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THRESHOLDS FOR EXISTENCE OF DISPERSION MANAGEMENT

SOLITONS FOR GENERAL NONLINEARITIES

MI-RAN CHOI, DIRK HUNDERTMARK, YOUNG-RAN LEE

Abstract. We prove a threshold phenomenon for the existence of solitary solutions of
the dispersion management equation for positive and zero average dispersion for a large
class of nonlinearities. These solutions are found as minimizers of nonlinear and nonlocal
variational problems which are invariant under a large non–compact group. There exists
a threshold such that minimizers exist when the power of the solitons is bigger than the
threshold. Our proof of existence of minimizers is rather direct and avoids the use of Lions’
concentration compactness argument. The existence of dispersion managed solitons is
shown under very mild conditions on the dispersion profile and the nonlinear polarization
of optical active medium, which cover all physically relevant cases for the dispersion profile
and a large class of nonlinear polarizations, for example, they are allowed to change sign.
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1. Introduction

1.1. The variational problems. We show the existence of minimizers for a family of
nonlocal and nonlinear variational problems

Edavλ := inf
{
H(f) : ‖f‖2 = λ

}
, (1.1)

where λ > 0, the average dispersion dav ≥ 0, ‖f‖2 =
∫
R
|f |2 dx, the Hamiltonian takes the

form

H(f) :=
dav
2

‖f ′‖2 −N(f), (1.2)
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and the nonlocal nonlinearity is given by

N(f) :=

∫∫

R2

V (|Trf(x)|)dxψ(r)dr. (1.3)

Here V : [0,∞) → R is a suitable nonlinear potential and Tr = eir∂
2
x is the solution

operator of the free Schrödinger equation in one dimension. The function ψ is assumed to
be in suitable Lp-spaces.

If dav > 0 then, strictly speaking, the infimum in (1.1) is taken over all f with additionally
f ∈ H1(R), the usual Sobolev space of square integrable functions whose distributional
derivative f ′ is also square integrable. One can recover our formulation (1.1) by setting
‖f ′‖ := ∞ if f ∈ L2 \H1.

Our interest in these variational problems stems from the fact that the minimizers of
(1.1) are the building blocks for (quasi-)periodic breather type solutions, the so-called
dispersion management solitons, of the dispersion managed nonlinear Schrödinger equation.
The function ψ is the density of a probability measure related to the local dispersion
profile d0, see the discussion in Section 1.2, especially Lemma 1.8 and formula (1.10).
The dispersion management solitons have attracted a lot of interest in the development of
ultrafast longhaul optical data transmission fibers. So far, it has mainly been studied for
a Kerr-type nonlinearity, i.e., the special case where V (a) = a4. The purpose of this work
is to extend our previous existence results from [12] to a large class of nonlinearities V
and also to positive average dispersion. We address the connection of the above variational
problems with nonlinear optics later in Section 1.2.

The standard approach to show the existence of a minimizer of (1.1) is to identify it as
the strong limit of a suitable minimizing sequence, that is, a sequence (fn)n∈N ⊂ L2(R),

with ‖fn‖2 = λ and Edavλ = limn→∞H(fn). The catch is that the above variational problem
is invariant under translations of L2(R) if dav > 0 and under translations and boosts, that
is, shifts in Fourier space, if dav = 0. This invariance under a large non-compact group
of transformations leads to a loss of compactness since minimizing sequences can easily
converge weakly to zero. The usual strategy to compensate for such a loss of compactness
is Lions’ concentration compactness method. In a previous paper, [12], we used an alterna-
tive approach, which directly showed that modulo the natural symmetries of the problem,
minimizing sequences stay compact. The tools were very much tailored to the special type
of Kerr nonlinearity. This paper extends our approach from [12] to a much more general
setting. This extension is by no means straightforward, see Section 2 and Remark 1.5.

Our main assumptions on the nonlinear potential V : R+ → R are
A1) V is continuous on R+ = [0,∞) and differentiable on (0,∞) with V (0) = 0. There

exist 2 ≤ γ1 ≤ γ2 <∞ such that

|V ′(a)| . aγ1−1 + aγ2−1 for all a > 0.

A2) V is continuous on R+ and differentiable on (0,∞) with V (0) = 0. There exists γ0 > 2
such that

V ′(a)a ≥ γ0V (a) for all a > 0.

A3) There exists a0 > 0 such that V (a0) > 0.

Above, we use the convention f . g, if there exists a finite constant C > 0 such that
f ≤ Cg.

These three assumptions above are our main requirements on the nonlinear potential.
For our existence results, depending on whether dav = 0 or dav > 0, we will have to pose
some additional restrictions on the range of γ1 ≤ γ2. For example, if dav > 0, we will need
that 2 < γ1 ≤ γ2 < 10 and we will also have some additional Lp conditions on ψ to ensure
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the existence of minimizers for (1.1). We will see that these conditions yield a threshold
phenomenon, that is, f ∈ H1(R), respectively f ∈ L2(R), if dav = 0, with ‖f‖2 = λ and

H(f) = Edavλ exists at least for large enough power λ. In order to guarantee the existence
of solutions for arbitrarily small λ > 0, we need to strengthen assumption A3 to

A4) If dav > 0 we assume that there exist ε > 0 and 2 < κ0 < 6 such that

V (a) & aκ0 for all 0 < a ≤ ε.

If dav = 0 we assume that there exists ε > 0 such that V (a) > 0 for all 0 < a ≤ ε.

Remarks 1.1. (i) An integration shows that A1 implies

|V (a)| . aγ1 + aγ2 .

Much more important for us is the fact that A1 allows us to control the nonlocal

nonlinearity N under splitting, see Lemma 2.14 and the discussion in Section 2.2.
(ii) Examples of nonlinearities obeying assumptions A1 through A3 are given by

V (a) =
J∑

j=1

cja
sj

with cj > 0, 2 < sj < 10 if dav > 0, respectively, 2 < sj < 6 if dav = 0, and J ∈ N,
but our assumptions also allow nonlinear potentials which can become negative, for
example, for dav > 0 we can allow for

V (a) = −a4 + a8 for a ≥ 0.

It certainly fulfills A1. Since

V ′(a)a = −4a4 + 8a8 = 4(−a4 + a8) + 4a8 ≥ 4V (a),

it also obeys A2. Moreover, V (a0) > 0 for all large enough a0, so A3 holds.
Similarly, if dav = 0 we can allow for

V (a) = −a3 + a5 for a ≥ 0.

If we did not assume A3, then the nonlinearities could also be strictly negative for all
a > 0, for example, V (a) = −a4 − a6 obeys A1 and because of

V ′(a)a = −4a4 − 6a6 = 6(−4

6
a4 − a6) ≥ 6V (a)

also A2, but then the critical threshold λdavcr given in Theorems 1.2 and 1.4 would
be infinite. The threshold is finite once there exists f ∈ H1(R) with N(f) > 0, see
Theorem 5.1.5.1.v.

Our first main result is

Theorem 1.2 (Thresholds for existence for positive average dispersion). Assume dav > 0,
V obeys assumptions A1 through A3 for some 2 < γ1 ≤ γ2 < 10, and ψ ∈ Lαδ has compact

support for some δ > 0, where αδ := αδ(γ2) := max{1, 4
10−γ2 + δ}. Then

(i) There exists a threshold 0 ≤ λdavcr < ∞ such that Edavλ = 0 for 0 < λ < λdavcr and

−∞ < Edavλ < 0 for λ > λdavcr .

(ii) If 0 < λ < λdavcr , then no minimizer for the constrained minimization problem (1.1)
exists. If γ1 ≥ 6, then λdavcr > 0.

(iii) If λ > λdavcr , then any minimizing sequence for (1.1) is up to translations relatively

compact in L2(R), in particular, there exists a minimizer for (1.1). This minimizer is

also a weak solution of the dispersion management equation (1.12) for some Lagrange

multiplier ω < 2Edavλ /λ < 0.
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(iv) If V obeys in addition A4, then λdavcr = 0.

Remark 1.3. If γ2 < 6 then 4
10−γ2 < 1 and thus αδ = 1 for all small enough δ > 0. So if

2 < γ1 ≤ γ2 < 6 we only need ψ ∈ L1 with compact support for Theorem 1.2 to hold.
If 6 ≤ γ2 < 10 the density ψ has to have compact support and to be in Lp with p slightly

larger than 4
10−γ2 . With the bound (1.9) this translates into some slightly more restrictive

integrability bound on 1/d0, which still covers all physically relevant local dispersion profiles.

We have a similar existence result in the case of dav = 0 under slightly different Lp

assumptions on the density ψ.

Theorem 1.4 (Threshold for existence for zero average dispersion). Assume dav = 0 and

V obeys assumptions A1 through A3 with 2 < γ1 ≤ γ2 < 6, and that the density ψ has

compact support and ψ ∈ L
4

6−γ2
+δ

for some δ > 0.
(i) There exists a threshold 0 ≤ λ0cr < ∞ such that E0

λ = 0 for 0 < λ < λ0cr and −∞ <
E0
λ < 0 for λ > λ0cr.

(ii) If λ > λ0cr, then any minimizing sequence for (1.1) is up to translations and boosts,

that is, translations in Fourier space, relatively compact in L2(R), in particular, there

exists a minimizer for (1.1). This minimizer is also a weak solution of the dispersion

management equation (1.12) for some Lagrange multiplier ω < 2E0
λ/λ < 0.

(iii) If V obeys in addition A4, then λ0cr = 0.

Remarks 1.5. (i) Concerning the existence, Theorems 1.2 and 1.4 are sharp, see Theorem
1.6 below.

(ii) In the application to nonlinear optics, ψ is the density of the probability measure µ in
(1.8) below, which in turn is naturally related to the dispersion profile d0 in dispersion
management cables, see the discussion just above Lemma 1.8. It turns out that this
probability measure always has compact support as soon as d0 is integrable over the
period [0, L] and it has a density ψ once the zero set of the local dispersion profile d0
has zero Lebesgue measure, that is, |{s ∈ [0, L] : d0(s) = 0}| = 0. This is a reasonable
assumption on d0 since otherwise ψ would have some delta distribution component and
the nonlinearity N would be rather singular.

The so far most studied case is the model case where

d0 = 1[0,1) − 1[1,2) ,

that is, two pieces of glass fiber cables with exactly opposite dispersion are concatenated
together and this is repeated periodically with period 2. In this case ψ = 1[0,1]. Our
existence results are valid for a considerably larger class of probability densities ψ, and
thus a very large class of dispersion profiles d0. The Lp conditions on ψ in Theorems
1.2 and 1.4 translate to conditions on the dispersion profile d1−p0 via Lemma 1.8 below.

In particular, for dav > 0 and γ2 < 6, we can allow for the largest possible class of
local dispersion profiles d0, they only have to change sign finitely many times and their
zero set has to have Lebesgue measure zero.

Even in the case of a Kerr nonlinearity, where V (a) ∼ a4, i.e., γ1 = γ2 = 4, the above
two theorems strongly improve our result in [12] in terms of scales of Lp spaces: In [12],
we needed in addition that ψ ∈ L4, whereas now with γ2 = 4, one sees that ψ ∈ L1 is
enough for strictly positive average dispersion and for vanishing average dispersion we
only need L2+δ for arbitrarily small δ > 0.

(iii) For the Kerr nonlinearity, the smoothness and decay of the minimizers has been studied
in [4] and [11] for the simplest case of an alternating dispersion profile given by d0 =
1[0,1) − 1[1,2) and extended to more general dispersion profiles in [10]. In the more
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general setting discussed in this paper the smoothness and decay of solitary solutions
is an open problem.

Concerning the question whether the range of exponents in Theorems 1.2 and 1.4 is
optimal, we note the following

Theorem 1.6. Let V be a pure power law nonlinearity given by V (a) = caγ for a ≥ 0 and

some coefficients c, γ > 0.
(i) Assume further that dav > 0 and ψ is a probability density with compact support which is

strictly positive in a possibly one sided neighborhood of zero. Then H(f) is unbounded

from below on H1 for any fixed ‖f‖2 = λ > 0, if γ > 10. If γ = 10, then H(f) is

unbounded from below for any fixed ‖f‖2 = λ > 0 as long as c is large enough.

(ii) If dav = 0 and γ > 6, then H(f) is unbounded from below on L2 for any fixed ‖f‖2 =
λ > 0, if ψ is a probability density with compact support which is strictly positive in a

possibly one sided neighborhood of zero.

If dav = 0 and γ = 6, then no minimizers exist in the model case ψ = 1[0,1].

Remark 1.7. As the lower bound (1.11) from Remark 1.9.ii shows, the assumption of the
first part of Theorem 1.6 is fulfilled if the dispersion profile d0 is bounded from above close
to zero, which includes all physically relevant dispersion profiles.

The strategy of the proofs of our Existence Theorems 1.2 and 1.4 is as follows: The
main observation which shows that Edavλ < 0 is equivalent to gaining compactness is done
in Theorem 4.1. The necessary space–time bounds which prevent splitting of minimizing
sequences as soon as Edavλ < 0 are done in Section 2.1 and their consequences for the
nonlinear and nonlocal potential in Section 2.2. The main building blocks, for which one
has to develop suitable space-time bounds, turn out to be of the form given in Definition
2.5 and are motivated by Lemma 2.14. Our proofs for strictly positive average dispersion
rely on some very useful space-time bounds for coherent states, see Lemma B.4, which are
new and proven in Appendix B. Strict subadditivity of the energy is done in Section 3 and
the necessary tightness bound, modulo the symmetries of the problem are established in
Section 4. That there exists a threshold which distinguishes between Edavλ = 0 and Edavλ < 0
is the content of Theorem 5.1. At the end of Section 5 the proofs of Theorems 1.2 and 1.4
are given. Theorem 1.6 is proven in Section 6.

1.2. The connection with nonlinear optics. Our main motivation for studying (1.1)
comes from the fact that the minimizer of the variational problem is related to breather-type
solutions of the dispersion managed nonlinear Schrödinger equation

i∂tu = −d(t)∂2xu− p(|u|)u, (1.4)

where the dispersion d(t) is parametrically modulated and P (u) = p(|u|)u is the nonlinear
interaction due to the polarizability of the glass fiber cable. In nonlinear optics (1.4)
describes the evolution of a pulse in a frame moving with the group velocity of the signal
through a glass fiber cable, see [25]. As a warning : with our choice of notation the variable
t denotes the position along the glass fiber cable and x the (retarded) time. Hence d(t) is
not varying in time but denotes indeed a dispersion varying along the optical cable. For
physical reasons it would not be a strong restriction to assume that d is piecewise constant,
but we will not make this assumption in this paper. By symmetry, one assumes that P
is odd and P (0) = 0 can always be enforced by adding a constant term. Most often one
makes a Taylor series expansion, keeping just the lowest order nontrivial term leads to
P (u) ∼ |u|2u, the Kerr nonlinearity, but we will not make this approximation.
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The dispersion management idea, i.e., the possibility to periodically manage the disper-
sion by putting alternating sections with positive and negative dispersion together in an
optical glass-fiber cable to compensate for dispersion of the signal was predicted by Lin,
Kogelnik, and Cohen already in 1980, see [17], and then implemented by Chraplyvy and
Tkach for which they received the Marconi prize in 2009. See the reviews [26, 27] and the
references cited in [12] for a discussion of the dispersion management technique.

The periodic modulation of the dispersion can be modeled by the ansatz

d(t) = ε−1d0(t/ε) + dav. (1.5)

Here dav ≥ 0 is the average component and d0 its mean zero part which we assume to have
period L. For small ε, equation (1.5) describes a fast strongly varying dispersion which
corresponds to the regime of strong dispersion management.

A technical complication is the fact that (1.4) is a non-autonomous equation. We seek
to rewrite (1.4) into a more convenient form in order to find breather type solutions. Let

D(t) =
∫ t
0 d0(r) dr and note that as long as d0 is locally integrable and has period L with

mean zero, D is also periodic with period L. Furthermore, Tr = eir∂
2
x is a unitary operator

and thus the unitary family t 7→ TD(t/ε) is periodic with period εL. Making the ansatz
u(t, x) = (TD(t/ε)v(t, ·))(x) in (1.4), a short calculation shows

i∂tv = −dav∂2xv − T−1
D(t/ε)

[
P (TD(t/ε)v)

]

which is equivalent to (1.4) and still a non-autonomous equation.
For small ε, that is, in the regime of strong dispersion management, TD(t/ε) is fast oscil-

lating in the variable t, hence the solution v is expected to evolve on two widely separated
time-scales, a slowly evolving part vslow and a fast, oscillating part with a small amplitude.
Analogously to Kapitza’s treatment of the unstable pendulum which is stabilized by fast
oscillations of the pivot, see [15], the effective equation for the slow part vslow was derived
by Gabitov and Turitsyn [7, 8] for the special case of a Kerr nonlinearity. It is given by
integrating the fast oscillating term containing TD(t/ε) over one period in t,

i∂tvslow = −dav∂2xvslow − 1

εL

∫ εL

0
T−1
D(r/ε)

[
P (TD(r/ε)vslow)

]
dr

= −dav∂2xvslow − 1

L

∫ L

0
T−1
D(r)

[
P (TD(r)vslow)

]
dr.

(1.6)

This averaging procedure leading to (1.6) was rigorously justified in [29] for suitable dis-
persion profiles d0 in the case of a Kerr nonlinearity. The averaged equation is autonomous
and stationary solutions of (1.6) can be found by making the ansatz

vslow(t, x) = e−iωtf(x). (1.7)

Before doing so, it turns out to be advantageous to rewrite the nonlocal nonlinear term

in (1.6): Define a measure µ(B) by setting µ(B) := 1
L

∫ L
0 1B(D(r)) dr for any Lebesgue

measurable set B ⊂ R. Since µ(B) ≥ 0 and µ(R) = 1
L

∫ L
0 1R(D(r)) dr = 1

L

∫ L
0 dr = 1, one

sees that µ is a probability measure. Since µ is the image measure of normalized Lebesgue
measure on [0, L] under D, we can rewrite (1.6) as

i∂tvslow = −dav∂2xvslow −
∫

R

T−1
r

[
P (Trvslow)

]
µ(dr). (1.8)

One can easily check that the simplest case of dispersion management, L = 2, d0 = 1[0,1)−
1[1,2), which is the case most studied in the literature, corresponds to the measure µ having
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density 1[0,1], the uniform distribution on [0, 1], see formula (1.10). For the general case,
we gather some basic properties of the probability measure µ in the following

Lemma 1.8 (Lemma 1.4 in [12]). Assume that the dispersion profile d0 is locally integrable.

Then the following holds.

(i) The probability measure µ has compact support.

(ii) If the set {d0 = 0} has zero Lebesgue measure, then µ is absolutely continuous with

respect to Lebesgue measure.

(iii) If furthermore d0 changes sign finitely many times on [0, L] and is bounded away from

zero then µ has a bounded density ψ.
(iv) Moreover, if d0 changes sign finitely many times on [0, L] and for some p > 1

∫ L

0
|d0(s)|1−p ds <∞,

then µ has a density ψ ∈ Lp. More precisely, we have the bound

‖ψ‖Lp .
(∫ L

0
|d0(s)|1−p ds

) 1
p

(1.9)

where the implicit constant depends only on the number of sign changes of d0 and the

period L.

Remarks 1.9. (i) As explained in [12], the bound (1.9) is quite natural and sharp. It

translates Lp restrictions on ψ into integrability conditions on d1−p0 . The extreme case
p = ∞ yields that ψ is bounded once d0 is bounded away from zero, and the case p = 1
poses the weak additional restriction that the set where d0 is zero has Lebesgue measure
zero.

(ii) Without working too hard, one can derive a formula for the density ψ of the probability
measure µ. We give the short argument from [12], for the reader’s convenience, since
it has an important consequence for Theorem 1.6: We assume that the measure of the
set {d0 = 0} is zero, otherwise µ will have a Dirac point mass component, and that
d0 changes sign only finitely many times on [0, L]. Let {Aj} be a collection of disjoint
half–open intervals with ∪jAj = [0, L) such that, on each Aj, the dispersion profile d0
has a fixed sign and so D is strictly monotone. Then by the definition of µ,
∫
F (r)µ(dr) =

∑

j

1

L

∫

Aj

F (D(s)) ds =
∑

j

1

L

∫

Aj

F (D(s))|D′(s)||D′(s)|−1 ds

=
∑

j

1

L

∫

D(Aj)
F (r)

1

|d0(D−1(r))| dr =
∫

supp (µ)

F (r)
1

L

∑

s∈D−1({r})
|d0(s)|−1 dr.

In the third equality we used a change of variables r = D(s) and that in each Aj there is
a unique sj ∈ Aj such that D(sj) = r and for the last equality we set D−1({r}) = {s ∈
[0, L)|D(s) = r}, the set of pre-images of r within [0, L). Thus we have the formula

ψ(r) =
1

L

∑

s∈D−1({r})
|d0(s)|−1 (1.10)

for the density ψ of µ in terms of the dispersion profile d0. Since D(r) =
∫ r
0 d0(s) ds

and d0 is locally integrable, D is continuous and we can use (1.10) to get a lower
bound for all r in the support of ψ close enough to zero, as long as d0 does not behave
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too wildly: If d0 is bounded close to zero there exists r0 > 0 such that with m :=
L−1 inf{|d0(D(r))|−1 : 0 ≤ r ≤ r0} > 0 one has the lower bound

ψ ≥ m1[0,r0] or ψ ≥ m1[−r0,0] (1.11)

which one of the above two lower bounds holds depends on the sign of d0 close to zero.

Coming back to our discussion of the dispersion management equation, plugging (1.7)
into (1.8), we see that f should solve

ωf = −davf ′′ −
∫

R

T−1
r

[
P (Trf)

]
µ(dr), (1.12)

which is a nonlocal nonlinear eigenvalue equation for f . Testing (1.12) with suitable test
functions h one gets the weak formulation

ω〈h, f〉 = dav〈h′, f ′〉 − 〈h,
∫

R

T−1
r

[
P (Trf)

]
µ(dr)〉

where 〈h1, h2〉 is the scalar product on L2(R) given by
∫
R
h1(x)h2(x) dx. Exchanging inte-

grals, a formal calculation, using the unicity of Tr, yields

〈h,
∫

R

T−1
r

[
P (Trf)

]
µ(dr)〉 =

∫

R

〈Trh, P (Trf)〉µ(dr)

and one arrives at the weak formulation of (1.12) in the form

ω〈h, f〉 = dav〈h′, f ′〉 −
∫

R

〈Trh, P (Trf)〉µ(dr), (1.13)

supposed to hold for any h in the Sobolev space H1(R).
Using the formula from Lemma 4.9 for the derivative of the nonlocal nonlinearity N(f)

from (1.3), one sees that (1.13) is the weak form of the Euler-Lagrange equation associated
to the energy H(f) given in (1.2), as long as V ′(|Trf |)sgn(Trf) = P (Trf). This is the case
if

V ′(a) = p(a)a = P (a) for all a > 0,

i.e., V is the antiderivative of the polarizability P ,

V (a) :=

∫ a

0
P (s) ds.

In this case it is, up to some technicalities, clear that any minimizer of the associated
constrained minimization problem (1.1) will be a weak solution of (1.12) for some choice
of Lagrange multiplier ω, as long as the variational problem (1.1) admits minimizers. In
particular, combining Theorems 1.2 and 1.4 with Lemma 1.8 one sees that (1.12) has a
non trivial weak solution f under the condition that the assumptions A1–A3 hold, at least
for large enough power λ = ‖f‖2, or for arbitrary power, if additionally A4 holds for the
antiderivative of P and that the dispersion profile d0 changes signs finitely many times and
1/d0 obeys some mild integrability conditions given by the right hand side of (1.9). This
allows for a large class of dispersion profiles d0, covering all physically relevant cases.

2. Nonlinear estimates

2.1. Fractional Bilinear Estimates. In this paper, the nonlocal nonlinearity is not a
pure power, thus the multilinear estimates from [12] cannot be used anymore. First, we
gather the estimates which will be used in the proof of fat–tail Propositions 4.3 and 4.4,
which are crucial for the existence proof in this paper. The core of the argument will be
suitable splitting bounds on the nonlocal nonlinearity N(f) from (1.3) given in Proposition
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2.17. For this, inspired by the splitting Lemma 2.14 for V , one needs certain fractional

linear bounds on the building blocks from Definition 2.5.

Since Tr = eir∂
2
x is the solution operator for the free Schrödinger equation in dimension one,

we can express Trf for any nice f , for example, in the Schwartz class, as follows:

Trf(x) =
1√
4πir

∫

R

ei
|x−y|2

4r f(y)dy (2.1)

=
1√
2π

∫

R

eixηe−irη
2
f̂(η)dη, (2.2)

where f̂ is the Fourier transform of f given by

f̂(η) =
1√
2π

∫

R

e−ixηf(x)dx.

As a first step, we note that, for ψ in suitable Lp spaces, certain space time norms of
Trf are bounded.

Lemma 2.1. Let f ∈ L2(R), 2 ≤ q ≤ 6 and ψ ∈ L
4

6−q (R). Then

‖Trf‖Lq(R2,dxψdr) . ‖ψ‖
L

4
6−q (R)

‖f‖. (2.3)

Proof. Using the Hölder inequality, we get
∫∫

R2

|Trf |qdxψdr =
∫∫

R2

(
|Trf |

2(6−q)
4 ψ

)(
|Trf |

6(q−2)
4

)
dxdr

≤
(∫∫

R2

|Trf |2ψ
4

6−q dxdr

) 6−q
4
(∫∫

R2

|Trf |6 dxdr
) q−2

4

.

Since Tr is unitary on L2(R),
∫∫

R2

|Trf |2ψ
4

6−q dxdr = ‖f‖2
∫

R

ψ
4

6−q dr

and the Strichartz inequality [9, 23], needed here only in one dimension, gives
∫∫

R2

|Trf |6 dxdr ≤ S6
1‖f‖6

and so (2.3) follows.

Remark 2.2. The sharp value of the constant in the one-dimensional Strichartz inequality
is known to be S1 = 12−1/12, the two dimensional sharp constant is known, too, and it is
also known that Gaussians are the only maximizers in the Strichartz inequality in one and
two space dimensions, see [6] and [14]. In recent years there has been a renewed interest
in establishing existence of maximizers for certain space time norms of solutions of linear
evolution equations, like the Schrödinger or wave equation, see, for example, [2, 3, 5, 13].

To take advantage of the fact that an interaction term containing the product of two
terms of the form Trf1 and Trf2 is typically small if the functions f̂1 and f̂2 have separated
supports, we need

Lemma 2.3 (Fractional bilinear estimate). Let 2 ≤ p < 3 and f1, f2 ∈ L2(R) whose

Fourier transforms have separated supports, say s = dist(supp f̂1, supp f̂2) > 0. Then

‖Trf1Trf2‖Lp(R2, dxdr) .
1

s(3−p)/p
‖f1‖‖f2‖. (2.4)
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Remark 2.4. The bound (2.4) is a well-known bilinear estimate for p = 2, see [1]. For
readers’ convenience, we give a proof of (2.4) for any 2 ≤ p < 3. As the proof shows, (2.4)

holds also for p = 3, without any support condition on f̂1 and f̂2.

Proof. Using (2.2), we get

Trf1(x)Trf2(x) =
1

2π

∫∫

R2

eix(η1+η2)−ir(η
2
1+η

2
2)f̂1(η1)f̂2(η2)dη1dη2.

Doing the change of variables a = η1+η2, b = η21+η
2
2 , with Jacobian J = ∂(a,b)

∂(η1,η2)
= 2(η2−η1)

and introducing

F (a, b) :=
1

|J | f̂1(η1(a, b))f̂2(η2(a, b))1[0,∞)(b)

one sees

Trf1(x)Trf2(x) =
1

2π

∫∫

R2

eixa−irbF (a, b) dadb,

that is, up to sign in one of the variables, Trf1(x)Trf2(x) is the space-time Fourier transform
of F . Since p ≥ 2, one can apply the Hausdorff-Young inequality, see, e.g., [16], which
reduces to Plancherel’s identity for p = 2, to get

‖Trf1Trf2‖Lp(R×R,dxdr) ≤ ‖F‖Lp′ (R2,dadb)

with p′ the dual index to p. Undoing the above change of variables, one sees

‖F‖Lp′ (R2,dadb) = 2−1/p

(∫∫

R2

1

|η2 − η1|p′−1
|f̂1(η1)f̂2(η2)|p

′
dη1dη2

)1/p′

. (2.5)

If p = p′ = 2, we use |η2 − η1| ≥ s on the support of the product f̂1f̂2 to get

‖F‖L2(R2,dadb) .
1√
s
‖f̂1‖‖f̂2‖

which concludes the proof for p = 2, since the Fourier transform is an isometry on L2.
Since 3/2 < p′ < 2, one can use the Hardy-Littlewood-Sobolev inequality to see

(2.5) ≤ 1

s2−3/p′

(∫∫

R2

|f̂1(η1)|p
′ |f̂2(η2)|p

′

|η2 − η1|2−p′
dη1dη2

) 1
p′

.
1

s(3−p)/p
‖f̂1‖‖f̂2‖

which yields (2.4) for 2 < p < 3.

The following will be the building blocks for our bounds on the nonlocal nonlinear po-
tential, see (2.18).

Definition 2.5. For any γ ≥ 2, define

Mγ
ψ(f1, f2) :=

∫∫

R2

|Trf1||Trf2|(|Trf1|+ |Trf2|)γ−2 dxψdr.

Remark 2.6. At firstMγ
ψ(f1, f2) is defined only when f1, f2 are Schwartz functions. Using

Proposition 2.7 below one sees that for all γ ≥ 2 and ψ ∈ L1 one can extend Mγ
ψ(f1, f2) to

all of H1, and even to all of L2 if 2 ≤ γ ≤ 6 and ψ in certain Lp spaces, by density of the
Schwartz functions.
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Proposition 2.7. (i) Let 2 ≤ γ ≤ 6 and ψ ∈ L
4

6−γ . Then

Mγ
ψ(f1, f2) . ‖f1‖‖f2‖(‖f1‖+ ‖f2‖)γ−2 (2.6)

where the implicit constant depends only on γ and the L
4

6−γ norm of ψ.
(ii) Let 2 ≤ γ <∞ and ψ ∈ L1. Then

Mγ
ψ(f1, f2) . ‖f1‖‖f2‖(‖f1‖H1 + ‖f2‖H1)γ−2 (2.7)

where the implicit constant depends only on γ and the L1 norm of ψ.

Proof. Using Hölder’s inequality for 3 functions with exponents γ, γ, and γ/(γ−2) one has

Mγ
ψ(f1, f2) ≤ ‖Trf1‖Lγ(R2,dxψdr)‖Trf2‖Lγ(R2,dxψdr)‖|Trf1|+ |Trf2|‖γ−2

Lγ (R2,dxψdr)
.

Applying the triangle inequality and Lemma 2.1 completes the proof of (2.6).
Similarly, using Hölder’s inequality with exponents 2, 2, and ∞ shows

Mγ
ψ(f1, f2) ≤ ‖Trf1‖L2(R2,dxψdr)‖Trf2‖L2(R2,dxψdr) sup

r∈R
(‖Trf1‖L∞ + ‖Trf2‖L∞)γ−2 ‖ψ‖γ−2

L1

≤ ‖ψ‖γ
L1‖f1‖‖f2‖ sup

r∈R
(‖Trf1‖L∞ + ‖Trf2‖L∞)γ−2 (2.8)

where we also used Lemma 2.1. Using the simple bound

‖h‖2L∞ ≤ ‖h‖‖h′‖, (2.9)

whose proof we postpone to the end of this proof, and the fact that the derivative and Tr
commute and Tr is unitary on L2(R), one gets

sup
r∈R

‖Trf1‖L∞ ≤ (‖f1‖‖f ′1‖)1/2 ≤ ‖f1‖H1

and similar for Trf2. Thus the second factor in (2.8) is bounded by

sup
r∈R

(‖Trf1‖L∞ + ‖Trf2‖L∞)γ−2 ≤ (‖f1‖H1 + ‖f2‖H1)γ−2 (2.10)

which finishes the proof of (2.7).
It remains to give an argument for (2.9). This is well–known, but we give the short proof

for convenience of the reader. It is enough to assume that h ∈ C∞
0 (R). Then

|h(x)|2 =

∫ x

−∞
2Re(h(s)h′(s)) ds = −

∫ ∞

x
2Re(h(s)h′(s)) ds.

So

|h(x)|2 ≤
∫

R

∣∣h(s)h′(s)
∣∣ ds ≤ ‖h‖‖h′‖

using the Cauchy-Schwarz inequality.

Proposition 2.8. Let s = dist(supp f̂1, supp f̂2) > 0.
If 2 < γ < 6, τ > 1 and ψ ∈ Lβ(γ,τ), then

Mγ
ψ(f1, f2) . s−α(γ,τ)‖f1‖‖f2‖(‖f1‖+ ‖f2‖)γ−2,

where α(γ, τ) := min{γ−2
6τ ,

6−γ
2τ } and β(γ, τ) := 4

6−γ−2α(γ,τ) .

Remark 2.9. Note that β(γ, τ) is only slightly bigger than 4
6−γ since α(γ, τ) > 0 tends to

zero as τ → ∞ and that it is increasing in γ. So we loose only an epsilon, by choosing τ
large enough, with respect to the bound from Proposition 2.7.
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Proof. Let 0 < α < 1
2 to be chosen later and write

Mγ
ψ(f1, f2) =

∫∫

R2

{
(|Trf1||Trf2|)1−2αψ

}
{|Trf1||Trf2|}2α

{
(|Trf1|+ |Trf2|)γ−2

}
dxdr.

Now use Hölder’s inequality for 3 functions with exponents p1,
1
α , and,

6
γ−2 , where

1

p1
= 1− α− γ − 2

6
=

8− γ − 6α

6

to see that

Mγ
ψ(f1, f2) ≤

(∫∫

R2

|Trf1Trf2|
6(1−2α)
8−γ−6αψ

6
8−γ−6α dxdr

) 8−γ−6α
6

‖Trf1Trf2‖2αL2(R2,dxdr)‖|Trf1|+ |Trf2|‖γ−2
L6(R2,dxdr)

.

Up to a constant, the third factor is bounded by (‖f1‖ + ‖f2‖)γ−2, using the triangle and
Strichartz inequalities. Using Lemma 2.2, the second factor is bounded by

‖Trf1Trf2‖2αL2(R2,dxdr) . s−α‖f1‖2α‖f2‖2α.
For the first factor, we note that with the help of the Cauchy-Schwarz inequality one gets
∫∫

R2

|Trf1Trf2|
6(1−2α)
8−γ−6αψ

6
8−γ−6α dxdr

≤
(∫∫

R2

|Trf1|
12(1−2α)
8−γ−6α ψ

6
8−γ−6α dxdr

)1/2(∫∫

R2

|Trf2|
12(1−2α)
8−γ−6α ψ

6
8−γ−6α dxdr

)1/2

.

In order to use Lemma 2.1 for this, we need to have 2 ≤ q ≤ 6 with q = 12(1−2α)
8−γ−6α . This

is equivalent to 6α < 8− γ, 6α ≤ γ − 2 and 2α ≤ 6− γ.
Moreover, we need

ψ
6

8−γ−6α ∈ L
4

6−q = L
4(8−γ−6α)
6(6−γ−2α)

hence

ψ ∈ L
4

6−γ−2α .

Now we come to the choice of α: In order to guarantee that 0 < α < 1, 6α < 8 − γ,
6α ≤ γ− 2, and 2α ≤ 6− γ, we take any τ > 1 and put α := α(γ, τ). Then one checks that
α obeys the above bounds to finish the proof.

Lemma 2.10 (Duality). Define

ψ̃(s) :=
1

(2|s|) 6−γ
2

ψ
(
− 1

4s

)

for s 6= 0. Then

Mγ
ψ(f1, f2) =Mγ

ψ̃
(f̌1, f̌2) (2.11)

where f̌ is the inverse Fourier transform of f .

Remark 2.11. Of course, the definition of ψ̃ depends on γ, but we drop this dependence in
our notation, for simplicity. For 2 ≤ γ ≤ 6, Proposition 2.7 yields a natural a priori bound

on Mγ
ψ(f1, f2) which depends on the L

4
6−γ norm of ψ. It is an easy exercise to check that

‖ψ‖
L

4
6−γ

= ‖ψ̃‖
L

4
6−γ

, so Proposition 2.7 and the duality expressed in (2.11) are consistent.
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Proof. Without loss of generality, assume that f1 and f2 are Schwartz functions for the
calculations below. Defining uj(r, x) := (Trfj)(x) and ǔj(r, x) := (Trf̌j)(x), j = 1, 2, using
the explicit form of the free time evolution (2.1) for uj(r, x), and expanding the square, one
sees

uj(r, x) =
1√
2ir

ei
x2

4r ǔj

(−1

4r
,
−x
2r

)

which is often called pseudo-conformal invariance of the free Schrödinger evolution. Then

Mγ
ψ(f1, f2)

=

∫∫

R2

∣∣∣ǔ1
(
−1
4r ,

−x
2r

)∣∣∣
∣∣∣ǔ2
(
−1
4r ,

−x
2r

)∣∣∣
(∣∣∣ǔ1

(
−1
4r ,

−x
2r

)∣∣∣+
∣∣∣ǔ2
(
−1
4r ,

−x
2r

)∣∣∣
)γ−2

(2|r|)γ/2 dxψ(r)dr. (2.12)

Doing first the change of variables x = −2ry, dx = 2|r|dy and then r = −1/(4s) with
dr = (2|s|)−2 ds, yields

(2.12) =

∫∫

R2

|ǔ1(s, y)| |ǔ2(s, y)| (|ǔ1(s, y)|+ |ǔ2(s, y)|)γ−2

(2|s|) 6−γ
2

dyψ(− 1

4s
)ds

which completes the proof.

This duality is a convenient tool in the proof of the analogue of Proposition 2.8 when
the functions f1 and f2 have separated supports.

Proposition 2.12. Let s = dist(supp f1, supp f2) > 0. If 2 < γ < 6, τ > 1 and ψ ∈
Lβ(γ,τ)(|r|α(γ,τ)β(γ,τ)dr), then

Mγ
ψ(f1, f2) . s−α(γ,τ)‖f1‖‖f2‖(‖f1‖+ ‖f2‖)γ−2. (2.13)

Proof. Given the duality expressed in Lemma 2.10 this is now simple: We have

Mγ
ψ(f1, f2) =Mγ

ψ̃
(f̌1, f̌2)

and note that the assumption on the separation of the supports of f1 and f2 means, of course,
that f̌1 and f̌2 have separated Fourier support, so Proposition 2.8 applies to Mγ

ψ̃
(f̌1, f̌2) as

long as ψ̃ is in the correct Lp space. A short calculation shows

‖ψ̃‖pLp(dr) =

∫

R

(2|r|)
p(6−γ)

2
−2|ψ(r)|p dr

and (2.13) follows by choosing p = β(γ, τ).

To handle the cases with 6 ≤ γ < 10 for positive average dispersion, we need a fractional
bilinear estimate for Mγ

ψ in H1 as follows.

Proposition 2.13 (H1 bilinear estimate). Let γ ≥ 2 and ψ ∈ L1(R) with compact support.

Then for any f1, f2 ∈ H1(R) with s = dist(supp f1, supp f2) > 0,

Mγ
ψ(f1, f2) . s−1‖f1‖H1‖f2‖H1(‖f1‖H1 + ‖f2‖H1)γ−2,

where the implicit constant depends only on the support and the L1 norm of ψ.

Proof. From the definition of Mγ
ψ(f1, f2) one sees

Mγ
ψ(f1, f2) ≤ ‖Trf1Trf2‖L1(R2,dxψdr) sup

r∈R
(‖Trf1‖L∞ + ‖Trf2‖L∞)γ−2. (2.14)

We use (2.10) to bound the second factor in (2.14) by (‖f1‖H1 + ‖f2‖H1)γ−2.
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To bound the first factor, we use the positive operators P≤

L and P>

L from Lemma B.4
for suitably chosen L > 0. Although they are not projection operators, we think of P≤

L as
‘projecting’ onto frequencies localized to . L and P>

L as ‘projecting’ onto large frequencies

& L. At the same time, the supports of P≤

L f1 and P>

L f2 will still be essentially separated.
See Lemma B.2 and B.4 in Appendix B for the properties of P≤

L and P>

L which we will
need.

Since P≤

L + P>

L = 1 on L2(R) by Lemma B.2, we can use the triangle inequality and the
linearity of Tr to split

‖Trf1Trf2‖L1(R2, dxψdr)

≤ ‖TrP>

L f1Trf2‖L1(R2, dxψdr) + ‖TrP≤

L f1TrP
>

L f2‖L1(R2, dxψdr)

+ ‖TrP≤

L f1TrP
≤

L f2‖L1(R2, dxψdr).

(2.15)

The Cauchy–Schwarz inequality and Lemma 2.1 yield

‖TrP>

L f1Trf2‖L1(R2, dxψdr) ≤ ‖TrP>

L f1‖L2(R2, dxψdr)‖Trf2‖L2(R2, dxψdr)

. ‖P>

L f1‖‖f2‖ . L−1‖f1‖H1‖f2‖,
where we also use (B.20) in the last bound. Note that the implicit constant from Lemma
2.1 depends only on the L1 norm of ψ. Switching the roles of f1 and f2, using in addition
that P≤

L ≤ 1, shows

‖TrP≤

L f1TrP
>

L f2‖L1(R2, dxψdr) . L−1‖f1‖‖f2‖H1 .

To bound the last term of the right hand side in (2.15), we use the bound (B.22) to get

‖TrP≤

L f1TrP
≤

L f2‖L1(R2, dxψdr) ≤ ‖ψ‖L1 sup
|r|≤R

‖TrP≤

L f1TrP
≤

L f2‖L1(R,dx)

≤ ‖ψ‖L1ARL
2 eL

2−B1,Rs
2 ‖f1‖‖f2‖,

with R > 0 chosen such that supp ψ ⊂ [−R,R] and the constants AR and B1,R from
Lemma B.4. Therefore

‖Trf1Trf2‖L1(R2, dxψdr) .
[
L2eL

2−B1,Rs
2
+ L−1

]
‖f1‖H1‖f2‖H1

for any L ≥ 0. Choosing 2L2 = B1,Rs
2, we get

‖Trf1Trf2‖L1(R2, dxψdr) . s−1‖f1‖H1‖f2‖H1 ,

and using this in (2.14) proves Proposition 2.13.

2.2. Splitting the nonlocal nonlinearity. For the nonlinear potential V : R+ → R our
assumption A1 guarantees a simple bound which is central for our existence proofs.

Lemma 2.14. Assume that V obeys A1. Then

|V (a)| . aγ1 + aγ2 (2.16)

for all a ≥ 0. Moreover,

|V (|z + w|) − V (|z|)| . |w|
(
(|z|+ |w|)γ1−1 + (|z|+ |w|)γ2−1

)
(2.17)

and

|V (|z + w|) − V (|z|)− V (|w|)| . |z||w|
(
(|z| + |w|)γ1−2 + (|z| + |w|)γ2−2

)
(2.18)

for all z, w ∈ C.
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Proof. As already observed in Remark 1.1.i, (2.16) follows from integrating the bound for
V ′. For the second claim, let c = min{|z|, |z + w|} and d = max{|z|, |z + w|} ≤ |z| + |w|.
Then d− c = ||z + w| − |z|| ≤ |w| and using the triangle inequality and A1, we have

|V (|z + w|)− V (|z|)| ≤
d∫

c

|V ′(a)| da . (dγ1−1 + dγ2−1)(d− c)

≤ ((|z| + |w|)γ1−1 + (|z| + |w|)γ2−1)|w|.
For the last claim note that since V (0) = 0, we have V (|z +w|)− V (|z|)− V (|w|) = 0 if at
least one of z and w equals zero. So assume z, w 6= 0 in the following. Then

V (|z + w|)− V (|z|)− V (|w|) =
[

1

|z|+ |w|V (|z +w|) − 1

|z|V (|z|)
]
|z|

+

[
1

|z|+ |w|V (|z + w|) − 1

|w|V (|w|)
]
|w|.

(2.19)

Moreover,

1

|z|+ |w|V (|z + w|)− 1

|z|V (|z|) = 1

|z|+ |w| (V (|z + w|) − V (|z|)) − |w|
(|z|+ |w|)|z|V (|z|).

(2.20)

Using (2.16) we have

|w|
(|z|+ |w|)|z| |V (|z|)| . |w|

|z|+ |w| (|z|
γ1−1 + |z|γ2−1) ≤ |w|((|z| + |w|)γ1−2 + (|z| + |w|)γ2−2),

which together with (2.17) in (2.20) gives∣∣∣∣
1

|z|+ |w|V (|z + w|)− 1

|z|V (|z|)
∣∣∣∣ . ((|z| + |w|)γ1−2 + (|z| + |w|)γ2−2)|w|

and a similar inequality holds when we switch z and w, so (2.19) and (2.20) imply (2.18).

Recall that the nonlocal nonlinearity is given by

N(f) =

∫∫

R2

V (|Trf(x)|) dxψdr.

Proposition 2.15 (Boundedness). Assume that V obeys assumption A1. Furthermore, for

j = 1, 2 choose κj with
1 (γj − 6)+ ≤ κj ≤ γj − 2 and assume that ψ ∈ L

4
6−γ1+κ1 ∩L

4
6−γ2+κ2 .

Then for all f ∈ H1(R)

|N(f)| . ‖f ′‖
κ1
2 ‖f‖γ1−

κ1
2 + ‖f ′‖

κ2
2 ‖f‖γ2−

κ2
2 , (2.21)

where the implicit constant depends only on the L
4

6−γ1+κ1 and L
4

6−γ2+κ2 norms of ψ. More-

over, if 2 ≤ γ1 ≤ γ2 ≤ 6 and κ1 = κ2 = 0, then the above bound extends to all f ∈ L2(R).

Remark 2.16. As the condition in Proposition 2.15 indicates, we need κj > 0 only when
γj > 6 for some j = 1, 2. If 2 ≤ γ1 ≤ γ2 ≤ 6, we can bound N(f) solely in terms of the L2

norm of f . This is not possible anymore if some exponent γj is bigger than 6. In this case
one has to use an L∞ bound and (2.9) to extract some excess power and for this one has
to pay the price that the bound then contains the L2 norm of the derivative of f , but this
allows to go beyond the exponent 6 in the existence results for dav > 0.

1Here (x)+ = max{x, 0} is the positive part of x ∈ R.
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Note also that the choice κj = γj −2 is allowed. In this case Proposition 2.15 shows that
for arbitrary ψ ∈ L1 the nonlinearity is bounded by

|N(f)| . ‖f ′‖
γ1−2

2 ‖f‖
γ1+2

2 + ‖f ′‖
γ2−2

2 ‖f‖
γ2+2

2 . (2.22)

Moreover, using ‖f ′‖‖f‖ ≤ ‖f‖2H1 , (2.22) also gives the bound

|N(f)| . ‖f‖2
(
‖f‖γ1−2

H1 + ‖f‖γ2−2
H1

)
(2.23)

where the implicit constant only depends on the L1 norm of ψ.

Proof of Proposition 2.15: Take an arbitrary f ∈ H1(R). As in the proof of Proposition
2.13 we can use (2.9) to get

sup
r∈R

‖Trf‖L∞ ≤ ‖f ′‖‖f‖.

Thus, for any γ ≥ 2 and κ ≥ 0 with γ − κ > 0, we have
∫∫

R2

|Trf(x)|γ dxψdr ≤ sup
r∈R

‖Trf‖κL∞

∫∫

R2

|Trf(x)|γ−κ dxψdr

≤ ‖f ′‖κ
2 ‖f‖κ

2

∫∫

R2

|Trf(x)|γ−κ dxψdr.

If, in addition, 2 ≤ γ − κ ≤ 6 and ψ ∈ L
4

6−γ+κ (R), then we can use Lemma 2.1 to see
∫∫

R2

|Trf(x)|γ−κ dxψdr . ‖f‖γ−κ,

where the implicit constant depends only on the L
4

6−γ+κ norm of ψ. Thus,
∫∫

R2

|Trf(x)|γ dxψdr . ‖f ′‖κ
2 ‖f‖γ−κ

2

for all (γ − 6)+ ≤ κ ≤ γ − 2. With the bound (2.16) and the definition of N(f) this proves

(2.21) under the assumption that ψ ∈ L
4

6−γ1+κ1 ∩ L
4

6−γ2+κ2 .

Proposition 2.17 (Splitting N). Assume that V obeys assumption A1.

(i) If 2 ≤ γ1 ≤ γ2 ≤ 6 and ψ ∈ L1 ∩ L
4

6−γ2 , then

|N(f1 + f2)−N(f1)−N(f2)| . ‖f1‖‖f2‖
(
1 + ‖f1‖4 + ‖f2‖4

)
. (2.24)

(ii) If 2 < γ1 ≤ γ2 < 6 and τ > 1, then with α(γ1, τ) and β(γ2, τ) as in Proposition 2.8,

|N(f1 + f2)−N(f1)−N(f2)| . s−min{α(γ1,τ),α(γ2,τ)}‖f1‖‖f2‖
(
1 + ‖f1‖4 + ‖f2‖4

)
(2.25)

if ψ ∈ L1 ∩ Lβ(γ2,τ) and s = dist(supp f̂1, supp f̂2) > 0, or ψ ∈ Lβ(γ2,τ) has compact

support and s = dist(supp f1, supp f2) > 0.
(iii) If 2 ≤ γ1 ≤ γ2 <∞ and ψ ∈ L1, then

|N(f1 + f2)−N(f1)−N(f2)| . ‖f1‖‖f2‖
(
1 + ‖f1‖γ2−2

H1 + ‖f2‖γ2−2
H1

)
. (2.26)

(iv) If 2 ≤ γ1 ≤ γ2 <∞ and ψ ∈ L1 has compact support, then

|N(f1 + f2)−N(f1)−N(f2)| . s−1‖f1‖H1‖f2‖H1

(
1 + ‖f1‖γ2−2

H1 + ‖f2‖γ2−2
H1

)
(2.27)

with s = dist(supp f1, supp f2) > 0.
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Proof. Because of Lemma 2.14 and the Definition 2.5 of Mγ
ψ , we have

|N(f1 + f2)−N(f1)−N(f2)|

≤
∫∫

R2

∣∣∣V (|Trf1(x) + Trf2(x)|) − V (|Trf1(x)|)− V (|Trf2(x)|)
∣∣∣ dxψdr

.Mγ1
ψ (f1, f2) +Mγ2

ψ (f1, f2).

(2.28)

So (2.26) follows from Proposition 2.7 and (2.27) follows from Proposition 2.13, noting also
that

(a+ b)γ1−2 + (a+ b)γ2−2 . 1 + aγ2−2 + bγ2−2,

for all a, b ≥ 0. Similarly, (2.24) follows from Proposition 2.7 as long as ψ ∈ L
4

6−γ1 ∩L
4

6−γ2 .

Since we also assume ψ ∈ L1 for convenience, this condition reduces to ψ ∈ L1 ∩ L
4

6−γ2 .
For the proof of (2.25), we first assume s = dist(supp f̂1, supp f̂2) > 0. Then Proposition

2.8 shows

Mγ
ψ(f1, f2) . s−α(γ,τ)‖f1‖‖f2‖(‖f1‖+ ‖f2‖)γ−2

for any 2 < γ < 6 and τ > 1, as long as ψ ∈ Lβ(γ,τ).
Thus (2.25) follows from (2.28) as long as ψ ∈ Lβ(γ1,τ) ∩ Lβ(γ2,τ). Noting

1 < β(γ1, τ) ≤ β(γ2, τ) and L1 ∩ Lβ(γ2,τ) ⊂ Lβ(γ1,τ) ∩ Lβ(γ2,τ)

finishes the proof of (2.25) when f̂1 and f̂2 have separated supports.
If s = dist(supp f1, supp f2) > 0, we make the simple observation that for any compactly

supported ψ one has

ψ ∈ Lp ⇒ ψ ∈ Lp(|r|a dr) ∩ L1

for any weight |r|a with a ≥ 0 and p ≥ 1. With this observation, the above proofs carry over
to the case that the functions f1 and f2 have separated supports, using now Proposition
2.12 instead of Proposition 2.8.

3. Strict subadditivity of the ground state energy

Recall that for dav ≥ 0

H(f) =
dav
2

‖f ′‖2 −N(f)

and

Edavλ = inf
{
H(f) : ‖f‖2 = λ

}
,

where, if f ∈ L2 \H1, we set ‖f ′‖ = ∞, so the infimum in the definition of Edavλ is over all

f ∈ H1 with fixed L2 norm if dav > 0.
In this section, we will give an a-priori bound on the ground-state energy which will

be an essential ingredient in the construction of strongly convergent minimizing sequences.
Recall also the definition of αδ = max{1, 4

10−γ2 + δ} for δ ≥ 0 from Theorem 1.2.

Lemma 3.1. Assume that V obeys assumption A1.

(i) If dav = 0, 2 < γ1 ≤ γ2 ≤ 6 and ψ ∈ L1 ∩ L
4

6−γ2 , then for every λ > 0

−∞ < E0
λ ≤ 0,

in particular, the variational problem (1.1) is well–posed.
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(ii) If dav > 0, 2 < γ1 ≤ γ2 < 10 and ψ ∈ L1 ∩ Lαδ for some δ > 0, then the energy

functional H(f) is coercive in ‖f ′‖ for fixed ‖f‖, that is,
lim

‖f ′‖→∞
H(f) = ∞ (3.1)

for fixed ‖f‖2 = λ > 0. Also

−∞ < Edavλ ≤ 0

and thus the variational problem (1.1) is well–posed and any minimizing sequence

(fn)n ⊂ H1(R) for Edavλ is bounded in the H1 norm.

(iii) If V obeys assumption A4, then Edavλ < 0 for any λ > 0 and dav ≥ 0.

Proof. If 2 < γ1 ≤ γ2 ≤ 6 we choose κ1 = κ2 = 0 in Proposition 2.15 to see that for any

ψ ∈ L1 ∩ L
4

6−γ2 one has

|N(f)| . ‖f‖γ1 + ‖f‖γ2 .
Thus for dav = 0 we have

E0
λ = − sup

‖f‖2=λ
N(f) & −(λ

γ1
2 + λ

γ2
2 ) > −∞.

To get a finite lower bound for Edavλ for dav > 0 and 2 < γ1 ≤ γ2 < 10 we have to do a

little bit of numerology first: If αδ = 1, simply set κj := γj−2. Since ψ ∈ L1 the conditions
on ψ from Proposition 2.15 are clearly satisfied. Note that if αδ = 1, then necessarily
γ2 < 6, thus also γ1 ≤ γ2 < 6, and hence

(γj − 6)+ = 0 ≤ κj = γj − 2.

This shows that the condition on κj from Proposition 2.15 are fulfilled and it also shows
that κj ≤ γ2 − 2 < 4 in this case.

If αδ > 1, pick βj > 0 such that 4
10−γj−βj = αδ > 1. Setting κj := (4− βj)+ we certainly

have 0 ≤ κj < 4. Also, since 10− γj − βj > 0, we have βj < 10− γj and this implies

κj = (4− βj)+ ≥ (γj − 6)+ .

Also, since 4
10−γj−βj > 1, we have

κj < γj − 2.

So again, the conditions on κj from Proposition 2.15 are fulfilled. So from (2.21) we get

|N(f)| . ‖f ′‖
κ1
2 ‖f‖γ1−

κ1
2 + ‖f ′‖

κ2
2 ‖f‖γ2−

κ2
2

and there exists a constant C > 0 depending only on the L
4

6−γ1+κ1 and L
4

6−γ2+κ2 norms of
ψ such that

H(f) ≥ dav
2

‖f ′‖2 − C
(
‖f ′‖

κ1
2 ‖f‖γ1−

κ1
2 + ‖f ′‖

κ2
2 ‖f‖γ2−

κ2
2

)
. (3.2)

Since κj = (4− βj)+, for αδ > 1, we have 6− γj + κj ≥ 10− γj − βj , so

1 <
4

6− γj + κj
≤ 4

10− γj − βj
= αδ

and by interpolating, or simply Hölder’s inequality, the constant C in (3.2) can be made to
depend only on the L1 and Lαδ norms of ψ.
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If we fix ‖f‖2 = λ > 0, then we can rewrite (3.2) with ‖f ′‖ = t as

H(f) ≥ dav
2
t2 − C

(
t
κ1
2 λ

γ1−
κ1
2

2 + t
κ2
2 λ

γ2−
κ2
2

2

)
. (3.3)

Since κj < 4 for j = 1, 2, this immediately implies (3.1).
The lower bound (3.2) also shows that

Edavλ = inf
{
H(f) : ‖f‖2 = λ

}
≥ inf

t>0

(
dav
2
t2 − C

(
t
κ1
2 λ

γ1−
κ1
2

2 + t
κ2
2 λ

γ2−
κ2
2

2

))
> −∞ .

The coercivity expressed in (3.3) also makes it easy to see that any minimizing sequence

(fn)n ⊂ H1(R) for Edavλ is bounded in theH1 norm. Indeed, if fn is such that ‖fn‖2 = λ > 0

and H(fn) → Edavλ > −∞ as n → ∞, then the lower bound (3.3) shows that ‖f ′n‖ stays
bounded and hence also ‖fn‖2H1 = ‖fn‖2 + ‖f ′n‖2 stays bounded.

To finish the proof of Lemma 3.1, we have to show that for λ > 0 and dav ≥ 0 one has
Edavλ ≤ 0 and even Edavλ < 0, if, in addition, assumption A4 on V holds. We will do this
by computing the energy of suitable Gaussians.

For this, we let gσ0 be the centered Gaussian from (B.11) with σ0 > 0. Then ‖gσ0‖2 =
λ > 0, ‖g′σ0‖2 = λ/σ0, and its time evolution is given in Lemma B.3 by

Trgσ0(x) =

(
2λ2

πσ0

)1/4 (
σ0
σ(r)

)1/2

e
− x2

σ(r)

with σ(r) = σ0 + 4ir. The first bound from Lemma 2.14 shows

|N(gσ0)| ≤
∫∫

R2

|V (|Trgσ0(x)|)| dxψdr . ‖ψ‖L1

(
‖Trgσ0‖γ1Lγ1 + ‖Trgσ0‖γ2Lγ2

)

and Lemma B.3 gives

‖Trgσ0‖γLγ =

(
π

γ

)1/2(2λ2

π

)γ/4
σ
− γ−2

4
0

( |σ0|
|σ(r)|

) γ−2
2

≤
(
π

γ

)1/2(2λ2

π

)γ/4
σ
− γ−2

4
0 .

Thus,

H(gσ0) =
dav
2

‖g′σ0‖
2 −N(gσ0)

≤ dav
2

· λ
σ0

+ C‖ψ‖L1

(
π

γ

)1/2
[(

2λ2

π

)γ1/4
σ
− γ1−2

4
0 +

(
2λ2

π

)γ2/4
σ
− γ2−2

4
0

]

for some constant C > 0. Since 2 < γ1 ≤ γ2 we can let σ0 → ∞ to see

lim
σ0→∞

H(gσ0) = 0

which clearly implies Edavλ ≤ 0.
To apply A4 when dav > 0, we consider σ0 large enough so that

|Trgσ0(x)| ≤
(
2λ2

πσ0

)1/4( |σ0|
|σ(r)|

)1/2

≤
(
2λ2

πσ0

)1/4

< ǫ.

Then A4 implies the lower bound

N(gσ0) =

∫∫

R2

V (|Trgσ0(x)|)dxψdr &

∫∫

R2

|Trgσ0(x)|κ0dxψdr

=

(
π

κ0

)1/2(2λ2

π

)κ0
4

σ
2−κ0

4
0

∫

R

(
σ0

|σ(r)|

)κ0−2
2

ψ(r)dr
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=

(
π

κ0

)1/2(2λ2

π

)κ0
4

σ
2−κ0

4
0

∫

R

ψ(r)

[1 + (4r/σ0)2]
κ0−2

4

dr,

where in the second line we used (B.13). Thus the energy of this Gaussian test function is
bounded above by

H(gσ0) ≤
davλ

2σ0

[
1− C

davλ

(
π

κ0

)1/2(2λ2

π

)κ0
4

σ
6−κ0

4
0

∫

R

ψ(r)

(1 + (4r/σ0)2)
κ0−2

4

dr

]

for some constant C. So, using a large enough σ0, we get H(gσ0) < 0 since 2 < κ0 < 6 and
∫

R

ψ(r)

[1 + (4r/σ0)2]
κ0−2

4

dr → ‖ψ‖L1

as σ0 → ∞ by Lebesgue’s dominated convergence theorem.
If dav = 0, we again use the Gaussian gσ0 with σ so large that 0 < |Trgσ0 | ≤ ε. Then A4

implies H(gσ0) = −N(gσ0) < 0, so E0
λ < 0.

For our proof of a quantitative version of strict subadditivity of the energy we need one
more ingredient.

Lemma 3.2. V obeys A2 if and only if for all t ≥ 1 we have

V (ta) ≥ tγ0V (a) for all a > 0. (3.4)

Proof. Assume that V obeys A2. Then

d

dt
V (ta) = V ′(ta)a ≥ γ0

t
V (ta)

for all a > 0 and t > 1. Thus

d

dt
(t−γ0V (ta)) ≥ 0

and integrating this yields (3.4). Conversely, since (3.4) is an equality for t = 1, we can
differentiate it at t = 1 to get A2.

The lower bound from Lemma 3.2 will be the main input for the following quantita-
tive version of strict subadditivity of Edavλ , which in turn will be crucial in the proof of
Propositions 4.3 and 4.4.

Proposition 3.3 (Strict Subadditivity). Under assumptions A1 and A2 and for any λ >
0, 0 < δ < λ/2, and λ1, λ2 ≥ δ with λ1 + λ2 ≤ λ, we have

Edavλ1
+ Edavλ2

≥
[
1− (2

γ0
2 − 2)

(
δ

λ

) γ0
2

]
Edavλ ,

for γ0 > 2 as in assumption A2.

Remark 3.4. Since 1− (2
γ0
2 −2)

(
δ
λ

) γ0
2 < 1 for any δ > 0 and γ0 > 2, the energy is strictly

subadditive whenever Edavλ < 0, since then

Edavλ1
+ Edavλ2

> Eλ

for all λ1, λ2 > 0 with λ1 + λ2 = λ > 0, by Proposition 3.3.
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Proof of Proposition 3.3: First we show that for all λ > 0 and 0 < µ ≤ 1

Edavµλ ≥ µ
γ0
2 Edavλ . (3.5)

Setting λ̃ = µλ and µ = ρ−1, one sees that the inequality (3.5) is equivalent to

Edav
ρλ̃

≤ ρ
γ0
2 Edav

λ̃
for all ρ ≥ 1, λ̃ > 0 (3.6)

which we are going to prove now: Given f ∈ H1(R), or f ∈ L2(R) if dav = 0, with ‖f‖2 = λ
and ρ ≥ 1, we get from Lemma 3.2

N(ρ1/2f) =

∫∫

R2

V (ρ1/2|Trf(x)|) dxψdr ≥ ρ
γ0
2 N(f).

Since ‖ρ1/2f‖2 = ρλ, ρ ≥ 1 and γ0 > 2 we get

H(ρ1/2f) ≤ ρ
dav
2

‖f ′‖2 − ρ
γ0
2 N(f) ≤ ρ

γ0
2 H(f),

which proves (3.6).
Now let λ1 = µ1λ and λ2 = µ2λ with µ1 +µ2 ≤ 1 and µ1, µ2 ≥ δ/λ. Using (3.5), we get

Edavλ1
+ Edavλ2

= Edavµ1λ
+ Edavµ2λ

≥ (µ
γ0
2
1 + µ

γ0
2
2 )Edavλ . (3.7)

Without loss of generality, we may assume that δ ≤ µ1 ≤ µ2. Using this and µ1 + µ2 ≤ 1
one sees

µ
γ0
2
1 + µ

γ0
2
2 = (µ1 + µ2)

γ0
2 −

(
(µ1 + µ2)

γ0
2 − µ

γ0
2
1 − µ

γ0
2
2

)

= (µ1 + µ2)
γ0
2 − µ

γ0
2
1

((
1 +

µ2
µ1

) γ0
2

− 1−
(
µ2
µ1

) γ0
2

)

≤ 1− µ
γ0
2
1

(
2

γ0
2 − 2

)
≤ 1−

(
δ

λ

) γ0
2 (

2
γ0
2 − 2

)

(3.8)

where we have also used that the function t 7→ (1 + t)
γ0
2 − 1− t

γ0
2 is increasing on [1,∞).

Since by Lemma 3.1 we always have Edavλ ≤ 0, we can use (3.8) in (3.7) to get

Edavλ1
+ Edavλ2

≥
[
1−

(
δ

λ

) γ0
2 (

2
γ0
2 − 2

)]
Edavλ

which completes the proof.

4. The existence proof

In this section we will characterize when minimizing sequences are precompact modulo
tranlations and boosts. Recall the definition of the exponent αδ = αδ(γ2) =

4
10−γ2 + δ.

Theorem 4.1. Let λ > 0 and assume that V obeys A1 and A2 and that the density ψ has

compact support.

(i) If dav > 0, 2 < γ1 ≤ γ2 < 10, and ψ ∈ Lαδ for some δ > 0, then every minimizing

sequence for the variational problem (1.1) is precompact modulo translations if and only

if Edavλ < 0.

(ii) If dav = 0, 2 < γ1 ≤ γ2 < 6, and ψ ∈ L
4

6−γ2
+δ

for some δ > 0, then every minimizing

sequence for the variational problem (1.1) is precompact modulo translations and boosts

if and only if E0
λ < 0.
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In both cases minimizers of (1.1) exist if Edavλ < 0, and these miniminzers are solutions of

the dispersion management equation (1.12) for some Lagrange multiplier ω < 2Edavλ /λ < 0.

Remark 4.2. This theorem shows that compactness modulo translation, respectively mod-
ulo translations and boost, for minimizing sequences is equivalent to strict negativity of the
energy.

Key for our proof of Theorem 4.1 are the following propositions, which will help to
eliminate splitting of minimizing sequences. First, we introduce notations. For s > 0 and
0 < α ≤ 1, define

Gα(s) :=
[
(s+ 1)

2α
1+2α − 1

]−1/2
. (4.1)

Note that Gα is a decreasing function on (0,∞) which vanishes at infinity, which is impor-
tant for us, and

lim
s→0+

Gα(s) = ∞ (4.2)

which is of less importance. Moreover, for x ∈ R, let x+ := max{x, 0}.

Proposition 4.3 (Fat-tail for positive average dispersion). Assume V obeys A1 with 2 <
γ1 ≤ γ2 < 10 and A2, dav > 0 and ψ ∈ L1 has compact support. Let λ > 0, f ∈ H1 with

‖f‖2 = λ, and 0 < δ < λ/2, and choose any a, b ∈ R with
∫ a

−∞
|f(x)|2dx ≥ δ and

∫ ∞

b
|f(x)|2dx ≥ δ (4.3)

then

H(f) ≥
[
1− (2

γ0
2 − 2)

(
δ

λ

) γ0
2

]
Edavλ − C‖f‖2H1

(
1 + ‖f‖8H1

)
G1 ((b− a− 1)+) , (4.4)

where the constant C depends only on the support and the L1 norm of ψ.

We have a similar bound in the case of vanishing average dispersion.

Proposition 4.4 (Fat-tail for zero average dispersion). Assume V obeys A1 with 2 < γ1 ≤
γ2 < 6 and A2, dav = 0 and ψ ∈ Lβ(γ2,τ) has compact support2. Let λ > 0, f ∈ L2 with

‖f‖2 = λ, and 0 < δ < λ/2, and a, b ∈ R with either
∫ a

−∞
|f(x)|2dx ≥ δ and

∫ ∞

b
|f(x)|2dx ≥ δ (4.5)

or ∫ a

−∞
|f̂(η)|2 dη ≥ δ and

∫ ∞

b
|f̂(η)|2 dη ≥ δ, (4.6)

then

H(f) ≥
[
1− (2

γ0
2 − 2)

(
δ

λ

) γ0
2

]
E0
λ − Cλ(1 + λ2)Gmin{α(γ1,τ),α(γ2,τ)} ((b− a− 1)+) (4.7)

where the constant C depends only on the support and the Lβ(γ2,τ) norm of ψ.

2Recall the definition of α(γ, τ ) and β(γ, τ ) from Proposition 2.8.
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Proof of Proposition 4.3. If b − a ≤ 1, (4.4) holds immediately since its right hand side
is −∞ by (4.2). So now we assume that b − a > 1. Let a′ and b′ be arbitrary numbers
satisfying a ≤ a′ < b′ ≤ b and b′−a′ ≥ 1, which we will suitably choose later. The estimate
of ‖f ′‖2 is based on a one-dimensional version of the well-known IMS localization formula

‖f ′‖2 =
∑

j

〈(ξjf)′, (ξjf)′〉 −
∑

j

〈f, |ξ′j |2f〉 (4.8)

for any collection of functions {ξj} which are smooth, 0 ≤ ξj ≤ 1, and
∑

j ξ
2
j = 1. To

construct such a partition which suits our needs, consider smooth functions {χj} that
satisfy

i) 0 ≤ χj ≤ 1 for j = −1, 0, 1.

ii)
1∑

j=−1

χ2
j = 1.

iii) suppχ0 ⊂ [−1
2 ,

1
2 ], χ0 = 1 on [−1

4 ,
1
4 ],

suppχ−1 ⊂ (−∞,−1
4 ], χ−1 = 1 on (−∞,−1

2 ],

suppχ1 ⊂ [14 ,∞), χ1 = 1 on [12 ,∞).

Let

ξj(x) = χj

(
x− 1

2(a
′ + b′)

b′ − a′

)
for j = −1, 0, 1.

Since χ′
j is bounded, we see that for some constant C1 > 0

1∑

j=−1

|ξ′j|2 ≤
C1

(b′ − a′)2
.

Plugging this into (4.8) yields

‖f ′‖2 ≥ ‖(ξ−1f)
′‖2 + ‖(ξ0f)′‖2 + ‖(ξ1f)′‖2 −

C1‖f‖2
(b′ − a′)2

≥ ‖(ξ−1f)
′‖2 + ‖(ξ1f)′‖2 −

C1‖f‖2
(b′ − a′)2

.

(4.9)

Now we set fj := ξjf for j = −1, 1 and f0 := f − f1− f−1 = (1− ξ−1− ξ1)f , where we note
that f0 is defined differently from f−1 and f1!

Obviously, ‖fj‖ ≤ ‖f‖ for j = −1, 1, and since the supports of ξ−1 and ξ1 are disjoint
also |f0| ≤ |f |, hence ‖f0‖ ≤ ‖f‖.

Set h := f−1 + f1. Then f = f0 + h and the bound (2.26) from Proposition 2.17 shows

N(f)−N(f0)−N(h) . ‖f0‖‖h‖
(
1 + ‖f0‖8H1 + ‖h‖8H1

)

where we also used 1 + aγ2−2 . 1 + a8 for all a ≥ 0 and γ2 < 10. Using Proposition 2.15,
more precisely equation (2.23), which is one of its consequences, we have

N(f0) . ‖f0‖2
(
‖f0‖γ1−2

H1 + ‖f0‖γ2−2
H1

)
. ‖f0‖2

(
1 + ‖f0‖8H1

)
,

and combining the above two bounds we arrive at

N(f)−N(h) . ‖f0‖‖f‖(1 + ‖f‖8H1), (4.10)

where used ‖f0‖, ‖h‖ ≤ ‖f‖ and also ‖f0‖H1 , ‖h‖H1 . ‖f‖H1 , the latter holds because of
our smoothness assumptions on the cut-off functions ξj uniformly in b′ − a′ ≥ 1.
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Since f−1 and f1 have supports separated by at least (b′ − a′)/2, (2.27) gives

N(h)−N(f−1)−N(f1) . (b′ − a′)−1‖f−1‖H1‖f1‖H1

(
1 + ‖f−1‖8H1 + ‖f1‖8H1

)

. (b′ − a′)−1‖f‖2H1

(
1 + ‖f‖8H1

)
(4.11)

where we again used that, because of our assumption that b′ − a′ ≥ 1, the bound ‖fj‖H1 .
‖f‖H1 holds, where the implicit constant does not depend on a′ and b′.

Combining (4.10) and (4.11), we get

N(f)−N(f−1)−N(f1) .

(
‖f0‖‖f‖+

‖f‖2H1

b′ − a′

)(
1 + ‖f‖8H1

)

so when combined with (4.9), this yields

H(f)−H(f−1)−H(f1) & −
[ ‖f‖2
(b′ − a′)2

+

(
‖f0‖‖f‖+

‖f‖2H1

b′ − a′

)(
1 + ‖f‖8H1

)]
. (4.12)

To choose a′ and b′, we use a continuous version of the pigeon hole principle, as in our
previous work [12]: Let 1 ≤ l ≤ b− a and note that

∫ b−l

a

∫ y+l

y
|f(x)|2dxdy ≤

∫ b

a

∫ x

x−l
|f(x)|2dydx ≤ l‖f‖2. (4.13)

Moreover, by the mean value theorem, there exists y′ ∈ (a, b− l) such that

(b− a− l)

∫ y′+l

y′
|f(x)|2dx =

∫ b−l

a

∫ y+l

y
|f(x)|2dxdη.

Thus, since f0 has support in [a′, b′] and |f0| ≤ |f |, choosing a′ = y′ and b′ = y′ + l in the
previous identity together with (4.13) gives l = b′ − a′ and

‖f0‖2 ≤ ‖f1[a′,b′]‖2 ≤ l

b− a− l
‖f‖2.

Plugging this into (4.12) yields

H(f)−H(f−1)−H(f1) & −
[
‖f‖2
l2

+

((
l

b− a− l

)1/2

‖f‖2 + ‖f‖2H1

l

)
(
1 + ‖f‖8H1

)
]

≥ −‖f‖2H1

(
1 + ‖f‖8H1

)
[
1

l2
+

(
l

b− a− l

)1/2

+
1

l

]
.

Since ‖f‖2 = λ, λj = ‖fj‖2 ≥ δ, j = −1, 1 and λ1 + λ2 = ‖f−1‖2 + ‖f1‖2 ≤ λ, we certainly
have

H(f−1) +H(f1) ≥ Edavλ1
+Edavλ2

≥
[
1− (2

γ0
2 − 2)

(
δ

λ

) γ0
2

]
Edavλ

by Proposition 3.3. Thus we arrive at the bound

H(f)−
[
1− (2

γ0
2 − 2)

(
δ

λ

) γ0
2

]
Edavλ & −‖f‖2H1

(
1 + ‖f‖8H1

)
[
1

l2
+

(
l

b− a− l

)1/2

+
1

l

]

for any 0 < δ < λ/2 and all 1 ≤ l ≤ b− a. Now we choose l = 3
√
b− a. Then 1 ≤ l ≤ b− a

since b− a ≥ 1, and

max

{
1

l2
,

(
l

b− a− l

)1/2

,
1

l

}
=

(
l

b− a− l

)1/2

=

(
1

(b− a)2/3 − 1

)1/2

= G1((b−a− 1)+)
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which completes the proof.

Proof of Proposition 4.4. Since its proof is very analogous to that of Proposition 4.3, let us
mention only the things which need to be changed: In the case of zero average dispersion,
the energy contains no ‖f ′‖2 term, hence we do not need to use smooth cut-offs, that is,
we can use f = f−1+ f0+ f1 where we set f−1 = f1(−∞,a′), f0 = f1[a′,b′] and f1 = f1(b′,∞),

and similarly for f̂ .
We can then simply repeat the argument in the proof of (4.12), again using (2.24) but

now combined with (2.25) instead of (2.27), to see that

H(f)−H(f−1)−H(f1) & −
(
‖f0‖‖f‖+

‖f‖2
(b′ − a′)min{α(γ1,τ),α(γ2,τ)}

)(
1 + ‖f‖4

)

≥ −λ
(
1 + λ2

)
[(

l

b− a− l

)1/2

+
1

lmin{α(γ1,τ),α(γ2,τ)}

]
(4.14)

with the only restriction that l = b′ − a′ ≥ 1.
If 0 < b− a ≤ 1, we note that (4.7) trivially holds since the right hand side equals −∞.

So let b − a > 1. We choose l := (b − a)
1

1+2min{α(γ1,τ),α(γ2,τ)} . Then 1 < l < b − a and

l1+2min{α(γ1,τ),α(γ2,τ)} = b− a > b− a− l > 0 hence
(

l

b− a− l

)1/2

≥ 1

lmin{α(γ1,τ),α(γ2,τ)} .

This together with (4.14) and our choice of Gmin{α(γ1,τ),α(γ2,τ)}((b−a−1)+), which satisfies
0 < min{α(γ1, τ), α(γ2, τ)} ≤ 1, finishes the proof.

Since the function Gα is decreasing on R+ and vanishes at infinity, similar results to
Proposition 2.4 in [12] follow from Propositions 4.3 and 4.4.

Proposition 4.5 (Tightness for Positive Average Dispersion). Under the conditions of

Theorem 4.1 on V , γ1, γ2, and ψ, let (fn)n ⊂ H1(R) be a minimizing sequence for the

variational problem (1.1) for dav > 0 with λ = ‖fn‖2 > 0 and assume Edavλ < 0. Then there

exists K <∞ such that, for any L > 0,

sup
n∈N

∫

|η|>L
|f̂n(η)|2 dη ≤ K

L2
(4.15)

i.e., the sequence is tight in Fourier space. Moreover, there exist shifts yn such that

lim
R→∞

sup
n∈N

∫

|x|>R
|fn(x− yn)|2dx = 0, (4.16)

i.e., the shifted sequence is also tight.

Proposition 4.6 (Tightness for Zero Average Dispersion). Under the conditions of Theo-

rem 4.1 on V , γ1, γ2, and ψ, let (fn)n ⊂ L2(R) be a minimizing sequence for the variational

problem (1.1) for dav = 0 with λ = ‖fn‖2 > 0 and assume E0
λ < 0. Then there exist shifts

yn and boosts ξn such that

lim
L→∞

sup
n∈N

∫

|η−ξn|>L
|f̂n(η)|2 dη = 0 (4.17)

and

lim
R→∞

sup
n∈N

∫

|x−yn|>R
|fn(x)|2 dx = 0. (4.18)
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Proof of Proposition 4.5. Let (fn)n be a minimizing sequence. Lemma 3.1 shows that ‖f ′n‖
is bounded, that is,

K := sup
n∈N

‖f ′n‖2 <∞.

Thus, for every n ∈ N and L > 0, we obtain
∫

|η|>L
|f̂n(η)|2 dη ≤

∫

|η|>L

|η|2
L2

|f̂n(η)|2 dη ≤
∫

R

|η|2
L2

|f̂n(η)|2 dη ≤ K

L2

which is (4.15).
To prove the second bound, we follow the argument of [12] closely. We give some details

for the readers’ convenience. Define an,δ and bn,δ by

an,δ := inf

{
a ∈ R :

∫ a

−∞
|fn(x)|2 dx ≥ δ

}

and

bn,δ := sup

{
b ∈ R :

∫ ∞

b
|fn(x)|2 dx ≥ δ

}
.

Note that the measure |fn(x)|2 dx is absolutely continuous with respect to Lebesgue measure
and hence ∫ an,δ

−∞
|fn(x)|2 dx = δ and

∫ ∞

bn,δ

|fn(x)|2 dx = δ.

Furthermore δ 7→ an,δ and δ 7→ bn,δ are monotone, more precisely, for 0 < δ2 < δ1 < λ/2
one has an,δ2 ≤ an,δ1 and bn,δ2 ≥ bn,δ1 . Let Rn,δ := bn,δ − an,δ and note that the above
monotonicity yieldsRn,δ2 ≥ Rn,δ1 for 0 < δ2 < δ1 < λ/2. Lastly, for some fixed 0 < δ0 < λ/2
put

yn :=
bn,δ0 + an,δ0

2
∈ [an,δ0 , bn,δ0 ].

In particular, an,δ ≤ an,δ0 ≤ yn ≤ bn,δ0 ≤ bn,δ for all 0 < δ ≤ δ0. This implies bn,δ − yn ≤
bn,δ − an,δ = Rn,δ and yn − an,δ ≤ bn,δ − an,δ = Rn,δ, hence we are guaranteed that

[an,δ, bn,δ] ⊂ [yn −Rnδ, yn +Rn,δ]. (4.19)

Now assume that

Rδ := sup
n∈N

Rn,δ <∞ (4.20)

for 0 < δ ≤ δ0 and put Rδ := Rδ0 for δ0 < δ < λ/2. Then (4.19) yields
∫

|x−yn|>Rδ

|fn(x)|2 dx ≤
∫ an,δ

−∞
|fn(x)|2 dx+

∫ ∞

bn,δ

|fn(x)|2 dx = 2δ

for all 0 < δ ≤ δ0 but the same bound also holds when δ0 < δ < λ/2 since in this case
∫

|x−yn|>Rδ

|fn(x)|2 dx =

∫

|x−yn|>Rδ0

|fn(x)|2 dx ≤ 2δ0 < 2δ.

It remains to show (4.20): Recall that K := supn∈N ‖f ′n‖2 < ∞, set K̃ =
√
λ+K, and

note that the minimizing sequence fn obeys ‖fn‖H1 ≤ K̃ for all n ∈ N. Using b = bn,δ and
a = an,δ, rearranging (4.4) from Proposition 4.3 yields

Edavλ − (2
γ0
2 − 2)

(
δ

λ

) γ0
2

Edavλ −H(fn) ≤ CK̃2(1 + K̃8)G1 ((Rn,δ − 1)+) .
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Thus, since H(fn) → Edavλ < 0,

0 < −(2
γ0
2 − 2)

(
δ

λ

)γ0
2

Edavλ ≤ CK̃2(1 + K̃8) lim inf
n→∞

G1 ((Rn,δ − 1)+) .

Since G1 is monotone decreasing, we get

G1((lim sup
n→∞

Rn,δ − 1)+) = lim inf
n→∞

G1((Rn,δ − 1)+) > 0

and so

lim sup
n→∞

Rn,δ <∞.

Hence (4.20) holds.

Proof of Proposition 4.6. Using the fact that the function Gα is monotone decreasing, the
proof is virtually identical to the proof of the bound (4.16) of Proposition 4.5.

To prove Theorem 4.1, we need one more result for the continuity of the nonlinear
functional N(f).

Lemma 4.7. (i) If 2 ≤ γ1 ≤ γ2 ≤ 6 and ψ ∈ L
4

6−γ2 then the nonlinear nonlocal functional

N : L2(R) → R given by

L2(R) ∋ f 7→ N(f) =

∫∫

R2

V (|Trf |)dxψdr

is locally Lipshitz continuous on L2 in the sense that

|N(f1)−N(f2)| .
(
1 + ‖f1‖γ2−1 + ‖f2‖γ2−1

)
‖f1 − f2‖

where the implicit constant depends only on the L
4

6−γ2 norm of ψ.
(ii) If 2 ≤ γ1 ≤ γ2 <∞ and ψ ∈ L1, then the nonlinear nonlocal functional N : H1(R) → R

given by

H1(R) ∋ f 7→ N(f) =

∫∫

R2

V (|Trf |)dxψdr

is locally Lipschitz continuous in the sense that

|N(f1)−N(f2)| .
(
1 + ‖f1‖γ2−2

H1 + ‖f2‖γ2−2
H1

)
(‖f1‖+ ‖f2‖) ‖f1 − f2‖.

Remark 4.8. Note that the second part of Lemma 4.7 shows that the Lipschitz constant
of N on H1 depends on the H1 norm, however, if f1 and f2 are bounded in H1, then the
difference N(f1)−N(f2) is small whenever f1 is close to f2 in the much weaker L2 norm!

Proof. We always have

|N(f1)−N(f2)| ≤
∫∫

R2

|V (|Trf1|)− V (|Trf2|)| dxψdr

and from (2.17) we see that

|V (|Trf1|)− V (|Trf2|)| . |Tr(f1 − f2)|
(
(|Trf1|+ |Trf2|)γ1−1 + (|Trf1|+ |Trf2|)γ2−1

)

so

|N(f1)−N(f2)| . ‖Tr(f1 − f2)(|Trf1|+ |Trf2|)γ1−1‖L1(R2, dxψdr)

+ ‖Tr(f1 − f2)(|Trf1|+ |Trf2|)γ2−1‖L1(R2, dxψdr).
(4.21)
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If 2 ≤ γ ≤ 6 we can use Hölder’s inequality for 2 functions with exponents γ, and γ/(γ− 1)
to bound

‖Tr(f1 − f2)(|Trf1|+|Trf2|)γ−1‖L1(R2, dxψdr) ≤
‖Tr(f1 − f2)‖Lγ (R2,dxψdr)‖|Trf1|+ |Trf2|‖γ−1

Lγ (R2,dxψdr)
.

Applying the triangle inequality and Lemma 2.1 then yields

‖Tr(f1 − f2)(|Trf1|+ |Trf2|)γ−1‖L1(R2, dxψdr) . ‖f1 − f2‖
(
‖f1‖γ−1 + ‖f2‖γ−1

)

where the implicit constant depends only on the L
4

6−γ norm of ψ. Using these bounds in
(4.21) shows that

|N(f1)−N(f2)| .
(
‖f1‖γ1−1 + ‖f2‖γ1−1 + ‖f1‖γ2−1 + ‖f2‖γ2−1

)
‖f1 − f2‖

.
(
1 + ‖f1‖γ2−1 + ‖f2‖γ2−1

)
‖f1 − f2‖

where we also used that aγ1−1 + aγ2−1 . 1 + aγ2−1 for all a ≥ 0 when 2 ≤ γ1 ≤ γ2. This
proves the first part of Lemma 4.7 when 2 ≤ γ1 ≤ γ2 ≤ 6.

To prove the second part of the Lemma, we have to bound the terms in (4.21) slightly
differently. For γ ≥ 2 we use the Cauchy–Schwarz inequality to get

‖Tr(f1 − f2)(|Trf1|+|Trf2|)γ−1‖L1(R2, dxψdr)

≤ ‖Tr(f1 − f2)‖L2(R2, dxψdr)‖(|Trf1|+ |Trf2|)2(γ−1)‖1/2
L1(R2, dxψdr)

≤ ‖ψ‖L1‖f1 − f2‖‖(|Trf1|+ |Trf2|)2(γ−1)‖1/2
L1(R2, dxψdr)

using Lemma 2.1. Since γ ≥ 2, we can further split

‖(|Trf1|+ |Trf2|)2(γ−1)‖1/2
L1(R2, dxψdr)

≤ sup
r∈R

(‖Trf1‖L∞ + ‖Trf2‖L∞)γ−2 ‖|Trf1|+ |Trf2|‖L2(R2, dxψdr) .

Because of (2.10) the first factor is bounded by (‖f1‖H1 + ‖f2‖H1)γ−2 and using Lemma
2.1 and the triangle inequality, the second factor is bounded by ‖ψ‖L1(‖f1‖+ ‖f2‖). Using
this in (4.21) proves the second part of the lemma for 2 ≤ γ1 ≤ γ2 <∞.

Lemma 4.9. If 2 ≤ γ1 ≤ γ2 ≤ 6 and ψ ∈ L1 ∩ L
4

6−γ2 , respectively if 2 ≤ γ1 ≤ γ2 <∞ and

ψ ∈ L1, then for any f, h ∈ L2(R), respectively f, h ∈ H1(R), the functional N as above

has directional derivative given by

DhN(f) =

∫

R

Re
〈
Trh, V

′(|Trf |)sgn(Trf)
〉
ψdr.

Proof. Let f ∈ L2(R) and ǫ 6= 0. Fix any h ∈ L2(R) and the quotient of N is

N(f + ǫh)−N(f)

ǫ
=

1

ǫ

[∫∫

R2

V (|Tr(f + ǫh)|) − V (|Trf |)dxψdr
]

=
1

ǫ

∫∫

R2

∫ 1

0

d

ds
V (|Tr(f + sǫh)|)dsdxψdr. (4.22)

By straightforward calculations, we obtain

d

ds
V (|Tr(f + sǫh)|) = V ′(|Tr(f + sǫh)|)ǫ(TrfTrh+ TrhTrf + 2sǫ|Trh|2)

2|Tr(f + sǫh)|
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and thus

(4.22) =

∫∫

R2

∫ 1

0
V ′(|Tr(f + sǫh)|)TrfTrh+ TrhTrf + 2sǫ|Trh|2

2|Tr(f + sǫh)| dsdxψdr.

By Lebesgue’s dominated convergence theorem, letting ǫ→ 0, we get

DhN(f) =

∫∫

R2

∫ 1

0
V ′(|Trf |)

Re(TrfTrh)

|Trf |
dsdxψdr =

∫∫

R2

V ′(|Trf |)
Re(TrfTrh)

|Trf |
dxψdr

which completes the proof when 2 ≤ γ1 ≤ γ2 ≤ 6. The case 2 ≤ γ1 ≤ γ2 <∞ is similar.

Now we are ready to give the

Proof of Theorem 4.1: It is easy to see that if Edavλ = 0 for some λ > 0, then there are
minimizing sequences which are not precompact modulo translations. Indeed, assume that
Edavλ = 0 and let gn be the centered Gaussian from (B.11) with the choice σ0 = n ∈ N. This
gives a sequence of Gaussians which weakly converges to zero and no translates or boosts
of gn converges strongly and, as the proof of Lemma 3.1 shows, we have H(gn) → 0 = Edavλ
as n → ∞. By contrapositive, this is equivalent to that if every sequence is modulo
translations, respectively modulo translations and boosts, then necessarily Edavλ < 0.

For the converse, assume that Edavλ < 0 and assume further that dav > 0. Let (fn)n ⊂
H1(R) be a minimizing sequence of the variational problem (1.1). Since ‖fn‖2 = λ > 0 is
fixed we can use Lemma 3.1 to see that fn is bounded in the H1 norm,

K1 := sup
n∈N

‖fn‖H1 <∞.

In addition, applying Proposition 4.5, there exist shifts yn such that for the shifted
sequence hn, hn(x) := fn(x− yn) for x ∈ R, we have

lim
R→∞

sup
n∈N

∫

|x|>R
|hn(x)|2dx = 0. (4.23)

Clearly, by translation invariance of Lebesgue measure, we still have ‖hn‖2 = λ. On the
Fourier side, shifts correspond to modulations with eiynη, so for the shifted sequence hn
Proposition 4.5 also yields that there exists K2 <∞ such that for any L > 0

sup
n∈N

∫

|η|>L
|ĥn(η)|2 dη ≤ K2

L2
. (4.24)

Thus, by translation invariance of the minimization problem, the shifted sequence is a
minimizing sequence for Edavλ which is tight in the sense of Lemma A.1. The shifted sequence

hn is certainly also bounded in H1, hence also bounded in L2. By the weak sequential
compactness of bounded sets in L2 and H1, we can extract a subsequence, which by some
slight abuse of notation, we still denote by hn, which converges weakly both to some f

in L2 and some f̃ in H1. By uniqueness of weak limits, we must have f = f̃ and by the
characterization of strong convergence in L2 from Lemma A.1, we know that hn converges
even strongly in L2 to f . In particular,

‖f‖2 = lim
n→∞

‖hn‖2 = λ > 0

so f 6= 0. SinceH1 is a Hilbert space, we also have the weak sequential lower semi–continuity
of the H1 norm, that is,

‖f‖H1 ≤ lim inf
n→∞

‖hn‖H1 (4.25)
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Since ‖f‖2 = λ and ‖hn‖2 = λ this implies

‖f ′‖2 ≤ lim inf
n→∞

‖h′n‖2,

that is, the kinetic energy is lower semi–continuous.
Since hn is bounded in H1 and hn converges strongly to f in L2, Lemma 4.7 shows that

lim
n→∞

N(hn) = N(f).

Together with the lower semi–continuity of the kinetic energy this implies

Edavλ ≤ H(f) ≤ lim inf
n→∞

H(fn) = Edavλ

and since ‖f‖2 = λ, this shows that f is a minimizer for the variational problem (1.1).
It remains to show that the existence of a minimizer of (1.1) for dav = 0. Again, the

main task is to use translations and boosts to massage an arbitrary minimizing sequence
into one having a strongly convergent subsequence.

Let (fn)n ⊂ L2(R) be an arbitrary minimizing sequence of the variational problem (1.1)
with ‖fn‖2 = λ > 0. Proposition 4.6 guarantees the existence of shifts yn ∈ R and
boosts ξn ∈ R such that (4.17) and (4.18) hold. Define the shifted and boosted sequence
(hn)n = (fξn,yn,n)n by

hn(x) = fξn,yn,n(x) := eiξnxfn(x− yn) for x ∈ R.

Note that ‖hn‖2 = ‖fn‖2 = λ since shifts and boost are unitary operations on L2(R) and
N(fn) = N(hn), see Appendix B. Hence (hn)n is also a minimizing sequence. Certainly
|hn(x)| = |fn(x− yn)| for all n ∈ N. The Fourier transform of hn is given by

ĥn(η) =
1√
2π

∫
e−ixηeixξnfn(x− yn) dx = e−iynηf̂n(η − ξn). (4.26)

Thus also |ĥn(η)| = |f̂n(η− ξn)|. In particular, (4.17) and (4.18) show that the minimizing
sequence (hn)n is tight in the sense of Lemma A.1.

Since (hn)n is bounded in L2(R), the weak compactness of the unit ball, guarantees the
existence of a weakly converging subsequence of (hn)n, denoted again by (hn)n. Obviously,
this subsequence is also tight in the sense of Lemma A.1 and thus hence converges even
strongly in L2(R). We set

f = lim
n→∞

hn.

By strong convergence ‖f‖2 = limn→∞ ‖hn‖2 = λ. To conclude that f is the sought
after minimizer we note that by Lemma 4.7 the map f 7→ N(f) =

∫∫
R2 V (|Trf |)dxψdr is

continuous on L2(R). Hence

E0
λ ≤ H(f) = −N(f) = lim

n→∞
−N(hn) = E0

λ

where the last equality follows since (hn)n is a minimizing sequence for (1.1). Thus f is a
minimizer for the variational problem (1.1).

To prove that the above minimizer is a weak solution of the associated Euler-Lagrange
equation (1.12) is standard in the calculus of variations. One has to be a bit careful here,
since we only have the directional derivative of N and hence of the energy functional H at
our disposal. Let f be a minimizer of (1.1).

Recall H(f) = dav
2 ‖f ′‖2−N(f). By Lemma 4.9 the directional derivative of the functional

of H at f ∈ H1 in direction h ∈ H1 is given by

DhH(f) = davRe〈h′, f ′〉 −DhN(f).
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Similarly, one can check that the derivative of ϕ(f) := ‖f‖2 = 〈f, f〉 is given by Dhϕ(f) =
2Re〈h, f〉.

Now let f be any minimizer of the constraint variational problem (1.1) and h ∈ H1

arbitrary. Define, for any (s, t) ∈ R2,

F (s, t) := H(f + sf + th),

G(s, t) := ϕ(f + sf + th).

Note that

∇F (s, t) =
(
DfH(f + sf + th)
DhH(f + sf + th)

)

and

∇G(s, t) =
(
Dfϕ(f + sf + th)
Dhϕ(f + sf + th)

)
= 2

(
Re〈f, f + sf + th〉
Re〈h, f + sf + th〉

)
.

Since 〈f, f〉 = ‖f‖2 = λ 6= 0,

∇G(0, 0) = 2

(
〈f, f〉

Re〈h, f〉

)
= 2

(
λ

Re〈h, f〉

)

is not the zero vector in R2 and since ∇G(s, t) depends multi-linearly, in particular contin-
uously, on (s, t), the implicit function theorem [24] shows that there exists an open interval
I ⊂ R containing 0 and a differentiable function φ on I with φ(0) = 0 such that

λ = ‖f‖2 = G(0, 0) = G(φ(t), t)

for all t ∈ I. Consider the function I ∋ t 7→ F (φ(t), t). Since f is a minimizer for the
constraint variational problem (1.1), F (φ(t), t) has a local minimum at t = 0. Hence, using
the chain rule,

0 =
dF (φ(t), t)

dt

∣∣∣
t=0

= ∇F (0, 0) ·
(
φ′(0)
1

)
= DfH(f)φ′(0) +DhH(f).

Since λ = G(φ(t), t), the chain rule also yields

0 =
dG(φ(t), t)

dt

∣∣∣
t=0

= ∇G(0, 0) ·
(
φ′(0)
1

)
= 2〈f, f〉φ′(0) + 2Re〈h, f〉.

Solving this for φ′(0) and plugging it back into the expression for the derivative of F , we
see that

DfH(f)

〈f, f〉 Re〈h, f〉 = DhH(f).

In other words, with

ω :=
DfH(f)

λ
(4.27)

and f any minimizer of (1.1) we have

Re(ω〈h, f〉) = DhH(f) = Re

(
dav〈h′, f ′〉 −

∫

R

〈
Trh, V

′(|Trf |)sgn(Trf)
〉
ψdr

)
(4.28)

for any h ∈ H1, using the formula for DhN(f) from Lemma 4.9. Replacing h by ih in
(4.28), one gets

Im(ω〈h, f〉) = Im

(
dav〈h′, f ′〉 −

∫

R

〈
Trh, V

′(|Trf |)sgn(Trf)
〉
ψdr

)
(4.29)
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for all h ∈ H1. (4.28) and (4.29) together show

ω〈h, f〉 = dav〈h′, f ′〉 −
∫

R

〈
Trh, V

′(|Trf |)sgn(Trf)
〉
ψdr

for any h ∈ L2(R), that is, f is a weak solution of the dispersion management equation
(1.12).

It remains to prove ω < 2Edavλ /λ. For this, recall that assumption A2 states that

V ′(a)a ≥ γ0V (a) for all a > 0.

Thus

DfN(f) =

∫∫

R2

V ′(|Trf |)|Trf | dxψdr ≥ γ0

∫∫

R2

V (|Trf |) dxψdr = γ0N(f)

and since Edavλ < 0, we must have N(f) > 0 for any minimizer f , so (4.27) gives

ω(f)λ = DfH(f) = dav〈f ′, f ′〉 −DfN(f) ≤ dav〈f ′, f ′〉 − γ0N(f)

= 2H(f)− (γ0 − 2)N(f) < 2H(f) = 2Edavλ < 0

for every minimizers.

5. Threshold phenomena

As we showed in the previous section, assumptions A1 and A2 guarantee the existence
of minimizers for arbitrary λ > 0 and dav ≥ 0 as soon as the ground state energy Edavλ is

strictly negative. In this section we will prove there exists a threshold 0 ≤ λdavcr ≤ ∞ such
that solutions exist if the power λ = ‖f‖2 > λdavcr . Furthermore λdavcr <∞ if assumption A3

holds.
For pure power law nonlinearities and the model case d0 = 1[0,1)−1[1,2] for the diffraction

profile, this had been partly investigated earlier in [18] for the diffraction management
equation and for pure power nonlinearities in [28] for the discrete nonlinear Schrödinger
equation. We are not aware of any work which investigates threshold phenomena for general
nonlinearities for dispersion management solitons in the continuum.

In the following we will always assume, without explicitly mentioning it every time, that
ψ is a probability density on R with compact support, that is, there exists 0 < R < ∞
such that supp (ψ) ⊂ [−R,R] together with further Lp properties, depending on the range
of γ1 ≤ γ2. Our main result in this section is

Theorem 5.1 (Threshold phenomenon). Assume that V obeys A1 for some 2 < γ1 ≤ γ2 <
10 if dav > 0 and some 2 < γ1 ≤ γ2 < 6 if dav = 0 and also A2. Then

(i) The map λ 7→ Edavλ is decreasing on (0,∞), strictly decreasing where Edavλ < 0, and

there exists a critical threshold 0 ≤ λdavcr ≤ ∞ such that for 0 < λ < λdavcr we have

Edavλ = 0 and for λ > λdavcr we have −∞ < Edavλ < 0.

(ii) If λ > λdavcr , then minimizers of (1.1) exist and any minimizing sequence is, up to

translations, precompact in L2(R) if dav > 0, respectively, precompact up to translations

and boosts in L2 if dav = 0. In both cases the suitably translated, respectively translated

and boosted, minimizing sequence has a subsequence which converges to a minimizer.

(iii) If 0 < λ < λdavcr and dav > 0, no minimizers of the variational problem (1.1) exist.
(iv) If 6 ≤ γ1 ≤ γ2 < 10, then λdavcr > 0 for all dav > 0.
(v) If there exists f ∈ H1(R) such that N(f) > 0, then one has λdavcr <∞ for all dav ≥ 0.
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Remarks 5.2. The precise definition of λdavcr is given below in Definition 5.4. When λ > λdavcr

we have Edavλ < 0 and Theorem 4.1 shows that every minimizing sequence is precompact
modulo translations if dav > 0, respectively, precompact modulo translations and boosts if
dav = 0, and thus minimizers exist yielding solutions of (1.12) for some Lagrange multiplier

ω < 2Edavλ /λ < 0.

Since Edavλ = 0 when 0 < λ < λdavcr , Theorem 4.1 also shows that there are minimizing
sequences which are not precompact modulo translations and boosts in this case. Never-
theless, it could be that minimizers still exist. At least when dav > 0, Theorem 5.1 shows
that this cannot be the case. At the moment, we need dav > 0 to conclude nonexistence of
minimizers when 0 < λ < λcr.

We give the proof of Theorem 5.1 at the end of this section after some preparations.
Recall the definition of the energy functional

H(f) =
dav
2

‖f ′‖2 −N(f)

and

Edavλ = inf{H(f) : f ∈ H1(R), ‖f‖2 = λ}.

For strictly positive average dispersion, we write f ∈ H1(R) with λ = ‖f‖2 > 0 as f =
√
λh.

Then h ∈ H1(R) with ‖h‖ = 1 and

H(f) =
dav
2

‖f ′‖2 −N(f) = ‖f ′‖2
(
dav
2

− N(
√
λh)

λ‖h′‖2

)
. (5.1)

In the case of vanishing average dispersion, we simply write, again for f ∈ H1,

H(f) = −N(f) = −‖f ′‖2
(
N(

√
λh)

λ‖h′‖2

)
,

so defining3 for dav ≥ 0

R(λ, h) :=
N(

√
λh)

λ‖h′‖2 and R(λ) := sup
{
R(λ, h) : h ∈ H1, ‖h‖ = 1

}

we see that the following holds4

Lemma 5.3. For any dav ≥ 0 and λ > 0 one has Edavλ < 0 if and only if R(λ, h) > dav
2 for

some h ∈ H1(R) with ‖h‖ = 1 and this is the case if and only if R(λ) > dav
2 .

Proof. If dav > 0 the claims are certainly true by the discussion above, which motivated
the very definition of R(λ). Now let dav = 0. We note that E0

λ < 0 if and only if there
exists f ∈ L2 with ‖f‖2 = λ and N(f) > 0. For dav = 0, we consider only the range
2 < γ1 ≤ γ2 ≤ 6 together with suitable further Lp properties of ψ which guarantee that

L2 ∋ f 7→ N(f) is continuous, see Lemma 4.7. Since H1 is dense in L2, we can find f̃ ∈ H1

with ‖f̃‖ = ‖f‖ such that N(f̃) > 0 if N(f) > 0. Thus we also have E0
λ < 0 if and only if

R(λ) > 0.

This simple observation motivates our definition of the threshold:

3Note that the null space of ∂x on H1(R) is trivial, so R(λ, h) is well defined for any h ∈ H1 \ {0}.
4We combine the cases dav > 0 and dav = 0 only so that we do not have to distinguish the two cases in

Lemma 5.6 and Corollary 5.7.
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Definition 5.4 (Threshold). For dav ≥ 0 we let

λdavcr := inf{λ > 0 : R(λ) >
dav
2

}.

Remark 5.5. It is clear from Lemma 5.3 that Edavλ < 0 for arbitrary λ > 0 and all dav ≥ 0

if and only if R(λ) = ∞, in which case λdavcr = 0 for all dav ≥ 0. Thus it is important to
know when R is finite. Using the bound from Proposition 2.15 with κ1 = κ2 = 4, which is
allowed if 6 ≤ γ1 ≤ γ2 < 10, one sees that

R(λ) . λ
γ1−2

2 + λ
γ2−2

2 <∞ .

Thus R(λ) < dav
2 for small enough λ > 0, hence λdavcr > 0 for all dav > 0 in this case. This

gives an easy proof of Theorem 5.1.5.1.iv, which shows the naturalness of R in the study of
threshold phenomena.

For a pure power law nonlinearity, given by V (a) = aγ for some γ > 2, one can explicitly
calculate

R(λ) = sup
‖h‖=1

N(
√
λh)

λ‖h′‖2 = λ
γ−2
2 R0 with R0 = sup

‖h‖=1

∫
R
‖Trh‖γLγ ψdr

‖h′‖2 ∈ (0,∞]

and Remark 5.5 shows that R0 < ∞ if γ ≥ 6. This scaling property for R for pure power
nonlinearities shows that R(λ) > dav

2 for all λ > λdavcr and R(λ) < dav
2 for all 0 < λ < λdavcr .

Thus for pure power nonlinearities one immediately sees that the first claim of Theorem
1.2 and 1.4 holds and λdavcr > 0 if γ ≥ 6. For the general class of nonlinearities one cannot
expect a simple scaling property of R to hold. However, condition A2 ensures a lower
bound of the same type which is enough to conlcude all necessary properties of R and the
threshold λdavcr . This is made precise in the following

Lemma 5.6. Assume that V obeys assumption A2. Then

R(λ2) ≥
(
λ2
λ1

) γ0−2
2

R(λ1) (5.2)

for all 0 < λ1 ≤ λ2.

Before we give the proof we state and prove an important consequence.

Corollary 5.7. Assume that V obeys assumption A2. Then

(i) If λdavcr <∞, then R(λ) > dav
2 for all λ > λdavcr .

(ii) If λdavcr > 0, then R(λ) < dav
2 for all 0 < λ < λdavcr .

(iii) R(λ0) <∞ for some λ0 > 0 if and only if lim supλ→0R(λ) ≤ 0.
(iv) R(λ0) > 0 for some λ0 > 0 if and only if lim infλ→∞R(λ) = ∞.

Proof. Take any λ > λdavcr . The definition of λdavcr shows that there exists λ1 with λ > λ1 >
λdavcr and R(λ1) >

dav
2 . Then Lemma 5.6 shows

R(λ) ≥
(
λ

λ1

) γ0−2
2

R(λ1) ≥ R(λ1) >
dav
2
,

which proves the first claim.
For the second claim, assume that R(λ1) ≥ dav

2 for some 0 < λ1 < λdavcr . Then the bound

from Lemma 5.6 shows that for every λ2 with λ1 < λ2 < λdavcr we have

R(λ2) ≥
(
λ2
λ1

) γ0−2
2

R(λ1) > R(λ1) ≥
dav
2
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which is in conflict with the definition of λdavcr .
For the third claim assume that R(λ0) <∞. Setting λ2 = λ0 and λ1 = λ in Lemma 5.6,

we get

lim sup
λ→0

R(λ) ≤ lim sup
λ→0

(
λ

λ0

) γ0−2
2

R(λ0) ≤ 0.

The converse is easy.
For the last claim assume that R(λ0) > 0 for some λ0 > 0. Arguing similarly as above

we see that Lemma 5.6 implies

lim inf
λ→∞

R(λ) ≥ lim inf
λ→∞

(
λ

λ0

) γ0−2

2

R(λ0) = ∞.

Again, the converse is easy.

It remains to give the

Proof of Lemma 5.6. Fix h ∈ H1(R) \ {0} and define

A(s) := s−2N(sh)

for s > 0. Because of Lemma 4.9 , A is differentiable with derivative

A′(s) = s−3
(
sDhN(sh)− 2N(sh)

)

where

sDhN(sh)− 2N(sh) =

∫∫

R2

[
V ′(|Tr(sh)(x)|)|Tr(sh)(x)| − 2V (|Tr(sh)(x)|)

]
dxψdr

≥ (γ0 − 2)N(sh)

and the lower bound follows from assumption A2. Thus we arrive at the first order differ-
ential inequality

A′(s) ≥ γ0 − 2

s
A(s) (5.3)

for all s > 0. Using the integrating factor s2−γ0 , one sees that this implies d
ds(s

2−γ0A(s)) ≥ 0
and thus

s2−γ0A(s) ≥ s2−γ00 A(s0)

for all 0 < s0 ≤ s. Since R(λ, h) = A(
√
λ)/‖h′‖2, this proves

R(λ2, h) ≥
(
λ2
λ1

) γ0−2
2

R(λ1, h)

for all 0 < λ1 ≤ λ2 and taking the supremum over all h ∈ H1(R) with ‖h‖ = 1 gives
(5.2).

Now we can give the proof of

Proof of Theorem 5.1: By Lemma 3.1 we know that Edavλ ≤ 0 for all λ > 0 and dav ≥ 0 and
Proposition 3.3 shows

Edavλ1
≥ Edavλ1

+ Edavλ2
≥ Edavλ1+λ2

where the last inequality is strict, when Edavλ1+λ2
< 0. Thus 0 < λ 7→ Edavλ is decreasing and

strictly decreasing where Edavλ < 0. Corollary 5.7 and Lemma 5.3 show that Edavλ < 0 if
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λ > λdavcr and if 0 < λ < λdavcr , Corollary 5.7 and Lemma 5.3 yields Edavλ ≥ 0, which together

with Lemma 3.1 shows Edavλ = 0 in this case. This proves the first claim.

If λ > λdavcr , we know by the first part that Edavλ < 0. So Theorem 4.1 applies. This
proves the second part.

To prove the third claim, assume that dav > 0, 0 < λ < λdavcr , and f ∈ H1 with

‖f‖2 = λ > 0 is a minimizer for Edavλ . Using (5.1) we must have

0 = Edavλ = H(f) ≥ ‖f ′‖2
(
dav
2

−R(λ)

)
.

From Corollary 5.7.ii we know that R(λ) < dav
2 . So the above inequality implies ‖f ′‖2 = 0.

On H1 the null–space of ∂x on H1 is trivial, hence f = 0, which is a contradiction to
‖f‖ > 0.

Assume that dav > 0. Since the proof of the fourth claim was already given in Remark
5.5, we finish with the proof of the last claim.

Assume that there exists f ∈ H1 with N(f) > 0. Then R(λ0) > 0 where λ0 = ‖f‖2.
Corollary 5.7.iv then shows that lim infλ→∞R(λ) = ∞, which implies that for every dav ≥ 0

there exists λ > 0 with R(λ) > dav
2 . By the definition of the threshold, this shows λdavcr <∞

for all dav ≥ 0.

We can finally give the

Proof of Theorems 1.2 and 1.4: The first three claims of Theorem 1.2, respectively the
first two claims of Theorem 1.4, follow from Theorem 4.1 in tandem with Theorem 5.1.

It remains to prove that assumption A3 guarantees that λdavcr < ∞ and λdavcr = 0, if,
additionally, A4 holds.

Under assumption A4 Lemma 3.1 shows that Edavλ < 0 for all dav ≥ 0 and the definition

of λdavcr then yields R(λ) = ∞ for λ > 0, so λdavcr = 0.
Now assume that A1, A2, and A3 hold. First, note that assumptions A2 and A3,

together with Lemma 3.2 show that there exists a0 > 0 such that V (a) & aγ0 for all
a ≥ a0 and using assumption A1, we have V (a) & −aγ1 for 0 ≤ a < a0. Thus, with
γ := min(γ0, γ1), we see that the lower bound

V (a) & −aγ1[0,a0)(a) + aγ1[a0,∞)(a) (5.4)

holds. In particular, V is bounded from below.
Let σ0 > 0 and use the Gaussian gσ0 from (B.11). Clearly gσ0 ∈ H1 for all σ0 > 0. Then

|Trgσ0(x)| = A0

(
σ0

|σ(r)|

)1/2

e
− σ0x

2

|σ(r)|2

with A0 = ( 2λ
2

πσ0
)1/4. Then ‖gσ0‖2 = λ and, moreover, since |σ(r)|2 = σ20 + (4r)2, we have,

for any |x| ≤ √
σ0,

|Trgσ0(x)| ≥ A0

(
σ20

σ20 + (4r)2

)1/4

e
− σ2

0
σ2
0
+(4r)2 ≥ A0

3
(5.5)

for any large enough σ0 and all |r| ≤ R, where R > 0 is chose such that supp (ψ) ⊂ [−R,R].
On the other hand, for a large enough σ0 and any |x| ≥ σ0 we also have

|Trgσ0(x)| ≤ A0 e
− |x|

2 . (5.6)
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By (5.5), we can choose σ0 and A0 large enough such that |Trgσ0(x)| ≥ A0
3 ≥ a0 for all

|x| ≤ √
σ0 and |r| ≤ R. Then (5.4) yields

I :=

∫

|x|≤√
σ0

V (|Trgσ0(x)|) dx &
√
σ0A

γ
0 .

Since V is bounded from below, we also have

II :=

∫
√
σ0≤|x|≤σ0

V (|Trgσ0(x)|) dx & −σ0,

and (5.4) together with (5.6) gives

III :=

∫

|x|≥σ0
V (|Trgσ0(x)|) dx & −Aγ0

∫

|x|≥σ0
e−γ|x|/2 dx & −A

γ
0

γ
e−γσ0/2

for all |r| ≤ R. Thus, since ψ is integrable, this gives the lower bound

N(gσ0) =

∫

R

(I + II + III)ψ dr &
√
σ0A

γ
0 − σ0 −

Aγ0
γ
e−γσ0/2

for all large enough A0 and σ0. Setting λ = σ0, that is, A0 = (2σ0/π)
1/4 shows N(gσ0) > 0

for large enough σ0 > 0.

6. Nonexistence

In this section, we will make the standing assumption that V is a power–law nonlinearity
given by

V (a) = caγ for a ≥ 0 (6.1)

and some c > 0, γ ≥ 6.

Proof of Theorem 1.6: For the proof of the first part of Theorem 1.6 assume first that
γ > 10, c > 0, and fix λ > 0. Let gσ0 be the Gaussian from (B.11) with σ0 > 0. Since V is
a power–law, Lemma B.3 shows that the nonlinearity N(gσ0) is given by

N(gσ0) = c

(
π

γ

)1/2(2λ2

π

)γ/4
σ

2−γ
4

0

∫

R

(
σ0

|σ(r)|

) γ−2
2

ψ(r)dr

= c

(
π

γ

)1/2(2λ2

π

)γ/4
σ

2−γ
4

0

∫

R

(
1

1 + (4r/σ0)2

) γ−2
4

ψ(r)dr

= c

(
π

γ

)1/2(2λ2

π

)γ/4
σ

6−γ
4

0

∫

R

(
1

1 + (4s)2

) γ−2
4

ψ(σ0s)ds

(6.2)

where we also did a change of variables r = σ0s. Since ψ is bounded below by m, say, in a
possibly one-sided neighborhood of zero and ψ has compact support, we have

lim inf
σ0→0

∫

R

(
1

1 + (4s)2

) γ−2
4

ψ(σ0s)ds ≥ m

∫ ∞

0

(
1

1 + (4s)2

) γ−2
4

ds > 0

so with Cγ,λ = 1
2c
(
π
γ

)1/2 (
2λ2

π

)γ/4
m
∫∞
0

(
1

1+(4s)2

)γ−2
4
ds > 0 we get from (6.2) the lower

bound

N(gσ0) ≥ Cγ,λ σ
6−γ
4

0 (6.3)
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for all small enough σ0 > 0. Lemma B.3 also yields ‖gσ0‖2 = λ and ‖g′σ0‖2 = λ/σ0, so

H(gσ0) =
dav
2

‖g′σ0‖
2 −N(gσ0) ≤

1

σ0

(
davλ

2
− Cγ,λ σ

10−γ
4

0

)
→ −∞ as σ0 ↓ 0

since γ > 10. If γ = 10, we can still conclude that H(gσ0) → −∞ as σ0 ↓ 0, as long as

Cγ,λ >
davλ
2 , which is the case if c > 0 is large enough. This proves that f 7→ H(f) is

unbounded from below on H1 even for fixed L2 norm of f .

If dav = 0 and γ > 6, then (6.3) shows

H(gσ0) = −N(gσ0) ≤ −Cγ,λ σ
6−γ
4

0 → −∞ as σ0 ↓ 0,

so in this case the energy functional f 7→ H(f) is again unbounded from below on L2 even
for fixed L2 norm of f .

If γ = 6 and ψ = 1[0,1], we modify an argument of [22]. Set

Cs(λ) := sup

{∫ s

0

∫

R

|Trf(x)|6 dxdr : ‖f‖2 = λ

}
(6.4)

and note that E0
λ has a minimizer for ψ = 1[0,1] if there is a maximizer for C1(λ). The

main point for the argument is that Cs(λ) is independent of s > 0: To see this, note that
if u : R2 → C solves the free Schrödinger equation, i∂ru = −∂2xu, u(0, ·) = f ∈ L2, then uδ
defined by uδ(r, x) := δ1/2u(δ2r, δx) solves again the free Schrödinger equation with initial

condition uδ(0, x) = fδ(x) := δ1/2f(δx), x ∈ R. Then
∫ s

0

∫

R

|Trfδ(x)|6 dxdr =
∫ s

0

∫

R

|uδ(r, x)|6 dxdr =
∫ s

0

∫

R

δ3|u(δ2r, δx)|6 dxdr

=

∫ δ2s

0

∫

R

|u(r, x)|6 dxdr =
∫ δ2s

0

∫

R

|Trf(x))|6 dxdr

and noting ‖fδ‖2 = ‖f‖2 = λ we get

Cs(λ) = Cδ2s(λ)

for all s, δ, λ > 0, in particular, Cs(λ) = C1(λ) for all s > 0 and λ > 0. Assume that f is a
minimizer for E0

λ for ψ = 1[0,1], that is, f is a maximizer for C1(λ):

‖f‖2 = λ > 0 and C1(λ) =

∫ 1

0

∫

R

|Trf(x)|6 dxdr.

Then

0 = C2(λ)− C1(λ) ≥
∫ 2

0

∫

R

|Trf(x)|6 dxdr −
∫ 1

0

∫

R

|Trf(x)|6 dxdr

=

∫ 2

1

∫

R

|Trf(x)|6 dxdr ≥ 0 .

So |Trf(x)| = 0 for Lebesque almost all pairs 1 ≤ r ≤ 2 and x ∈ R and hence, since Tr is
unitary on L2,

0 =

∫ 2

1

∫

R

|Trf(x)|2 dxdr = ‖f‖2,

which contradicts ‖f‖2 = λ > 0. So no minimizer of (1.1) exists if γ = 6 in the model case
where ψ = 1[0,1].
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Appendix A. Tightness and strong convergence in L2

A key step in our existence proof of minimizers of the variational problems (1.1) is the
following characterization of strong convergence in L2(R) which is given in [12].

Lemma A.1. A sequence (fn)n ⊂ L2(R) is strongly converging to f in L2(R) if and only

if it is weakly convergent to f and

lim
L→∞

lim sup
n→∞

∫

|η|>L
|f̂n(η)|2 dη = 0, (A.1)

lim
R→∞

lim sup
n→∞

∫

|x|>R
|fn(x)|2 dx = 0, (A.2)

where f̂ is the Fourier transform of f .

Appendix B. Galilei transformations and space-time localization properties

of Gaussian coherent states

We will only discuss the one-dimensional case which is somewhat easier since we do not
have to deal with rotations in one dimension. The unitary operator implementing the shift
Sy : L

2(R) → L2(R), (Syf)(x) = f(x− y) is given by

Sy = e−iyP (B.1)

where P = −i∂x is the momentum operator. Indeed, since e−iyP corresponds to multipli-
cation by e−iyk in Fourier space, we have

(e−iyP f)(x) =
1√
2π

∫

R

ei(x−y)kf̂(k) dk = f(x− y).

Boosts, i.e., shifts in momentum space are given by eiv· : L2(R) → L2(R), i.e., multiplication
by eivx, since

êiv·f(k) =
1√
2π

∫

R

e−ix(k−v)f(x) dx = f̂(k − v). (B.2)

Finally, if G is a bounded (measurable) function then G(P ) is defined by

Ĝ(P )f(k) = G(k)f̂ (k).

Of course, for any y ∈ R, the operators G(P ) and e−iyP commute, G(P )e−iyP =
e−iyPG(P ). Moreover, for any v ∈ R the commutation relation

G(P )eiv· = eiv·G(P + v) (B.3)

holds. Indeed, Computing the Fourier transform F yields

F
(
G(P )eiv·f

)
(k) = G(k)êiv·f(k) = G(k)f̂(k − v)

= (G(· + v)f̂)(k − v) = F
(
G(P + v)f

)
(k − v)

= F
(
eiv·G(P + v)f

)
(k).

In particular, choosing G(P ) = e−irP
2
, we arrive at the commutation relation

e−irP
2
eiv·e−iyP = eiv·e−iyP e−ir(P+v)2 = eiv·e−iyP e−ir(P

2+2vP+v2)

= e−irv
2
eiv·e−i(y+2rv)P e−irP

2
.

(B.4)

Now let f ∈ L2(R). Then u(r) = Trf = e−irP
2
f is the solution of the (one-dimensional)

Schrödinger equation −i∂ru = P 2u = −∂2xu with initial condition u(0) = f . Using (B.4),
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the solution of the free Schrödinger equation for the translated and boosted initial condition
fy,v = eiv·e−iyP f is given by

uy,v(r, x) := Trfy,v(x) =
(
e−irP

2
eiv·e−iyP f

)
(x)

=
(
e−irv

2
eiv·e−i(y+2rv)P e−irP

2
f
)
(x)

= e−irv
2
eivx

(
e−i(y+2rv)P e−irP

2
f
)
(x)

= e−irv
2
eivx

(
e−irP

2
f
)
(x− y − 2rv)

= e−irv
2
eivx(Trf)(x− y − 2rv),

(B.5)

that is, on the level of the solutions of the free time-dependent Schrödinger equation, trans-
lations and boosts of the initial condition are implemented by the Galilei transformations

Gy,v given by (Gy,vu)(r, x) := uy,v(r, x) = e−irv
2
eivxu(r, x − y − 2rv). Except for the time-

dependent phase factor e−irv
2
, formula (B.5) is exactly what one would have guessed from

classical mechanics
A simple calculation now shows that any functional of the form

f 7→ N(f) =

∫∫

R2

V (|Trf(x)|) dxψdr

is invariant under translations and boosts of f in L2(R).
Now, we come to one of the major tools for our analysis, the so-called coherent states.

Definition B.1 (Coherent states). Let h ∈ L2, ‖h‖ = 1, y, v ∈ R and hy,v := eiv·e−iyPh,
i.e.,

hy,v(x) = eivxh(x− y) (B.6)

for x ∈ R and define the coherent rank-one projection Py,v := |hy,v〉〈hy,v | in Dirac’s notation,
i.e., given by

f 7→ Py,vf := hy,v〈hy,v, f〉. (B.7)

A well-known property of coherent states is their completeness expressed in

Lemma B.2 (Completeness of coherent states). Let h ∈ L2(R) with ‖h‖ = 1 and hy,v the

shifted and boosted h as above. Then, in a weak sense,

1

2π

∫∫

R2

dydvPy,v =
1

2π

∫∫

R2

dydv|hy,v〉〈hy,v | = 1 (B.8)

on L2. Moreover,

1

2π

∫

R

dv 〈f, Py,vf〉 =
∫

|h(x− y)|2|f(x)|2 dx (B.9)

and

1

2π

∫

R

dy 〈f, Py,vf〉 =
∫

|ĥ(η − v)|2|f̂(η)|2 dη. (B.10)

Proof. The completeness expressed in (B.8) is well-known, see [19, 21], the other two are
less known. We give a short proof for the convenience of the reader: In order to see that
the operator A given by its matrix elements

〈f1, Af2〉 :=
1

2π

∫

R

∫

R

dydv〈f1, hy,v〉〈hy,v , f2〉
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is the identity on L2 it is enough, by polarization, to take f1 = f2 = f and to check
〈f,Af〉 = 〈f, f〉 for all f ∈ L2. Note

〈hy,v , f〉 =
∫

R

e−ivxh(x− y)f(x) dx = (2π)1/2 ̂(hy,0f)(v).

and thus by Plancherel,

1

2π

∫

R

dv 〈f, Py,vf〉 =
1

2π

∫

R

dv|〈hy,v , f〉|2 =
∫

R

dx |hy,0(x)f(x)|2 =
∫

R

dx|h(x− y)f(x)|2,

so (B.9) follows and we also see

〈f,Af〉 = 1

2π

∫

R

dy

∫

R

dv|〈hy,v , f〉|2 =
∫

R

dy

∫

R

dx|h(x − y)f(x)|2 =

∫

R

|f(x)|2 dx

thus, in addition, (B.8) follows. For (B.10) we note that a short calculation reveals

ĥy,v(η) = e−iy(η−v)ĥ(η − v) = eiyvĥv,−y(η).

By Plancherel

〈hy,v , f〉 = 〈ĥy,v , f̂〉 =
∫

R

eiy(η−v)ĥ(η − v)f̂(η) dη = (2π)1/2e−iyvF−1
[
ĥv,0f̂

]
(y)

where F−1 denotes the inverse Fourier transform. Again by Plancherel, we thus have

1

2π

∫

R

dy 〈f, Py,vf〉 =
1

2π

∫

R

dy |〈ĥy,v , f̂〉|2 =

∫

R

dη
∣∣∣ĥv,0(η)f̂(η)

∣∣∣
2
=

∫

R

dη
∣∣∣ĥ(η − v)f̂(η)

∣∣∣
2

and (B.10) follows.

We use coherent states in order to localize a wave function simultaneously in real and
Fourier spaces and since Gaussians have nice localization properties simultaneously in real
and Fourier spaces, it is natural to use Gaussian coherent states for this.

First we note some important properties of Gaussians, which are needed in several places
of this work.

Lemma B.3 (Properties of Gaussians). Let λ > 0, σ0 ∈ C with Re(σ0) > 0, and

gσ0(x) =

(
2Re(σ0)λ

2

π|σ0|2
)1/4

e
−x2

σ0 . (B.11)

Then ‖gσ0‖2 = λ, ‖g′σ0‖2 = λ
Reσ0

, and its time evolution is given by

Trgσ0(x) =

(
2Re(σ0)λ

2

π|σ0|2
)1/4 (

σ0
σ(r)

)1/2

e
− x2

σ(r) (B.12)

with σ(r) = σ0 + 4ir. In particular, for all γ ≥ 1,

‖Trgσ0‖γLγ(R,dx) =

(
π

γ

)1/2(2λ2

π

)γ/4(
Re(σ0)

|σ0|2
) γ−2

4
( |σ0|
|σ(r)|

) γ−2
2

(B.13)

Proof. Write gσ0 as g(x) = A0e
−x2/σ0 with A0, σ0 ∈ C with Re(σ0) > 0. Then

|g(x)| = |A0|e
−Re(σ0)x

2

|σ0|
2

and thus

‖g‖2 = |A0|2
∫

R

e
− 2Re(σ0)x

2

|σ0|
2 dx = |A0|2

(
π|σ0|2
2Re(σ0)

)1/2
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using the Gaussian integral
∫
R
e−βx

2
dx = (πβ )

1/2. Thus with the choice

A0 = (2Re(σ0) λ2

π|σ0|2 )1/4 (B.14)

we have ‖g‖2 = λ. In addition,

‖g′‖2 = |A0|24|σ0|−2

∫

R

x2e
− 2Re(σ0)x

2

|σ0|
2 dx = |A0|24|σ0|−2

(
− ∂

∂β

∫

R

e−βx
2
dx

)∣∣∣∣
β=

2Re(σ0)

|σ0|
2

= 2|A0|2|σ0|−2π1/2
( |σ0|2
2Re(σ0)

)3/2

=
λ

Re(σ0)
.

To prove formula (B.12) note that for a centered Gaussian the time evolution Trg can
be found by making the ansatz

(Trg)(x) = A(r)e−x
2/σ(r) =: u(r, x). (B.15)

A short calculation, using that u(r, x) solves i∂ru = −∂2xu, reveals that A and σ solve

iA′ =
2A

σ
and σ′ = 4i,

thus A(r) and σ(r) are given by

A(r) = A0

(
σ0
σ(r)

)1/2

and σ(r) = σ0 + 4ir (B.16)

which proves (B.12).
Using (B.15), (B.16), and Re(σ(r)) = Re(σ0) we get

‖Trgσ0‖γLγ(R,dx) = |A0|γ
∣∣∣∣
σ0
σ(r)

∣∣∣∣
γ/2 ∫

R

e
− γRe(σ0)x

2

|σ(r)|2 dx = |A0|γ
∣∣∣∣
σ0
σ(r)

∣∣∣∣
γ/2(π|σ(r)|2

γRe(σ0)

)1/2

and with the choice (B.14) for A0 and rearranging the terms this shows (B.13).

The localization properties of Gaussian coherent states are the content of

Lemma B.4 (Space-time localization properties of Gaussian coherent states). Let g(x) =

π−1/4e−x
2/2 be the standard L2 normalized Gaussian and

gy,v(x) := eivxg(x − y) (B.17)

its shifted and boosted version. Let

P≤

L :=
1

2π

∫

R

dy

∫

|v|≤L
dv|gy,v〉〈gy,v | (B.18)

and

P>

L :=
1

2π

∫

R

dy

∫

|v|>L
dv|gy,v〉〈gy,v |. (B.19)

Then P≤

L + P>

L = 1, 0 ≤ P≤

L ≤ 1, and 0 ≤ P>

L ≤ 1 as operators. Moreover P>

L localizes a

wave function in the region of large frequencies |η| & L in the sense that for any f ∈ Hα

we have

‖P>

L f‖ . L−α‖f‖Hα (B.20)

where the implicit constant does not depend on f nor L.
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Moreover, the time-evolution of the shifted and boosted Gaussian gy,v is given by

(Trgy,v)(x) =
1

π1/4
√
1 + 2ir

e−irv
2
eivxe

− (x−y−2rv)2

2(1+2ir) (B.21)

and for any f1, f2 ∈ L2 which have separated supports we have the bilinear estimate

sup
|r|≤R

‖TrP≤

L f1TrP
≤

L f2‖Lp
x
. ARL

2eL
2/p−Bp,Rs

2‖f1‖‖f2‖, 1 ≤ p <∞, (B.22)

where AR :=
√
1 + 4R2, Bp,R := 2−4(

√
p(1 + 4R2) + 1)−2, and s := dist(supp f1, supp f2).

Proof. The first assertions are clear, since by Lemma B.2 we have P≤

L+P
>

L = 1 and certainly
P≤

L and P>

L ≥ 0 in the sense of operators. So also P≤

L = 1− P>

L ≤ 1 and similarly P>

L ≤ 1.
To prove (B.20), we first note that because of 0 ≤ P>

L ≤ 1, one has

‖P>

L f‖2 = 〈P>

L
1/2f, P>

LP
>

L
1/2f〉 ≤ 〈f, P>

L f〉.
Let Py,v := |gy,v〉〈gy,v |, then

〈f, P>

L f〉 =
1

2π

∫

R

dy

∫

|v|>L
dv 〈f, Py,vf〉 =

∫

|v|>L

∫

R

|ĝ(η − v)|2|f̂(η)|2 dηdv

=
1√
π

∫

|v|>L

∫

R

e−(η−v)2 |f̂(η)|2 dηdv =

∫

R

HL(η)|f̂ (η)|2 dη (B.23)

due to (B.10) and ĝ = g where we set

HL(η) :=
1√
π

∫

|v|>L
e−(η−v)2 dv.

Note that HL is even, 0 < HL ≤ 1, increasing on [0,∞), and limη→∞HL(η) = 1. A short
calculation reveals

HL(L) =
1

2
+

1√
π

∫ ∞

2L
e−v

2
dv

so HL(L) is extremely close to 1/2 for large L. For |η| ≤ L/2 and |v| ≥ L, one has
|v − η| ≥ |v| − |η| ≥ |v| − L/2 ≥ L/2, hence

HL(η) ≤
2√
π

∫ ∞

L
e−

L
2
(v−L

2
) dv =

4√
πL

e−
L2

4 for all |η| ≤ L

2
.

So ∫

R

HL(η)|f̂(η)|2 dη =

∫

|η|≤L/2
HL(η)|f̂ (η)|2 dη +

∫

|η|>L/2
HL(η)|f̂(η)|2 dη

≤ 4√
πL

e−
L2

4 ‖f‖2 +
∫

|η|>L/2
|f̂(η)|2 dη.

Using
∫

|η|>L/2
|f̂(η)|2 dη ≤ (L/2)−2α

∫

|η|>L/2
|η|2α|f̂(η)|2 dη ≤ (L/2)−2α‖f‖2Hα

completes the proof of (B.20).
To prove formula (B.21) first note that for the centered Gaussian from (B.11) with σ0 = 2

and λ = 1 Lemma B.3 gives the time evolution as

(Trg0,0)(x) = π−1/4 1√
1 + 2ir

e
− x2

2(1+2ir) .
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Now we use the Galilei transformation formula (B.5) to arrive at

(Trgy,v)(x) = π−1/4 e
−irv2eivx√
1 + 2ir

e
− (x−y−2rv)2

2(1+2ir)

which is (B.21).
To prove (B.22), fix |r| ≤ R and note that

(TrP
≤

L f)(x) =
1

2π

∫

R

dy

∫

|v|≤L
dv (Trgy,v)(x)〈gy,v , f〉.

Thus using (B.21) and the triangle inequality

|(TrP≤

L f)(x)| ≤
1

2π(π(1 + 4r2))1/4

∫

R

dy

∫

|v|≤L
dv e

− (x−y−2rv)2

2(1+4r2) |〈gy,v , f〉|

together with

A(r, L) :=

∫

R

dy

∫

|v|≤L
dv e

− (x−y−2rv)2

2(1+4r2) = 2L(2π(1 + 4r2))1/2,

which is independent of x, by translation invariance of Lebesgue measure we can thus bound

|(TrP≤

L f)(x)| ≤
A(r, L)

2π(π(1 + 4r2))1/4

∫

R

∫

R

νx(dy, dv)|〈gy,v , f〉|

with the probability measure νx(dy, dv) := 1
A(r,L)e

− (x−y−2rv)2

2(1+4r2) 1|v|≤L dydv. Hence Jensen’s

inequality [16] for the convex function r → |r|p, 1 ≤ p <∞, shows

∣∣(TrP≤

L f)(x)
∣∣p ≤ A(r, L)p

(2π)p(π(1 + 4r2))p/4

∫

R

∫

R

νx(dy, dv)|〈gy,v , f〉|p

. Lp−1(1 + 4r2)
p−2
4

∫

R

dy

∫

|v|≤L
dv e

− (x−y−2rv)2

2(1+4r2) |〈gy,v , f〉|p.

Therefore,

‖(TrP≤

L f1)(TrP
≤

L f2)‖
p
Lp
x
. L2(p−1)(1 + 4r2)

p−2
2

∫

R

dy1

∫

|v1|≤L
dv1

∫

R

dy2

∫

|v2|≤L
dv2

|〈gy1,v1 , f1〉|p|〈gy2,v2 , f2〉|p
∫

R

dx e
− (x−y1−2rv1)

2+(x−y2−2rv2)
2

2(1+4r2)

. L2(p−1)(1 + 4r2)
p−1
2

∫

R

dy1

∫

|v1|≤L
dv1

∫

R

dy2

∫

|v2|≤L
dv2 |〈gy1,v1 , f1〉|p|〈gy2,v2 , f2〉|p e

− [(y1−y2)+2r(v1−v2)]
2

4(1+4r2)

(B.24)

where we used
∫

R

dx e
− (x−y1−2rv1)

2+(x−y2−2rv2)
2

2(1+4r2) = (π(1 + 4r2))1/2e
− ((y1−y2)+2r(v1−v2))

2

4(1+4r2)

by a simple convolution of Gaussians. Since (a+ b)2 ≥ 1
2a

2 − b2 for any a, b ∈ R, the lower
bound

[(y1 − y2) + 2r(v1 − v2)]
2 ≥ 1

2
(y1 − y2)

2 − 16r2L2

holds for all y1, y2, and |v1|, |v2| ≤ L. Moreover,

|〈gy,v , f〉| ≤
∫

R

|gy,v(x)||f(x)| dx = π−1/4

∫

R

e−
1
2
(x−y)2 |f(x)| dx = (g0,0 ∗ |f |)(y),
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and thus (B.24) gives the upper bound

‖TrP≤

L f1TrP
≤

L f2‖
p
Lp
x
. L2p eL

2
(1 + 4r2)

p−1
2

∫

R

dy1

∫

R

dy2 e
− (y1−y2)

2

8(1+4r2) [g0,0 ∗ |f1|(y1)]p[g0,0 ∗ |f2|(y2)]p.
(B.25)

LetKj := supp fj, j = 1, 2 be the support of fj. Recall that we assume s := dist(K1,K2) >
0. Given 0 < s̃ < s/2, we will enlarge Kj a little bit,

K̃j := {y ∈ R|dist(y,Kj) ≤ s̃}.

Note that dist(K̃1, K̃2) = s − 2s̃ > 0 and we will split the integral in (B.25) according to

the splitting R × R = (K̃c
1 × R) ∪ (K̃1 × R) = (K̃c

1 × R) ∪ (K̃1 × K̃c
2) ∪ (K̃1 × K̃2). As a

further preparation, note that the Cauchy-Schwartz inequality implies
∣∣∣∣
∫∫

R2

e−
1
c
(y1−y2)2h1(y1)h2(y2) dy1dy2

∣∣∣∣

≤
[∫∫

R2

e−
1
c
(y1−y2)2 |h1(y1)|2dy1dy2

]1/2 [∫∫

R2

e−
1
c
(y1−y2)2 |h2(y2)|2dy1dy2

]1/2

=
√
cπ‖h1‖‖h2‖.

(B.26)

for any h1, h2 ∈ L2(R) and c > 0. Using this, we can bound

I1 :=

∫

K̃1
c
dy1

∫

R

dy2 e
− (y1−y2)

2

8(1+4r2)
[
(g0,0 ∗ |f1|)(y1)

]p[
(g0,0 ∗ |f2|)(y2)

]p

. (1 + 4r2)1/2
[∫

K̃1
c

[
(g0,0 ∗ |f1|)(y1)

]2p
dy1

]1/2 [∫

R

[
(g0,0 ∗ |f2|)(y2)

]2p
dy2

]1/2
.

(B.27)

Moreover, by Young’s inequality,
∫

R

[
(g0,0 ∗ |f2|)(y2)

]2p
dy2 . ‖f2‖2p (B.28)

and, on the other hand,
∫

K̃1
c

[
(g0,0 ∗ |f1|)(y)

]2p
dy =

1

(2π)p

∫

K̃1
c
dy

[∫

K1

e−
1
2
(y−z)2 |f1(z)| dz

]2p

. e−
p
2
[dist(K1,K̃1

c
)]2‖e− 1

4
|·|2 ∗ |f1|‖2pL2p

. e−
p
2
[dist(K1,K̃1

c
)]2‖f1‖2p, (B.29)

where again Young’s inequality, similar as for (B.28), has been used in the last inequality.
Plugging (B.28) and (B.29) into (B.27), we obtain

I1 . (1 + 4r2)1/2e−
p
4
[dist(K1,K̃1

c
)]2‖f1‖p‖f2‖p. (B.30)

Furthermore, the bound

I2 :=

∫

K̃1

dy1

∫

K̃2
c
dy2 e

− (y1−y2)
2

8(1+4r2)

[
(g0,0 ∗ |f1|)(y1)

]p[
(g0,0 ∗ |f2|)(y2)

]p

. (1 + 4r2)1/2e−
p
4
[dist(K2,K̃2

c
)]2‖f1‖p‖f2‖p

(B.31)

follows as the one for I1, by symmetry.
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It remains to get a bound on

I3 :=

∫

K̃1

dy1

∫

K̃2

dy2 e
− (y1−y2)

2

8(1+4r2)

[
(g0,0 ∗ |f1|)(y1)

]p[
(g0,0 ∗ |f2|)(y2)

]p
. (B.32)

Since (y1 − y2)
2 ≥ (y1 − y2)

2/2 + [dist(K̃1, K̃2)]
2/2 in the integral in (B.32), we get

I3 ≤ e
− 1

16(1+4r2)
[dist(K̃1,K̃2)]2

∫

K̃1

dy1

∫

K̃2

dy2 e
− (y1−y2)

2

16(1+4r2)

[
(g0,0 ∗ |f1|)(y1)

]p[
(g0,0 ∗ |f2|)(y2)

]p

. (1 + 4r2)1/2 e
− 1

16(1+4r2)
[dist(K̃1,K̃2)]2‖g0,0 ∗ |f1| ‖pL2p‖g0,0 ∗ |f2| ‖pL2p

. (1 + 4r2)1/2 e
− 1

16(1+4r2)
[dist(K̃1,K̃2)]2‖f1‖p‖f2‖p (B.33)

using again (B.28). Combining

‖TrP≤

L f1TrP
≤

L f2‖
p
Lp
x
. L2p eL

2
(1 + 4r2)

p−1
2

(
I1 + I2 + I3

)

with (B.30), (B.31), (B.33), dist(Kj , K̃
c
j ) = s̃ for j = 1, 2, and dist(K̃1, K̃2) = s − 2s̃, we

obtain

‖TrP≤

L f1TrP
≤

L f2‖
p
Lp
x
. L2p eL

2
(1 + 4r2)

p
2

[
e−

ps̃2

4 + e
− (s−2s̃)2

16(1+4r2)

]
‖f1‖p‖f2‖p

choosing s̃ = s/(2
√
p(1 + 4r2)+ 2), which makes ps̃2/4 = (s− 2s̃)2/(16(1+ 4r2)), gives the

upper bound

‖TrP≤

L f1TrP
≤

L f2‖Lp
x
. (1 + 4r2)1/2L2eL

2/pe
− s2

16(
√

p(1+4r2)+1)2 ‖f1‖‖f2‖

≤ (1 + 4R2)1/2L2eL
2/pe

− s2

16(
√

p(1+4R2)+1)2 ‖f1‖‖f2‖
for all |r| ≤ R, which proves (B.22).
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