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ANALYSIS OF RIPPLING IN INCOMMENSURATE
ONE-DIMENSIONAL COUPLED CHAINS

PAUL CAZEAUX*, MITCHELL LUSKIN*, AND ELLAD B. TADMORF

Abstract. Graphene and other recently developed 2D materials exhibit exceptionally strong
in-plane stiffness. Relaxation of few-layer structures, either free-standing or on slightly mismatched
substrates occurs mostly through out-of-plane bending and the creation of large-scale ripples. In
this work, we present a novel double chain model, where we allow relaxation to occur by bending
of the incommensurate coupled system of chains. As we will see, this model can be seen as a new
application of the well-known Frenkel-Kontorova model for a one-dimensional atomic chain lying in
a periodic potential. We focus in particular on modeling and analyzing ripples occurring in ground
state configurations, as well as their numerical simulation.
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Introduction. Two-dimensional layered crystals such as graphene, nature’s thin-
nest elastic material, exhibit exceptionally strong in-plane stiffness but are also highly
flexible with extremely low flexural rigidity compared to conventional membranes.
Mono- and few-layer graphene structures display spontaneous creation of long-range
ripples which have been experimentally observed either in suspended conditions [14]
or supported on slightly mismatched substrates [5, 21, 24]. Ripples in graphene is
a multiscale phenomenon that is expected to influence its mechanical and electronic
properties [17], and inducing periodic ripples in a controlled fashion may open new
perspectives, e.g., for graphene-based devices [3, 15].

Various mechanisms have been described as responsible for the appearance of
ripples in two-dimensional materials. Spontaneous ripples in suspended graphene
monolayers have been attributed to thermal fluctuations [8] or stress [3]. Graphene
monolayers supported by an almost-commensurate substrate relax to form a periodic
vertical corrugation pattern [5, 18, 24, 23]. Sharp out-of-plane folds called ripplo-
cations have been predicted in van der Waals (vdW) homostructures such as MoSs
multilayers, similar to line defects [13]. In a ripplocation, an additional local line of
atoms is inserted in one layer leading to the formation of an out-of-plane wrinkle,
while the other layer remains flat.

In this paper, we will study a different mechanism yet, where the spontaneous
atomic-scale relaxation of free-standing systems of incommensurate vdW bilayers
leads to a simultaneous long-range rippling of the bilayer system [19]. Note that
vdW multi-layer structures tend to form naturally incommensurate stackings, either
due to a relative rotation of the crystalline orientations or to a natural mismatch
between the respective lattice constants. To model mathematically this multiscale
phenomenon, we present a new double chain model, where we allow relaxation to
occur by bending of the incommensurate coupled system of chains, as shown in Fig-
ure 1. We focus in particular on modeling and analyzing rigorously ripples occurring
in ground state configurations, as well as their numerical simulation. Our model was
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Fig. 1: Numerical relaxation of coupled chains by the creation of ripples.

motivated in part by the related continuum model of Nikiforov and Tadmor [19].

The model (2.6)—(2.8) developed in this work can be seen as a new application of
the well-known Frenkel-Kontorova model for a one-dimensional atomic chain lying in
an incommensurate periodic potential [1, 2, 6, 4]. The role of the periodic potential is
here assumed by the local interlayer contribution to the interaction energy, which is
influenced by the local atom stacking configuration of the bilayer. Indeed, staggered
atoms (maximizing the number of neighbors) minimize the energy compared to locally
aligned configurations as seen on Figure 2 (see Section 1 for details). We will show
how, by taking on some bending strain, the bilayer system is able to significantly
reduce its energy by maximizing the area of staggered configurations.

Let us note that it is not possible for perfectly inextensible 2D sheets to be
curved in more than one direction. As a result, a reasonable 2-dimensional model for
the rippling of incommensurate layers should account for the slight extensibility of
the individual layers. Thus, many simplifications used in this work, such as Eq. (2.3),
cannot be used outside of our one-dimensional chain toy model.

This paper is organized as follows. First, we motivate our approach by presenting
a simple numerical atomistic simulation to illustrate the phenomenon and motivate
our model (see also the related example in [19]). In Section 2, we introduce a math-
ematical model for the rippling mechanism, and we discuss the various assumptions
that allow our explicit construction. In Section 3, we recall the classical analytical
results on the Frenkel-Kontorova model due to Aubry and Le Daeron [2] that al-
low us to identify the ground state configurations. In Section 4, we show how the
popular supercell method of approximating the incommensurate system by periodic
approximations can be rigorously justified. Finally, we present in Section 5 numerical
computations that illustrate and support our analytical results.

1. Motivating numerical example. We present first a simple numerical atom-
istic simulation to illustrate the phenomenon. Two coupled one-dimensional chains are
fitted to represent a single zigzag row of dimers in graphene [19]. Within each chain,
harmonic bonds model the interaction between nearest neighbors, and a harmonic an-
gular spring is centered on each atom involving its two nearest neighbors. Between the
two chains, atoms interact with a long-range Lennard-Jones potential'. Throughout

L It is common to use the Lennard-Jones potential to model the weak interlayer van der Waals
interactions in 2D layered materials. It can describe the overall cohesion of the material quite well,
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Fig. 2: Local atomic configurations: aligned situation (a) leads to a higher energy
contribution than the staggered configuration (b).

this section, we work in Lennard-Jones units: € = 2.39 meV is the unit of energy and
o = 3.41 A is the unit of length for graphene-graphene interaction, see [9].

To simulate an incommensurate system, we create a periodic supercell by choosing
the equilibrium length to be slightly different in each chain: we take Ny = 232 and
Ny = 233 atoms respectively in each chain for a total length of 116 o. Periodic
boundary conditions are applied at the ends. Numerical parameters are fitted to
match a zigzag row of dimers in graphene [12, 19], leading to the parameterization
given in Table 1.

Table 1: Numerical parameters for the atomistic simulations.

Graphene Row width Young modulus Bending modulus
d=213 A Y =21.5 eV/A? D =1.46 eV

Eq. bond length Bond springs Angular springs
Chain 1 lih=050 k1 = 130600 /o> kg1 =764 ¢
Chain 2 I ~ 0498 o ko ~ 130039 €/c0> kg o~ T61 €

Note that the bond and angular spring constants k and kg for each chain are
related to the Young modulus Y and bending modulus D of graphene as

k:%Y, kgz%lD,

where d is the width of the dimer row and [ the equilibrium length of the bonds in the
atomistic chain. In the initial configuration, each chain is in its isolated equilibrium
state, and their relative distance is chosen as h = 1.063 . The total energy of the
system is a function of all atomic positions R;, 7 = 1,..., N1 (bottom chain) and R3,
it =1,..., Ny (top chain) and also on the periodic cell length L, and can be divided
into three components:

(1-1) Utot = Uﬁltra + Ui2ntra + Uinter-

however, it is also too smooth to correctly describe energy variations between different stacking
configurations. Truly realistic computations should thus use a more accurate potential, such as the
graphitic disregistry-dependent potential developed by Kolmogorov and Crespi [11]. For simplicity,
and without loss of generality, we will use in this paper the Lennard-Jones potential, acknowledging
that this actually leads to underestimating the formation of ripples.
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The intralayer energies UL, U2 . take the form

intra’ “intra

. 1 Y Y 2
Uintra = 5 ZkV (”Rz-l-l - R‘z H - ZV)
=1

(12) 1 N, RY RY v RY 2
+ - ko, (sinldet [ ffl — f/ , fjl — fj ]) ,v=1, 2,
2 2 IRY., — R IR, — RY|l

i=1
where it is understood that periodic boundary conditions are applied: R}, R}Vl 1

etc. refer to the appropriate atomic position in the adjacent periodic images. The
interlayer energy Uipnter i8

Ny 12 6
o g
(1.3) Uinter = Y ) de (R?—R%H> - <||R?—R%> ’

i=1 j

where the inner sum runs over all the neighbors of R} in the top layer that fall initially
within the cutoff radius of 29 o, whether in the simulation cell or the periodic images.
The numerical relaxation of atomic positions and total length of this coupled
system leads to the rippled shape presented in Figure 1 and the partition of energy
presented in Table 2. The total length of the system is reduced by 0.188%.

Table 2: Overall change in energy components by numerical relaxation.

Bond springs | Angle springs | Lennard-Jones
+0.0358¢ +0.5197¢ —1.474¢

A first observation from this computation is that the energy reduction achieved
by bending appears to be about twice the potential energy in the angle springs in
the relaxed configuration. Moreover, the two chains relax nearly inextensibly by
producing a coherent ripple in the vertical direction by bending together. The in-
plane strain energy, modeled here by the potential energy in the bond springs, is an
order of magnitude smaller than the other energies.

The driving mechanism for this relaxation process can be infered by measuring
the disregistry of the atoms in layer 2 compared to the atoms in layer 1. This is
a measure of the local atomic configuration, obtained by projecting the position of
each atom in layer 2 on the curve describing layer 1. By measuring the distance
of the projection to the nearest atom to the left on this curve, we can distinguish
between favorable (staggered) configurations, A = .25 o, and unfavorable (aligned)
configurations, A = 0.

The disregistry obtained in the previous numerical simulation is plotted on Fig-
ure 3. Clearly, the relaxation tends to increase the number of atoms close to the most
favorable configuration. On the other hand, the distance between the layers does not
vary much.

Our conclusion is that this relaxation process can be correctly modeled by con-
sidering only the bending degrees of freedom and neglecting any in-plane strain in
each layer. The driving mechanism behind the formation of coherent ripples is the
competition between two main contributions:

1. the bending energy in the angular bonds due to chain curvature;
2. the interlayer potential energy variations between local configurations arising
from the disregistry across the layers.

4



o
(&)

Initial configuration

Relaxed configuration

o
'S
[6,]

Disregistry (Units of o)
o o o
© L 92 v 9 w ©
00 b o ow & o
T T T T T T T
éfﬁ'
1 1 |

o

o

a
T

L 1 ! I
20 40 60 80 100 120
Initial position (Units of o)

o
o

Fig. 3: Computed disregistry from simulation of nearly commensurate chains.

2. Derivation of the model. We will now develop a mathematical model for
the determination of the ground state of a coupled system of parallel periodic atomic
chains which are infinite and truly incommensurate: unlike the previous numerical
example, there exists no periodic supercell for the coupled system. This is achieved
by choosing an irrational number to be the ratio I3/l of equilibrium length for the
intralayer bonds.

2.1. Geometry. First, we describe the model geometry of the coupled system.
Our main assumption is that the chains act inextensibly due to the strong in-plane
modulus, as observed numerically in Section 1. Consecutive atoms in each chain will
be separated by a fixed distance, respectively 1 for the chain C' and « for chain C*
where « is an irrational real number. The chains are allowed to bend in the two-
dimensional plane, while they remain separated by a fixed distance h. Consequently,
C! and C® form two infinite smooth parametric curves in the plane separated by a
fixed distance, as seen on Figure 4(a).

To derive the equations of the model, we assume that the curvature of the system
remains small and varies slowly. Consequently, we use the arc length along either
curve to measure the distance between atoms in the respective chain. Furthermore,
we choose to describe the whole system by following the curve C!. This leads us to
introduce the following quantities.

Abscissa. Let s € R denote the arc length parameter along the curve C!, and
~1(s) : R — R? be a natural parametrization of C': ||v}(s)|| = 1. Atoms on the chain
C! are situated at R} = 41 (i) for each i € Z. Let the atoms of chain C® be positioned
at points {R$}jez. Then, their projection on C' can be parameterized by a strictly
increasing sequence of abscissas as seen on Figure 4(a), which we denote

(2.1) {s7},cp st Vi€Z, RF=7'(sf)+hn'(s§),

where n!(s) is the normal vector to the curve C! at abscissa s.
Curvature. While the arc length between consecutive atoms R along C* is fixed
as a, this is not the case for their projections on C'. As seen on Figure 4(b), the arc
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Fig. 4: Geometry of a curved system of coupled chains.

length between projections of consecutive atoms, i.e. s, — s7 for j € Z, depends on
the curvature of the curve C!, which we denote k. Note that we choose the convention
k < 0 for the configurations presented in Figure 4. We obtain then, approximating

locally the curvature by the constant value x§ = k(s§, s, 1) :

o

s3h1 = 85 +d*(s5) where  d%(s}) = I
j

Assuming that \h/i]a\ < 1, we will make the first-order approximation
(2.2) d*(s) = (1 + hxj)a.

This leads to the formula for the curvature

551 — 8%
(2.3) hK$ = % —1.

2.2. Potential energy. To formulate our model, we consider only two contri-
butions to the potential energy of the system of coupled chains: an interaction energy
and a bending energy. For simplicity, the bending energy is modeled as a quadratic
term in the curvature variable. It remains to construct a suitable approximation for
the inter-chain potential energy as a function of the variables {s};cz.

Let V be an interatomic potential contributed by two atoms each in a different
chain depending only on their relative distance, such as the Lennard-Jones potential.
The total interaction energy is formally:

(24)  Em =) Visa(R$)  where Vioo(R)= Y V(|R;-R]).
- _

1=—0Q

In this expression, we have isolated the contribution of each atom in chain C® as an
inter-chain potential energy created collectively by all atoms of chain C!. Due to the
long-range nature of V, this inter-chain potential depends not only on the abscissa s
of the projection of the atom on the curve, but also on the shape of the whole curve as

we see on Figure 4(a). However, due to the fast decay of the inter-atomic potential,
6
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Fig. 5: Parabolic approximation for the curved chain C! near atom j of chain C*.

the main contribution to the inter-chain potential is local and can be deduced by
approximating positions of the neighboring atoms belonging to the curved chain C*.
Let us construct such an approximation explicitely. For each j € Z, a parabola
is used as a locally second-order accurate approximation C! to the exact curve ct,
in the neighborhood of the atom positioned at RJ'. This parabola, parametrized as

s 7' (s), is uniquely determined (see Figure 5) by the distance h between the curves

and the local curvature x§ of curve C*!, choosing R as origin of a local system of

coordinates. The approximate atomic positions ﬁl = '?1() along this parabola are
then deduced from the additional input of the projected abscissa s¢, using the arc
length A; = s (mod 1).

This geometrical construction allows us to introduce now a disregistry— and
curvature-dependent approximate inter-chain potential. For given values of s,x € R
and h > 0, we obtain the sequence of positions {R} };cz as above, relative to the origin
R of the coordinates. Then, we propose as an approximation to Vj_4(R) introduced
in (2.4) the quantity:

J ’

(2.5) Vier (53 1, ) Z V(|IR! = RJ)).

i=—00

It is clear that the potential Vper(s; K, h) is a periodic function of the variable s with

period 1. Note that in the following, we will drop the dependency of ﬁper on the fixed
variable h.

REMARK 2.1. This construction of ‘A/per gives an explicit formula for the approx-
tmate potential. Hence, it can be used to precompute numerically and accurately an
approximate inter-chain potential, for calculations aimed at finding ground state con-
figurations.

The total potential energy of the full system is then modeled as the formal sum:

26) 0 (0551) = 5 (Foer (s55) + 5 (57

J
7



where [ is the angle spring constant modeling the resistance to bending of the coupled
system of chains. Thanks to Eq. (2.3), this energy is formally

(2.7) U ({s5}) = (s, s54),

J

e
VR

(2.8) v(s,t) = Voer <s; (t;3—1> h—1>+2’22(t;8—1>2.

3. Ground state analysis. The model described by Eq. (2.6) or (2.7) is a
generalized Frenkel-Kontorova model. There exists a vast literature on the Frenkel-
Kontorova model, which we will not attempt to summarize here: see e.g. [4]. We only
present the basic theory necessary for our analysis.

Following [2], we will make the following assumptions on the function v:

1. v(s,t) has a lower bound: there exists B such that

where v(s Eh ", 1), the local potential energy at site j, is given by

(3.1) B < w(s,t), Vs, t € R.

2. v(s,t) is invariant by translation by (1, 1) and satisfies a symmetry condition:

(3.2) v(s+1,t+1) =wv(s,t), v(s,t)=uv(—t,—s), Vs,t € R.
3. v(s,t) is a twice continuously differentiable function, and satisfies for all s, ¢ €
R,
0%v
3.3 - t)>C>0
( ) asat (S? ) > > i

where C' is a finite positive constant.
Note that for the function v defined by (2.8), conditions (3.1) and (3.2) are satisfied
whenever ‘A/per is bounded from below. For the twist condition (3.3) to hold, stronger
conditions are necessary, namely ‘A/pcr must be twice continuously differentiable with
% bounded from below and g large enough.
Under these conditions, Aubry-Mather theory leads to the following description
and results, for which details are to be found in the seminal paper [2]:

DEFINITION 1. A minimum energy configuration is a sequence {s;} such that any
finite change 6; of a finite set of atoms necessarily increases the energy, that is:

J

(3.4) D (0(s5 + 65,8541+ 8541) — v(s5,8541)) > 0
=7

for any J' < J, and any choice of §; with §; =0 for j < J' and j > J.

The set of minimum energy configurations, which includes all possible boundary con-
ditions, can be further divided between defect configurations and ground state config-
urations. To make this distinction, one derives the equilibrium equations

ov ov
(3.5) ajj(sywsjﬂ) + aT,j(Sj_l’ sj) = 0.
8



These equations can be interpreted as the motion equation of a dynamical system
with discrete time j by introducing the conjugate variable for s;,

(36) p; = 87(!:?]‘_1,53‘).

Sj

Then (p;+1,5;+1) are recursively defined from (p;, s;) by the implicit system derived
from (3.5):

v
o aT:j(Sj’ Sj+1) = —Pj»
’ ov
Pj+1 = @(Smsﬁl)-
o

Note that under the assumptions above, $2(s,t) is a monotonic function of ¢ for
fixed s, and hence system (3.7) has a unique solution for a given (sj,p;). One then
introduces the bounded variable in the unit torus T,

(3.8) 0; = s; (mod 1),

and then defines a non-linear operator T on the cylinder R x T onto the cylinder,

Pi+1\ _ & (DPj

3.9 =T .

(38) <9j+1> (0]-)

By construction, T is an area-preserving one-to-one map. We then define the orbit of
a point (po,6p) as an infinite sequence (p;,0;) = T7 (po, by) for —oco < j < o0.

DEFINITION 2. An orbit (p;,0;) is recurrent if there exist an integer sequence
Jr — 0o such that

khanc}o (pjk ) 0jk) = (pOa 00) .

DEFINITION 3.
1. A defect configuration {s;} is a stationary configuration (satisfying (3.5))
such that the associated orbit {T7 (py,8)} is non-recurrent.
2. An elementary defect is a defect configuration which is also a minimum energy
configuration.
3. A ground-state configuration is a minimum energy configuration which is not
a defect configuration (the associated orbit is recurrent).

Using the previous definitions, the following two theorems, which were first stated
and proved by Aubry and Le Daeron in [2], largely identify the minimum energy
configurations and ground states of the Frenkel-Kontorova model:

THEOREM 4.

1. For any minimum energy configuration, there exists two real numbers | (the
atomic mean distance) and w (the phase), such that for any j, s; and jl +w
belong to the same interval [k;/2, (kj + 1)/2] where kj = Int(2s;).

2. For any value of 1, there exists minimum energy configurations {s;} such that

Sj—Sk:l

lim
li—k|l—oo J— Kk

9



Note that the number [ is also called the rotation number of the orbit corresponding to
a minimum energy configuration {s;}. While it can in principle be arbitrarily chosen,
in the case of the present model we are interested mainly in the choice | = «, which
models the case of a bilayer system which is flat on average. Other choices could be
interpreted as systems that have a global curvature.

THEOREM 5.

1. The set of minimum energy configurations with atomic mean distance 1 is
totally ordered, i.e., for two such configurations {s;} and {t;}, one of the
assertions holds true for all j: s; <t;, s; =1t;, or s; > t;.

2. The whole set of ground state configurations with irrational atomic mean dis-
tance l can be parameterized with one or two hull functions f which are strictly
mcreasing:

(a) When f is continuous, a unique function f parameterizes all ground
states;

(b) When f is discontinuous, two determinations f™ and f~ are necessary
to parameterize all ground states. They are both strictly increasing and
correspond to the right continuous or left continuous determinations of
the same discontinuous function. (In this case, the set of discontinuity
points of f* is dense on R.)

(c) Functions x +— gF(s) = f*(s) — s are 1-periodic in R.

(d) Any ground-state configuration is determined by a phase w and a deter-
mination of f, either f¥ or f~ such that

(3.10) sj = f(jl +w).

In particular, incommensurate ground-states are represented by trajectories which
are rotating either on a smooth Kolmogorov-Arnold-Moser torus (when f is contin-
uous) or on a discontinuous Cantor set or Cantorus (when f is discontinuous). A
striking consequence is that ground-state trajectories always belong to the possibly
zero-measure set of non-chaotic trajectories, in particular the ground-state ensemble
is described by a Cantorus typically embedded in a chaotic region of the map. The
transition between these two regimes has been called breaking of analyticity [2, 1, 6].

4. Approximation by periodic configurations: a partial justification.
Incommensurate ground-states are typically constructed as the limit of commensurate
ground-states [1, 2, 6] with rotation number «,, = p, /¢, converging to the irrational
a. However, in general only a subsequence of such configuration sequences converge.

In fact, we will see that when there exists a smooth invariant torus for 7" with
rotation number «, then it is the limit (e.g. in the Hausdorff metric) of such periodic
orbits; however, when the set of ground states with rotation number « forms a Cantor
set, one may only prove that it is the limit of a particular sequence of commensurate
ground states. For example, a given sequence may in principle converge to an incom-
mensurate defect configuration, i.e., an orbit which is asymptotic to the Cantorus in
both directions.

A validation of this approach, at least in the case of a smooth hull function, can
be obtained by the use of perturbation theory. The starting point is given by the
following results, see e.g. [7, 22] for the proof:

PROPOSITION 6. Assume that f : T x R is a 2-dimensional symplectic map of
class C" with v > 1. Suppose that T admits a C" (resp. analytical) invariant circle
T, homotopic to T x {0}, on which the motion is C"-conjugate (resp. analytical) to a

10



rigid rotation with rotation number o Diophantine of type (K, T), i.e. such that
K
lg- o] > —, Vq € N*.
qT

Then, given any nonnegative integer k < (r — 1)/, there exists a symplectic ™17+
(resp. analytical) mapping ¥ defined in a neighborhood of T', mapping T’ to T x {0},
and having a C"~1=F" (resp. analytical) inverse in a neighborhood of T', such that

(4.1) YoTotp (B, H)=(®+a+ HAH), H) + R(D, H),

where AR - R and R: T xR — T x R are C"~'=* (resp. analytical) functions,
A(0) # 0, and the remainder R satisfies in a neighborhood of T,

IRI| < CulH|*.

REMARK 4.1. The normal form (4.1) is obtained in practice by constructing an
integral H which is approzimately invariant by T, up to O(|H|*+1).

Using the mapping ¢, we have thus a new set of coordinates (®, H) defined in a
neighborhood of T', and such that I' is the curve H = 0. In particular, the fact that
T is approximately integrable in the vicinity of I" leads to the following result:

LEMMA 7. If |a—p/q| is small enough, all periodic orbits of type p/q are contained
in the strip
p

|H| < K |a— =
q

b

where K depends only on the system and on the circle.

Proof. The idea of the proof, see [7] for details, is that since T is a small pertur-
bation of an integrable mapping, there exists invariant K.A.M. tori whose rotation
number o' is such that |o’ — p/q| < |a — p/q| and p/q belongs to the interval («a, o).
Then, because the map which to a rotation number associates the corresponding
invariant circle is Lipschitz, the circle of rotation number o is contained in the strip

|H| < K/2|la—d| < K

oa—=|.
q

:

Finally, as a consequence of the twist property, the periodic orbit of type p/q has to
be contained between the circles of rotation number o’ and a. 0

We can now easily show that the computation of periodic ground states allows us
to approximate the incommensurate ground states, i.e., the associated hull function.
To do so, let us consider a periodic minimum energy configuration, characterized
equivalently by a finite sequence sq,...,54—1 and s; = sg + p, or the initial point
(po, 0o). Without loss of generality, we choose s € [0,1).
We define a function Fy, : [0,1] — [so, so + 1] by associating:
e to each point z; = {j%} the value {s; — so} + so for j =0,...,¢ — 1, where
{-} denotes the fractional part,
e to x, =1 the value so + 1,
e finally, the periodic function  — Fj(x)—x is written as the linear interpolant
of the previously defined values:
T —x;
(4.2) Fypiaxe sj+ ——2—(sj11— s5) for x; <o <4
Tj+1 — Xj

11



This function can then easily be extended to R by the rule Fy(xz + 1) = Fy(z) + 1.

PROPOSITION 8. Let the mapping T and a smooth invariant circle T be as in
Proposition 6 with k > 1. Then, for | —p/q| small enough, there exists a constant C
depending only on the system and on the circle, such that if f is a hull function for
the set of ground states associated with T', there exists a phase w € R such that

p 1
Oé—q‘+2).

REMARK 4.2. When « is of type (K,7) with T large, there are values of q for
which the dominant error term is the interpolation error, O (l/qZ). The error bound
can then be improved by using e.g. spline or trigonometric interpolation.

Proof. Let (0, Hy),...,(®4—1,H,—1) be the points of the orbit of type p/q in
the new set of coordinates around T', assuming that |« — p/g| is small enough.
From the normal form of the mapping (4.1), we deduce that for j =0,...,¢— 1,

(43 1Fy— £+l < 0(

(@) +q (w+ HAH) . H;) — (@, Hj,)| < qCrmax |H| .

By Lemma 7, we deduce then that

k+1
w+H]A(H])—Iq)‘SKCk Oé—g y
and by the triangular inequality,
B _ _ B k+1
|H;A(H,) — HoA(Hp)| < 2KCy |a — 2
q

Since A is smooth and nonzero in a neighborhood of T', it follows that for some C' > 0,

k+1
P
o — —

|H; — Ho| < C .

Next, we have

k1
[|(®0 +J (w+ HoA(Hy)), Ho) — (@5, Hj,)|| <C a7

and using the previous estimates we obtain for some C' > 0, since k > 1,

<C

a— —|.

(4.4) ‘w—l <<I>o +j§, 0) — 7t (@5, Hj) .

;
Let 7 be the first projection on the angle variable s in the cylinder, f be a hull
function for I', w € R such that for all x € R,

flw+z)=m (¥ (®o+2,0)) (mod 1), and flw) =s0 €10,1).

By construction, it is enough to prove (4.3) for z € [w,w + 1]. Now since p and ¢ are
coprime, for i € {0...q — 1} , there exists j € {0...¢ — 1} such that

() s(er o0

12

p
a—=Z

q

)

1 Ejg (mod 1), and
q q



where the last estimate follows from the construction of Fy; and (4.4). Since f belongs
to C" and by linearity of the interpolation, we obtain that the rate of convergence of
the linear interpolant satisfies
P 1
a—>+=).
Q' q2) O

This result provides us with an a priori estimate for the convergence rate of the
supercell approximations. It justifies in particular the use of the so-called artificial
strain as a measure of the error introduced the system by stretching one or both of
the chains to obtain a commensurate system. B

Let us stress that the estimate is valid only in the case where the mapping T has
a smooth invariant circle I' with rotation number «, or equivalently, when the hull
function is smooth (see Theorem 5). In general, when the bending modulus 5 de-
creases enough, the system will undergo a commensurate-incommensurate transition
at a value 5. which depends on «. The hull function then becomes discontinuous and
the estimate breaks down.

IE,() = -+ ), < c(

5. Numerical examples. We propose now to illustrate the previous analysis
by some numerical examples, both in the smooth and the discontinuous case. For the
purpose of computations in this section, we use the following set of parameters:

Table 3: Set of parameters used for the numerical computations

o Pm dm €10 h B

81 5
e +2\[%0.9957 2555 | 2566 | 1 | 2 | 2.1262 | {764, 10}

where we recall that the distance between atoms is 1 for chain C' and « for chain
C®, the distance between chains is h and the inter-atomic potential between atoms of
different chains is chosen as the Lennard-Jones potential

vor=1e((2)"- (2)).

The ratio « is chosen here arbitrarily to satisfy the following conditions: first, the
two chains have almost the same period, a =~ 1, so we expect a large Moiré pattern
and the formation of ripples, and second, « is of Diophantine type, see Proposition 6.
Both conditions are satisfied here since the golden ratio (1 ++/5)/2 is of Diophantine
type (v/5,2), see e.g. [10], and 13/8 is one of its rational approximant.

5.1. Realistic bending modulus: smooth ripples. We present first the nu-
merical results when choosing the realistic value 8 = 764 for the bending modulus
B (see Section 1 and [12, 19]). The conditions (3.1) and (3.3) are satisfied in this
case. The numerical procedure is as follows. For any choice of rational approximant
a =~ p/q, we set up a periodic system

(5.1) {S?q}j:l...q with initial values — sf = jg, ji=1...q,

and we minimize numerically the energy per periodic cell given by (2.6). From the
relaxed values obtained for {sf "1}, we can then obtain approximations F, for the hull
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function by Formula (4.2). We can also reconstruct approximately the parametric
curves modeling the chains using the curvature formula (2.3) and plot the ripple
geometry.

We compute first a reference solution by using the periodic approximant p,, =
2555, gm = 2566 for which the error (also called artificial strain) is approximately

& — P /qm| <6 107°.
Results are presented in Figures 6(a) and 6(b). Note that due to the scaling difference
of the two axis, the oscillations of the chains are greatly exaggerated in Figure 6(a),

giving the false impression of a greatly varying distance between the chains (see the
orthonormal view on top). As expected, the relaxation process increases the number

Orthonormal rep
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(a) Reconstructed relaxed atomic chains
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Fig. 6: Realistic case simulation results: § = 764

of atoms in a favorable staggered configuration, s ~ .5 (mod 1). We observe that
both the shape of the ripples and the hull function show a smooth behavior. The
overall shape of the twin curves seem almost perfectly periodic (even if the atoms are
not distributed periodically on the curve) with the Moiré pattern period Ljs =~ 1060.
This indicates that a purely continuous approach is likely to be succesfuly in capturing
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the overall behavior, since atomic details (here, the atomic disregistry) integrate out
at the mesoscopic scale.

Next, we evaluate numerically the convergence behavior of the numerical ap-
proach. We consider all periodic approximants p/q to a with ¢ < 1000, where p is the
closest integer to g, and we compute for each the relaxed configuration {sg’ A TR
We evaluate then the error with respect to the reference configuration computed

above, using the approximate error norm
s — Fy,, (J]q) —I—w) ‘ .

The result of this calculation is presented in Figure 6(c). The computed error
falls rapidly on a single straight line as a function of decreasing a — p/q, showing good
agreement with the estimate (4.3). This supports the intuitive idea that the artificial
strain |a — p/q| controls the error, rather than the size ¢ of the periodic supercell.

(52) HFq - F7n

| = min max
q,00 .
' w€[0,1)] j=1...q

REMARK 5.1. Note that the distance between layers h above is determined by
minimizing the energy with respect to h only, e.g. for two flat layers, where the
energy can be computed numerically.

REMARK 5.2. It is also possible to deal with a varying distance h, if we make the
assumption that this distance is locally determined as a function of the position of the
atom S5': indeed, this amounts to using a new potential given by the formula (see
also (2.5) and Figure 5):

Voer(855K5) = En>1101 Voer (855 K5, h).

5.2. Weak bending modulus: nonsmooth behavior. Finally, we present
the results for a weakened system of chains with bending modulus f = 10. Note
that the twist condition (3.3) is still valid in this case. The new results are presented
in Figure 7. The relaxation pattern in this case is quite different from the previous
case: the ripples present a sharp peak separating regions of almost constant curvature,
following the Moiré pattern. This allows the two chains to form commensurate regions
where the atoms are all in the favorable staggered position, separated by solitons or
domain walls which are classical in the study of the Frenkel-Kontorova model [2, 4].

The hull function is discontinuous in this case, with a large plateau at half-integer
values corresponding to favorable staggered configurations and well-defined transition
values forming smaller plateaus separated by forbidden gaps. This indicates a different
mechanical behavior from the smooth case, as the sharp peaks are exponentially
localized solitons, mechanically pinned by the Peierls-Nabarro potential [20, 16, 4].

Another difference is a small, but nonzero secondary oscillation of the system of
ripples, which can be observed by comparing the vertical position of the maxima of
the reconstructed chains on Figure 7(a). This indicates the onset of the discrete inter-
action between solitons and substrate (Peierls-Nabarro potential) as well as between
solitons at the mesoscopic scale. This is in contrast to the smooth case where atomic
details could be integrated out in a continuum description at the mesoscale.

Numerically, there is also a marked difference in the convergence behavior. We
observe on Figure 7(c) that the computed errors do not fall onto a single line as in the
smooth case. On average, we observe that the errors fall exponentially fast for |o —
p/q| > 1075, and then stagnate. Note that in this case, there is no smooth invariant
circle with rotation number a for the map T (see section 4), so the estimate (4.3)
does not hold. Hence, in principle some subsequences of the periodic approximations
may converge to metastable defect configurations.
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Fig. 7: Nonsmooth case simulation results: 8 = 10

Conclusion. In summary, we have presented a new model for the spontaneous
relaxation for free-standing systems of incommensurate van der Waals bilayers. This
relaxation phenomenon is driven by the trade-off between bending energy and the
weak interlayer interactions and the associated disregistry-dependent local configu-
ration potential. Note that this is a different mechanism from the widely studied
intrinsic monolayer rippling observed, e.g., in suspended graphene [14], which can
be explained by phononic thermal fluctuations [8] and stress [3]. It differs also from
ripples caused by interactions with a periodic substrate [18].

To study mathematically the relaxation of such systems, we have introduced a
new one-dimensional double chain model in which consecutive atoms in each chain
are constrained to remain at a fixed distance. Relaxation occurs through spontaneous
bending of the chains to minimize the interlayer interaction energy. This model can
be seen as a new application of the generalized Frenkel-Kontorova model [4].

As a result, we have identified the ground state configurations of the system, and
we have given rigorous error estimates for the application to our model of the popular
supercell approach used to approximate incommensurate systems. We have also pre-
sented numerical results supporting the analysis, both in the case of a realistic bending

16



modulus where smooth quasi-periodic ripples can be numerically observed, and for a
weaker bending modulus where commensurated domains separated by sharply peaked
solitons appear. The transition between the two regimes is the famous commensurate-
incommensurate transition [2].

The next step will be to extend this model to the two-dimensional case. A partic-
ular difficulty is that perfectly inextensible two-dimensional sheets cannot be curved
in more than one direction, and thus the model should be extended to account for
small, but nonzero, in-plain strains.
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