagonal entries. Since A has rank K, both A and Q have rank
K. This is why L only has K nonzero columns. However, we point out that the rank
K is automatically identified in the algorithm instead of given as an input parameter.
Finally, A is decomposed as

(2.12) A=GG" = Gept PL(G o PL)T .

The columns in G (Gt PL) are our decomposed sparse modes.
The full algorithm is summarized in Algorithm 1. We point out that there are
two extreme cases for the ISMD:

e The coarsest partition P = {[N]}. In this case, the ISMD is equivalent to the
standard eigendecomposition.

e The finest partition P = {{i} : ¢ € [N]}. In this case, the ISMD is equivalent
to the pivoted Cholesky factorization on A where A;; = \/%T“ If the nor-
malization (2.10) is applied, the ISMD is equivalent to the pivoted Cholesky
factorization of A in this case.

In these two extreme cases, there is no need to use the joint diagonalization step, and
it is known that, in general, neither the ISMD nor the pivoted Cholesky decomposition
generates sparse decomposition. When P is neither of these two extreme cases, the
joint diagonalization is applied to rotate the local eigenvectors, and thereafter the
generated modes are patchwise sparse. Specifically, when the partition is regular-
sparse, the ISMD generates the optimal patchwise sparse decomposition as stated in
Theorem 3.7.

Remark 2.1. One can interpret H,, as the patchwise amplitude and D,, as the
patchwise phase. The patchwise amplitude is easy to obtain using a local eigendecom-
position (2.2), while the patchwise phase is obtained by the joint diagonalization (2.6).
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Algorithm 1 Intrinsic sparse mode decomposition.
Require: A € RV*N: symmetric and PSD; P = {P,,}}_,: partition of index set
(V]
Ensure: G = [g1,92,...,9K]: K is the rank of A, A = GGT
> Local eigendecomposition
form=1,2,...,M do
Local eigendecomposition: Ay, = Hy, HL
end for
> Assemble correlation matrix A
Assemble A = H;rmA(H;rzt)T blockwisely as in (2.5)
> Joint Diagonalization
form=1,2,...,M do
forn=1,2,...,M do
Ennn = Am7zA?nn
end for
Solve the joint diagonalization problem (2.6) for D,,, > Use Algorithm SM1 in
the supplementary material
13: end for
14: > Assemble correlation matrix 2 and its pivoted Cholesky decomposition
15: Q= DTAD
16: Q = PLLTPT
17: > Assemble the intrinsic sparse modes G
18: G = Hopy  DPL

==
M2

In fact, the ISMD solves the following optimization problem where we jointly
diagonalize A,n:

M
oomin Y B i)
(2.13) " oy
st. GnGY = Ay,

GmBrmGT = Apn Al AT

nn mn’

in which Af, = Efi”l ’Y;;hn,ih% is the (Moore—Penrose) pseudoinverse of A,.
Equation (2.13) is not a unitary joint diagonalization problem, i.e., the variable G,,
is not unitary. The ISMD solves this nonunitary joint diagonalization problem in two
steps:
1. Perform a local eigendecomposition A,,,, = H,, HL. Then the feasible G,,
can be written as H,, D,, with a unitary matrix D,,.
2. Find the rotation D,, that solves the unitary joint diagonalization prob-

lem (2.6).

2.2. Computational complexity. The main computational cost of the ISMD
comes from the local KL expansion, the joint diagonalization, and the pivoted Cholesky
decomposition. To simplify the analysis, we assume that the partition P is uniform,
i.e., each group has % nodes. On each patch, we perform eigendecomposition of A,
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of size N/M and rank K,,. Then, the cost of the local eigendecomposition step is

M
Costy = »_ O ((N/M)’K,,) = (N/M)? ( Y K >

m=1 m=1

For the joint diagonalization, the computational cost of Algorithm SM1 in the sup-
plementary material is

M
E 3
Ncorr,m Km Niter,m .

m=1

Here, Neoprm is the number of nonzero matrices in {X,.,}2L,. Notice that ¥,,.,, =
ApnAL = 0 if and only if A,,, = 0. Therefore, Neorr,m may be much smaller
than M if A is sparse. Nevertheless, we take an upper bound M to estimate the
cost. Ncomme’n is the computational cost for each sweeping in Algorithm SM1 in
the supplementary material, and Nter,m is the number of iterations needed for the
convergence. The asymptotic convergence rate is shown to be quadratic [2], and we
see no more than six iterations needed in our numerical examples. Therefore, we can

take Niterm = O(1) and in total we have

M M
Costy = Y~ MO(K},) = M(’)( > Ki).

m=1 m=1

Finally, the pivoted Cholesky decomposition of €2, which is of size ZQ/; K,,, has cost

Costz = O ((éKm>K2> = K%(f}lf(m).

Combining the computational costs in all three steps, we conclude that the total
computational cost of the ISMD is

M
(2.14) Costrsap = ((N/M)? + K2) O ( Y K ) + MO( > K;i) .

m=1 m=1

Making use of K,, < K, we have an upper bound for Cost;sap,
(2.15) Costismp < O(N2K/M) + O(M?K?®) .

When M = O((N/K)?/3), Costisyp < O(N*/3K5/3). Compared to the cost of partial
eigendecomposition [37, 27], which is about O(N?K),! the ISMD is more efficient for
low-rank matrices.

For matrix A, which has a sparse decomposition, the local ranks K,, are much
smaller than its global rank K. An extreme case is K,,, = O(1), which is, in fact, true
for many random fields; see [7, 15]. In this case,

(2.16) Costisyp = O(N? /M) + O(M?) + O(MK?).

IThe cost can be reduced to O(N?2log(K)) if a randomized SVD with some specific technique is

applied.
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When the partition gets finer (M increases), the computational cost first decreases
due to the saving of local eigendecompositions. The computational cost achieves its
minimum around M = O(N?/3) and then increases due to the increasing cost for the
joint diagonalization. This trend is observed in our numerical examples; see Figure 4.

We point out that the M local eigendecompositions (2.2) and the joint diagonal-
ization problems (2.6) are solved independently on different patches. Therefore, our
algorithm is embarrassingly parallelizable. This will save the computational cost in
the first two steps by a factor of M, which makes the ISMD even faster.

2.3. Connection with other matrix decomposition methods. Sparse de-
compositions of symmetric PSD matrices have been studied in different fields for a
long time. There are, in general, two approaches to achieve sparsity: rotation and L*
minimization.

The rotation approach begins with eigenvectors. Suppose that we have decided to
retain and rotate K eigenvectors. Define H = [hy, ho, ..., hi], with hj being the kth
eigenvector. We postmultiply H by a matrix 7' € RE*E to obtain the rotated modes
G=19,92,.-.,9x] = HT. The choice of T is determined by the rotation criterion we
use. In data science, for the commonly used varimax rotation criterion [23, 19], T is
an orthogonal matrix chosen to maximize the variance of squared modes within each
column of G. This drives entries in GG towards 0 or +1. In quantum chemistry, every
column in H and G corresponds to a function over a physical domain D, and certain
specialized sparse modes—localized modes—are sought after. The most widely used
criterion to achieve maximally localized modes is proposed in [33]. This criterion
requires T' to be unitary, and then minimizes the second moment:

K
(2.17) > [ - nPlasta) P
k=1"D

where x), = [}, z|gk (x)|>dx. More recently, a method weighted by higher degree poly-
nomials is discussed in [42]. While these criteria work reasonably well for simple sym-
metric PSD functions/operators, they all suffer from nonconvex optimization—which
requires a good starting point to converge to the global minimum. In addition, these
methods only care about the eigenspace spanned by H instead of the specific matrix
decomposition, and thus they cannot be directly applied to solve our problem (1.3).
The ISMD proposed in this paper follows the rotation approach. The ISMD
implicitly finds a unitary matrix 7" € RE*X to construct the intrinsic sparse modes

(218) [gl,gg,...,gK] = {\/xhl,\/ghm...,\/ )\KhK] T.

Notice that we rotate the unnormalized eigenvector v/A,hi to satisfy the decomposi-
tion constraint A = Zszl grgt . The criterion of the ISMD is to minimize the total
patchwise sparseness as in (1.3). The success of the ISMD lies in the fact that as
long as the domain partition is regular-sparse, the optimization problem (1.3) can be
exactly and efficiently solved by Algorithm 1. Moreover, the intrinsic sparse modes
produced by the ISMD are optimally localized because we are directly minimizing the
total patchwise sparseness of {gj }5_;.

The L' minimization approach, pioneered by ScotLass [20], has a rich literature
about solving the sparse matrix factorization problem (1.7); see [45, 8, 44, 39, 36, 24].
Problem (1.7) is highly nonconvex in (G, U), and there has been a lot of effort (see, e.g.,
[8, 39, 24]) in relaxing it to a convex optimization. First, since there are no essential
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constraints on U, one can get rid of U by considering the variational form [20, 45, 36]:

(2.19) uin ~Tr(GTAG) + pu||G|l; st. GTG =1k,
= NXK

where A = X X7 is the covariance matrix as in the ISMD (1.3), and Tr is the trace
operator on square matrices. Notice that the problem is still nonconvex due to the
orthogonality constraint GT G = I . In the second step, the authors in [39] proposed
the following semidefinite programming to obtain the sparse density matrix W &
R™*" which plays the same role as GGT in (2.19):

2.20 i —Tr(AW Wiy st. 0=<W <1Iy, Tr(W) = K.
(2.20) i r(AW) + p| W1 s =W 2y, Tr(W)

Here, 0 < W < Iy means that both W and Iy — W are symmetric and positive
semidefinite. Finally, the first K eigenvectors of W are used as the sparse modes G.
An equivalent formulation was proposed in [24], and the authors proposed to pick K
columns of W' as the sparse modes G.

We will compare the advantages and disadvantages of the ISMD and the convex
relaxation of sparse PCA in sections 5.2 and 5.6.

3. Theoretical results with regular-sparse partitions. In this section, we
present the main theoretical results of the ISMD, i.e., Theorems 3.7 and 3.9 and its
perturbation analysis. We first introduce a domain-decomposition type presentation
of any feasible decomposition A = Zszl Yl Then we discuss the regular-sparse
property and use it to prove our main results. When no ambiguity arises, we denote
patchwise sparseness s(gi; P) as Sg.

3.1. A domain-decomposition type presentation. For an arbitrary decom-

s K

position A = >, ¢Yptpl, denote ¥ = [¢)q,...,¢¥k] and U, =[Wilp, -5 klp, ]
For a sparse decomposition, we expect that most columns in ¥|, are zero, and thus
we define the local dimension on patch P,, as follows.

DEFINITION 3.1 (local dimension). The local dimension of a decomposition A =

Zszl YrpbE on patch Py, is the number of nonzero modes when restricted to this patch,
i.e.,

d(Pm§\I’):|Sm|7 Sm:{k : 1bk|pm #0}

When no ambiguity arises, d(P,,; ¥) is written as d,,. We enumerate all the elements
in S,, as {k:{”}fgl, and group together all the nonzero local pieces on patch P,, and
obtain

(3.1) Ui = [Um,s - Vmd) s Vi

Therefore, we have

J— ’(/)m,z .

(3.2) V), =T,LY,

where L,(ff) is a matrix of size d,,, x K with the k"th column being e; for i € [d,,]

and other columns being 0. Here, e; is the ith column of I, . Lgff ) is called the
local indicator matrixz of ¥ on patch P,,. Restricting the decomposition constraint

A =0T to patch P,,, we have A, = v, (\I/|Pm )T, where A,,,, is the restriction
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Fic. 1. Illustration of sparseness, local dimension, and ¥ = \Ileth(w).

of A on patch P, as in (2.1). Since ¥,, is obtained from W[, by deleting zero
columns, we have

(3.3) g

m*

We stack up ¥, and Lg:f ) as follows:
U, = diag{ Wy, W, ..., Uy}, LW = [ng;Léw); LT
and then we have
(3.4) U =[], ;...;0, | =T L),

The intuition in (3.4) is that the local pieces ¥, are linked together by the indicator
matrix L(w), and the modes ¥ on the entire domain [N] can be recovered from W,
and L), We call L(¥) the indicator matriz of .

We use a simple example to illustrate the patchwise sparseness, the local dimen-
sion, and (3.4). In this case, ¥ € RV*K (N =100, K = 2) is the discretized version
of two functions on [0, 1], and P partitions [0, 1] uniformly into four intervals as shown
in Figure 1. 11, the red (online only) starred mode, is nonzero on the left two patches
and 19, the blue (online only) circled mode, is nonzero on the right three patches.
The sparseness of 1 is 2, the sparseness of 15 is 3, and the local dimensions of the
four patches are 1, 2, 1, and 1, respectively, as we comment in Figure 1. Follow-
ing the definitions above, we have W1 = 91/, , ng) = [1,0], W2 = [¥1]p,,%2]p,];

LY = [1,0;0,1], W3 = to ., LY = [0, 1], Wy = 4s|,,,, and L = [0,1]. Finally, we
get

‘ ‘ ‘ 10
W, 00, 0 0 |- 5"

_ @ — | 0 '¥12 Yo' 0 ' 0
[V1,%2] = Weut L 77077:797770711/)%37:77077 787 %7
0770770170 aa ] g -

With this domain-decomposition type representation of ¥, the decomposition
constraint is rewritten as

T
(3.5) A=v0" =g, 0T QW) =W (L) |
ext
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Here, Q) has a role similar to that of Q in the ISMD. It can be viewed as the
correlation matrix of A under basis Wy, just like how A and 2 are defined.

Finally, we provide two useful properties of the local indicator matrices Lgff ),
which are direct consequences of their definitions. Its proof is elementary and can be
found in Appendix A.

PROPOSITION 3.2. For an arbitrary decomposition A = U7
1. The kth column of L™¥), denoted as l,(cw), satisfies ||l,(€w) i = sk, where s, is the
patchwise sparseness of Yy, as in Definition 1.1. Moreover, different columns
in L) have disjoint supports.
2. Define

(36) B, =al) (a)" |

where QYY) = L%)(LSLW)T is the (m,n)th block of Q). B,%)n is diagonal
with diagonal entries either 1 or 0. Moreover, By%)n(z,z) = 1 if and only if
there exists k € [K] such that Y|, = m; and Pi|, # 0.

Since different columns in L(¥) have disjoint supports, Q*) = L#) (L(’*Z’))T has a
block-diagonal structure with K blocks. The kth diagonal block is the one contributed
by l,(;/)) (l](cw))T. Therefore, as long as we obtain Q%) we can use the pivoted Cholesky
decomposition to efficiently recover L(¥). The ISMD follows this rationale: we first
construct local pieces U, = diag{¥y, Us,..., ¥y} for a certain set of intrinsic sparse
modes ¥. Then from the decomposition constraint (3.5) we are able to compute Q(*).
Finally, the pivoted Cholesky decomposition is applied to obtain L(*), and the modes
are assembled by ¥ = U, L), Obviously, the key step is to construct W.,;, which
are local pieces of a set of intrinsic sparse modes—this is exactly where the regular-
sparse property and the joint diagonalization come into play.

3.2. Regular-sparse property and local modes construction. In this and
the next subsection (sections 3.2 and 3.3), we assume that the submatrices A.um
are well conditioned and thus the exact local eigendecomposition (2.2) is used in the
ISMD.

Combining the local eigendecomposition (2.2) and local decomposition constraint

(3.3), there exists DY) € REm>dm such that
(3.7) U,, = H, D).

Moreover, since the local eigenvectors are linearly independent, we have

T
(3.8) dp > Ko, DWW (D,(;f)) = I,
We see that d,,, = K, if and only if columns in ¥, are also linearly independent.

In this case, DY is unitary, i.e., DY) ¢ O(K ). This is exactly what is required

by the regular-sparse property; see Definition 1.2. It is easy to see that we have the
following equivalent definitions of regular-sparse property.

PROPOSITION 3.3. The following assertions are equivalent.
1. The partition P is reqular-sparse w.r.t. A.
2. There exists a decomposition A = Zszl Yl such that on every patch Py,
its local dimension d,, is equal to the local rank K,,, i.e., d,, = K,,.
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3. The minimum of problem (1.3) is 3™

me1 Em-

The proof is elementary and omitted here. By Proposition 3.3, for regular-sparse
partitions local pieces of a set of intrinsic sparse modes can be constructed from
rotating local eigenvectors, i.e., ¥,, = HmD,(ff). All of the local rotations {D,(ff)}%:l
are coupled by the decomposition constraint A = U¥T. At first glance, it seems
impossible to find such D,, from this big coupled system. However, the following
lemma gives a necessary condition that fof ) must satisfy so that Hngff ) are local
pieces of a set of intrinsic sparse modes. More importantly, this necessary condition
turns out to be sufficient, and thus provides a criterion to find the local rotations.

LEMMA 3.4. Suppose that P is reqular-sparse w.r.t. A and {1y }H<_, is an arbitrary
)

set of intrinsic sparse modes. Denote the transformation from H,, to V,, as fof ,

i, Uy = Hy DY, Then DY) is unitary and jointly diagonalizes {Snm M, which
are defined in (2.7). Specifically, we have

T

where B,(Lw% = Q%@L (Q%,)L)T, defined in (3.6), is diagonal with diagonal entries either
0 orl.

Proof. From item 3 in Proposition 3.3, any set of intrinsic sparse modes must
have local dimension d,, = K,, on patch P,,. Therefore, the transformation DS:}b )
from H,, to ¥,, must be unitary. Combining ¥,,, = HmDﬁff’ ) with the decomposition
constraint (3.5), we get

A= H.,, DWW ( Dw))T Ho.,

where D(¥) = diag{Dgw), Déw), ce Dg\}b)}. Recall that A = H.; AH.; and that Hey
has linearly independent columns. We obtain

(3.10) A = D) (Dw))T,

or blockwisely,

(3.11) Amn = DSOS (Df«f”)f

Since D,(Lw ) is unitary, (3.9) naturally follows the definitions of Bfﬁ@n and X,,,. By
item 2 in Proposition 3.2, we know that B,(?n)@ is diagonal with diagonal entries either
0orl. 0

Lemma 3.4 guarantees that fof’ ) for an arbitrary set of intrinsic sparse modes
is the minimizer of the joint diagonalization problem (2.6). In the other direction,
the following lemma guarantees that any minimizer of the joint diagonalization prob-
lem (2.6), denoted as D,,, transforms local eigenvectors H,, to G,, which are the
local pieces of certain intrinsic sparse modes.

LEMMA 3.5. Suppose that P is regular-sparse w.r.t. A and that D,, is a minimizer
of the joint diagonalization problem (2.6). As in the ISMD, define G, = Hp Dy
Then there exists a set of intrinsic sparse modes such that its local pieces on patch
P,, are equal to G,,.
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Before we prove this lemma, we examine the uniqueness property of intrinsic
sparse modes. It is easy to see that permutations and sign flips of a set of intrinsic
sparse modes are still a set of intrinsic sparse modes. Specifically, if {¢}5 | is a
set of intrinsic sparse modes and o : [K] — [K] is a permutation, {£t, )}, is
another set of intrinsic sparse modes. Another kind of nonuniqueness comes from the
following concept—identifiability.

DEFINITION 3.6 (identifiability). For two modes g1, g2 € RY, they are unidenti-
fiable on partition P if they are supported on the same patches, i.e., {P € P: gi|, #
0} ={P € P: g2|, # 0}. Otherwise, they are identifiable. For a collection of modes
{gi}f_, C RV, they are unidentifiable if and only if any pair of them are unidentifiable.
They are pairwisely identifiable if and only if any pair of them are identifiable.

It is important to point out that the identifiability above is based on the resolution
of partition P. Unidentifiable modes for partition P may have different supports and
become identifiable on a refined partition. Unidentifiable intrinsic sparse modes lead
to another kind of nonuniqueness for intrinsic sparse modes. For instance, when two
intrinsic sparse modes v, and v, are unidentifiable, then any rotation of [ty,, %],
while keeping other intrinsic sparse modes unchanged, is still a set of intrinsic sparse
modes.

Local pieces of intrinsic sparse modes inherit this kind of nonuniqueness. Suppose
U, = [¥m1,---¥m.d,| are the local pieces of a set of intrinsic sparse modes ¥ on
patch P,,. First, if o : [d,,] — [d] is a permutation, {:I:z/;mﬁ(i)}?gl are local pieces
of another set of intrinsic sparse modes. Second, if 9, ; and v, ; are the local pieces
of two unidentifiable intrinsic sparse modes, then any rotation of [¢, ;, %, ;], while
keeping other local pieces unchanged, are local pieces of another set of intrinsic sparse
modes. It turns out that this kind of nonuniqueness has a one-to-one correspondence
with the nonuniqueness of joint diagonalizers for problem (2.6), which is characterized
in Theorem SM2.1 in the supplementary material. Keeping this correspondence in
mind, the proof of Lemma 3.5 is quite intuitive.

Proof of Lemma 3.5. Let ¥ = [1)1,...,9k] be an arbitrary set of intrinsic sparse
modes. We order columns in ¥ such that unidentifiable modes are grouped together,
denoted as ¥ = [¥y,...,¥y], where @ is the number of unidentifiable groups. Ac-
cordingly on patch P, Uy, = [¥rn 1, - -+, ¥in 0, ], where Q,, is the number of nonzero
unidentifiable groups. Denote the number of columns in each group as 7, ;, i.e., there
are n,, ; modes in {¢}X | that are nonzero and unidentifiable on patch P,.

Making use of item 2 in Proposition 3.2, one can check that ,,; and ., ; are
unidentifiable if and only if Bflwr)n(z,z) = Bﬁ%(j, j) for all n € [M]. Since uniden-
tifiable pieces in W¥,, are grouped together, the same diagonal entries in {Br(fp,)n}%:l
are grouped together as required in Theorem SM2.1 in the supplementary material.
Now we apply Theorem SM2.1 in the supplementary material with Mj replaced by
Ynim, Mg replaced by Bﬁﬁ%, D replaced by D,(ff} ), the number of distinct eigenvalues
m replaced by Q,, eigenvalue’s multiplicity g; replaced by n,, ;, and the diagonalizer
V replaced by D,,. Therefore, there exists a permutation matrix II,, and a block
diagonal matrix V,, such that

(3.12) Dyl = DOV, Vi = diag{Vina, -+, Vino, } -
Recalling that G,, = H,,D,, and ¥, = HmD,(:f)), we obtain that

(313) GmHm = \Ilmv - [\Pm,lvm,l P 7\Ijm,Qm Vm,QmJ .
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From (3.13), we can see that identifiable pieces are completely separated, and the small
rotation matrices, V, ;, only mix unidentifiable pieces ¥, ;. IL,, merely permutes the
columns in G,,. From the nonuniqueness of local pieces of intrinsic sparse modes, we
conclude that G,,, are local pieces of another set of intrinsic sparse modes. 0

We point out that the local pieces {G,, }}_, constructed by the ISMD on different
patches may correspond to different sets of intrinsic sparse modes. Therefore, the final
“patch-up” step should further modify and connect them to build a set of intrinsic
sparse modes. Fortunately, the pivoted Cholesky decomposition elegantly solves this
problem.

3.3. Optimal sparse recovery and consistency of the ISMD. As defined
in the ISMD,  is the correlation matrix of A with basis Ge,¢; see (2.8). If Q enjoys
a block diagonal structure with each block corresponding to a single intrinsic sparse
mode, just like Q¥) = L®) (L(‘/’))T7 the pivoted Cholesky decomposition can be
utilized to recover the intrinsic sparse modes.

It is fairly easy to see that ) indeed enjoys such a block diagonal structure when
there is one set of intrinsic sparse modes that are pairwisely identifiable. Denoting
this identifiable set as {1}, (only its existence is needed), by (3.12), we know
that on patch P,, there is a permutation matrix II,,, and a diagonal matrix V,,, with
diagonal entries either 1 or —1 such that D,,II,, = Dgff’ )Vm. Recall that A = DQDT =

DWIQW) (D(w))T; see (2.9) and (3.11). We then have
T
(3.14) Q= DTpWQW (DW)) D =1vToWy?,

in which V' = diag{Vi,...,V,,} is diagonal with diagonal entries either 1 or —1,
and II = diag{Ily,...,II,,} is a permutation matrix. Since the action of IIV? does
not change the block diagonal structure of Q%) Q still has such a structure, and
the pivoted Cholesky decomposition can be readily applied. In fact, the action of
IIVT exactly corresponds to the column permutation and sign flips of intrinsic sparse
modes, which is the only kind of nonuniqueness of problem (1.3) that occurs when
the intrinsic sparse modes are pairwisely identifiable. For the general case when there
are unidentifiable intrinsic sparse modes, €2 still has the block diagonal structure with
each block corresponding to a group of unidentifiable modes, resulting in the following
theorem.

THEOREM 3.7. Suppose the domain partition P is reqular-sparse w.r.t. A. Let
A = GGT be the decomposition given by the ISMD (2.12), and let ¥ = [¢)1,. .., VK]
be an arbitrary set of intrinsic sparse modes. Let columns in ¥ be ordered such that
unidentifiable modes are grouped together, denoted as U = [¥q,...,Ug|, where Q is
the number of unidentifiable groups and ng is the number of modes in W,. Then there
exists Q rotation matrices Uy € R™*™e (1 < g < Q) such that

(3.15) G =[UU4,...,00Uq),

with reordering of columns in G if necessary. It immediately follows that
o the ISMD generates one set of intrinsic sparse modes, and
e the intrinsic sparse modes are unique up to permutations and rotations within
unidentifiable modes.

Proof. By (3.12), equation (3.14) still holds true with block diagonal V,,, for m €
[M]. Without loss of generality, we assume that II = I since permutation does not
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change the block diagonal structure that we desire. Then from (3.14) we have
T
(3.16) QO =vIQWy — yT W) (L<w>) V.
In terms of blockwise formulation, we get
T
(3.17) Qpun = VIV = VELE (L) Vi
Correspondingly, by (3.13) the local pieces satisfy

Gm = [Gm,l PRI ,Gmme} == [\I/m’lvmyl goee »\Pm,Qme,Qm] .

Now, we prove that € has the block diagonal structure in which each block
corresponds to a group of unidentifiable modes. Specifically, Gy, s = ¥s, iVin,; and
Gnj = ¥V, ;V, ; are two identifiable groups, i.e., ¥,,; and ¥, ; are from two iden-
tifiable groups, and we want to prove that the corresponding block in 2, denoted as
Q. in,j, is zero. From (3.17), one gets Qi j = V,2 L) (L#?)TVn’j7 where L")

m,i T m,i ] m,t

are the rows in Lgff ) corresponding to W, ;. Lglw]) is defined similarly. Due to identi-

fiability between ¥,,; and ¥, ;, we know L%)l (L,(le))T = 0, and thus we obtain the
block diagonal structure of 2.

In (2.11), the ISMD performs the pivoted Cholesky decomposition Q = PLLY PT
and generates sparse modes G = G PL. Due to the block diagonal structure in €2,
every column in PL can only have nonzero entries on local pieces that are not iden-
tifiable. Therefore, columns in G have identifiable intrinsic sparse modes completely
separated and unidentifiable intrinsic sparse modes rotated (including sign flip) by
certain unitary matrices. Therefore, G is a set of intrinsic sparse modes.

Due to the arbitrary choice of ¥, we know that the intrinsic sparse modes are
unique to permutations and rotations within unidentifiable modes. 0

Remark 3.8. From the proof above, we can see that it is the block diagonal struc-
ture of {2 that leads to the recovery of intrinsic sparse modes. The pivoted Cholesky
decomposition is one way to explore this structure. In fact, the pivoted Cholesky
decomposition can be replaced by any other matrix decomposition that preserves this
block diagonal structure, for instance, the eigendecomposition if there is no degener-
acy.

Despite the fact that the intrinsic sparse modes depend on the partition P, the
following theorem guarantees that the solutions to problem (1.3) give consistent results
as long as the partition is regular-sparse.

THEOREM 3.9. Suppose that P. is a partition, Py is a refinement of P, and Py

is reqular-sparse. Suppose {gl(gc)}kK:1 and {g,(cf)}f:1 (with reordering if necessary) are
the intrinsic sparse modes produced by the ISMD on P, and Py, respectively. Then for
every k € {1,2,...,K}, g,(f) and g,(cf) are supported on the same patches in the coarse
partition P., while the support patches of g,gf) are contained in the support patches of

°)

g,i in the fine partition Py, i.e.,

(PeP.:gl|, #0} ={PeP.: g, #0},
(PePs:gl|, #0} c{PeP;:gl|, #0}.
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Moreover, if g,(cc) is identifiable on the coarse patch P, it remains unchanged when
the ISMD is performed on the refined partition Py, i.e., g,(cf) = :I:g,(fc).

Proof. Given that the finer partition Py is regular-sparse, it is easy to prove the
coarser partition P, is also regular-sparse.? Notice that if two modes are identifiable on
the coarse partition P, they must be identifiable on the fine partition P;. However,
the opposite is not true, i.e., unidentifiable modes may become identifiable if the
partition is refined. Based on this observation, Theorem 3.9 is a simple corollary of
Theorem 3.7. ]

Finally, we provide a necessary condition for a partition to be regular-sparse as
follows.

PropPoOSITION 3.10. If P is regular-sparse w.r.t. A, all eigenvalues of A are inte-
gers. Here, A is computed in the ISMD by (2.5).

Proof. Let {1}, be a set of intrinsic sparse modes. Since P is regular-sparse,

DW) in (3.10) is unitary. Therefore, A and Q%) = L) (L(‘/’))T share the same
eigenvalues. Due to the block-diagonal structure of Q(¥), one can see that

r K T
0w = @) (Lw)) _ le(ew) (l;(f’))
k=1

is, in fact, the eigendecomposition of Q(¥). The eigenvalue corresponding to the

eigenvector l,iw) is ||l,(€w) %2, which is also equal to ||l,(€w) 1 because L(*) only elements 0
or 1. From item 1 in Proposition 3.2, ||l,(€w) i = sk, which is the patchwise sparseness

of .. O

Combining Theorems 3.7 and 3.9 and Proposition 3.10, we can develop a hi-
erarchical process that gradually finds the finest regular-sparse partition and thus
obtains the sparsest decomposition using the ISMD. This sparsest decomposition can
be viewed as another definition of intrinsic sparse modes, which are independent of
partitions. In our numerical examples, our partitions are all uniform but with differ-
ent patch sizes. We see that even when the partition is not regular-sparse, the ISMD
still produces a nearly optimal sparse decomposition.

4. Perturbation analysis and two modifications. In real applications, data
are often contaminated by noises. For example, when measuring the covariance func-
tion of a random field, sample noise is inevitable if a Monte Carlo type sampling
method is utilized. A basic requirement for a numerical algorithm is its stability
w.r.t. small noises. In section 4.1, under several assumptions, we are able to prove
that the ISMD is stable w.r.t. small perturbations in the input A. In section 4.2,
we provide two modified ISMD algorithms that effectively handle noise in different
situations.

4.1. Perturbation analysis of the ISMD. We consider the additive pertur-
bation here, i.e., A is an approximately low-rank symmetric PSD matrix that satisfies

(4.1) A=A+eA, |4, <1

Here, A is the noiseless rank-K symmetric PSD matrix and Alis the symmetric addi-
tive perturbation, and € > 0 quantifies the noise level. We divide A into blocks that

2We provide the proof in supplementary materials; see Lemma SM1.1.
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are conformal with blocks of A in (2.1) and thus /T,,m = An + eA'mn. In this case,
we need to apply the truncated local eigendecomposition (2.3) to capture the correct
local rank K,,. Suppose the eigendecomposition of A,,,, is

K,
Amm:Zmezh hT +Z’sz nl n,i*
=1

i>Kpy,

In this subsection, we assume that the noise level is very small with ¢ < 1 such that
there is an energy gap between 7, k,, and ¥, k,,+1. Therefore, the truncation (2.3)
captures the correct local rank K,,, i.e.,

~

Km
(42) A?nm ~ ggfl)m = Z:Y\m,ihn,ih£71‘ = H

=7

In the rest of the ISMD, the perturbed local eigenvectors ﬁm is used as H,, in the
noiseless case. We expect that our ISMD is stable w.r.t. this small perturbation and
generates slightly perturbed intrinsic sparse modes of A.

To carry out this perturbation analysis, we will restrict ourselves to the case
when intrinsic sparse modes of A are pairwisely identifiable, and thus it is possible
to compare the error between the noisy output g, with A’s intrinsic sparse mode gy.
When there are unidentifiable intrinsic sparse modes of A, it only makes sense to
consider the perturbation of the subspace spanned by those unidentifiable modes, but
we will not consider this case in this paper. The following lemma is a preliminary
result on the perturbation analysis of local pieces G,

LEMMA 4.1. Suppose that partition P is reqular-sparse w.r.t. A and all intrinsic
modes are identifiable with each other. Furthermore, we assume that for all m € [M]

there exists Effbig) such that
(43) AL, = (I + B D) A (T4 «(ES)T)  and [EGD 2 < Cosy.

Here C.iy is a constant depending on A but not on € or A. Then there exists Eﬁ,{d) €

REmXKm gych that

(44)  Gp = (I 4 €BSNG,,(I +eEYD + O and ||EYD|r < Cja,
where G, and CAv'm are local pieces constructed by the ISMD with input A and ﬁ
respectively, Jn, is the product of a permutation matriz with a diagonal matriz having
only 1 on its diagonal, and Cjq is a constant depending on A but not on € or A.
Here, || @ |2 and || ® ||F are matriz spectral norm and Frobenius norm, respectively.

Lemma 4.1 ensures that local pieces of intrinsic sparse modes can be constructed
with O(€) accuracy up to permutation and sign flips (characterized by J,, in (4.4))
under several assumptions. The identifiability assumption is necessary. Without such
an assumption, these local pieces are not uniquely determined up to permutations
and sign flips. The assumption (4.3) holds true when eigendecomposition of A,,,,
is well conditioned, i.e., both eigenvalues and eigenvectors are well conditioned. We
expect that a stronger perturbation result is still true without making this assump-
tion. The proof of Lemma 4.1 is an application of perturbation analysis for the joint
diagonalization problem [4], and is presented in supplementary material SM3.
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Finally, () is the correlation matrix of A with basis Gyt = diag{@l, Go,. .., éM}
Specifically, the (m,n)th block of € is given by

Qo = Gl A (G1)

Without loss of generality, we can assume that J,, = Ig, in (4.4).> Based on the
perturbation analysis of G, in Lemma 4.1 and the standard perturbation analysis of
pseudoinverse (for instance, see Theorem 3.4 in [38]), it is straightforward to get a
bound of the perturbations in (AZ, ie.,

(45) ||§\2 - QHZ < Cis’rnde-

Here, Csmaq depends on the smallest singular value of G, and the constants C¢;, and
Cjq in Lemma 4.1. Notice that when all intrinsic modes are identifiable with each
other, the entries of ) are eitheAr 0 or +1. Therefore, when Cjgpnq€ is small enough,
we can exactly recover €2 from ) as below:

—1 for ;; < —0.5,
(4.6) Q=40 for Q; € [~0.5,0.5],
1 for ﬁij > 0.5.

Following Algorithm 1, we get the pivoted Cholesky decomposition Q = PLLT PT
and output the perturbed intrinsic sparse modes

G = GonPL.

Notice that when the patchwise sparseness information is all coded in L and we can
reconstruct L exactly due to the thresholding step (4.6), then G has the same patch-
wise sparse structure as GG. Moreover, because the local pieces éext are constructed
with O(e) error, we have

(4.7) IG = Gll2 < Cye,

where the constant C, only depends on the constants Ce;q and Cjq in Lemma 4.1.

4.2. Two modified ISMD algorithms. In section 4.1, we have shown that
the ISMD is robust to small noises under the assumption of regular sparsity and
identifiability. In this section, we provide two modified versions of the ISMD to
deal with the cases when these two assumptions fail. The first modification aims
at constructing intrinsic sparse modes from noisy input A in the small noise region,
as in section (4.1), but it does not require the regular sparsity and identifiability.
The second modification aims at constructing a simultaneous low-rank and sparse
approximation of A when the noise is big. Our numerical experiments demonstrate
that these modified algorithms are quite effective in practice.

4.2.1. ISMD with thresholding. In the general case when unidentifiable pairs
of intrinsic sparse modes exist, the thresholding idea (4.6) is still applicable, but the
threshold €;;, should be learned from the data, i.e., the entries in 2. Specifically, there

30ne can check that {Jm}%:1 only affect the sign of recovered intrinsic sparse modes
[91,G2,-..,dk] if pivoted Cholesky decomposition is applied on Q.
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are O(1) entries in € corresponding to the slightly perturbed nonzero entries in €;
there are also many O(e) entries that are contributed by the noise €A. If the noise
level € is small enough, we can see a gap between these two group of entries, and a
threshold ¢, is chosen such that it separates these two groups. A simple 2-cluster
algorithm is able to identify the threshold €. In our numerical examples we draw the
histogram of absolute values of entries in €2, which clearly shows the 2-cluster effect;
see Figure 10. Finally, we set all the entries in 2 with absolute value less than €, to
0. In this approach we do not need to know the noise level € a priori; we just learn the
threshold from the data. To modify Algorithm 1 with this thresholding technique, we
just need to add one line between assembling € (line 15) and the pivoted Cholesky
decomposition (line 16); see Algorithm 2.

Algorithm 2 Intrinsic sparse mode decomposition with thresholding.

Require: A € RV*YN: symmetric and PSD; P = {P,,}M_,: partition of index set
[N]

Ensure: G = [g1,92,...,9K]: A~ GGT

1: The same as Algorithm 1 from line 1 to line 13

2: > Assemble 2, thresholding, and its pivoted Cholesky decomposition

3: Q= DTAD

4: Learn a threshold ¢, from  and set all the entries in 2 with absolute value less
than €;, to 0

5: Q= PLLTPT

6: > Assemble the intrinsic sparse modes G
7. G =H.+DPL

It is important to point out that when the noise is large, the O(1) entries and
O(e) entries mix together. In this case, we cannot identify such a threshold e, to
separate them, and the assumption that there is an energy gap between 7, g, and
Am, K, +1 18 invalid. In the next subsection, we will present the second modified version
to overcome this difficulty.

4.2.2. Low-rank approximation with ISMD. In the case when there is no
gap between 7, k.. and Y, k,,+1 (i-€., no well-defined local ranks), or when the noise
is so large that the threshold €;;, cannot be identified, we modify our ISMD to give a
low-rank approximation of A ~ GGT, in which G is observed to be patchwise sparse
from our numerical examples.

In this modification, the normalization (2.10) is applied and thus we have

A G QGT,,.

It is important to point out that Q has the same block diagonal structure as Q but
has different eigenvalues. Specifically, for the case when there is no noise and the
regular-sparse assumption holds true,  has eigenvalues {||gx||3}5, for a certain set
of intrinsic sparse modes g, while 2 has eigenvalues {s; }X_; (here s, is the patchwise
sparseness of the intrinsic sparse mode). We first perform eigendecomposition Q =
LLT and then assemble the final result by G = Gez L. The modified algorithm is
summarized in Algorithm 3.

Here we replace the pivoted Cholesky decomposition of €2 in Algorithm 1 by eigen-
decomposition of 2. From Remark 3.8, this modified version generates exactly the
same result as Algorithm 1 if all the intrinsic sparse modes have different [?> norm
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Algorithm 3 Intrinsic sparse mode decomposition for low-rank approximation.

Require: A € RV*N: symmetric and PSD; P = {P,,}}_,: partition of index set
[N]

Ensure: G = [g1,92,...,9K]: A~ GGT

1: The same as Algorithm 1 from line 1 to line 13

2: > Assemble €2, normalization, and its eigendecomposition
3: Q=DTAD

4: Gegt = Gept B, Q= EQET as in (2.10)

5: Q= LLT

6: > Assemble the intrinsic sparse modes G

T G = éemtfz

(there are no repeated eigenvalues in Q). The advantage of the pivoted Cholesky
decomposition is its low computational cost and the fact that it always exploits the
(unordered) block diagonal structure of Q2. However, it is more sensitive to noise com-
pared to eigendecomposition. In contrast, eigendecomposition is much more robust
to noise. Moreover, eigendecomposition gives the optimal low-rank approximation of
Q. Thus Algorithm 3 gives a more accurate low-rank approximation for A compared
to Algorithms 1 and 2 that use the pivoted Cholesky decomposition.

5. Numerical experiments. In this section, we demonstrate the robustness of
our intrinsic sparse mode decomposition method and compare its performance with
that of the eigendecomposition, the pivoted Cholesky decomposition, and the convex
relaxation of sparse PCA. All of our computations are performed using MATLAB
R2015a (64-bit) on an Intel Core i7-3770 (3.40 GHz). The pivoted Cholesky decom-
position is implemented in MATLAB according to Algorithm 3.1 in [29].

We will use synthetic covariance matrices of a random permeability field, which
models the underground porous media, as the symmetric PSD input A. This random
permeability model is adapted from the porous media problem [12, 10] where the
physical domain D is two dimensional. The basic model has a constant background
and several localized features to model the subsurface channels and inclusions, i.e.,

K
(5.1) K(z,w) = ko + »_me(w)gr(z), = €[0,1]7,
k=1

where kg is the constant background, {gx }X_, are characteristic functions of channels
and inclusions, and 7y, are the associated uncorrelated latent variables controlling the
permeability of each feature. Here, we have K = 35, including 16 channels and 18
inclusions. Among these modes, there is one artificial smiling face mode that has
disjoint branches. It is used here to demonstrate that the ISMD is able to capture
long range correlation. For this random medium, the covariance function is

K
(5'2) a(x, y) = ng(x)gk(y)’ T,y € [0’ 1]2'
k=1

Since the length scales of channels and inclusions are very small, with width about
1/32, we need a fine grid to resolve these small features. Such a fine grid is also
needed when we do further scientific experiments [12, 10, 15]. In this paper, the
physical domain D = [0,1]? is discretized using a uniform grid with h, = h, = 1/96,

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 04/28/17 to 131.215.70.231. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

INTRINSIC SPARSE MODE DECOMPOSITION 433

resulting in A € RV*YN with N = 962. One sample of the random field (shown also
from a bird’s-eye view) and the covariance matrix are plotted in Figure 2. It can be
seen that the covariance matrix is sparse and concentrates along the diagonal since
modes in the ground-truth media are all localized functions.

fieldSample fieldSample

1 = - I
| R

Sl if:ii'

Fic. 2. One sample and the bird’s-eye view. The covariance matriz is plotted on the right.

Note that this example is synthetic because we construct A from a sparse decom-
position (5.2). We would like to test whether different matrix factorization methods,
like eigendecomposition, the Cholesky decomposition, and the ISMD, are able to re-
cover this sparse decomposition, or even find a sparser decomposition for A.

5.1. Numerical results of ISMD. The partitions we take for this example
are all uniform domain partition with H, = H, = H. We run the ISMD with patch
sizes H € {1,1/2,1/3,1/4,1/6,1/8,1/12,1/16,1/24,1/32,1/48,1/96} in this section.
For the coarsest partition H = 1, the ISMD is exactly the eigendecomposition of A.
For the finest partition H = 1/96, the ISMD is equivalent to the pivoted Cholesky
factorization on A where A;; = \/12%%. The pivoted Cholesky factorization on
A is also implemented. It is no surprise that all of the above methods produce 35
modes. The number of modes is exactly the rank of A. We plot the first six modes
for each method in Figure 3. We can see that both the eigendecomposition (ISMD
with H = 1) and the pivoted Cholesky factorization on A generate modes which mix
different localized feathers together. On the other hand, the ISMD with H = 1/8 and
H = 1/32 exactly recover the localized feathers, including the smiling face.

We use Lemma 3.4 to check when the regular-sparse property fails. It turns out
that for H > 1/16 the regular-sparse property holds and for H < 1/24 it fails. The
eigenvalues of A’s for H = 1,1/8 and 1/32 are plotted in Figure 4 on the left side.
The eigenvalues of A when H = 1 are all 1’s, since every eigenvector has patchwise
sparseness 1 in this trivial case. The eigenvalues of A when H = 1/16 are all integers,
corresponding to patchwise sparseness of the intrinsic sparse modes. The eigenvalues
of A when H = 1/32 are not all integers any more, which indicates that this partition
is not regular-sparse w.r.t. A according to Lemma 3.4.

The consistency of the ISMD (Theorem 3.9) manifests from H =1 to H = 1/8
in Figure 3. As Theorem 3.9 states, the supports of the intrinsic sparse modes on a
coarser partition contain those on a finer partition. In other words, we get sparser
modes when we refine the partition as long as the partition is regular-sparse. After
checking all the 35 recovered modes, we see that the intrinsic sparse modes get sparser
and sparser from H =1 to H = 1/6. When H < 1/6, all of the 35 intrinsic sparse
modes are identifiable with each other, and these intrinsic modes remain the same
for H =1/8,1/12,1/16. When H < 1/24, the regular-sparse property fails, but we
still get the sparsest decomposition (the same decomposition with H = 1/8). For
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H = 1/32, we recover exactly 33 intrinsic sparse modes but get the other two mixed
together. This is not surprising since the partition is not regular-sparse any more.
For H = 1/48, we exactly recover all of the 35 intrinsic sparse modes again. Table 1
lists the cases when we exactly recover the sparse decomposition (5.2) from which we
construct A. From Theorem 3.7, this decomposition is the optimal sparse decompo-
sition (defined by problem (1.3)) for H > 1/16. We suspect that this decomposition
is also optimal in the L° sense (defined by problem (1.2)).

TABLE 1
Cases when the ISMD gets exact recovery of the sparse decomposition (5.2).

H T [1/2 [1/3 [ 1/4 [1/6 [1/8 [ 1/12 | 1/16 | 1/24 | 1/32 | 1/48 | 1/96
regular-sparse | ¢ | ¢ v v v v X X X X
exact recovery | X X X X v v v X v X

v v
v v

The CPU time of the ISMD for different H’s is shown in Figure 4 on the right
side. We compare the CPU time for the full eigendecomposition eig(A), the par-
tial eigendecomposition eigs (A, 35), and the pivoted Cholesky decomposition. For
1/16 < H < 1/3, the ISMD is even faster than the partial eigendecomposition.
Specifically, the ISMD is ten times faster for the case H = 1/8. Notice that the ISMD
performs the local eigendecomposition by eig in MATLAB, and thus does not need
any prior information about the rank K. If we also assume prior information on the
local rank K,,, the ISMD would be even faster. The CPU time curve has a V-shape
as predicted by our computational estimation (2.16). The cost first decreases as we
refine the mesh because the cost of local eigendecompositions decreases. Then it in-
creases as we refine further because there are M joint diagonalization problem (2.6)
to be solved. When M is very large, i.e., H = 1/48 or H = 1/96, the 2 layer for-loops
from line 5 to line 10 in Algorithm 1 become extremely slow in MATLAB. When
implemented in other languages that have little overhead cost for multiple for-loops,
e.g., C or C++, the actual CPU time for H = 1/96 would be roughly the same as the
CPU time for the pivoted Cholesky decomposition.

5.2. Comparison with the semidefinite relaxation of sparse PCA. In
comparison, the semidefinite relaxation of sparse PCA (problem (2.20)) gives poor
results in this example. We have tested several values of u, and found that parameter
1= 0.0278 gives the best performance in the sense that the first 35 eigenvectors of W
capture the most variance in A. The first 35 eigenvectors of W, shown in Figure 5,
explain 95% of the variance, but all of them mix several intrinsic modes the same
way the eigendecomposition does in Figure 3. For this example, it is not clear how to
choose the best 35 columns out of all the 9216 columns in W, as proposed in [24]. If
columns of W are ordered by [? norm in descending order, the first 35 columns can
only explain 31.46% of the total variance, although they are indeed localized. Figure 6
shows the first six columns of W with the largest norms.

We also compare the CPU time of the ISMD with that of the semidefinite relax-
ation of sparse PCA (2.20). The sparse PCA is computed using the split Bregman
iteration. Each split Bregman iteration requires an eigendecomposition of a matrix of
size N x N. In comparison, the ISMD is cheaper than a single eigendecomposition, as
shown in Figure 4. It has been observed that the split Bregman iteration converges
linearly. If we set the error tolerance to be O(d), the number of iterations needed
is about O(1/§). In our implementation, we set the error tolerance to be 1073, and
we need to perform 852 iterations. Overall, to solve the convex optimization prob-
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lem (2.20) with split Bregman iteration takes over 1000 times more CPU time than
the ISMD with H = 1/8.

It is expected that the ISMD is much faster than sparse PCA since the sparse
PCA needs to perform partial eigendecomposition many times to solve problem (2.20),
but the ISMD has computational cost comparable to one single partial eigendecompo-
sition. As we discussed in section 1.3, sparse PCA is designed and works reasonably
well for problem (1.7). When sparse PCA is applied to our sparse decomposition
problem (1.3), it does not work well. However, it is not always the case that the
ISMD gives a sparser and more accurate decomposition of A than sparse PCA. In
subsection 5.6, we will present another example in which sparse PCA gives a better
performance than the ISMD.

Wosy Yy

\ 4 0]

I

]
>

Fic. 5. Sparse PCA: The first siz eigenvectors of W. The first 35 eigenvectors of W explain
95% of the variance.

st ol s gt P s gt s

A

Fic. 6. Sparse PCA: siz columns of W with largest norms. The first 35 columns with largest
norms only explain 31.46% of the variance.

We point out that unlike the structured sparse PCA [18], the ISMD does not take
advantage of the specific (rectangular) structure of the physical modes. The “smiling
face” mode shows that the ISMD can recover nonconvex and nonlocal sparse modes.
Therefore, the ISMD is expected to perform equally well even when there is no such
structure known.

5.3. ISMD with small noises. In this subsection we report the test on the
robustness of the ISMD. In the following, we perturb the rank-35 covariance matrix
A € R9216%9216 with a random matrix:

A\:A—l—eg,

where € is the noise level and A is a random matrix with independently and identically
distributed elements uniformly distributed in [—1,1]. Notice that all elements in
A are uniformly bounded by 1, and thus € is a relative noise level. Since all the
intrinsic sparse modes are identifiable with each other for the partition with patch
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Stability Results

FIG. 7. L™ and L? error increases linearly as the noise level increases.

size H = 1/16, we perform ISMD with simple thresholding (4.6) on A to get the
perturbed intrinsic sparse modes G = [g1,...,gk]. The [ and [? error are defined
as below:

Erroo = max 7”‘%79,6”2, Errg =

k=12, K | gkll2

Z 9% — gxl3

lleel3

Figure 7 shows that Err., and Erry depend linearly on the noise level e, which
validates our stability analysis in section 4.1.

5.4. Separate global and localized modes with ISMD. In this example,
we consider a more sophisticated model in which the media contain several global
modes, i.e.,

Ky Ko
(5.3) K, w) =Y &w) fi(@) + > me(w)gr(z), w€[0,1)?,
k=1 k=1

where {gk}kKil, and n, models the localized features like channels and inclusions as
above, {fi}r!, are functions with support on the entire domain D = [0,1]?, and
&, are the associated latent variables with global influence on the entire domain.
Here, we keep the 35 localized features as before, but add two global features with
fi(x) = sin(27rxy + 47wxs)/2, fo(x) = sin(drzy + 27xe)/2. & and & are set to be
uncorrelated and have variance 1. For this random medium, the covariance function
is

(5.4) ka +ng ), x,y €01

As before, we discretize the covariance function with h, = h, = 1/96 and represent A
by a matrix of size 9216 x 9216. One sample of the random field (and the bird’s-eye
view) and the covariance matrix are plotted in Figure 8. It can be seen that the
covariance matrix is dense now because we have two global modes.

We apply the ISMD with patch size H = 1/16 on A and get 37 intrinsic sparse
modes as expected. Moreover, two of them are rotations of [f1, f2] and the other 35
are exactly the 35 localized modes in the construction (5.4). We plot the first six
intrinsic sparse modes in Figure 9. As we can see, the ISMD separates the global
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fieldSample

fieldSample. Covarlance

0
0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Fic. 8. One sample and the bird’s-eye view. The covariance matriz is plotted on the right.

ISMD: H=1/16 1SMD: H=1/16 ISHD: H=1116 1SMD: H=1/16 ISMD: H=1116 1SMD: H=1/16

F1G. 9. First siz intrinsic sparse modes (H = 1/16, regular-sparse)

modes and localized modes in A, or equivalently we separate the low-rank dense part
and sparse part of A. The reason why we can achieve this separation is that the rep-
resentation (5.4) in fact solves the patchwise sparseness minimization problem (1.3).
The low-rank-plus-sparse decomposition (also known as Robust PCA; see [6, 3, 30])
can also separate the low-rank dense part and the sparse part in A. However, the
computational cost of robust PCA is much more expensive than the ISMD.

5.5. Application of Algorithm 2. When A is constructed from model (5.4)
but is mixed with small noises as in section 5.3, we cannot simply apply the thresh-
olding (4.6) any more. In this case, we have unidentifiable modes f; and f, and thus
() may contain nonzero values other than +1. For the noise level ¢ = 1075, Figure 10
(left) shows the histogram of absolute values of entries in 2. We can clearly see a gap
between O(e) entries and O(1) entries from Figure 10(left). Therefore, we choose a
threshold €, = 10~ and apply the modified ISMD algorithm 2 on A. The first six
perturbed intrinsic sparse modes gj are shown in Figure 11. We can see that their
supports are exactly the same as those of the unperturbed intrinsic sparse modes g
in Figure 9. In fact, the first 37 perturbed intrinsic sparse modes {§k}i7=1 capture
exactly the supports of the unperturbed intrinsic sparse modes {gk}iil. However, we
have several extra perturbed intrinsic sparse modes with very small {? error since Q
has rank more than 37. R

When we raise the noise level € to 1074, the histogram of the absolute values in
is shown in Figure 10(right). In this case, we cannot identify a gap any more. From
Figure 10(left), we see that the exact ) has entries in the order of 1073. Therefore,
the noise level € = 19*4 is large enough to mix together the true nonzero values and
noisy null values in 2. In Figure 10 the total counts are different because only values
between 10716 and 10°-5 are counted.
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F1c. 10. Histogram of absolute values of entries in Q.
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Fia. 11. Application of Algorithm 2 (H = 1/16, approzimately regular-sparse): First siz
intrinsic sparse modes

5.6. Application of Algorithm 3. In this section, we consider the one-dimen-
sional Poisson kernel

l[z—y]

alz,y)=e Tt , xz,y€[-1,1],

where [ = 1/16. To refine the small scale, a(z,y) is discretized by a uniform grid with
h = 1/512, resulting in A € R1024x1024 Ty Figure 12 we plot the covariance matrix.
By truncating the eigendecomposition with 45 modes, we can approximate A with
spectral norm error 5%, and these 45 KL modes are plotted on the right panel of the
figure. As one can see, they are all global functions.

Exponentially Decay Covariance: | = 1116

Fic. 12. Eigendecomposition: Covariance function and its first 45 KL modes. Error is 4.936%.
Both local and global dimensions are 45.

We decompose the domain into 2, 4, and 8 patches, respectively, and apply Al-
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gorithm 3 with thresholding (4.6) to each case. For all three cases, every mode has
patchwise sparseness of either 1 or 2. In Figure 13, the left panels show the modes
that are nonzero on more than one patch, and the right panels collect the modes
that are nonzero on only one patch. To achieve the same accuracy with the eigen-
decomposition, the numbers of modes needed are 45, 47, and 49, respectively. The
total number is slightly larger than the number of eigenmodes, but most modes are
localized. For the two-patch case, each patch contains 23 nonzero modes, and for
the four-patch case, each patch contains either 12 or 13 nonzero modes, and for the
eight-patch case, each patch contains only seven nonzero modes.

Sparse modes occupying more than 1 patches Sparse modes occupying only 1 patch
p: pying p: o0.5730 p: pying only 1 p:

f53

I\

o
Sparse modes ing more than 1 patches

N
~/

000
o0t

3 o e

0.9442

aaaaaa

Fic. 13. Upper: Two patches case. Error is 4.95%. Global dimension is 45 and the local
dimension is 23 for both patches. Middle: Four patches case. Error is 4.76%. Global dimension
is 47 and the local dimension is 12,13,13,12, respectively. Bottom: FEight patches case. Error is
4.42%. Global dimension is 49 and the local dimension is 7 for all patches.

For this translational invariant Poisson kernel, the semidefinite relaxation of
sparse PCA (problem (2.20)) also gives satisfactory sparse approximation in the sense
of problem (2.19). Numerical tests show that when p < 2, sparse PCA tends to put
too much weight on the sparsity and it leads to poor approximation of A (over 90%
error). In Figure 14 we plot 47 physical modes selected out of 513 columns of W,
with g = 2.7826. The error is 4.94%. We also show five of them on the right panel.
Note that we have used the translation invariance property in selecting the columns
of W.

6. Conclusions and future work. In this paper, we introduced a new matrix
factorization method, the intrinsic sparse mode decomposition (ISMD), to obtain a
sparse decomposition of low-rank symmetric positive semidefinite matrices. Instead of
minimizing the total number of nonzero entries of the decomposed modes, the ISMD
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47 sparse modes from sparse density matrix W 5 of the sparse modes.
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Fic. 14. Sparse PCA: p = 2.7826. We specifically choose 47 columns out of W and show five
of them.

minimizes the total patchwise sparseness with a prescribed partition of index set
[N]. The decomposed modes from the ISMD are called intrinsic sparse modes for the
decomposed matrix w.r.t. the partition. The ISMD is equivalent to the eigendecom-
position for the coarsest partition and recovers the pivoted Cholesky decomposition
for the finest partition. If the partition is regular-sparse w.r.t. the matrix to be de-
composed, we prove that the ISMD gives the optimal patchwise sparse decomposition.
We also prove that as long as the partition is regular-sparse, the decomposed modes
get sparser (in the sense of Y norm) as the partition is refined. Finally, we provide
a preliminary result on perturbation analysis of the ISMD based on the assumption
that the partition is regular-sparse, and the intrinsic sparse modes are identifiable
with each other. Numerical examples on synthetic data demonstrate the robustness
and efficiency of the ISMD.

Currently, the perturbation analysis is based on an extra assumption that roughly
requires that the local eigendecomposition be well conditioned; see (4.3). It would be
desirable to perform a p erturbation analysis without such an assumption or propose
a more stable version of the ISMD. In the paper, we also discussed the differences be-
tween the sparse-orthogonal matrix factorization problem (1.4) and the general sparse
matrix factorization problem (1.7). We pointed out that the ISMD is not designed to
solve the general matrix factorization problem. The ISMD is recommended as a sparse
matrix factorization method only if the orthoganality in decomposition coefficients U
is required, and an exact (or nearly exact) decomposition is desired.

Finally, we have provided a heuristic algorithm (e.g., Algorithm 3) to solve prob-
lem (1.3) for matrix factorization with large noise. Ultimately, the complete resolution
of this matrix factorization problem in the presence of large noise requires a better
formulation and a more robust algorithm.

Appendix A. Proof of Proposition 3.2.

1. l,gw), divided into patches, can be written as l,(;’b) = [l1k;l2k5---3lak)- From
definition (3.2), we have ||l k|| = 1 if ¢x|, 7 0 and 0 otherwise. Therefore,
we obtain

M
570 = 3" M elly = si(wi; P).
m=1

Moreover, on patch P, different ;s correspond to different local pieces in
U,,, (when they are identical, we keep both when constructing ¥,,), and thus

different columns in L% ) have disjoint supports. Therefore, different columns
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in L(¥) have disjoint supports.

2. From definition (3.2), the jth row of LW s equal to e},., where e is the
k'th column of Ix. Then we have (L%w))TLSp) = 2?21 exn e{;. Therefore,
we obtain
(A.1)

dn
B, = L LT LP LY = 3 L ey (L ers)”

Jj=1 Jj=1

1
E
B
T
39
Ex
<3

W

where lmyk;f is the k?th column of Lﬁ,“f).

From definition (3.2), Iy, xm, the kf"th column of Lgff ) s equal to e; for
i € [d,] and all other columns are 0. Therefore,

K dm dpm
T T T
(AQ) § lm»klm,k = l"%k?lm,kgn = E €ie; = Hdm
k=1 =1 =1

Equation (A.1) sums over k € {k} ?;1 C [K], and then we conclude that

B,%L is diagonal with diagonal entries either 1 or 0. Moreover, if B,(lwn)@(z, i) =

1, the term e;e! has to be included in the summation in (A.1). Among all
terms {lm xlh p ey, Only Ly gmll m is equal to e;e] due to the definition

of Lgff). Therefore, the term lm,k;"l%km has to be included in the summation
in (A.1). Therefore, there exists j € [d,] such that k7 = k". In other words,
there exist k € [K] and j € [d,] such that Y|, = m and Yil, = ¥ ;.
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