DISTRIBUTIONALLY ROBUST REWARD-RISK RATIO
OPTIMIZATION WITH MOMENT CONSTRAINTS
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Abstract. Reward-risk ratio optimization is an important mathematical approach in finance.
We revisit the model by considering a situation where an investor does not have complete infor-
mation on the distribution of the underlying uncertainty and consequently a robust action is taken
to mitigate the risk arising from ambiguity of the true distribution. We consider a distributionally
robust reward-risk ratio optimization model varied from ex ante Sharpe ratio where the ambigui-
ty set is constructed through prior moment information and the return function is not necessarily
linear. We transform the robust optimization problem into a nonlinear semi-infinite programming
problem through standard Lagrange dualization and then use the well known entropic risk measure
to construct an approximation of the semi-infinite constraints, we solve the latter by an implicit
Dinkelbach method (IDM). Finally, we apply the proposed robust model and numerical scheme to
a portfolio optimization problem and report some preliminary numerical test results. The proposed
robust formulation and numerical schemes can be easily applied to stochastic fractional programming
problems.

Key words. Reward-risk ratio, distributionally robust optimization, entropic risk measure,
implicit Dinkelbach method
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1. Introduction. Since the pioneering work by Markowitz on mean-variance
portfolio selection [30], the return-risk analysis framework has been widely used in
financial portfolio management. Two criteria essentially underly the portfolio selection
approach: the expected return and the risk. One portfolio is preferred to another if
it encompasses higher expected return and lower risk. The reward-risk optimization
has been discussed based on the various risk measures in the literature, see Stoyanov
et al. [48] for an excellent treatment and overview of the topic. The proposed models
associated with risk and reward are dependent of personal preference and have the
following common frameworks [50]: from all feasible portfolios with a given upper
bound on risk, find an optimal solution of the maximum return; from all feasible
portfolios with a given lower bound on return, find an optimal solution of the minimum
risk; from all feasible portfolios with a given risk-aversion parameter, find an optimal
solution of the maximum utility function of return and risk. The frameworks rely on
the upper (lower) bound of risk (return) or the risk aversion parameters. To overcome
the difficulties associated with choosing such variables, performance ratio optimization
which is based on the mean-variance analysis was proposed by Sharpe [44, 45]. In the
recent progress of risk management, the performance ratio optimization models have
attracted substantial amount of attention from academics and practitioners.

Since the publication of the Sharpe ratio [44], some new performance measures
such as STARR ratio, Minimax measure, Sortino ratio, Farinelli-Tibiletti ratio and
most recently Rachev ratio and Generalized Rachev ratio have been proposed, for an
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empirical comparison, see Biglova et al. [8], Rachev et al. [39] and the references
therein. The new ratios take into account of empirically observed phenomena that,
the distributions of asset’s returns are fat-tailed and skewed, by incorporating proper
reward and risk measures.

In practice, no matter which performance ratio is used, whether the ratio can
be precisely evaluated or not depends mainly on the reliability and the accuracy of
prediction of the distribution of asset returns [56]. It is well established that, when
historical data are used to fit into an economical model, the estimated parameters tend
to be unstable. Black and Litterman [9] found that mean-variance portfolio decision
is very sensitive with regard to the mean, which indicates that a small error in the
estimator of this variable may significantly influence the optimal portfolio strategy.
This phenomenon has been further studied by Best and Grauer [7], Broadie [11] and
Chopra and Ziemba [13]. Consequently, in the last decades, there has been an increase
in study of robustness and worst-case analysis of the portfolio selection problem. Ben-
Tal et al. [4] proposed a robust multistage asset allocation model. Goldfarb and
Iyengar [19], Halld6rsson and Tiitiincii [22], Lu [29] investigated the robust mean-
variance portfolio selection problem. El Ghaoui et al. [16] studied the robust mean-
VaR portfolio selection models. Rujeerapaiboon et al. [41] studied the distributionally
robust growth-optimal portfolios. Natarajan et al. [31], Zhu and Fukushima [55],
Zhu et al. [56] and Chen et al. [12] explored robust portfolio selection problems
using CVaR and LPM measures. Delage and Ye [14] and Popescu [38] studied the
distributioally robust portfolio where the ambiguity set is defined through moment
constraints.

The work by Goldfarb and Iyengar [19] apparently has received wide attention
among others particularly in the research community of robust optimization. Instead
of assuming complete information on the mean and the covariance matrix of asset
returns, they introduced some types of uncertainties, such as polytopic uncertain-
ty, box uncertainty and ellipsoidal uncertainty, in the parameters in order to deter-
mine the mean and the covariance matrix. They then transformed the problem into
semi-definite programs (SDP) or second-order cone programs, which can be efficiently
solved by interior-point algorithms developed in recent years. As discussed in [28, 29],
the “separable” uncertainty sets typically share two common properties: (a) their
actual confidence level, namely, the probability of uncertain parameters falling within
the uncertainty set, is unknown, and it can be much higher than the desired level; and
(b) they are fully or partially of box-type. The associated consequences are that the
resulting robust portfolios may be too conservative, and moreover, they are usually
highly non-diversified, as observed in the computational experiments conducted in
[28, 29, 51].

In this paper, we concentrate on robust reward-risk ratio optimization. Kapsos et
al. [24] first proposed a so-called robust omega ratio (a probability weighted ratio of
gains versus losses for some threshold return target) model where in the absence of the
knowledge of the true probability distribution, the worst probability distribution from
an ambiguity set of distributions is considered for the omega ratio. They considered
a situation where each distribution in the ambiguity set can be explicitly represented
either through the mixture of some known distributions, or a perturbation from a
nominal discrete distribution. Gorissen [20] studied the robust fractional program-
ming problem where both the objective and the constraints contain some uncertain
parameters and developed tractable formulation for solving the problem under some
conditions. The established results were used to study the Markowitz portfolio model
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when the expected return and the covariance are not fully obtainable.

Our research in this paper is to investigate a distributionally robust reward risk
ratio model varied from the standard ex ante Sharpe ratio model with the ambiguity
set being constructed through prior moment information. Specifically, we consider a
robust scheme for a reward-risk ratio optimization model, reformulate it as a mathe-
matical program with robust inequality constraints (Proposition 2.1) and further as
a semi-infinite program in the case when the ambiguity set is constructed through
moments. Since the reformulated optimization problem is intrinsically nonconvex, it
cannot be further reformulated as a tractable convex SDP as in [52], we apply the
well-known entropic approximation scheme to tackle the semi-infinite constraints and
present a quantitative stability analysis of the approximation scheme under the Slater
condition (Theorem 3.3). Contrary to the mainstream approaches in the literature of
robust optimization, the approximation scheme does not require any specific structure
(e.g. linear, convex or polynomial) of the underlying random functions w.r.t. the ran-
dom variables, hence our framework (the model and numerical scheme) is applicable
to a broader class of reward functions, which is a significant departure from [24].

To solve the approximated optimization problem, we propose an implicit Dinkel-
bach method which captures the specific structure of the problem: differing from the
standard Dinkelbach method, the new method updates the optimal value at each
iteration by solving a nonlinear equation. Convergence of the resulting algorithm
is established (Theorem 5.2). In comparison with the work by Kapsos et al. [24],
this paper has a few distinctions: (a) the model is more general in the sense that
the underlying return function can be nonlinear; (b) the ambiguity set is constructed
through prior moment information which complements the model in [24]; (¢) the nu-
merical scheme (Algorithm 5.1) updates the robust ratio automatically by solving a
monotonic nonlinear equation rather than by a fixed increment as in [24]. Moreover,
since the underlying functions are nonlinear, we solve a nonlinear convex program-
ming problem rather than a linear programming problem at each iteration as in [24].
While this might be viewed as a disadvantage in terms of numerical efficiency, the
new robust approach and numerical scheme can be easily applied to general stochastic
fractional programs which have a wide range of applications in operational research
and management sciences.

To see how the proposed new framework of modelling and numerical scheme
works, we look into a specific case where the ambiguity set is determined by the mean
and covariance. Instead of assuming complete information of the two quantities as in
[38], we take a similar approach to [14] by considering some degree of uncertainty for
these quantities. We take a simple approach which restricts each component of the
mean and covariance to an interval with finite lower and upper bound rather than
consider the deviation of the true mean and covariance within a specified ellipsoid
and positive semi-definite cone as [14], The main advantage of our approach is that
it allows us to convert the distributionally robust formulation to a classical moment
problem so that we can solve the latter with the general numerical schemes discussed
above (Algorithm 5.1). Statistical analysis is presented for assessing the likelihood of
the true probability distribution to lie in the ambiguity set (Theorem 4.4) and the
convergence of the resulting optimal value and optimal solutions (Theorem 4.5). A
case study on portfolio selection is carried out and the preliminary numerical test
results show some promising performance of the new robust modelling and numerical
framework (Section 6).

Throughout this paper, we will use the following notation. By convention, we
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use a’'b to denote the scalar product of two vectors a,b € R", |-| the Euclidean
norm of a vector, ||-||, infinity norm of continuous functions defined over a compact
set, and || - || the Frobenius norm of matrix. We write ‘clA’ for the closure of a
set A, d(z, A) := inf, ¢4 || — 2'|| for the distance from a point x to A, D(C, A) :=
sup,cc d(x,.A), the deviation of set C from A and H(C, A) := max(ID(C, A),D(A,C))
for the Hausdorff distance between A and C. Finally, for a sequence of subsets {Si}
in a metric space, we follow the standard notation [40] by using limsup,_,, ., Sk to
denote its outer limit, that is, limsup,_, . Sk = {= : liminfy_, { o d(z, Sy) = 0}.

2. Robust reward-risk models. We consider general performance ratio opti-
mization with one-sided risk measure, where only downward variations are penalized.
Specifically, we consider the following optimization problem

Ep[f(x,€) — Y (€)]
(2.1) vex Ep[(Y(©) — f(@.6):]

where z is a decision vector, X is a nonempty convex and compact subset of IR",
f:R" x RF - R is a continuous return function and it is concave w.r.t. z for
every fixed £, £ is a random variable on probability space (Z,F, P) with = C R”,
Y (§) is a benchmark return, Ep[-] denotes the expected value w.r.t. the probability
distribution of &, and (a); = max(a,0). In this setup, the numerator measures
the expected excess return over the benchmark while the denominator measures the
expected shortfall of return below the benchmark. The former is regarded as a reward
and the latter as a risk. The model is a variation of the well known ex ante Sharpe
ratio [45] where the standard deviation in the denominator is replaced by one sided
deviation from zero rather than the mean value. Therefore Ep[(Y(§) — f(z,£))+] is
not even a standard deviation risk functional (see [34, Definition 2.21]) !. The reason
why we choose single-sided dispersion measure is that we view the reward falling below
the benchmark as unfavorable (a risk) and we use first order instead of higher order
purely for simplicity of the model. The framework in this paper (robust formulation
and numerical schemes) works for higher order single sided measure. Moreover, since
the reward function f may be nonlinear, model (2.1) might have applications beyond
finance such as supply chain management and energy in that the reward function may
be regarded as a utility /performance function whereas Y (§) is just benchmark such
as f(wo, ).

Problem (2.1) might not be well defined since the denominator may turn out to
be zero. In the literature of portfolio optimization, one often assumes that the risk
of the active return is positive for all feasible portfolios [48]. Another difficulty is the
fractional form of the objective. If f(-,&) is concave for every &, then the objective
function is quasi-concave. In that case, one may introduce a new variable 7 € IR and
reformulate (2.1) as follows:

(x,T?g)I()'XIR !
(22) st Eplf(a,6) Y () —7(Y(€) — f(2,€))4] 20,
e X.

This kind of reformulation is well known, see for instance Pinar and Titiinci [36]. In
the case when the expected one sided deviation in (2.1) is replaced by a coherent risk

11t is not a risk measure because it does not satisfy the translation invariance property.
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measure, we may use the dual representation of the risk measure and derive a similar
formulation with semi-infinite constraints indexed by a set of functionals [35].

The third issue which concerns the reward-risk ratio model is the information
on the underlying uncertainty and indeed this is the main focus of this paper. In
practice, complete information on the true distribution of random variable ¢ may
not be available. However, it might be possible to construct a set of distributions
based on empirical data or subjective judgements which contain or approximate the
true distribution. In the literature of robust optimization, the set of distributions
is also called ambiguity set indicating ambiguity of the true distribution during the
decision making. Let P denote the non-empty ambiguity set which contains the
true probability distribution. We consider a distributionally robust formulation for
problem (2.1) as follows:

e Eplf(@8) - Y(©)
(2.3) SR ER((V(E) — (0:6)4]

In this formulation, the optimal decision is based on the the worst probability distri-
bution from P, a conservative approach to mitigate the risk arising from the ambiguity
of the true distribution. Note that problem (2.3) depends on the choice of P and an
optimal solution of problem (2.3) provides a lower bound for the optimal value of the
true problem (2.1) if the true probability distribution is contained in P.

Since the objective function (2.3) is nonlinear w.r.t. the operation of mathematical
expectation, it might be very difficult to derive a dual formulation of the problem
particularly when the ambiguity set is defined through moments. To deal with the
issue, we consider an equivalent maximization problem with robust constraints:

(2'4) ($7T§1€1§XIR !
st dnf Eplf(5,6) = Y(€) = 7(Y(©) - f(2,))+] 2 0.

Compared to (2.3), (2.4) is relatively easier to tackle as both the objective and con-
straint functions are linear w.r.t. Ep[-]. The following proposition gives a theoretical
guarantee on the equivalence of the two problems.

Throughout the paper, we use the convention % = +00.

PROPOSITION 2.1. Problems (2.4) and (2.3) are equivalent when both have finite
optimal value and optimal solutions, that is, if {7*,(x*,7*)} is a pair % of optimal
value, optimal solution of problem (2.4), then {x*,7*} is a pair of the optimal value
and optimal solution of (2.3), and vice versa.

Proof. Let {7*, (x*,7*)} and (7, &) be a pair of optimal value and optimal solution
of problems (2.4) and (2.3) respectively. It suffices to show that

' pep Bp[(Y(§) — f(z*,€))4]  PePEp[(Y() - f(2,9))4]
Since (z*,7*) must be a feasible solution to (2.4),
(2.6) Jinf Ep[(f(27,6) =Y () — 77 (Y(§) = f(2",£))+] = 0.

In what follows, we show that (2.6) implies

inf Ep[f(z*,§) = Y(§)] > o
PeP Ep[(Y(E) — f(z*,€))+] —

21t is unique if there is a unique optimal solution.

(2.7)
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Assume for the sake of a contradiction that (2.7) fails to hold. Then there exists a
small positive number € and a sequence { PV} C P such that

(2.8) Epv[f(@ O =Yl _ . |

Epn[(Y(§) = f(2*, )]

when N is sufficiently large. For a fixed PV, we have

Epn[(f(2%,6) =Y (&) = 7" (V) — f(2", ) 4] < —eEpn[(Y(§) = f(27,£))+]-

If Epn[(Y (&) — f(z*,£))+] > 0, then the inequality above contradicts (2.6). On the
other hand, if Ep~[(Y(§) — f(z*,€))+] = 0, then Epn[f(z*,£) — Y (§)] > 0, which
entails the left hand side of (2.8) to be positive infinity. This is not possible because
of the boundedness of 7*. Thus we get a contradiction as desired.

Since z* € X is a feasible solution to (2.3) whereas & is an optimal solution of
(2.3), then

R e (I
(29 TRV - fe) 5T

On the other hand, as & is an optimal solution to (2.3),

Eplf(Z,£) =Y (&)
Ep[(Y(§) = f(2,€))+]

for all P € P. Multiplying both sides of the inequality above by Ep[(Y (§) — f(Z, ))+]
and taking minimum w.r.t. P over P, we immediately obtain

inf Ep((f(2,6) = Y(€) = 7(Y(§) = £(2,8))+] = 0,

> 7

which means (Z,7) is a feasible solution of problem (2.4). Thus

. Ep[f(#,€) - Y(§)]
(2.10) T2 BN V() - 7(:6)s]

Combining (2.9) and (2.10), we arrive at (2.5). The proof is complete. O

Proposition 2.1 paves the way for us to develop a complete numerical treatment
of robust reward-risk ratio optimization problem (2.3) via (2.4). It is unclear whether
we will be able to derive a similar result in the case when the expected one sided
deviation in (2.3) is replaced by a coherent risk measure. To ensure the optimal value
and the optimal solutions of (2.4) to be bounded, we make the following assumption.

ASSUMPTION 2.1. Assume that

(a) X is a compact convex set;

(b) Ec R” is a compact set;

(c) f(-,-) and Y (-) are continuous;

(d) there exists a positive number € such that

> 7.

' o 7 >
(2.11) min inf Ep[(Y(§) — f(2,€))+] 2 €

Parts (a)-(c) of Assumption 2.1 are standard, see similar assumptions by Du-
pacova [15] for distributionally robust minimax problems. Part (d) provides a suffi-
cient condition for the well-definedness of the robust formulation (2.4) (or (2.3)). It
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is possible to relax conditions (a) and (b) by allowing X and Z to be unbounded.
However this will entail a lot of technical details which might detract us from the
main focus of the paper. We leave them to interested readers.

PROPOSITION 2.2. Under Assumption 2.1, problem (2.4) has a finite optimal
value.

Proof. Condition (2.11) ensures that for all P € P and all z € X

Eplf(z,§) =Y (9]
Ep[(Y(§) — f(,8))+]

< ZIEplf(@€) - V()

< sup sup 1 Ep[f(z,&) =Y (9]
zeX PP €

L sup sup |f(z,€) — Y(€).

€ zeX ¢e=

IN

Under Assumption 2.1, =Z and X are compact and functions f and Y are continuous.
Therefore the last term of sup,¢y supgez [f(2,§) — Y (§)| is bounded and so is the
optimal value of (2.3). The conclusion follows from the equivalence of problems (2.3)
and (2.4) as we have shown in Proposition 2.1. O

For the convenience of exposition, let us rewrite (2.4) as a minimization problem

inf -7
(z,7)EXXTR
(2.12) st sup —Ep[(f(2,6) ~Y(9) - 7(V () - f@.8)+] < 0.

Moreover, for the simplicity of notation, let

G(ZL‘,E,T) = 7f(xa€) + Y(f) + T(Y(f) - f($, ))+

Then we can write (2.12) in a concise form

o

x,T)EX X

(2.13) s.t. sup Ep[G(z,§,7)] <0.
PeP

Observe that problem (2.13) is non-convex as G is not convex in (z, 7). However, for
fixed 7, G is convex in . This and the specific form of the objective function allow
us to give a simple characterization of optimality as stated in the proposition below.

PROPOSITION 2.3. Under Assumption 2.1, the following assertions hold.

(i) For each P € P and x € X, Ep|G(x,&,1)] is strictly increasing in 7;

(i) there exists a finite T* such that

(2.14) sup Ep[G(z,&,7°)] > 0,Vz € X;
pPeP

(iii) if for the given T* satisfying (2.14), there exists x* € X such that the equality
in (2.14) holds, that is, supEp[G(z*,&,7%)] = 0, then —7* is the optimal
pPecP

value and (x*,7*) is the optimal solution of problem (2.13).
Proof. Part (i). Under Assumption 2.1 (d), it is easy to see that Ep[G(x,&, )] is
strictly increasing in 7.
Part (ii). By Assumption 2.1 (a)-(c), X and = are compact sets and —f(z, &) +
Y (§) is continuous in (z, &), therefore

sup Ep[| — f(z,§) + V(O] <  max _|— f(z,£) +Y({)] < +oo.
PeP (z,£)EX XE
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On the other hand, under Assumption 2.1 (d), it follows by (2.11)

(2.15) sup Ep[r(¥(€) ~ f(.€))s] = 7e.

Therefore, there must exists 7* sufficiently large such that

sup Ep[G(x,§,7%)] > 0,Vz € X.
PeP

Part (iii). The equality of (2.14) implies feasibility of (z*,7*) to problem (2.13).
Moreover, by using (2.15), we can easily show that sup Ep[G(z,,7)] is strictly
PeP

monotonically increasing. By Part (i) and (2.14), for any € X and any 6 > 0

sup Ep[G(x,&, 7" + )] > 0,
PeP

which implies that the optimal value of problem (2.13) cannot be smaller than —7*.
The conclusion follows. O

The monotonicity of Ep[G(x, &, -)] plays a key role in designing the implicit Dinkel-
bach method (Algorithm 5.1) and the Parts (ii)-(iii) ensure the boundedness of the
optimal solution to problem (2.13) and the sufficient condition for optimality.

3. Dual formulation and entropic approximation. Problem (2.13) is not
numerically solvable as it stands unless the ambiguity is specified and the max oper-
ation in the constraint is removed. In this section, we consider a dual formulation for
the problem in the case when the ambiguity set P is constructed through moments.
Depending on the context of practical applications and availability of information
on the distribution of the random parameters, there are various ways to define the
distributional set P, for instances Zhu and Fukushima [55] considered a mixture dis-
tribution approach for building the ambiguity set where component distributions are
drawn from various sources such as historical data, market information and investor’s
subjective views. More recently, Zhu et al. [57] proposed a new scheme which ef-
fectively determines a set of mixture distributions by maximum likelihood approach
with a given set of sampled data.

Our focus here will be on the case when the ambiguity set is constructed through
moments. The underlying consideration is that given some historical data, it is often
easier to estimate the moments of the random parameters than to derive their prob-
ability distributions in this setting. Moment problems have been studied by Stieltjes
[47] in the nineteenth century. The problem of moments is related to optimization
over polynomials (the dual theory of moment). For instance, Lasserre [26] and Parrilo
[33] among others proposed relaxation hierarchies for optimization over polynomials
using moment results. Bertsimas and Popescu [6] studied further the optimal inequal-
ities given moment information. Moment problems in finance such as option pricing
problems have been investigated in the literature; see [5] and references therein.

In this section, we consider problem (2.13) where the ambiguity set P is con-
structed as follows:

._ CEp[i()]=0,i=1,...,
3.1) Pi= {PE@ Epn()] <0, i=p+1....q }

where ¢; : 2 - IR, i = 1,...,q, are continuous functions, and & denotes the set
of probability measures on probability space (Z,F) of random variable £. Note that
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in this setup, we restrict 1;(£) to be scalar functions so that we may focus on the
main analysis and methodology that we want to convey in this paper. It would be
challenging and practically interesting to consider the case when some 1); is a matrix
such as a correlation matrix.

For the simplicity of discussion, we make the following assumptions throughout
this section.

AssuMPTION 3.1. Let ¥;(§), i = 1,---,q, be defined as in (3.1) and Z be the
support set of . Let ¢ := (Y1, ,¢q). The following inclusion holds:

0, € int{Ep[e(&)] : P € 2} — K,

where ‘int’ denotes the interior of a set and K := 0, x RL .

The assumption is similar to the the Slater constraint qualification in the liter-
ature. It means that v; cannot be selected arbitrarily. It is a standard condition
for deriving Lagrange dual of moment problems, see Shapiro [43] and Xu et al. [54,
Proposition 2.1] for some detailed discussions on the condition. We should also note
that Assumption 3.1 is a sufficient condition rather than a necessary condition, see
[54, Example 2.8] for a counter-example where Assumption 3.1 fails but there is no
dual gap. Under Assumption 3.1, we can reformulate problem (2.12), through [43,
Proposition 3.4], as the following semi-infinite programming problem

min -7
xeX,re]R,Ae]PLPx]R‘j:P
(3.2) q
s.t. > Aii(€) = G(x,6,7), VEE€E.
i=1

If, in addition, Assumption 2.1 holds, then the optimal value of the primal and the
dual problems is finite. Moreover, by [43, Proposition 3.4], the set of optimal solutions
is nonempty and bounded.

Following the mainstream work in DRO (see e.g. Wiesemann et al. [52] and
references therein), it might be possible to reformulate the semi-infinite constraints
of problem (3.2) into some semi-definite constraints when v¢; and Z have certain
specific structure. However, since G(-) is non-convex in (x,7) even in the simplest
case where f is a linear function of xz, the constraints are intrinsically non-convex
and this discourages us to adopt an SDP reformulation approach because the end
optimization problem would be non-tractable after all. This motivates us to propose
an approximation scheme for handling the semi-infinite constraints. Compared to the
work [24], our approach will not require f(x,£) to be linear function or £ to be a
discrete random variable, which means it is applicable to a broader class of problems
including nonlinear portfolio optimization problems where both stocks and options
are involved [58].

For the convenience of exposition, let

q
(33) R(.’L’,T,)\7£) = G(x,f,T) - Z)‘sz(f)
i=1
and
(3.4) W:=XxRxRF x R{” and w := (z,7,\) € W.

The semi-infinite constraints in (3.2) can be written as

(3.5) sup R(w, &) < 0.
£es
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Of course, writing the semi-infinite constraints as above does not bring us any compu-
tational convenience. Our plan here is to develop an approximation of supgcz R(w,§)
through entropic risk measure so that the constraint can be handled numerically more
conveniently. Anderson et al. [1] seem to be the first to consider a CVaR approx-
imation. The rationale behind their approximation scheme is that one may regard
supgez R(w,§) as an extremely robust risk measure of the random variable R(w, &)
whereas CVaR of R(w,&) is a kind of deviation from the extremum conservatism.
In the context of (3.5), the deviation may allow one to capture more samples at the
tail when it is plugged into sample average approximation scheme without signifi-
cantly affecting the set of solutions (set of feasible solution in a relevant optimization
problem) and consequently “smooth up” or “stabilize” the numerical solution of the
optimization problem. Here we take a similar initiative but adopt entropic risk mea-
sure approximation in that the latter is a smooth function and is suited for a broader
class of optimization problems.

For a random variable Z € L>(Z,F, P) 3, the entropic risk measure is defined as

1
ey (Z) = > InEple 7],

where v is a positive number. It is well known (see e.g. [17, formulation (4)]) that
e,(Z) is monotonically increasing in 7 and
7251-100 ey(Z) = esssup(—Z2),

where esssup denotes essential supremum of the random variable, see [17, 18] for a
thorough treatment of the subject. The following lemma states the uniform approxi-
mation of entropic risk measure for a general class of random functions. It will pave
the way for stability analysis of the optimal solutions of the approximation problem
in the forthcoming Theorem 3.3.

LEMMA 3.1. (Entropic approximation of a random function, [27, Proposition
2.1]) Let h : R™ x R* — R be a continuous function and X be a subset of R™. Let
& be a random variable on the probability space (Z,F, P) with support set = C R”.
Let H(x), F,(-) and ZE; denote respectively the essential supremum, the cumulative
distribution function and the support set of —h(x,£), that is, =, is the smallest set
that satisfies P(—h(x,§) € E;) = 1. Let Diam(E,;) denote the diameter of the distance
between H(x) and essential infimum of —h(x,£). Assume: (a) X C R" is a compact
set, (b) for each fized x € X, infecz h(z,§) > —oo. Then for each fivred v € X,
lim, 4o ey(h(z,§)) = H(x). Assume in addition that (c) infiecx infeez h(x,§) >
—o0, and (d) for any fized small positive number €, there exists 6(e) € (0,1) such that

F.(H(x)—¢€) <1—-4d(e), Ve X,
where X, := {x € X : Diam(E;) > 2¢}. Then

(3.6) e (h(x,€)) — H(x)| < 2¢ + Hlnd(e)

Using Lemma 3.1, we propose to approximate the inequality system (3.5) by

(3.7) ey (—R(w, €)) := %lnE[eVR(w7f)] <0.

3 L>®(Z,TF, P) denotes the set of essentially bounded measurable functions.
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It is important to distinguish the expectation E[-] here from the expectation Ep|[-]
in the preceding section. From Lemma 3.1, we can see the conclusion holds for any
probability distribution of §~ with support set =. However, in problem (2.1), we don’t
assume any knowledge of the true distribution P except the support set =. The
expectation E[-] in (3.7) should be understood as taken w.r.t. any distribution of any
random variable £ with support set =. In other words here the £ does not have to be
identical to the £ in (2.1). We use the same letter to ease the notation.

In practice, there are two simple ways to choose the probability distribution in
(3.7). One is to choose uniform distribution if = is bounded, the other is to use the
true distribution of £ if the samples of the random variables are obtainable. In the
latter approach, we may use the samples to compute sample average approximation
(SAA) of the expected value in e, (-). In that case, the value of parameter v may be
estimated by the sample size and the tolerance. For example, if there are 100 samples
“Zy,--+ ,Z100" in decreasing order, then

1 1
2(=2)— Zy = —In(1 + %72 4. 4 P02y — — 1 100.
Y Y
Since Z; < Z; for i = 2,---,100, the quantity in the logarithm is less than 100. Thus

e (=2) = 21| = 7y — (= 2)

1 In 100 — 1 In(1 + eV(Z2=21) S e’Y(Zloo—Zl))
Y Y

1
< —1In100.

~

If the precision is €, then we may set v > 1“%. Of course, the choice of the distri-
bution will affect the rate of convergence of the entropic risk measure to its essential
supremum, we explain this in the following example.

EXAMPLE 3.2. Consider h(z,§) = —xz&, where z € [0,1] C R and (a) & follows a
uniform distribution over interval [—1,1], (b) & follows a distribution with density

[ =g, for&e[-1,0]
g(f)—{ g, for&e(0,1].

Let € < 1 be a small positive number. Then H(z) = x, E; = [—x,2] and X, = {x €
[0,1] : 2¢ < 22} = (¢,1]. For case (a), it is easy to derive that

1 — Fy(H(z) — ) = 2i >

x
This shows that condition (3.6) holds with d(e) = § and hence |e,(h(x,&)) — H(x)| <
2¢ + Hlng . For case (b),

, Vz € X..

N o

2¢ — €2

l—F_L(H(Z‘)—G)Z 2 )

Vr € Xe.

and |e, (h(z,€)) — H(z)| < 2¢ + \%m% . Observe that thg
Thus case (b) provides a tighter bound for the uniform entropic approximation.
With (3.7), we can construct an approximation of problem (3.2) by

1 2e—e?
> ‘; In 3 |-

min —T
(3.8) zeX,TeR,A€RP xIRY?

s.t. ey(—R(z, A\, 7,8)) <0.
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This is a one stage stochastic minimization problem with a single stochastic constrain-
t. One can easily apply the well known SAA methods for solving the problem. The
convergence results are well documented, see for instance [42] for the convergence of
optimal values when SAA method is applied to general stochastic optimization prob-
lem and Anderson et al. [1] for a similar scheme to (3.8) with CVaR approximation.
Recall that we have explained immediately after formulation (3.2) that the set of
the optimal solutions to problem (3.2) is nonempty and bounded under Assumption
3.1. Thus, we may restrict the variables A\;, ¢ = 1,--- , ¢ in problem (3.8) to take finite
values. Specifically, we assume that there exists a positive constant Cy such that

I\i| < Co,fori=1,--- ,q.

Note also that problem (3.8) is non-convex in that R is a non-convex function of
(z,\, 7). However, for fixed 7 the function is convex w.r.t. other variables. We will
come back to this in Section 5 when we discuss computational schemes for the prob-
lem. Here, we concentrate on approximation of (3.8) to (3.2) in terms of the optimal
value and the optimal solutions as v increases. The proposition below addresses the
approximation of the set of feasible solutions as  increases and its impact on the
optimal values.

PROPOSITION 3.2. Let F and F(v) denote the feasible sets of (3.2) and (3.8)
respectively, let 9* and 9(v) denote the corresponding optimal values *. Then the
following assertions hold.

(i) F C F(y) for all v > 0;

(i) F(7) is monotonically decreasing, that is, for y1 < v2, F(vy2) C F(y11);

(iii) ¥(y) is non-decreasing and ¥(y) < ¥*;

(iv) if, in addition, (a) Assumptions 2.1 and 3.1 hold, (b) there exists a positive

number € such that ®

(3.9) min E(Y (€) — f(r,€))4] > ¢

then both ¥* and Y(v) are finite, and the set of optimal solutions to (3.8) is
nonempty and bounded.

Proof. Part (i). Compare constraints of problems (3.2) and (3.8), the only differ-
ence is the second constraint. Since e, (—R(w,§)) < supgez R(w,§), then FCF(y).
Part (ii). The monotonicity follows from the fact that for any fixed w, e, (—R(w,¢))
increases in . Part (iii) follows from Part (i).

Part (iv). Let us show boundedness of the optimal values first. Under Assumption
2.1, we have shown in Proposition 2.2 that 9 is finite. In what follows, we demonstrate
the boundedness of ¥(y). By Jensen’s inequality E [eWR(xv)‘vT’g)] > e ER@ATE]
Through the definition of R in (3.3), we have

q

E[R(xv >‘7 T, f)} = E[G(xv ga T)] - Z AzE[¢z(£)]

i=1

Moreover, it follows by (3.9),
ElG(z, ¢, 7)] = —E[f (2, OI+EY (OI+7E[(Y (&)~ f (2, §))+] = —E[f (z, ) |+E[Y (§)]+7e.

4By writing F(y) and 9(7), we mean that we are looking into the feasible set and the optimal
value as a function (multi-valued for the former) of v and investigate specifically how these quantities
change w.r.t. variation of ~.

5 (3.9) is similar to condition (d) of Assumption 2.1. If E[] is taking w.r.t a probability P
contained in P, this condition is implied by Assumption 2.1.
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Furthermore, since |\;| < Cy and v;(+) is continuous on =, for ¢ = 1,--- , ¢, then the
inequality above means E[R(z, A, 7,£)] — 400 as 7 — +00, and hence

1
er(—R(w,) = F [ R@AT] oo,

The discussions above show that a large 7 value would violate the constraint of (3.2)
regardless of the value of v, which means 7 must be bounded at its optimum.

The non-emptiness and boundedness of the set of optimal solutions to (3.8) follow
from the boundedness of 7 and the fact that the other variables of the problem are
restricted to take a value from a compact set. O

The proposition states some important properties of F(v) and 9(v) but it is
short of characterizing their approximation to F and ¥*. In what follows, we give
a quantitative description of the approximation of the feasible set and the optimal
value. To this end, we need some conditions on the constraints.

ASSUMPTION 3.3. There exist positive constants C' and § such that

(3.10) dlw,F)<C (sup R(w,§)>
§EE "

for any w € W satisfying d(w, F) < 5. Note that for w € F, supgcz R(w, &) < 0.
Thus (3.10) holds trivially. The quantity (supgez R(w,§))+ describes the significance
of constraint violation when w ¢ F, and (3.10) establishes a relationship between
deviation of w from F and the quantity (supgez R(w,§))+. In the literature of para-
metric programming, the relationship is known as error bound condition which plays
an important role in stability analysis of the optimal value and optimal solutions, we
refer interested readers the survey papers [3, 32] for more details in this regard. A
sufficient condition for (3.10) is that for every w € F, the constraint qualification due
to Borwein [10] holds, that is, for any o € [0, 4+00), 0 € ad(supgez R(w, §)) + Nz (w)
implies & = 0, where d denotes the Clarke subdifferential in w, and Nx(w) denotes
the normal cone, see [10, Theorem 3.2] for details.

We are now ready to discuss the stability of problem (3.8) against variation of
the parameter ~.

THEOREM 3.3. Assume: (a) F is a compact set; (b) ¥;, i =1,--- ,q, is continu-
ous, (c¢) Assumption 2.1 and the conditions of Lemma 3.1 hold for function R(w,§).
Then

(i) for any e > 0, there exists a positive number o such that

H(F(7), F) < €,V € [y*, +00);

(ii) if, in addition, Assumption 3.3 holds, then there exists positive constants C
and v* such that

(3.11) H(F(v),F) < C sup A, (w),Vy € [y*, +00),
weWw

where

Ay (w) = <Sup R(w,§) — ew(—R(w,f))> ;

£es
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(i) the difference between the optimal values of ¥(y) and 9* is bounded by C sup,,cy A~ (w),
i.e.,

[9(y) =" < C sup Ay (w),Vy € [y*, 4+00).

Proof. By Proposition 3.2 (i), D(F,F(v)) = 0, therefore in Parts (i) and (ii), we
only need to show the inequalities hold for D(F(v), F).

Part (i). The proof is similar to that of [53, Lemma 4.2 (i)]. Let € be a fixed small
positive number. Define

H(e):= inf R .
(€):= inf sup (w, §)
d(w,F)>e
Then H(e) > 0. Let § := H(e)/2. Under conditions (c), it follows by Lemma 3.1 that
there exists a positive number g such that

sup SupR(waf)fe’)’(*R(wvf)) S(sa
weW | €=

for v > vp. For any w € W with d(w, F) > ¢,

e (= (w,€)) = Sup R(w, €) e (R, €)) —sup R(w,) 2 H(©)~H(©)/2 = H(€)/2 >0

£eE

which implies w ¢ F(v). This means that for every w € F(v), we have d(w, F) < e,
that is, D(F(v), F) < e.

Part (ii). Under Assumption 3.3, it follows by Part (i) that there exists a suffi-
ciently large v* such that

dw, F) < C (sup Rw, &
£e= i
for all w € F(vy) when v > v*. Since w € F(v) is equivalent to e, (—R(w,§)) < 0,
then for any w € F(7v),

d(w, F) < C (Sup R(mé)) — Cey(—R(w,§)) <C (sup R(w, &) — 67(—R(w,§))>
+ +

texz cez

=C (supR(w,g) — ew(—R(wf))) < C sup (SupR(w,é) - 6w(—R(w»€))> ,

{e= weW \ (eE

where the second inequality follows from the fact (a)+ < (a — b)4 for any b < 0; the
equality follows from the fact supgcz R(w, &) > ey (—R(w,§) for any w € W. This
shows

D(F(y), F) < C sup (supR(w@ - ev(R(w,f))> :

weW \ £€2

Part (iii). The conclusion follows from Part (i) by applying classical stability
result [25, Theorem 1]. Here we include a proof for completeness. Let w* and w, be
an optimal solution of problems (3.2) and (3.8) respectively. Let 7* and 7, be the
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corresponding second components. Then 9* = —7* and J(vy) = —7,. By Part (ii),
there exists w € F such that

lwy — @] < C sup Ay (w).
wew

Let 7 be the corresponding component of w. Then ¢* = —7* < —7. Consequently
we have

0F < =T < =7y [T = 7| SO(9) + C sup Ay (w).
weWw

Exchanging the role of w, and w* under the symmetry of Hausdorff distance between
F(v) and F, we have

Y(y) < 9"+ C sup A, (w).
weW
The conclusion follows. O
Under condition (c), it follows by Lemma 3.1 that A, (w) goes to 0 uniformly for
all w € W as v — 400, Theorem 3.3 states that [¢(y) — ¥*| — 0 and it gives rise to
a linear bound for [J(y) — ¥*| in terms of A, (w).

4. Ambiguity set for data-driven problems. Delage and Ye [14] developed
a distributionally robust optimization model for so-called data-driven problems where
the distribution of the underlying random vector relies solely on historical data (see
page 596 in [14]). They argued that for these problems, it might be safer to rely on
estimates of the mean and covariance matrix of the random vector. Let us denote
the mean and covariance matrix by i and ¥ respectively here. Then Delage and Ye’s
ambiguity set can be described as follows:

Epl¢ — )" 'Epl€ — ] <m }
Ep[(§ —m)(& —m)T] 2 32 ’

where ~;, ¢ = 1,2 are parameters. The parameters are introduced in that one may
not be entirely confident in the estimates of the mean and covariance in data-driven
problems. The formulation allows one to construct an ambiguity set where the true
mean and covariance do not have to be matched precisely and this is particularly
helpful when fi and ¥ are estimated through empirical data.

The first constraint in (4.1) assumes that the mean of £ lies in an ellipsoid of
size v, centered at i and the second constraint forces the centered second moment
to lie in a positive semi-definite cone defined with matrix inequality. A significant
advantage of this particular way to construct the ambiguity set is that through a
simple duality formulation, the resulting distributionally robust optimization problem
can be converted into a tractable convex semi-definite program.

In this section, we consider a variation of (4.1). Instead of using ellipsoid con-
straints for the mean and semi-definite constraints for the covariance, we propose
simple box constraints for each component of these quantities. Specifically we define
the ambiguity set as follows:

@) S = {Pes:

* _ES(EP[f]_ﬂ)’LS€7 22177m}
4.2 Pri=qPe2: - ° = )
2 { IERI(E — £)(€ — 7]~ 5. < 0
where || A]|. = max|a;;|. It is easy to verify that || - ||« is a norm for the matrix but

without the sub-multiplicative property. Tiitiincii and Koenig [51] apparently were
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among the first to consider box constraints of the mean and covariance to define a set of
means and covariance matrices in portfolio optimization. They developed a minimax
robust Markowitz’s mean-variance model where the worst mean and covariance matrix
are selected from the set.

Our motivations here for this particular way of construction of the ambiguity set
are three-fold: (a) the semi-definite constraint gives a holistic specification on the
property of the centered covariance of random vector £ but in practice this may not
be entirely justified, and it might also be more convenient to give a lower and upper
bound for each component of the centered covariance; (b) in some practical cases,
we may have more information on the covariance of some random components than
others, e.g., we know precisely the covariance between & and &3, our model allows us
to set a different o value for each component of the covariance matrix although we
use a unified ¢ in this paper for simplicity of exposition; (¢) the ambiguity set defined
as such can be easily fitted into the framework of the moment problem in Section 3
for which we have already developed a new numerical scheme. In fact, it is easy to
recast (4.2) as

* o, . _5SEP[¢)Z(£)]SQZ:L~’]€
(4.3) P = {Pegz. o < Eply(©) <0, =kl g }

. . . 2 - .
where k is the dimension of random &, ¢ = £ ;3’“, Yi(§) = & — i and ¥;(€), j =
k+1,---,q, is the elements of the upper triangular of matrix (¢ — )(§ — p)? — 3.

Analogous to the arguments in [14], in practice we may use samples to construct
an estimate of the true mean and covariance. Let &', --- &V be an independent and

identically distributed sample of ¢ and

(€ — M) — ™"

2=
1=

1
N ._ s N . _
phi=d e, BV =
s=1
Then we may consider the following sample based ambiguity set

N . —e<Ep[g - pu" <¢
(4.4) P= {P €7 Eple - )€~ )T - 3V <0 }

or equivalently
—e<E N <e¢i1=1,...,k
’PN:‘{PEQZ = P[ zN(g)]— ; .“q}’

where k, ¢ are defined as above, ¥V (£) = & — u and 1/)?7(5), j=k+1,---,q, are
the elements of the upper triangular of matrix (¢ — ™) (¢ — p¥)T — BN,

In order to justify the specific way for constructing the ambiguity set, we need to
address a few theoretical questions: (a) does PV converge to P* as the sample size
increases? (b) Is P¥ statistically meaningful in the sense whether there is a significant
likelihood such that the true probability distribution of ¢ lies in PN? (c) does the
optimal value and the optimal solutions obtained on the basis of PV converge to their
true counterpart? In the rest of this section, we address these questions. Note that
throughout this section, we concentrate on asymptotic analysis of the ambiguity set
and other statistical quantities for fixed entropic parameter . Thus, this section may
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be regarded as convergence analysis or stability analysis of the distributionally robust
reward risk ratio problem w.r.t. change of sample data.

DEFINITION 4.1. Let P,Q € & and .# denote the set of measurable functions
defined in the probability space (2, %#). The total variation metric between P and Q
is defined as (see e.g., page 270 in [2])

drv(P,Q) := sup (Ep[h(£)] — Eq[h(£)]),
he#
where

A = {h:TR* = R|h is # measurable, sup |h(¢)| < 1}.
EEE

Using the total variation metric, we can define the distance from a point to a
set, deviation from one set to another and Hausdorff distance between two sets in the
space of &. Specifically, let

dTV(QaP ) = Plél7f;* dTV(va)v

DTV(PNap*) ‘= sup dTV(Q7P*)
QePN

and
Hyy (PN, P*) := max{Dry (PN, P*), Dy (P*, PV)}.

Here Hyy (PN, P*) defines Hausdorff distance between PV and P* under the total
variation metric in space &.

PROPOSITION 4.2. Suppose that = is a compact set. Then Hpy (PN, P*) — 0 as
N — 4o0.

Proof. When Z is a compact set, both PV and P* are compact sets under the
total variation metric. For any given Q € PV, it follows by [49, Lemma 2] that there
exists a positive constant L such that

Dry(Q,P*) < L ([|(EQ[¥r(&)] — ee) || + [[(-EQ[¥r(&)] —ee)+ )
L ([(EQ[¥s ()] = ge)+ ]| + [(=Ee[¥.s(§)] — ae)+ )
(4.5) < L (I(Eql¥r(€) — YT (ON+] + I(Eql¥s(€) — ¥ (€)])+])
+L (I(EQ¥7' (&) = TN+l + (Be[¥5 (&) = T (D)
where
1 Vet v Vi
U= U= Lo = ,\IIIJV::
% ¢q w;iv UJ(IIV
e denotes the vector with each component being 1 and for a vector a, (a)+ := max(0, a)
with the maximum being taken componentwise. The second inequality in (4.5) follows
from the fact that P € PN and (a)y < (a —b)4 if b < 0. Likewise, for any given
QeP,
Drv(Q,PY) < L (II(Eq[¥1(§) — 7 ()N +]| + I(Eq[¥s(€) — ¥5 (€)D)+])
+L (I(Eq[U7 (§) = wr(©))+]l + I B[¥] (€) = ¥s(©D+)
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Since u¥ — i and £V — ¥, it is not difficult to see that ¥» and WY converge to
U; and ¥; uniformly over = as N — +o00. Thus both Dy (Q, P*) and D7y (Q, PY)

converge to zero as N goes to infinity, which implies Hpy (PY,P*) — 0 . The proof
is complete. O

Next, we address question (b). We need some intermediate technical results which
can be easily established by Shawe-Taylor and Cristianini’s theorems (see [46]).

LEMMA 4.3. If € is essentially bounded by a positive number p, then for any given
positive small number ¢,

(i) with probability at least 1 — & over the choice of the samples of &,

VL < P ol
IELE] — p ”*Sm<2+ 21 5>7

(i) with probability at least 1 — 2§ over the choice of the samples of &,

2
IE[(E — p™)(€ = ™)) ==Vl < % <2+ m> .

Proof. Part (i) follows straightforwardly from [46, Theorem 3]. We only prove
Part (ii). Let

A = }Vﬁjlsis? and A= E[ec”]
Then
[EI(E — (€ - u™)T] - ).
= [E[(€ ~ uM) (€~ 1)) - jlvi@ — )& 1Y

= |4 = 2E[] (k™) + pN (™) = AN + 1N (™).
< A= AN, + 2| E[E] (™) = ™ (1)
< |A—AN|p +2|E[E] — &N - [1[(™)T.

Note that for any two events A; and A, Bonferroni’s inequality states that
P(A1A2) > P(A1) + P(A4z) — 1.

Consequently, we can use [46, Corollary 5] and Part (i) to claim that with probability
at least 1 — 20

JEI(E — u)(E — )] — 2V < jﬁ <2+ ,/2111;) . 3% <2+ ,/zln;>
_ 307 Jotn L
_\/N<2+ 21 5).

The proof is complete. O
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With Lemmas 4.3, we are ready to demonstrate that with appropriate choice of
parameters € and o, the true distribution lies in PV with probability at least 1 — 36
for the given small positive number §.

THEOREM 4.4. Suppose that & is essentially bounded by a positive number p and
the parameters € and o are chosen as follows:

p 1 3p? 1
4. =—2 2ln - =—1(2 2In— | .
(4.6) EN \/JV<+ n(s), ON \/N<+ n5>

Then with probability at least 1 — 3§ over the choice of the samples of &, the true
distribution of € lies in the ambiguity set PN .

Proof. Theorem 4.4 follows from Bonferroni’s inequality and Lemma 4.3 directly.
0

Note that Shawe-Taylor and Cristianini presented a similar result when the matrix
norm is replaced by the Frobenius norm. Theorem 4.4 is an analogue of their result
under the new matrix norm || - ||..

Using the ambiguity set PV, we can derive the dual formulation of problem (2.12)
coupled by the entropic approximation as follows:

min —T
(4.7) z€X,7€ERAERP X RL P
s.t. e’Y(_RN(xa A?ﬂ&)) <0,

q
where RN (z,7,X,€) 1= G(,&,7) = Y N ().
1=1

Let F, F(v),9* and 9(7y) be defined as in Proposition 3.2. Let F¥(v) and 9" (v)
denote the set of feasible solutions and the optimal value of problem (4.7), S¥(v),
S(y) and S* denote the optimal solution of problems (4.7), (3.8) and (3.2) respectively.
Let F*(-y) denote the set of strictly feasible solutions of problem (3.8). The following
theorem summarizes the convergence of problem (4.7) to problems (3.8) and (3.2) in
terms of the optimal value and the optimal solutions for fixed v as N — +o0.

THEOREM 4.5. Assume: (a) D is a compact set and DNS(7y) # 0, DNSN () # 0;
(b) clF5(v) N S(y) # 0. Then

(i) imsupy_, oo SN (7) N D C S(v) N D and imy_s400 9V (7) = I(7).

(ii) if, in addition, Assumption 3.3 holds, there exist N and 4 sufficiently large

such that

D(FN(y),F)<C SE%AQV(U)),

and

=9V (y) < C sup A (w),

forv>% and N > N, where C is a positive constant and

£eE

AN (w) = <sup R(w, &) - e7<—RN<w,s>>> .
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Condition (a) requires the set of optimal solutions of problems (4.7) and (3.8) to
have at least one finite optimal solution. Condition (b) means that if problem (3.8)
has at least one optimal solution which falls into the closure of the interior of its
feasible set, the condition is fulfilled by the Slater constraint qualification, see similar
conditions to be used in [27].

Proof. Part (i). Since D is a compact set and U™ (-) and W (+) converge to W;(-)
and W ;(-) uniformly on E, it is easy to show that limsupy_, . F~(7) € F(7). By
taking a subsequence if necessary we may assume for the simplicity of notation that
(N, 7N AN) — (2%, 7%, %) € F(v), which implies

lim oY = lim —7V = —7* > ",
N—+o00 N—+o00

Under condition (b), there exists an optimal solution (z,7,\) € S(v) such that
(Z,7,A) € clF5(y). It is easy to show that there exists (v, 7, AN) € FN(y) such
that |[(z™, 7V, AV) — (2,7, ))|| = 0 as N — +o0. Therefore

v*=—7= lim —7V > lim o =171*
N—+oo N—+oc0

This shows (z*,7*,A*) € S(vy). The convergence of optimal value follows from the
continuity of the objective function.

Part (ii). By Part (i) and Theorem 3.3, there exist N and 4 sufficiently large such
that for any N > N and v >4

(FN(7), F) <4,

where § is the parameter in Assumption 3.3. For any w € FN(v), it follows by (3.10)

(e=

dlw,F) < C (sup R(w,f)) — C’ev(—RN(w,f))
+

weW \ E€E

< C sup <SupR(w,€) ew(RN(w,é))> -
+
This shows

D(FN(v), F) < C sup (sup R(w,§&) — ev(RN(w,g))) .

weW \ £e2

Let w* and w,]yv be an optimal solution of problem (3.2) and problem (4.7) respectively,
and 7* and T,iV be the corresponding components to 7. Then ¥* = —7* and 9V (y) =
—Té\’. By Part (ii), there exists w € F such that

lw — @] < C sup AN (w).
weWw

Let 7 be the corresponding component of w. Then we have

<7< —T,év+|77'—7',£vl <9N(y) + C sup Afy(w).
weW

The proof is complete. O
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Compared to Theorem 3.3, Theorem 4.5 has only managed a single sided quan-
titative analysis of the feasible set and the optimal value because we are not certain
F lies in FN(v). Note also that AN (w) — 0 as N,y — +oco. This can be easily
observed through the inequality below

AY () < (s R0, 8) = e (~Rw0.9)) + (e (R0, e (-R¥w.))) .

£€=E +

where the first term goes to zero by Lemma 3.1 and the second term tends to zero as
N — 400 by [42, Proposition 7, Chapter 6].

5. Implicit Dinkelbach method. In this section, we propose an iterative
scheme for solving problem (3.8). As we discussed in Section 2, the problem is non-
convex. However, for each fixed 7, the underlying function in the first constraint is
convex. This motivates us to exploit the specific structure of the problem and propose
an algorithm which follows the framework of the Dinkelbach method. To this end, we
write (3.8) in a slightly neater form

min -7
(51) zeX, TeR,AEA
s.t. ey(—R(z, A, 1,8)) <0,
where A := IR? x RY”. The following algorithm presents an iterative scheme for

solving (5.1).
ALGORITHM 5.1. (Implicit Dinkelbach method)
Step 1. Given xq, Ao, set k = 0.
Step 2. For given xy, A, solve T, as a solution to the following equation:

(52) e’Y(iR(xlﬁ)‘k’T’ E)) =0.
Step 3. For given Ty, solve

min e, (—R(z, A, 71, §))
(5.3) st. zeX,
A €A,

and denote the optimal value and the optimal solution by A(1y;) and (g1, Me+1)
respectively.

Step 4. If A(1) = 0, stop. Return 7y, as the optimal value and (xp41, Akt+1,Tr) aS
the optimal solution. Otherwise go to Step 2.

REMARK 5.2. Note that for fited x and A, ey (—R(z, A\, 7,§)) is monotonically
increasing in 7. This allows use to use the bisection method for finding the root of
equation (5.2). Moreover, for fized T, (5.3) is a convex optimization problem.

We call the algorithm implicit Dinkelbach function method as the computational
scheme resembles the algorithmic procedures of the Dinkelbach method in Steps 2 and
3 where we update 1, and (x, ). The word implicit is used to reflect the fact that
Tk 15 embedded nonlinearly in the equation. There are two main differences from the
standard Dinkelbach method: (a) the objective function in the minimization problem
(5.3) is nonlinear in parameter T orin (x, X), (b) 1y, is determined in Step 2 by solving
a nonlinear equation.

Kapsos et al. [24, Algorithm 1] proposed a similar algorithm for solving a ro-
bust omega ratio problem where the uncertainty in probability is characterized through
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mizture distributions. Different from Algorithm 5.1, their algorithm updates the ratio
Tk by a fized increment and then solve a tractable LP. In our algorithm, even if f is
linear in x and £, we would still have to solve a nonlinear convex program (5.3).

PROPOSITION 5.1. Let 7, be generated by Algorithm 5.1 and A(r) be defined as
the optimal value of program (5.3). Then

(i) A(T) is continuous in T;

(ii) for each k, —Tii41 < —Tg;

(iii) A(1g) <0 and 71, is optimal if and only if A(m) = 0.

Proof. Part (i). Since X and A are assumed to be bounded, it is easy to verify
that e, (—R(z, A, 7,&)) is uniformly continuous in (x, X). By [40, Theorem 1.17], the
optimal value function is continuous in .

Parts (ii) and (iii). By the definition of 7, and A(7), we know A(7g) < 0. For
fixed v,z and A, e5(—R(z, A, 7,€)) is strictly increasing in 7 as R(z, A, 7, ) does, see
Proposition 2.3 and (3.3). Therefore (5.2) has a unique solution. Moreover, 7y, is the
optimal value of problem (5.1) if and only if A(7) > 0. To see this, assume for the
sake of a contradiction that A(7x) < 0, that is,

en(=R(Trg1, Akt1, Tk, §)) < 0.

Then we can find a positive number § such that
67(—R($k+1, Akt+1, Tk + 6, f)) =0.

Thus —7,41 = —7x — 0 < —7 which contradicts the assumption that 7 is optimal.
Conversely, if A(7;) = 0, then

Lmin e (<R, 7€) = 0.

Since ey (—R(z, A, -, §)) is strictly increasing in 7,
ey(—R(z, A\, 7, +6,£)) >0, Vé>0,V(z,\) € X xA,

which means that 7, + 0 is not feasible to problem (5.1) for any § > 0. This shows
—7% is the optimal value and (zg41, Ak+1, %) is the optimal solution of problem (5.1).
0

The following theorem states that the Algorithm 5.1 either terminates in a fi-
nite number of iterations or generates a sequence of approximation of optimal values
converging to the optimal value of problem (5.1).

THEOREM 5.2. Let {—7} be a sequence generated by Algorithm 5.1. Under
Assumption 2.1, the sequence is momnotonically decreasing and it converges to the
optimal value of problem (5.1).

Proof. The Monotonicity follows from Proposition 5.1. In what follows, we show
the convergence. Let us first consider the case when the algorithm terminates after k
iterations, i.e., A(1;) = 0. By Proposition 5.1, 7 is the optimal value.

Now suppose that {—74} is an infinite sequence. Under Assumption 2.1, the
sequence is lower bounded. Therefore there exists some positive number 7* such that
—7% § —7*, which means 7* is the upper bound of the sequence {7;}. It suffices to
show that A(r*) > 0.

Assume for the sake of a contradiction that A(7*) < 0. Denote by (z*,A*) the
corresponding optimal solution to problem (5.3) for the given 7*. Then there exists a
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positive constant o such that e, (—R(z*, \*,7%,&)) < —ayp. Since e, (—R(z*, \*, 7,§))
is monotonically increasing w.r.t. 7, and 7, < 7%, then

ey (—R(z*, N, 11, 8)) < —a, Vk.

Denote by (2g41, Ak+1) the corresponding optimal solution of problem (5.3) for the
given 7. Then the optimality of (xgy1, Ag+1,7x) means

67(*R(xk+17 Ak-i—lv Tk, 5)) S e,y(*R(l‘*’ >‘*7 Tk 5)) < —Qp.
Since 7, — 7* and e, () is continuous, there exists a sufficiently large ko such that

ey (= R(Tho+1, Ao +1, 77, §)) < —o/2.

On the other hand, looking at Step 2 of the algorithm, 7,4 is chosen to satisfy

67(—R(1‘k0+1, >‘k'o+1v Tko+15 g)) =0.

we obtain 7,41 > 7 by combining last two equation and taking into account the
monotonicity of e (—R(Zry+1, Ako+1,§)). This contradicts the fact that 7* is the
upper bound of the sequence {7 }. The proof is complete. O

6. Numerical tests. We have carried out a number of numerical experiments
on the robust ratio portfolio optimization model (2.1) by evaluating its performances
under various scenarios. The experiments are based on the application of the model in
portfolio optimization where certain assets are invested in stock markets. Specifically,
we use 10 stocks (Aberdeen Asset Management plc, Admiral Group PLC, AMEC PLC,
Anglo American PLC, Antofagasta PLC, AstraZeneca PLC, Aviva PLC, Babcock
International Group PLC, BAE Systems PLC and Barclays PL) over a time horizon
of 4 years (from 7th Dec 2009 to 18th Nov 2013) with a total of 1000 records of
historical stock returns ( obtained from http://finance.google.com with adjustment
for stock splitting). We have carried out out-of-sample tests with a rolling window of
500 days, that is, we use first 500 data to calculate the optimal portfolio strategy for
day 501 and then move on a rolling basis. To simplify the discussions, we ignore the
transaction fee, therefore the total value of portfolio is

f(z,8) :=riz1 +roxze + - - - + ripxio,

where r; denotes the random return of stock 3.

TABLE 1
Daily return

Strategy L H A Down Up

Our DRO Model 0.9717 1.0541 1.005 235 265
Popescu’s DRO model 0.9666 1.062 1.005 233 267
SP model 0.9532 1.0664 1.003 235 265

EW model ( benchmark ) 0.9717 1.0541 1.004 241 259

In implementing the proposed robust ratio portfolio optimization model (2.1) and
the subsequent computational scheme, we use the ambiguity set defined in (4.4). The
parameter ¢ for the confidence interval in Theorem 4.4 is fixed at 0.01 which means
that with 97% the true probability is contained in the ambiguity set. We can figure
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F1G. 1. Wealth evolution with the trading times.

out the corresponding parameters e5o9 = 0.2621 and o599 = 0.9155. Moreover, we
use the equally weighted portfolio as a benchmark strategy Y (£) and set the small
positive number satisfying (2.11) by 0.01. The entropic approximation parameter -y
is fixed at 7000 6. Note that if we set the parameters esop = 0 and o599 = 0, then the
ambiguity set collapses to Popescu’s exact mean-covariance distributionally robust
model [38]. In the numerical experiments, we compare our model with Popescu’s
model and the stochastic programming model where (2.1) is solved by approximating
the true probability distribution P with empirical data. We implement Algorithm 5.1
on MATLAB 2014 installed in a PC with Windows 7 operating system. We use the
built-in optimization solver fmincon to solve minimization problem (5.3).

Table 1 summarizes the daily returns generated by the three portfolio models,
where “L”, “H” and “A” denote respectively the lowest, highest and average returns
from day 501 to day 1000. We record the number of days when the overall portfolio
return falls below 1 and exceeds ( or equals to) 1, denote them respectively by “Down”
and “Up”. We can see that our distributionally robust optimization model achieves
comparable average daily return and displays more stable performance with a narrow-
er range between the best and worst return curves. Moreover, in comparison with the
benchmark strategy, all of the other three models generate more “Up” times. Figure
1 depicts the performances of the three portfolio models. The figure indicates that the
cumulative wealth curve of our DRO model outperforms the SP model and Popescu’s
model, and it lies well above the benchmark wealth curve.The SP wealth curve is very
close to the benchmark curve but it falls below at the end of the investment horizon.
Compared to the SP model, our model and Popescu’s model display higher average

6 We use SAA method with 500 historical data to calculate the expectation in ey (Z) :=

%ln Ep[e~74]. v = 7000 ensures ﬁ In(500) < 1073.
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daily return, cumulative portfolio values at the end of horizon and generate more
stable daily returns over the time horizon. In terms of computation time, our model
requires overall 37546 seconds for finding out optimal allocations which is around 75
seconds per decision making, and Popescu’s model requires 47577 seconds (95 seconds
per decision making) whereas the SP model requires only 12 seconds which is far more
efficient than the other two models. Indeed, when the number of assets n is large,
our model may fail since the size of the resulting optimization problem may increase
significantly.

TABLE 2
Sensitivity-Daily return

Our DRO Model L H A Down Up
(v =7000,6 =0.01)-R 0.9717 1.0541 1.0007 96 104
(y =70000,5 = 0.01)-R  0.9719 1.0544 1.0005 98 102
(v =7000,6 =0.01)-F 0.9713 1.0553 1.0005 101 99
(v =7000,6 = 0.001)-R  0.9562 1.0571 1.0003 95 105
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We have also carried out tests on the sensitivity of our model w.r.t. the change of
parameters including «, ey and oy (which determine the size of the ambiguity set),
as well as the sample size. Table 2 and Figure 2 display our findings. In Table 2,
‘R’ refers to the case where the historical data are rolling over 500 trading days and
‘F’ the case where the 500 historical data are fixed. The change of the ambiguity is
made via parameter § which in turn determines parameters ey and oy defined as in
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(4.6), for example, 6 = 0.01 generates ey = 0.2621, o = 0.9155, and § = 0.001 gives
e = 0.2971, 0 = 1.0395. From the table, we can see that our DRO model is fairly
stable w.r.t. the change of historical data (samples) and parameter . In contrast, it
is more sensitive to the variation of §. Figure 2 depicts the performance of the model
w.r.t. the change of the parameters. The solid red curve is the base model with rolling
sample and fixed parameters (v = 7000, ey = 0.2621, 05 = 0.9155). The blue dotted
curve, the green dashed curve and the red dash-dot curve correspond respectively to
the perturbed parameters «y, the sample and (ex,on). The figure shows that our
model is more sensitive to the change of the ambiguity set than to the change of
historical data and parameter «. The findings indicate the size of the ambiguity set
has substantial effect on the performance of our model.

TABLE 3
Average return

Model Freedom 3 Freedom 4 Freedom 5 Freedom 6

Our DRO model 36(0.9998)  2(1.0000) 2(0.9991)  20(1.0001)
Popescu’s model 36(0.9993) 36(0.9997) 21(0.9989) 29(0.9994)

SP model 37(0.9989) 37(0.9996) 12(0.9988) 39(0.9995)

EW model ( benchmark ) (1.0003) (0.9993) (0.9986) (1.0000)

To further investigate stability of our model, we have also carried out tests with
synthetic data for the ten stocks discussed above. Specifically, we randomly choose
part of the historical data of the ten stocks typically of size 100 and use them as
training data to figure out the optimal investment strategy for tomorrow (the next
day of trading). We do so for each of the models to be tested. Let us use & to denote
such a strategy (model dependent). Next, we examine the performance of &, that is,
the portfolio return based on Z in the next trading day. To this end, we generate
some independent test data with some t-distribution. Note that compared to normal
distributions, t-distributions have been widely used to model return of financial assets
whose distributions are usually fat-tailed. We refer the readers to Hu and Kercheval
[23] and Platen and Sidorowicz [37] for recent developments and empirical evidences.

We use a t-distribution with specified degree of freedom to generate 1000 samples
for the stock return rate tomorrow and scale them by multiplying each of the samples
with the standard deviation of the training data. The modified data is then used to
calculate the average return for tomorrow, that is, Tloo Zgﬂo 2T¢;, where &1, -+ -, €1000
denote the scaled samples.

We repeat this kind of experiment in total 200 times with 50 different training
datasets and 4 different test datasets (generated by 4 t-distributions with different
degrees of freedom and subsequently scaled as described above). The results are
displayed in Table 3 and Figures 3-6. In Table 3, the last row displays the average
return from the benchmark strategy. For each element a(b) in the table, ‘@’ denotes
the number of times where the average return falls below the benchmark (over the 50
experiments) and ‘b’ the average return. We can see that our DRO model achieves
comparable average daily return. Figures 3-6 are plotted as follows. The horizontal
axis depicts 50 different training datasets (they can be of any order but they have to
be consistent for all models to be compared) and the vertical axis marks the average
return (calculated with the test data). By connecting the 50 points, we obtain the
average return curve for the specified strategy. From the figures, we can see that our
proposed DRO model is more stable than the SP model and Popescu’s model albeit it
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does not necessarily achieve best return in every experiment. This is perhaps because
we are using a relatively larger ambiguity set and hence the resulting optimal strategy
is more resistent to the fluctuation of the data although no theoretical evidence can
be established at this stage.
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