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Forward self-similar solutions to the viscoelastic
Navier-Stokes equation with damping
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Abstract

Motivated by [10], we prove that there exists a global, famhself-similar solution
to the viscoelastic Navier-Stokes equation with dampihgt ts smooth fot > 0, for
any initial data that is homogeneous of degrde
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1 Introduction

The Oldroyd model for an incompressible, (linear) viscettafluid in R® is given by the
following system of equations:

o+ (U-V)u=puAu—-Vp+V-FF,
{ &F + (u- V)F = VuF, in R3x (0, ) (1.1)
V.-u=0,

whereu : R® x (0, +o0) — R3 represents the fluid velocitys : R3 x (0, +c0) — R>3
represents the local deformation tensor of the flpid, R3 x (0, +o0) — R represents the
fluid pressure, ang > 0 is the viscosity constant. ThH&-component oWV - FF! equals
to Vj(FikFik). The system[(1]1) is also called as the viscoelastic Néiekes equation.
A straightforward calculation implies that for any smootiusion (u, p, F) to (1.1), that
decays sfiiciently rapid near infinity, the energy satisfies

d l 2 2 _ 2
d_t{éfRa('”' +|F| )dx}——ufRa Vu?dx t> 0. (1.2)

There have been several interesting works on the initiaievptoblem of[(1J1) by [9,14,15]
asserting both the existence of short time smooth solutidrfze global existence of smooth
solution for small initial data. For large (rough) initiahth, the global existence of weak
solutions to[(1.11) has recently been achieved byl[7, 8] inedision two, but remains open
in dimension three. In pursuing global weak solutiond ofl{lthe authors of[14] proposed
the following viscoelastic Navier-Stokes equations widmgbing approximating (11.1):

&F + (u- V)F = vAF + VuF, in R3x (0, ) (1.3)

ou+ (U-V)u=puAu-Vp+V-FF,
V.-u=0,
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wherev > 0 is a damping constant. Following the schemelby [1] on theié¥&tokes
equation, it is not hard to establish the existence of gleedk solutions \,, p,, F,) to
(3. Itis a challenging open problem to show that p,, F,) converges to a global weak
solution of [1.1) asy — 0. Nevertheless, the systeim (|1.3) itself is an interestystes that
deserves to be studied, besides that better understantdi{figdd may be useful for (111).
We would like to mention a few basic facts on smooth solutiang, F) of (1.3):

() If (u, p, F) has stficiently rapid decay at infinity, then
dt f (u? + [FP)dx = f uIVuP + vIVF2) dx, t> 0. (1.4)

(i) f V-F =0att =0, thenvV-F =0 forallt > 0. This follows by taking divergence

of (1.3) and applying[(Z13), which yields (see als® [6] and [14]):

(V-F)+ u-V)(V-F)=uAV-F).

Here vV - F) = ViFij denotes the divergence gf-column vector ofF.

(iif) Under the conditionV - F = 0, it follows that
(V- FFY) = 8jF kFi + FxdjFix = (Fk - V)F¥)',

whereFy denotes thé!"-column vector ofF, so that[[I.B) is closely related to the
incompressible MHD system.

Similar to the Navier-Stokes equatiofl, (|1.3) is invarianter both translations and
scalings: For anyg = (Xo,to) € R3 x (0, ) andA > 0, if (u, p, F) is a solution of [I.B),
then(Ug, 1, Pz.1, Fz,.1) is also a solution of (113), where

Uz 2 (X, 1) 1= AU(Xo + AX, tg + A%1),
Pro,a(X 1) 1= 22p(Xo + AX, to + A21),
Fai(%1) := AF(Xo + AX, to + A%1).

A solution (U, p, F) to (1.3) is called to be self-similar, if
U= Upo0).2, P= Poo.. F=F@o) foreveryi> 0.

In this case, the value ofi(p, F) is determined by that at tinte= 1:

u(x.t) = 7U(\/-) p(x.t) = —P( \/-) F(x.1) = EG(%)’ (1.5)

where U, P,G)(y) = (u, p, F)(y. 1).
By simple calculations, the profil&J( P, G) of a self-similar solution satisfies ik>:

AU = U = 3(x- V)U + (U - V)U — (Gk - V)G + VP =0,
divU =0, divG =0 (1.6)

~AG; - 3Gj - 3(x- V)G + (U-V)G; - (G; W)U =0, j=1,2.3



HereG; stands for thg'"-column ofG.
The initial condition of [[1.B) is given by
u(x, 0) = up(x), F(x 0) = Fo(x), x € R®, (1.7)

for some given functionsiy : R® — RS3, with V- ug = 0, andFq : R® — R3S, with
V-Fg=0.
When {, F) is self-similar, thenp, Fo) must be homogeneous of degreg i.e.,

(Uo(X),Fo(X))—M( o(~ )Fo(|X|)) x e R3\ {0}.

Thus it is natural to assume

C.
luo(X)| + IFo(X)] < " x € R3\ {0}, (1.8)

for some constartt, > 0 and look for self-similar solutionau(F) satisfying

C(C.)
X

lu(x, )] + [F(x, t)| < , XeR3\ {0}, or [lull s~ + [IFllse < C(C.).
HerelL%",1 < g,r < oo, denotes theq r)-Lorentz space.

Concerning the Navier-Stokes equation, the existence migdeness of self-similar so-
lutions with suficiently smallC, were established via the contraction mapping argument,
see [23] for details. For larg@,, Jia andSverak in their recent important work [10] have
constructed a self-similar solution for evarythat is homogeneous of degreg& and locally
Holder continuous. The crucial ingredients [inl[10] are tloeal-in space near the initial
time” regularity techniques that ensure priori estimatesetf-similar solutions. Based on
it, they showed the existence of global self-similar solusi to the Navier-Stokes equation
by Leray-Schauder’s degree theorem (see [19]). The re§{di0d was subsequently ex-
tended by Tsail [23] and Bradshaw-Tsail[25] to forward disdyeself-similar solutions,
and Korobkow-Tsail[24] to forward self-similar solutionsthe half space.

In this paper, we aim to extend the ideas byl [10] on the N&Stekes equation to
establish the existence of self-similar solutions[of|(X@®)initial data (o, Fo) satisfying
(@.8) with largeC.. Our main theorem is

Theorem 1.1.Letw, Fg € ClOC(R3\{0}) for somey € (0, 1), with divwp = Oand div iy = 0,

be homogeneous of degreé. Assume[(1]8) holds, then the systeml (1.3) (1.7) has at
least one self-similar solutiofu, p, F) that is smooth irR3 x (0, ) and locally Holder
continuous irk3 x [0, c0)\{(0, 0)}.

Since the values gf andv in (I.3) don't play any role in this paper, we will assume
throughout this paper that
u=v=>1

We take a slightly dferent approach from [10] to prove Theorem| 1.1 by applyind-gray-
Schauder fixed point theorem (sée [5] Theorem 11.6). To tidswe introduce a family of
viscoelastic Navier-Stokes equations with damping as¥ial For O< o < 1, consider
Hu—-Au+Vp=—-o[V-(ueu)-V-FFY,
&F — AF = o[VUF — (u- V)F], in R3x (0, ) (1.3),
V.-u=0,V-F=0



It is clear that (1.3) reduces to the Stokes equation foand the heat equation fér when
o = 0, and become$§ (1.1) when= 1. We will translate the problem @), and [1.7) into
the fixed point problem:

w=TW,0): X—> X, 0<o<1,
whereX is a suitable Banach space, amé- (v, H) is defined through
u(x,t) = (€*up)(X) + V(x,1); F(x,1) = (€*Fo)(X) + H(x 1),

with (u, F) and {, H) being self-similar solutions of (1.3)and [3.26) respectively. To prove
T(-, 1) has afixed pointv € X, we will verify that

(i) T:Xx[0,1] - Xis a compact operator afidw, 0) = O for allw € X.

(ii) There exists a constaf such that

Ivilx < C,

for all (v, o) € X x [0, 1] satisfyingv = T(v, o).

The main part of this paper is to verify the second conditido.achieve this, we will
extend the “local-in space near the initial time” regulatéchnique, first developed by [10]
on the Navier-Stokes equation, to the systen3)(1or more precisely[(2]1) below. We
will first prove (v, H) is Holder continuous under some smallness condition gthealled
e-regularity criteria), then use thig-'regularity” theorem to obtain the local in space near
the initial time smoothness for the so called local Leray kv&zlutions, from which we can
establish the priori estimate of,(H). Finally, by the Leray-Schauder’s fixed point theorem,
we obtain the existence of global forward self-similar solos to [1.3).

Notations. For a better presentation, we list some notations here.

z=(x1), 20 = (Xo, ), Br(><o)={xeR3: |x—x0|<r},
1
r = By - 2, , fdz= fd
Qi(z0) = Br(%0) X (to - 12, o) JQ o fdem s | e
= d = 1)d
(Us )g . udz (Phos® = f, o, PO
By = Br(o), Qr = Qr(o)a B =By, Q = Ql,

Wr = Wor, (P)x(t) = (Por(b), H={uel?®%R%: dvu=0},

V= { ue HY®R3,R3 : divu=0 } vow = (VW) j<a,

A-B=A;Bj, IA = VA-A Au= (Aju)) e R® for A Be R¥>3 andu € R®,
ou

. o3 3
Vu:a—xj:(uij)foru.R — R”.

2 e-regularity

Our goal in this section is to prove anregularity criteria, similar to that by Garelli-
Kohn-Nirenberg on the Navier-Stokes equation [1], for aifaof generalized viscoelastic
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Navier-Stokes equations with damping. First we will intnod the perturbations of (13)
as follows. For anyr € [0, 1], consider

OV —AV+Vp=—c[v-Va+a-VW+Vv- W]+ oV (HH '+ MH! + HMY),
0H—-AH = —ofa- VH +v-VH + v- VM] + o[VaH + VVH + VvM], (2.1)
divv =0, divH =0,

in Q, wherea e L™(Q,R3), with V-a = 0, andM € L™(Q,R>3), withV-M =0, form> 5
are given.

We will study the regularity of suitable weak solutions o€ thystem[{2]1) under a
smallness condition. For this, we will first recall the ddfom of weak solutions of the
system[(2.11), which is consistent with the notion introaubg [1] and [10] on the Navier-
Stokes equation.

Definition 2.1. A triple of functiongv, p, H) : Q = R®xR xR>3 s called a suitable weak
solution to the systerf?.1), if the following statements hold:

(@ v,HeLPL3(O)NnL2V(O)forany Oc Q, pe L%C(Q), and(v,H) € L3 (Q).

(b) (v, H, p) satisfies the systef@.1)on Q in the sense of distributions.

(c) (v, H, p) satisfies the following local energy inequality
d f SV + HIP) + 2 f $(IVV + [VHP)
dt Jg B
< f((pt + Ag)(V? + [H?) = 20v® V¢ - HH!
B
+ f [o(V? + [HI?)(v + a) + 2pV] - Vo
B

+ ZO'f(a@)V— MH! = HMY) - (Vvg + v® Vo)
B
3
+20 ) f(VkMij — &iHkj — ViMy;j) - (ViHij¢ + Hij Vi), (2.2)
i,jk=1vEB
for any¢ € C3(B x (-1,t]), with¢ > 0.

Following the scheme in_[1], it is not fllicult to prove the existence slitable weak
solutionsto the system(2]1) under suitable initial and boundary ttmms. Note also that
by the local energy inequality above and the known multgglie inequalities, any suitable
weak solutiony, p, H) to (Z.1) satisfies

2,1 1,0
V,H e Wg,mc(Q)’ and pe Wg,mc(Q)‘

Extending the arguments by|[4,10]12, 13] on the Navier-&aquation, we will prove
the main theorem of this section.

For applications in later sections, (M) will be chosen to be a mild solution of (1.,3)nder suitable initial
data.



Theorem 2.1. Let (v, H, p) be a suitable weak solution to the syst@hil) in Q, with ae
L™Q,R3),diva= 0, and Me L™(Q,R>3), divM = 0, for some m> 5. Then there exist
€0 = eg(m) > 0 andag = ag(M) € (0, 1), independent dd < o < 1, such that if

1 1 1 1
(JQMS)S f|H| )? f|p| f|a1 )" f|M|m)mS€0, (2.3)
then(v, H) is Holder continuous in (ZQwith exponentyg, and

IVl < C(m, e). (2.4)

Ci%(Qy) + ”H”c‘p’&(Q%)

For the next lemma, we introduce the quantity
1 1
Y(v, H, p, Qr(20)) := (f V= (zrl®)® + (f H = (H)z /%)
Qr(20) Qr(20)

R J[? PGRCRCDR

Lemma 2.1. For m> 5, suppose that div & 0, div M = 0, and

lallLm(@) + IMlliLm) < 775 I(M)al + I(H)al < L,

for some small absolute number- 0 and some positive number L. Then for &y (O, %),
there exist are = €(0,L,m) > 0,C = C(L,m) > 0, anda = a(m) > 0 such that if (vH, p)
is a suitable weak solution {&.T)with 0 < o < 1, satisfying

Y(v, H, p, Q) + {IWal + I(H)l) fQ (1™ + M) < ¢, (2.5)

then
YO H. P Q) = {0 H.p. Q)+ [+ (| { anemrl @

Proof. Suppose the lemma were false. Then there exist [0, 1] and a sequence of
suitable weak solutions/( p;, H') of 2.1), witho = ¢, a = a;, andM = M', such that

laillLm) + IMllLmig) < 6, 1(v)al +I(H)l1 <L, V-a& =0,

. . N A
6 = Y(u. H', pi, Q) + {I(w)al + |(H')1|}{fQ|ai|m +£|M'|’“}m g
Y(vi, H', pi, Q) > C(L, m)§"€.

Set
ui=Vi_(Vi)l’ qizw’ Fi:w, fizw,
€ € € N
. (it iy, (M)t o (wie My & e (H
o M(H)1+(H)1(M), i (V)1 ® | I.J_zc'w( 1)1(j=1,2,3).



Then it is straightforward to verify thati( g;, F') solves the system:
Ol — AU + VG = —oi[uVay + (& + (V)1 + gU) VU + div(f)] _
+01¥[qF!(F) + (M + (H))(E)! + FIM' + (H)2)' + )
OF' — AF' = —oif(a + (W)1 + qU)VF' + uVM' + 37 Vi(h)] 2.7)
+0i[Vu((H)1 + F') + VaF' + VuM' + Z V 0
divy; = diva, = 0, divF' = divM' = 0.

Moreover, by direct calculations, we have that

{f|ui|3% f|F' fm.%% {f|fi|’“}%
f g |’“% { fQ |h‘j|’“} f I |’“"l“ (2.8)

Y(u, F', o, Qp) > C(L, m)6”. (2.9)

Since ¢, pi, H') is a suitable weak solution of (2.1), it follows that,(g, F') is also a
suitable weak solution of (2.7). Hence the following locaérgy inequality holds:

dﬂtfB¢(|ui|2+|F‘|2)+2fB¢(|Vui|2+|VFi|2)s
fB {(|ui|2 +IF'P)[(de + Ap) + i@ + (V)1 + 6U) Vo] — i F'(F)' - g)uiVe
+20i[uia + (M + (H))(F) + FI(M'+ (H))' + f' = o] - V(uig) (2.10)

and

3
+ 20 [&F" + U((H')1 + 6F') + uM' = M'u] - V(F'g) + 207 > (W] - |ij)vj(F‘¢)},
=1

for any¢ € C3(B1(0) x (-1, t]), with ¢ > 0.
We define

1 . 0 .
Ei(r) = esssup,2<t<o§f (|Ui|2 + ||:||2) + f zf (|VUi|2 + |V|:I|2), O<r<l
Br -r B
By the known interpolation inequalities we have
= 3

For any% < rp < rz < 1, by choosing suitable test functiogse C7(Qr,) in the local
energy inequality[{Z.10), applying the uniform boundsl)(28d Holder’'s inequalities, we



have that

f{(|ui|2+|F‘|2)(L+|au|+|M‘|+ei|ui|)+

Qr,

(F+ 191 + laiDiuil + (A + 1DIF)

+Cf {[laliuil + (L + IMI)IFT + 1] + g ] VUi [+

Q
[(al + aluDIF'| + (L + Ml + [+ 1]IVF )
<0, Cllaf+1g+ I+ 1D, o0 \Ei(r2)?
T (r2—ry)? L2(Qr) ™
+ Cllal + M| s g Il + 1F'D]] VUl +1VF'D ] 2(q,

. _CL
T (r2-r1)?

L¥(Q >|
r2

Ei(r2). (2.12)

+ | CllallLmig) + IM'lLmqy) + %
If we choose; > 0 so thatCn < 1—16 then a standard iteration argument shows that

Ei(g) < C(L,mn). (2.13)
Indeed, it follows from[(2.12) that there exists<® < %1 such that

C(L 1
(L) V-<ri<ro<l

Ei(r1) < 0Ei(r2) + m’ 2

By takingr, = 1,11 = 3 andpy = 1o — 27%(r, — r1) for k > 0, we have by iterations that

Ei(po) < 6“Ei(ox) + %

this implies [(2.1B) by sending — . Observe that by (217), we have that

sulp”(atui,atFi)H (2.14)
1>

<C
L3 (-2 0w 2)
Thus, by Aubin-Lions’ compactness lemma, we may assumeaftert passing to a subse-
guence,

oy — o el0,1]; ui—u, F' - Fin Lp(Q%); g —qin L%(Q%),
(fl.d) — (f.9), (h‘j,I‘j) — (hj,15), ] =1,2,3, in Lm(Q%,R3X3),
()1 > A €R3, (H)1 - u e R¥3, (g, M) = (a, M) in L™(Qs).

forl<px< %’. Passing to the limit in{217), we see that §f, F) satisfies the generalized

linear Stokes equations (D%:

oiu— Au+ Vg = —ofuva+ (a+ A)Vu + divf]
+oV - [(M + @)Ft + F(M + u)t + g],
OF — AF = —o[(@a+ A)VF + uVM + V;h;] (2.15)
+o[Vuu + VaF + VuM + Vil ],
divu = diva = 0, divF = divM = 0.



By LemmdZ.2 below, we know that there exists @ = B(m) < 1 such that

1
u(xa, tr) — U(Xe, )] + IF (X1, tr) = F(Xe, )| < C(1%1 — Xal + Its — 2l 2)’,

for all (x1,t1), (X2, t2) € Qs.
Since (i, F) = (u,F) in L3(Q%), it follows that

(4, 10— @)’ +( : F - F)) < oL m . (2.16)

for i suficiently large.
Taking divergence of (2l {)and using div; = 0, we see thatj satisfies

Agi = —oidivi[ui ® & + (& + (V)1 + gui) @ uj + ] (2.17)
+oridiv[&F (F)' + (M + (H)1)(F)' + F{(M"+ (H)1)' + d'],
in Q%
Write g = o + g2, whereq} is defined by
g = O'i(—A)_ldiVZ{[Ui ®a + (& +(V)1+au)®u + fi])ass‘31

—[6F'(FY + (M + (H))(F)' + F{(M' + (H))' + d'] xe } in Qs,

whereyg, is the characteristic function (‘B‘%. Then it is easy to check that
4

Hlw

AG? =0 in Qs.

Since (i, F") = (u,F) in L3(Q%), we have that

—00

30, —0,
4

[

where
q' = o(-A)tdvH[u®a+ @+ )@u+ f — (M+u)F = F(M + )" - glye, |-
1

It follows from Lemmd 2.P thati andF are bounded iIQ%. Hence by Calderon-Zygmund'’s
LM-estimate we have that

oo, = € (Illny) + IMlliaay) + L + 11 fllenay) + gy
L (Q%) 2 3 3 2

which, by Holder’s inequality, yields

o( |q1|%)% < o f |q1|’“)”l‘ < C(L,m, )6*.
Qs Qo



Therefore, foii suficiently large, we have
2 5
f IgH12)* < C(L, mp)e*~m

Slnceq (t) is harmonic |nBs for all —% <t <0, the standard estimate implies that

e(ng o — (@)e ()1 )% eé(f Lak )% < Co3.

Qs

wIN

J>\

Putting these estimates together, we obtain

({ 6 - (q.)9<t)|) <e(f |q|z) +e(f @ - (q )e(t)l)

< (L m)gmEAR, (2.18)
for i sufficiently large. This, together with (2.116), shows that
Y(ui, F', g, Qg) < C(L, m, p)g™"ES 15

for i suficiently large, which contradicts t6 (2.9)df € (O, %) is chosen to be ghiciently
small. This completes the proof. O

Now we need to prove the uniform regularity of the followingnrshomogeneous gen-
eralized Stokes systenis (2.15) for@r < 1.

Lemma 2.2. Forany m> 5, let a € Lm(Ql,R3), with diva = 0, and M f,g,hj,1; €
L™(Q1, R®3) for j = 1,2, 3, with divM = 0, 2 € R3, 1 € R®3, be such that

3
llal + M1+ 1£1+ 191+ il + )| gy + 141+ Il < L, (2.19)
j=1

for some positive k> 0. Let(u, F) € L°L2(Qy) N L2V(Qy) and pe L3 (Q,) satisfy

¥ 33
(le|u|) +<le|F|) +<le|p|) <L, (2.20)

and solve the syste(@.18) for someo € [0, 1], on @Q in the sense of distributions. Then
(u, F) is Holder continuous in (;;with an exponend < g =p8(m,L) < 1, and

”u”C’;a,(Q%) + ”F”C’;a,(Q%) <C(mL). (2.21)

Proof. The proof, similar to[[10] Lemma 2.2, is based on some stahd@aotstrapping
arguments. We will sketch it here. Set

N:=u®a+@+)Qu+f—(M+u)F —F(M+p)' -
ThenN € L%(Ql) and

NI % g,y = COIlur + 1P| o gy

10



Taking divergence of (Z.15pives
—Ap = odiv®N in Qy.
ForRe[3,1], set
p1 = o(-A) divA(Nyzg),

andp, = p— p1. Then
Ap2 = 0 in Bgr.

Assume @, F) € L9(Q,) for q > 3. Direct calculations yield

Il 5, = CINL 25, = SO0 + D]

and

C(o, L),
”pZHL[% C2(Qu-s)R) sc@b)

forany small 0< 6 < 1.
Letn be a smooth cutbfunction such tha = 1 in Qu_25r andn = 0 outsideQ1_s)r.
Decompose by lettingu = u; + Uy + Uz, where

t
b t) = f U9 _ V(pay) - odiv(Np)]( 9 ds

(o0

(1) = — f t 949 (pn)(-, 9 ds

By the standard estimates on heat kernel (see [11]), we hate;te LY(Qq-s)r) for any

y>1 satisfying% > é +1 -1 and

lusll s gy < CllR2I+ IND]

mq ,
L™ (QR)

and

HUZHL“(Qa—&)R) = C||p2HLl% CX(Qu-aR) <ceL).

Sinceus solves the heat equation @1-2s)r, it follows that

|‘u3||L°°(Q(1_35)R) = C(”u”Lq(QR) + ”ul”Lq(QR) + HUZHL‘J(QR)) < C(s, L)(l + ||(|u| + |F|)HLQ(QR))‘
Putting these estimates together, we obtain

Il 0 s < C- AL+ (10Ul + IFD]| 00

fory>1as|ongaéy>é+%—%.
To estimate-. Decomposd- by lettingF = F1 + F», whereF is defined by

ij t HH . .
S{E —O'f e(t‘s)AVk[((ak + AFT + UM+ by

— (UM + @ PR UMY+ ]9 ds 1< j <3

11



ThusF; satisfies the heat equation@-2s)r.
Similar to the estimate afi;, we have thafF; € L”(Q-sr) for anyy > 1 with % >

1 1 1
a+ﬁ—§,and

< CL)(1+ [|qul +1FD]|, s

” 1”L7(Q(1 HR) — Lm‘Lq (Qr ))

Similar to the estimate afs, we have thaF?2 e L*(Q(1-35)r) and

”FZHLN(Q(l 36)R) - C(L 6)(1 + |||U| + |F|”Lq(QR))

Combining these two estimates yields

IF L 0 s < CL- L+ 10U+ 1FD]| o ey )

1.1 1
fory>1aslongaslr>q+ - 1.

By repeating these arguments for finitely many times, itole8l that (1, F) € LV(Q )
for any finitey > 3. The interior Holder continuity ofu( F), along with uniform estimate
(2.21), then follows from the standard estimates for th&&t@quations and heat equations.
The completes the proof. O

By translation and dilation and iterations, Lemimad 2.2 imepli

Lemma 2.3. Let (u,p,F), a, M, n,L, €@6,L,m), C(L,m), « = a(m) be the same as in
LemmdZP. Leg = § andédo € (0, ) be such that L, m#*# < 1for @ < 6o. Then there
is €1 = €1(6o, L, m) > 0 such that if, for Q(z) c Q1,

L
(W2, | + I(F)z 0| < >

(P F Q) + L

Qr (20

(2.22)
)|a1 +|M|) <e,

then for any k> O it holds that

F1(Wg g5 + TI(F) g el < L

rY (u, p. F, Quer (20)) + r8{1(U) (] + I(F) e o)l fQ . jal™ + |M|’“}% < e,
Y(U, P, F, Qpese (20)) < P{Y(U P, F, Quer(20)) N

(W ) + 1F)ag, @) fo,, g 1AM +IMI )”i‘}

(2.23)

Proof. By translation and dilation, it slices to show this Lemma fap = 0 andr = 1. It
is easy to see that the conclusion kot 0 follows from Lemma 2.11. Observe that by the
triangle inequality we have

+ |(F)grn

|(Ugenr <03 ZY(u D,F, Q) + |(Way| + |(F)au| (2.24)
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By induction, we may assume that (2.23) holdsKer 1, - - -, kg. Then we see that
Y(u, p. F, Q) < 6°{Y(u, p, F, Que) + 64L( f @™ + M)}
Quk

< 0P{Y(u p.F. Qp) + PR ( f la™ + IIVII”‘)“%}
Q1
<°Y(u, p,F, Qu) + 0%+ DPrgy

holds fork = 1, - - - , kg, whereB; = min{3,1 - %}. Iterations of the above inequalities yield
that
Y(u, p, F, Qpu1) < 6®*DBY (U, p, F, Q1) + (k + 1)+ Dby (2.25)

holds fork =1,--- , ko.
We now show tha{{2.23) holds fér= kg + 1. Combing[[2.2B) with(2.25), we have

ko

5 - i L

|@gortl +1(Fhgorl < 073 ) (0¥er + j0¥1er) + 5
=0

L

2

1
1-68

< 9_15“61[ + C(ﬂl,e)] +

<L,

providedes (6, L, m) is chosen to be sficiently small.
While for (2.23), we have that

Y(U, P, F, Qo) + 071 (U)gorl + 1(F)gioea)( fQ ja™ + M[™)™
€k0+1

1
<Pe + Le"0+1(f la™ + ||\/||m)m
Q9k0+1

1
<WPe + 9(1‘%)(“0+1)L(f jal™ + [M|™)"
Q1
< 9861 + 9(1_%)(%+1)61 < €.
Now we rescaley, p, F) by letting
(V.0 H)(x 1) = (6F+1u, g?tertp, gortF)(glorly g2torDy),

and
(b.N)(x 1) = g+ (a, M)(gko+tx, g2+,

for (x,t) € Q1. Then ¢, g, H) is a suitable weak solution df(2.1) @y, for o € [0, 1], with
a, M replaced byb, N. Moreover,

Y(v. G H, Q) + {I0da] + I(Hl) fQ o™+ IN™) "

= 60" (Y(U, . F. Qo) + 0" H|(U o] + I(H)po) fQ B+ N <
Ko+l

13



{10l + I(H)l} = 8" HiU)grol + I(F)gronlf < L,
and

+ ”NHLm(Ql) = 0(|(0+1)(1_%)

[Bllme (lallniq . + INllimgr) < &

Thus by LemmaZ]1 we get
Y00, H.Q0) = [ H.Q0) + [0 + 16 1o+ )

which, after rescaling, gives (2.25pr k = ko + 1. The proof is completed. |

Proof of Theorerh 2]1By choosingey suficiently small, we can apply Lemr@.B@g(zo)
foranyz e Q% to conclude that for somge (0, 1) depending om, L such that

(pr(zw 0= Wzof)° + (pr(zo) IF = (F)zpl®)® < Y(u. p.F. Q,(2) < C(6.8)",

for anyp < % By Campanato’s Lemma, we conclude thigF are Holder continuous in
Q% with the desired estimates. O

3 Existence of self-similar solutions

3.1 Local in space near initial time estimate of local weak dotions

In this subsection, we will apply the=“regularity” Theoreni 2]1 to obtain the local in space
near initial time estimate of locdleray weak solutionsf (1.3),. To this end, we first
introduce the definition of locdleray weak solutionsf the system (1.3), analogous to
(2.2) for the systeni (211) (sele |10]17] on the Navier-Staasation).

Definition 3.1. For any w € L2 (R3 R®) with diviy = 0 and Ry € L2 (R3 R>3) with
divF = 0, a pair of functions e L2 (R3 x [0, ), R3) and F € L2 _(R® x [0, 00), R>3) is
called a local-Leray solution to the system (1.3)r o € [0, 1], with initial data w, Fo, if

() Forany0 < R < o0, it holds

1
esssupgkRz,XOeRs—f (lu? + |F]?) + sup (IVU]® + |[VF]?) < oo,
2 JBr(x) xo€R3 Y Br(x0)x[0,R?]

and
Iimf (lu? + |F?) = 0.
Yol =20 JBR(x0)x[0,R?]

(i) There exists a distribution p iR x (0, o) such that(u, F, p) satisfies (1.3) for
o € [0, 1] in the sense of distributions, and, for any compact set K3,

||u(-,t) - u0||L2(K) + ”F("t) - I:OHLZ(K) L 0.

14



(i) (u, F) is suitable in the sense that the following local energy uadity holds (see
also [1]):

f o(ul? + |F[%) + 2 f #(IVU? + |VF|?)
R3 R3><[0,oo]
< f {(¢t + Ag)(UP® + [F?) = 20u® Vg - FF! (3.1)
X[0,00]
+ [o(ui? + |FI?) + 2p]u- V¢},

for any0 < ¢ € C®(R3 x (0, o)) with suppg & R3 x (0, o).

The set of all local Leray weak solutions to (1.3)ith initial data (g, Fg) will be
denoted agVv(ug, Fo).

The proof of the local existence of local-Leray weak soluido the system (1.3)is
standard. However, since we cannot find it in the literatwe sketch a proof, that is based
on [18/17], for the reader’s convenience.

Theorem 3.1. For ug € L2 (R3 R3) with divip = 0, Fg € L2
there exist® < R < +o00 such that

(R3, R33) with divFy = 0, if

loc

sup [ (ol +IFoP) < oo, lim f (Iuof? + Fof?) = O,
XeR3 JBR(X0) X0 JBr(xo)

then there exists.T= T.(R) > 0 and a local Leray solutiorfu, F) of the system (1.3) for
anyo € [0,1], onR3 x [0, T.).

Proof. For f € L2 (R3) andR > 0, set
( 2y
1l 205 _supf 1f17)2.
RO e Jeee

It is standard that there exis € C3*(R3, R3) andF¥ € C3(R3, R¥3), with div(uf) = 0 and
div(F§) = 0, such that

(U, FY) 2% (U, Fo) in L2 (R3),

and
k k
Slk'lp”u0||L2R(R3) < 2||UO|||_2R(R3), Slk'lp”FOHI_ZR(R«?') < 2||F0|||_§(R3)-

By Leray’s procedured [18], there exi§ > 0 and smooth solutionsi, p*, F¥) to (1.3), on
R3 x [0, Ty), under the initial conditionsuf, F¥)|,_, = (u§, F), such that

(U F9 e LPLE 0 LEHA(R® % [0, T)),
; k k ; k k
lim [lu” — Uglli2gzs) = IM [IF7 — Foll 2re) = 0.

Employing the same argument as in Lemimd 3.1 below, we carlummthat there exist
T. > 0 andCqp > 0, independent df ando, such thafly > T., and

sup {||u Ollzes) + IF (t)||L2(R3) + supf f |Vu"|2 + [VFX[2 )< Co. (3.2
0<t<T, Xo€R3 Br(x0)
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and there existg*(t) = p_q(t) € R such that

T*
sup f IP(x 9 - P(9)I? < Co. (3.3)
X0eR3 JO BRr(Xo)

Thus we may employ an argument, similar to Lenima 2.2, to colecthat after passing to a
subsequenceuf, F¥, p¥) converges weakly in2 (R3x [0, T.)) to a weak solutiony, F, p)
of the system (1.3), under the initial conditiony, F)|t:0 = (Up, Fo), onR3 x [0, T,).

It remains to verify thaty, F, p) is a suitable weak solution of (1,3pnR3 x [0, T.),
i.e., satisfying the local energy inequalify {3.1). In fasince (¥, FX, pX) is smooth in
R3x [0, T,), we have

(U + IFX2) + 2([VU + [VF¥P)

= AU + IF42) + div[or(uPuf + |FRPU) + 2pu + 200 - FREY).

(3.4)

Since (X, FX, p¥) satisfies (1.3) in R3 x (0, T,), using the bound$(3.2) and (B.3) we can
apply Aubin-Lions’ compactness lemma to to conclude that

W F9 22 W) in LB (R3x [0, T.).

loc

Hence we have
k—)oo

UK + P2 — Jul? + |FP%,
and
k—)oo
o (JUKPUR + FX2UK) + 2pRuk + 20U6 - FXFY)Y —= o(JulPu + |FJU) + 2pu+ 20u - FFY,

in LL_(R3x[0,T.)).

It follows from (3.2) that
(VU2 + [IVFXP) dxdt — (VU + [VF[?) dxdt+ p,

as convergence of Radon measurek as co, whereu is a nonnegative Radon measure on
R3 x [0, T,). Combining these convergences with {3.4), we can showtliesibcal energy
inequality [3.1) holds.

Finally we want to show that for any compact getc R3,

lim (l1u(-+t) = oll.zgk) + IIFC 1) = Folluzge) = 0.

Indeed, since for any € C3(R3), t > [5(Ju*(x, )2 + [F¥(x. t)|?)¢(x) is smooth on [0T*),
we have

f (UEOC B + [F5(x D)o (0 f (U0 O)2 + [FX(x, 0)2)p(x)
R3 R3

+

t
f f (U x 9P + IFXx 9PDe(x).  (3.5)
0 JRS3
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By (3.4), we have

t t
[ [, aesrme- [ {A<z>(|uk|2+|Fk|2)—2cruk®V¢-Fk(Fk)t
0 JR3 0 JR3
+ [0 (U + [FP) + 2pK |- V¢} = A, 1).

Since (K, F¥) - (u,F) in L3 (R3 x [0, T.)), it follows that

loc

A, ) =5 A, 1),
where
t
Alp,t) = f f {A¢(|u|2 +IFP) - 20u® Vg - FF' + [or(luf + [FP?) + 2p|u- V¢}.
0 JRr3

Sendingk — oo in (3.8) yields that for any > 0,

[ Qw0 + Fo 009 < [ 10009 + IFa(9IPe) + At (36

This, in particular, implies

imsup [ (U0 D2 + [F(x )¢ () < f (U + IFo()R)e ().
t—0 R3 R3

On the other hand, since
(U( 1), F (. 1) = (Uo(), Fo()) in L (R3),
it follows from the lower semicontinuity that
iminf [ (U0 O + F0 07609 > [ (o3P + Fo(9he(x)

t—0 R3 R3
Thus we obtain

i, [ (U0 D2 + IFC P09 = [ (ot + IFa(P)e9)

t—=0 Jpr3 R3
This completes the proof. O

We now give a few estimates for local Leray- weak solutionlo8),, for o € [0, 1].

Lemma 3.1. There exisD < C; < 1 < C; such that if y € L2 _(R3,R3), with divup = 0,
Fo € L2 (R3, R33), with divFg = 0, satisfies

2 2
a = ||uoll + [|Foll < o0
L2(R3) L2(R3)

for some0 < R < o0, and(u, F) is a local Leray weak solution of (1 3)or o € [0, 1],
under the initial data(ug, Fg), on R® x [0, T,) for some0 < T, < oo. Then, ford =
C1 min(@~2R?, 1), it holds

AR?
ess sup sup (u? + |FP)(x, t) + sup Zf f (|Vu|2+|VF|2) < Coa, (3.7)
0<t<AR2 xgeR3 JBR(X0) x€eR3  JO Br(xo)
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and, for some (t) = py,r(t) € R,

AR2
sup f Ip( 1) - P13 < CoaiRE. (3.8)
XoeR3 JO Br(Xo)

Proof. It follows from the local energy inequalitj (3.1) that foryary € R3,

t
fR _#(x=x)(|u? + IF)(x.1) + 2 fo fR (X = xo)(IVu? + IVF %)
t
< fo fRs {A«p(x— xo)(Iul® + IF?) - 20u® Ve - FF* (3.9)
+ (o (U + IF?) + 2p)u- w} + fR _¢(x = %0)(|uol? + Fol?)

holds for a.et > 0, wherey is a nonnegative, smooth ctitdunction withg = 1 in Br(Xo),
¢ = 0 outsideBr(Xo), and|Vy| < £.
Fora < 1, set

AR?
A1) =ess sup sup | @(x—xo)(lu?+|F)+ sup f 2(x = x0)(IVul? + [VFP?).
0<t<AR2 x9eR3 JR3 %€R3 JO R3

From the multiplicative inequality

Wlisg) < C(IVUIE Ul ) + R Uz
we have that fon < 1,
AR?

sup f (1uP + %) < CAG)EREAA.

xo€eR3 JO BRr(X0)
Let k(x) denote the kernel af~1div? and definep(x, t) by

p(x.t) = - A7div?|(ue u+ FFY)y|
- fR [k(x=y) ~ k(o - )] [ (U u+ FFY(L - )| ()dy + p(t)
=11(x) + 12(%),

wherey € C3(Bsr(X0)) is such thalsqpe) = 1.0 <y < 1, andVy < £.
By the LP estimates, we have

20l 3 6 poecomey < <

< CABA()RS.

+[IFIIZ )

2
Vs 8 o) 0.1R2)) L3(Ber(0)x(0.12))

On the other hand, sindéx — y) — k(Xp — y) satisfies

k(x—y) — k(X -y < for |xo — Y| > 4R, |X— Xl < 2R,

R
X0 — y1*

18



we can easily obtain that fore Bor(Xg),

1
(X sCRf Ui + [F?)(y)d
(WSCR| ol )()dly

1
- CR f U + IFR)(y)d
;1 nRely-xol<(n+1)R X0 — y|4( )(y)dy

1
<CRPA() =< CR3A().
n=4

Combining the estimates &f with |, we immediately have

1 1
Ip(x,t) — p(t)||L%(B2R(XO)X(OJR2» < ABA(DR3 fora < 1. (3.10)

Combining [(3.9) with[(3.10), and using Holder inequalitke have
A1) < @ + CA)A + CA () AIR2. (3.11)

Note thatA(1) is a bounded, continuous function #fand A(0) = 0. By choosingCy
suficiently small, we obtai\(1) < Coa by the usual “continuation ia” argument[16, 117].
Finally, by (3.10), we have

AR 3 3 1
sup Ip(x,t) — p(t)Iz < Cra2Rz.
Xo€R3 JO Br(Xo)

This completes the proof. O
The following result plays a crucial role in the proof of Theam[1.1.

Lemma 3.2. Suppose gie L2 _(R3,R3), Fg € L2 _(R%,R>3), with diviy = 0 and diviy = 0,

. loc loc
satisfy

2 2
lluoll + [[Foll < A1 < oo,
L3(R3) L3(R3)

and
luollcr@,) + IFollcr@,) < Az < oo,

for somey € (0,1). Then there exists E T(As, Az, y) such that any local weak solution
(u, F) € N(up, Fo) of (1.3),, for o € [0, 1], satisfiequ, F) € C{,ar(B% x[0,T]), and

”“char(ﬁ%x[o,ﬂ) * ”F“c%ar(ﬁ%x[o,n) < C(As, A2, 7). (3.12)

Proof. Let us decomposey = U} + U, Fo = F} + F3, with divuj = divF} = 0, such that

Uglz, = Uo, Folz, = Fo.
3 3
1 1
suppug, suppFj € B,
IUgIIZ, ) + IFGIZ, 5 < CA
0TLE(®?) 0TL3(®3)
IUdllcr g3y + IF3llcr sy < CAe.
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Let (a, M) be the mild solution to the system (1,3)with (U3, F5) as the initial data, in
R3 x [0, T1) for someTy = T1(A1, A2) > 0. Then we have that for any$ p < +co (see the
appendix below),

(@ M| pgesoryy < ClAL A2). (3.13)
Moreover, by the local energy estimate far 1), we have
T1
ess sup (1al® + M%) + 2 f f (Val® + |VMP?) < C(AL. A7), (3.14)
0<t<T; JB2(X0) 0 JBa(xo)

for any xp € RS

Writeu = a+Vv,F = M + H, we can verify that\{, H, q) is a weak solution of the
perturbed systeni (2.1) ik x [0, T1), that satisfies the local energy inequallfy {2.2). Note
also that

im (VG Dlloe, + IHC Dllizge.)) = O.
t—>0+ 3 3

Combining this with the local energy inequality far, H, ), we obtain that for any & t <
T1,

f (v + HP) +2ff (Vv + |VH?) <

f f {Ap(v? + IHI?) - 20u® Vg - HH'} + f f {o (M + IHIP)(v + &) + 2qv} - Vo

+20'ff (a®v—-MH'-HM")- (Vv + V& Vo)
B4

Ijk 1 4

whereg € Cg“(Bg) is such thawlg, = 1,¢ > 0.
By Lemmd3.1 and (3.14), we conclude that there existsI@ = To(A1, Ap) < T1 such
that

To
ess sup | (V% +[HP%) + f [IVVI2 + [VHP + [q(x, 1) — qt)I2] < C(A1, Ag). (3.16)
0<t<T, JB2 0 B2

This, by the interpolation inequalities, implies

T2 10 10\
([ [ 2+ 1H1)® < ol o).
0 B2

Thus by [[3.15) and Holder’s inequality we obtain that

t
sup | (VP + HP)(x.7) + 2 f f (IVV2 + [VHI?) < C(Aq, A}t (3.17)
B; 0 JB1

O<r<t

for 0 <t < T». Here we have applied (3.13) with= 6. Sinceq solves

Ag=-odiv’[vea+a®v+vev-HH - MH' - HM']. (3.18)
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5
From the standard P-estimate, [(3.16), and (3.17), we see that L. (B2 x [0, T;]) is
bounded. Hence

t 2
( f f 0l%)° < Cla, Ar At (3.19)
0 JB»y
Now fortg > 0 fixed, extends, H, g anda, M to B, x (-1 + tp, tg] by letting

v=0,H=0,g=0,a=0,M =0 in By x(-1+1p,0].

Note that
tIi,rQJr (HV(’ t)||L2(B4/3(0)) + ”H(a t)“LZ(B4/3(O))) =0.

We can check that/(H, g) is a suitable weak solution to the system (1.B8)B1x[—1+to, to).
By choosingty = to(a, A1, A2) suficiently small and usind (3.17) and (3119), we can apply
Theoreni 2.1l to conclude that () is Holder continuous im% %[0, to] for some 0< B < vy,
with

H(Va H)”Cléar(B%X[oato]) < C(a, Aq, AZ)
By a standard bootstrapping argument, we can improve thenexps to equal toy. Since
a,M € Cha(B: x [0,1g]), we conclude thati, F € Cgar(B% x [0,10]) and [3.12) holds. This
completes the proof. O

3.2 A-priori estimate for the self-similar solution

This subsection is devoted to establish a priori estimatefofward self-similar solutions
of (1.3), for o € [0, 1].

Lemma 3.3. For y € (0.1), let p € CJ(R®\ {0L.R®) and Ry € C] (R®\ {0}, R®?),
with divip = 0 and divly = 0, be homogeneous of degreé. Assume[(1]8) holds. Let
(u, F) € N(up, Fp) be a forward self-similar solution of (1.3)for o € [0,1]. Then there
exists C> 0, independent aof-, such thati{(-) := u(-, 1) and ¥ (-) := F(, 1) satisfy

[U(X) - ug(X)| + |F(x) — €' Fo(x)| < —C  yxer® (3.20)

(L+1x2) %
Proof. First, by Lemmd 3]2, there exists = T1(y, C.), whereC, is the constant if_(118),
such that for anyg € R3 with [Xo| = 2,

< C(Ya C*)a

u(x, t) — e®ug(x), F(x, t) — €2 Fo(X <
JwCx ) - €0, F(x 1) - €4Fo(x) Chay e 0T

where we have used the fact that bethuy and€*Fg satisfy the heat equation so that the
same Holder estimates hold. Since

u(-.t) — e“ug|_, =0, F(-.t) — €*Fo|_, =0,
it follows that

|u(x, t) — 2uo(X)| + [F(x,t) - €2Fo(x)| < C(y, C)tE, ¥x € Bi(x), 0<t<Ty.
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Sinceu, F, é*ug, €2 are all self-similar, this immediately implies that

[U(Y) — € Uo(Y)| + | (Y) — €' Foy)l <

1+y

1+1y?)=z

holds for anyly| > %
On the other hand, sinag, Fo are homogeneous of degreé, it follows that

. 2 2
a = ||ugll + ||Foll < +o0.
L2(R3) L2(R3)

Hence by LemmB3l1 there exidig = T1(a) > 0 such that

T1
sup | (u(x B+ [F(x b)) + f f (IVu(x D + IVF(x )?) < Ca.  (3.21)
O<t<Ty JB1 0 B1

Sinceu, F are self-similar, it follows from direct calculations ari@lZ1) that for a fixed
t. < T1, to be determined later,

VE | (1UP+ 172+ IVUP + IVFP)
B4

Ve
.
< Céi (Iu(x,t*)|2+ |F(x,t*)|2) +Cj; fBl (|Vu(x,t)|2+ IVF(x,t)|2)
< C(a).

This implies, by choosing. = 1%, that

f (IVUP + IVFP + |UP + |F7) < C(Ta).
B_a_

V1
Since U, F) solves the elliptic system

AU - 3U - 5(X- VYU + (U - VYU - o(Fi - V)F{ + VP = 0,
divi = 0, divF =0, (3.22)
~AFj - 3F - 3(x- V)Fj + (U - V)F} - o(Fj- VYU =0, j =123,

in B_a_, we have, by the standard regularity theory of elliptic egstin dimension three,

V11
that for anyk > O,
”(L{HCK(BL) + ”T”ck@ai) < C(k,y,C.).

Vi Vi
Combining these two estimates yiel@s (3.20). This comgpltte proof. |
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3.3 Proof of main result

In this subsection, we will prove Theordm 1.1 by the Lerak&mler fixed point theorem.
We begin with some well-known results on the non-statiorgtigkes system i3 with a
force tensorf = (fjj)

ovV—AvV+Vp=V_-T{,
V.-v=0, in R2 x (0, ), (3.23)
v(-,0) =0,

where ¥V - f); = dcfyj for 1 < j < 3. If f has stfficient decay near infinity, the solution of
@:23) is given by = @ f, where

t
@F)(x 1) = f f S =Y t- 9f,9dyds i =123 (3.24)
0 R3

andS = (S;jj) is the fundamental solution of the non-stationary Stokessesn inR3 (see
[20)22]), called as the Oseen kernel, given by

1 [ T 3
Si00) = (—aa+ )z [ Sy () e R x @),

n X2 )
wherel'(x,t) = (4nt)"2e” « is the heat kernel. It is well-known (see [22]) that
-3-1-2k
IDLAES( X < Ca(iX+ VB~ T, Lk=0,

whereD!, denotes thé order derivatives with respect to the variabile
Now we recall some useful integral estimates which play kdgsrin the proof of our
main results.

2+a
Lemma 3.4.[10/23]For 0 < a < 1, supposeéf(x,t)] < %(Ili\/f) in R3x (0, ). Then
x| +
1 \/f 2+a
Ddf(x,t s—( ) , Y(x 1) € R3x (0, ).
[Ofx 0] = Z(=T5) DR x(0)

The following Lemma shows thatf(x, t) is Holder continuous in space and time, pro-
vided thatf has sificient decay near infinity.

Lemma 3.5. [23] Supposéf (x, t)| < (IX + VI)72in R3 x (0, o). Thendf is locally Holder
continuous in x and t with any expondhk 6 < 1. O

Finally we recall the following Liouville type property. Dete

(X) = V1+|x? for xe RS,

Lemma 3.6. [23] If v(x, 1) : R® x (0, ) — R3is a solution of the Stokes equati¢n (3.23),
with f = 0, for some distribution p, and satisfies

V(x, 1) < C -5 X0 for some0 < y <1,
Vi
then v= 0in R3 x (0, ).
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Proof of Theorem[1.1 For (x,t) € R3 x (0, ), set
UO%(x.1) := (€*uo)(¥). G°(x.t) := (€*Fo)(X).

From the assumptions ap andFg, we have thatyg andGg are self-similar solutions to
the heat equation, and satisfy

0 0 2, 3 3
UT(X )]+ G (% 1)l < C(IX“ + 1) 2, (X1) € R® X (0, 00).

Foro € [0, 1], we look for a family of self-similar solutionaug, F,) to the system (1.3)
and [1.7) of the form

Ur (1) = UO(X, 1) + Vi (X, 1), Us(X, 0) = Ug(X);
Fo (X t) = GAX, 1) + Hy (X, 1), Fo(x, 0) = Fo(X).

In particular,v, andH, are also self-similar, i.e.,

Vo (X, 1) =

(7 )=7 ( 3( (3.25)
(20 = LA

ﬂl'**'*

H, (X 1) =

For x € R3 andt € (0, «), set

2,

0 0c) = 10

where
(%) = (UO(x, 1) + V(X)) ® (UO(x, 1) + V(%)) + (GO(x, 1) + Hr ())(GO(x, 1) + Ho(%)".

Similarly, set

Q(x = %6(;’(%), 1<j<3

where
Q7 (%) = - (U(x 1) + V(%)) ® (G2(x 1) + (H,);(%)
+ (G006 1) + (Hy)j(0) @ (V% 1) +Vp(x), j = 1,23
It is readily seen that;, H,), for 0 < o < 1, solves the following equations:

OV = AV + VPr = 0V - (%, 1) = a‘V (18-(2)).
3

OiHy — AH, = UZV-Q‘,-’(XJ)(=UZV-(;Q‘,-’(E))), (3.26)
j=1 j=1

divv, = divH, = 0,

Vo(X,0)=0,H,(x,0)=0
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Inspired by[[10, 23], we aim to find a self-similar solutionthe system[(113) by the Leray-
Schauder fixed point theory, which is slightifférent from[[10]. To do it, define, for > 0,
the Banach spack, by

X, = {ue C(R3,R3) | divu =0, [lulx, < oo},

where
HUHX = sup (M u(X)!.
4 xeR3

SetXs = {(up, -, ug) | U € X,,i = 1,2,3,4}, which is equipped with the norm

4
lullye = > luilly -
=
Observe that for angV,,, H,- ) € X}, we have that G, Q7, Q3. Q5) € X{,,,, and

(8- Q7. @ Blls, = C[2+ [(Ter. A
In particular, we have that

C
IX|2 +t

3
1006 DI+ > 1QT (% Bl < (24 @, Al for (xt) eR2x (0.00).  (327)
=1

By Lemma3.4 and Lemnia 3.6, we conclude that for any given[0, 1] and(V,., H, ) €
X;", the system((3.26) has a unique, self-similar solution

(Va', Ho-) = (KO(Va'a ﬁa’; O-)’ Kl(v(ra I:Ta'a O—))a

where
t .
Vo (- 1) = Ko(Uyr, Fir, ), 1) = fo e py . (r-laa(ﬁ))dn = O(0q,)(0),

and
- 3 t _ . 3
Ho (1) = Ki(Uir, Horo ), 1) = a; fo e MIpY - (r1Qf () = ; D(eQN)(D),

where® is given by [3.24), and is the Leray projection operator. Moreovev, (H,)
satisfies the estimate

Vo (%, )] + [Hor (%, O] < Ct‘%(%)‘2[1+ @, 5] for (x e B x (@), (3.28)

Since ¢, H) is self-similar, we can write

X

1. ~
(Virs M) 1) = (W o) 7

Vi ), (X.1) € R3 x (0, ).

25



It follows directly from [3.28) thatV,,, H,,) € Xf. Furthermore, we have that
(Ver. Ho )9 = (Ko(Vir Her. o), K1V, Hor, ) (%, 1), x € R®, (3.29)
Define the operatdF on XJ x [0, 1] by
T(Wer, Hos 0)(%) = (KoWer, Her, 0), Ky (Vir, Her, 0))(%, 1), x € R,
From [3.29), we have

||T(\70, A, o) (3.30)

o <CfL+ @ A

2
ol

For 0< y < 1, sinceX{ is compactly embedded int&} , we have from[(3.30) thaf is a
compact operator fronk) x [0,1] to XJ. It is clear that[(3.29) can be rewritten as

(Vir. Ho) = T(Wir, Hors 0). (3.31)

Now we want to apply the Leray-Schauder fixed point theoreshtaw thatT(-, -; 1) has a
fixed point {7, Hy) € X;‘, ie.,

(Vl, ﬁl) = T(V1, Hy; 1).
In fact, it follows from the definition off and [3.30) that
(i) T(v,H;0) = 0 forany ¢, H) € XJ;
(i) T : X$ x [0,1] — X} is a compact operator.
Moreover, Lemma_3]3 implies that there exi€ts- 0, independent of-, such that the

following holds:
(i) if (v, Hy) € X;" is a fixed point ofT'(., -; ), i.e.,

(VO" HO’) = T(VO'a Hos O-),
then
H(Va'a Ha')”x;‘v < C
Thus the Leray-Schouder fixed point theorem implies thaetiea fixed pointy, H) € X;‘
of T(-, -; 1). Itis readily seen that(x, t) = e?up+ %v(%), F(x t) = éAFo+ \—1ﬁH(\—Xﬁ) solves

(L3) and[[L7), andu F) € C®(R3 x (0, 0)) N C"(R3 x [0, o0) \ {(0,0)})). This completes
the proof. O

4  Appendix

In this appendix, we sketch a proof of the local existence itif solutions to[(1.B) or (1.3)
for 0 < o < 1. For simplicity, we only considef (1.3) (or (1.3for o = 1).

We begin by recalling a well-known fact on the Cauchy probkemthe linear Stoke
system (see, for examplé, [11]):

ou—Au=div f-Vqg in Qr,
divu=0 in Qr, (4.1)
u(-,0) = a() in RS.

HereQr = R3x (0, T).
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Theorem 4.1. For m > 3, suppose that
feL¥(Qr)NLAQr), aeL™R3) N V(E®RY. (4.2)
For any T > 0, there is a pair of functiongu, g) with the following properties:

ue C([0,T]; L% n L0, T; V(R®)),
du e L%(0, T; (V(RY))),

ue C(0,TJ; L™ n L (Qr),

ge L% (Qr)NLAQr),

and (u, q) satisfy[(4]1) in the sense of distributions, and

(4.3)

t—0
lu(-, t) — a(-)llmgs) — O.

Moreover,

+[ull sp o, < CUITH 59, + AL (4.4)

Now we want to apply Theorein 4.2 to show the local existencmitif solutions to

@.3).

Theorem 4.2. For m > 3, assume gie L™(R3,R%) and Ry € L™(R3, R3*3) with divip = 0
and divipy = 0. Then there exist.T> 0, depending only ofup, Fo), and a triple of functions
u, F, g such that

”u”L{”Lxm(QT)

(u,F) € C([0, T.]; L3(R3,R3 x R¥3) N L%(0, T; V(R?)),
(8u, F) € L0, T.: (V(R3))),

(WF) € (0. T.J; LP(E3) n LF (Qr). (*:9)
geL¥(Qr.) nL%Qr.) nC(0,T.]; LE(RY)),
and (u, F, g) satisfy [1.B) in the sense of distributions, and
||U(,t) - UO(')”Lm(RS) + ||F(’t) - FO(')“Lm(RS) ﬂ) 0. (46)

Proof. The proof is based on the standard successive iteratioas ftgeinstance, [11]).
Here we only sketch it. Let

ul(,t) = T, t) = up, FI(,t) =T(,1t)* Fo,

(T =0 s +IFY s .1
L3 (Qr.) L3 (Qr)
and fork > 1, set
Ul =w+ uh Fl =G+ F1,

where (v, G) solves

Ow — Aw = V - FK(FK)t — (UK v)uk — v

_ — UiIKEK _ (K. k.
0iG — AG = VUF* — (u“- V)F¥; (4.8)

V-w=0,V-G=0;
w(x,0) = 0,G(x,0) = 0.
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According to Theorem 4.1, we have the estimate

It — Ut s+ IR FY s < CoflIu] s+ IFK s

This estimate can be rewritten as

2
I sn I < C(IU s IS e )
L3 (Qr) L3 (Qr) L3 (Qr) L3 (Qr)
U s P s (4.9)
L3 (Qr) L3 (Qr.)
We now want to show thak, can be chosen in such a way that
k+1 k+1
llu HL%m(QT*) +1IF HL%m(QT*) < 2«(T,) (4.10)
forallk > 1.
We argue by induction ok. By virtue of (4.9),
k+1 k+1 2
[lu ”L%n(QTJ +||F ||L§£_n(QT*) < ACok“(T.) + «(T.).
Obviously, [4.10) holds if we choo$k. such that
(T.) < 1 (4.12)
k(T —_— .
4Co

This is clearly possible, since bath andF! solve the heat equation with initial conditiog
andFo. From [4.10), we can apply the estimates of parabolic egquatind and establish all
the statements of Theorém 4.2 by lettingR, g) be the limit of (i, Fx, gk) ask — oo, except
the continuity of||(u(t), F(t))ll.nr3) with respect ta, which is a consequence of Theorem
[4.1. The continuity oflq(t)lng(Rs), as a function of, follows from theLP-estimate of the
pressure equation

Aq = —divi(u® u + FFY),

and the continuity of(u(t), F(t))ll.nxs) as function ott. This completes the proof of Theo-
rem[4.2. m]

Acknowledgements The first author is partially supported by NSF of China 111208,
11471099, and the International Cultivation of Henan AdehTalents and Research Foun-
dation of Henan University (ygpy20140043). The second authpartially supported by
the Fundamental Research Funds for the Central UniversB@UT 2015ZM183 and NSF
of China 11571117. The third author is partially supportgdisF DMS 15228609.

References

[1] L. Caffarelli, R. V. Kohn, L. NirenbergPartial regularity of suitable weak solutions
of the Navier-Stokes equatior@pmm. Pure Appl. Math., XXXV, (1982), 771-831.

[2] M. Cannone, Y. Meyer, Y. PlanchoBplutions auto-simlaires des equations de Navier-
Stokes)n: Seminaire X-EDP, Centre de Mathematiques, Ecole poiiytigjue (1993-
1994)

28



[3] M. Cannone, Y. Planchorelf-similar solutions for the Navier-Stokes equations in
R3. Comm. Part. Dff. Equ. 21(1-2), 179-193 (1996).

[4] L. Escauriaza, G. Seregin, \éverélk,Lg,oo solutions of Navier-Stokes equations and
backward uniquenessg)spekhi Mat. Nauk 58 (2003), no. 2(350), 3-44; translation i
Russian Math. Surveys 58 (2003), no. 2, 211-250

[5] D. Gilbarg, N. Trudinger,Elliptic partial differential equations of second order,
Grundlehren der Mathematischen Wissenschaften, 22ndggprMerlag, Berlin-New
York, 1977.

[6] R. Hynd, Partial regularity of weak solutions of the viscoelasticuiéa-Stokes equa-
tions with dampingSIAM J. Math. Anal. 45 (2013), no. 2, 495-517.

[7] X.Hu, F. H. Lin, Global solution to two dimensional incompressible visasgt fluid
with discontinuous dataCPAM, to appear.

[8] X. Hu, F. H. Lin, Global existence of weak solutions to two dimensional irpress-
ible viscoelastic flowsPreprint.

[9] X.P.Hu, H. Wu,Long-time behavior and weak-strong uniqueness for incesygible
viscoelastic flowsDiscrete Contin. Dyn. Syst. 35 (2015), no. 8, 3437-3461.

[10] H. Jia, V. éverék,Local—in—space estimates near initial time for weak saln$ of the
Navier-Stokes equations and forward self-similar sohdidnvent. Math., 196 (2014),
233-265.

[11] T. Kato, Strong P solutions of the Navier-Stokes equation®ihwith applications to
weak solutionsMath. Z., 187 (1984), 471-480.

[12] O. A. Ladyzhenskaya, G. A. Seregi@n partial regularity of suitable weak solutions
to the three dimensional Navier-Stokes equatidn&jath. Fluid Mech. 1 (1999), 356-
387.

[13] F. H. Lin, A new proof of the Cgarelli-Korn-Nirenberg theoremCom. Pure Appl.
Math., 51 (1998), 241-257.

[14] F. H. Lin, C. Liu, and P. Zhand)n hydrodynamics of viscoelastic fluid&mm. Pure
Appl. Math., 58 (2005), 1437-1471.

[15] F. H. Lin, P. Zhang©On the initial-boundary value problem of the incompressitls-
coelastic fluid systenGomm. Pure Appl. Math., 61 (2008), 539-558.

[16] P. G. Lemarié-Rieussélyeak infinite-energy solutions for the Navier-Stokes emsai
in R3. C. R. Acad. Sci. Pairs, Série. | Math. 328 (1999), 1133-1138

[17] P. G. Lemarié-RieusseRecent developments in the Navier-Stokes problem, Chapman
& Hall/CRC Research Notes in Mathematics 431 Chap&#tall/CRC, Boca Raton,
FL, 2002.

[18] J. LerayEssai sur le mouvement d’ un fluid visqueux emplissant I' especta Math.
63 (1934) 193-248.

29



[19] J. Mawhin, Leray-Schauder degree: a half century of extensions andicagions,
Topol. Methods Nonlinear Anal., 14 (1999), 195-228.

[20] C. W. OseenHydrodynamikLeipzig, 1927.

[21] G. Seregin]nterior regularity for solutions to the modified NaviereRes equations,
J. Math. Fluid Mech., 1 (1999), 235-281.

[22] V. A. Solonnikov, Estimates for solutions of a non-stationary linearizedteys of
Navier-Stokes equation@Russian) Trudy Mat. Inst. Steklov, 70 (1964) 213-317.

[23] T. P. Tsai,Forward discrete self-similar solutions of the Navierd&e equations,
Comm. Math. Phys., 328 (2014), 29-44.

[24] M. Korobkow, T. P. TsaiForward Self-Similar Solutions of the Navier-Stokes Equa-
tions in the Half SpacerXiv:1409.2516.

[25] Z. Bradshaw, T. P. Tsakorward discretely self-similar solutions of the Navidpiges
equations lllarXiv:1500.07504.

Baishun Lai: Institute of Contemporary Mathematics, Hebaiversity, Kaifeng 475004,
P.R. China
E-mail addresslaibaishun@henu.edu.cn

Junyu Lin: Department of Mathematics, South China Univgisi Technology, Guangzhou
510640, P. R. China.
E-mail addressscjylin@sctu.edu.cn

Changyou Wang: Department of Mathematics, Purdue Uniyef$0 N. University Street,
West Lafayette, IN 47907, USA
E-mail addresswang2482@purdue. edu

30


http://arxiv.org/abs/1409.2516
http://arxiv.org/abs/1500.07504

	1 Introduction 
	2 -regularity
	3 Existence of self-similar solutions
	3.1 Local in space near initial time estimate of local weak solutions
	3.2 A-priori estimate for the self-similar solution
	3.3 Proof of main result

	4 Appendix

