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ON THE CONVERGENCE OF SPACE-TIME DISCONTINUOUS

GALERKIN SCHEMES FOR SCALAR CONSERVATION LAWS

GEORG MAY∗ AND MOHAMMAD ZAKERZADEH∗

Abstract. We prove convergence of a class of space-time discontinuous Galerkin schemes for
scalar hyperbolic conservation laws. Convergence to the unique entropy solution is shown for all
orders of polynomial approximation, provided strictly monotone flux functions and a suitable shock-
capturing operator are used. The main improvement, compared to previously published results of
similar scope, is that no streamline-diffusion stabilization is used. This is the way discontinuous
Galerkin schemes were originally proposed, and are most often used in practice.
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1. Introduction. In the present paper we consider space-time discontinuous
Galerkin (DG) schemes for the scalar conservation law

ut +
d∑

i=1

fi(u)xi
= 0, in (0,∞)× R

d =: Rd+1
+(1.1)

u(0, ·) = u0, in R
d,(1.2)

where f = (f1, . . . , fd) is a smooth flux function. We assume that u0 ∈ L∞(Rd) with
compact support. A classic result states the existence of a unique entropy solution in
L∞(Rd+1

+ ), still with compact support [8, 15]. Recall that a weak solution to (1.1) is
an entropy solution if it satisfies, in the distributional sense,

(1.3) η(u)t +

d∑

i=1

Fi(u)xi
≤ 0

for any convex entropy function η(u) and associated entropy flux function F =
(F1, . . . , Fd) that satisfy the compatibility condition F ′

i = f ′
iη

′ for i = 1, . . . , d.
We prove convergence of a class of DG schemes to the unique entropy solution

of (1.1), (1.2). Using DiPerna’s theory of measure valued solutions [7], we can assert
strong convergence in Lp for 1 ≤ p < ∞, provided that the approximate solution is
i) uniformly bounded in L∞(Rd+1

+ ),
ii) weakly consistent with all entropy inequalities,
iii) strongly consistent with the initial data.
These statements will be made more precise below. It is worth noting that, for Cauchy
problems of the type (1.1), (1.2), one may use Szepessy’s extension [19] to DiPerna’s
theory, to replace the first criterion with the weaker requirement that the approximate
solution be bounded in L∞(R+;L

p(Rd)). We comment on this distinction below.
Convergence results along these lines have been obtained previously for both

continuous Galerkin (CG) and DG finite-element methods [18, 13, 10]. The schemes
that were considered in the above references, both CG and DG, have in common
that they use streamline-diffusion stabilization in conjunction with a shock-capturing
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2 G. MAY AND M. ZAKERZDEH

operator. At least in the case of DG methods, streamline-diffusion stabilization is
not commonly found in practical implementations [21, 1, 6, 9]. For linear hyperbolic
problems, the analysis of DG schemes has long ago made the transition from such
schemes that use streamline-diffusion stabilization [11] to schemes that do not [12].
However, the techniques used for linear problems have no direct extension to the
nonlinear case. To the best of our knowledge, a proof of convergence, similar in
scope to that presented here, is not available for DG schemes applied to nonlinear
conservation laws, unless streamline-diffusion stabilization is used. (In addition to
the references cited above, we also mention the error estimates provided in [5].)

A proof of convergence exists for CG schemes without streamline-diffusion stabi-
lization, using polynomials of degree q = 1 [16]. In the present paper, convergence
of a space-time DG scheme for (1.1), (1.2), similar to that of [13], is proved for
u0 ∈ L∞(Rd) with compact support, and any degree q ≥ 1 of polynomial approxima-
tion. The scheme does not use streamline-diffusion stabilization, but only a suitable
shock-capturing operator. For our proof, we use DiPerna’s framework [7], requiring
a uniform L∞-bound on the approximate solution, as opposed to the modification
due to Szepessy [19]. The reason is that, firstly, showing the existence of such a uni-
form bound is an interesting result in its own right. Secondly, the existence of such
a bound facilitates the proofs in this paper, and thirdly, it allows the extension to
intial-boundary value problems. (See, for example, the results in [20, 10].)

The paper is organized as follows: In section 2 we introduce the space-time DG
scheme, and define some notation. In section 3, using a suitable test function, we
re-write the scheme in a convenient form from which all the remaining results can
be derived. We prove a uniform bound of the numerical solution in L∞, and the
weak entropy consistency of our DG scheme in sections 4 and 5, respectively. Noting
consistency with initial data, we are then in a position to conclude that the DG scheme
converges to the unique entropy solution.

2. Space-Time DG Scheme. We define the space-time coordinates x =
(x0, x1, . . . , xd) with x0 ≡ t. It will sometimes be convenient to write x = (x1, . . . , xd)
for the spatial variables. For arbitrary T > 0, consider a sequence of time instances
0 ≡ t0 < t1 < · · · < tN ≡ T , and define corresponding time intervals In = (tn, tn+1).
Let T n

h = {κ} be a subdivision of the space-time slab In ×R
d into disjoint simplices.

Define Th :=
⋃N−1

n=0 T n
h , and let h := supκ∈Th

hκ, where hκ := diam(κ). (We may
assume h < ∞.) Convergence analysis will be carried out for shape-regular families of
triangulations {Th}, which means there is a constant C > 0, independent of h, such
that

(2.1)
1

C
≤

hκ|∂κ|

|κ|
≤ C, ∀κ ∈ Th.

We define the approximation spaces

(2.2) V n
h,q = {v : v|κ ∈ Pq(κ) ∀κ ∈ T n

h } , Vh,q =

N−1∏

n=0

V n
h,q,

where Pq is the space of d+1-variate polynomials of total degree q. In the following,
we assume that q ≥ 1. (The case q = 0 is dealt with in Ref. [4].) Owing to compact
support of the initial data, and the finite domain of dependence, we can assume that
v = 0 for large |x|.
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The scheme which we analyze is defined by determining uh ∈ Vh,q, such that

(2.3) N (uh, v) = NDG(uh, v) +NSC(uh, v) = 0, ∀v ∈ Vh,q.

Introducing the shorthand notation
∑

n,κ :=
∑N−1

n=0

∑
κ∈T n

h
, we define the semi linear

form

(2.4) NDG(uh, v) :=
∑

n,κ

{∫

κ

∇ · f̃(uh)v dx+

∫

∂κ

(
f̂ − f̃(u

(κ)
h ) · ν

)
v ds

}
,

where f̃ = (u, f(u)) is the space-time flux. On ∂κ we define the interior trace values

as u
(κ)
h (x) = limǫ→0− uh(x+ ǫν), where ν = (νt, νx1 , . . . , νxd

) is the outward pointing
normal on ∂κ at x. We denote as κe ∈ Th the element separated from κ on e ⊂

∂κ, and introduce the numerical flux function f̂ ≡ f̂(u
(κ)
h , u

(κe)
h ; ν), defined to be

Lipschitz-continuous, strictly monotone, and consistent with f̃ . On interfaces where
ν = (±1, 0, . . . , 0)T we assume that the numerical flux reduces to pure upwinding (i.e.
in time). In this case, for any 0 ≤ n ≤ N − 1, we can re-write the boundary integral
(2.5)
∑

κ∈T n
h

∫

∂κ

(
f̂ − f̃(u

(κ)
h ) · ν

)
v ds =

∑

κ∈T n
h

∫

∂κ∗

(
f̂ − f̃(u

(κ)
h ) · ν

)
v ds+

∫

Rd
n

(u+
h−u−

h )v
+ dx,

where R
d
n := {tn} × R

d, and ∂κ∗ is the ”internal” boundary of κ ∈ T n
h , consisting of

points that are shared by at least two elements in In × R
d. Furthermore for x ∈ R

d
n,

we define v± := limǫ→0 v(tn ± ǫ, x).
We augment the semi linear form (2.4) with a shock-capturing operator

(2.6) NSC(uh, v) :=
∑

n,κ

∫

κ

ε(uh)∇uh · ∇v dx,

with the viscosity parameter

ε(uh)|κ := hβ Cε

∫
κ
|∇ · f̃(uh)| dx+

∫
∂κ

|u
(κ)
h − u

(κe)
h | ds∫

κ
dx

, κ ∈ Th,(2.7)

where 1
2 < β < 2, and Cε is a positive constant of order unity. (In the following we

set Cε = 1.)
We define the norm

(2.8) ||f̃ ′||∞ := sup
ξ∈R

|f̃ ′(ξ)|, |f̃ ′| :=

(
d∑

i=0

f ′
i(ξ)

2

) 1
2

,

and assume that ||f̃ ′||∞ < ∞.1 This implies that

|∇ · f̃(v)| ≤ ||f̃ ′||∞|∇v|, ∀v ∈ Vh,q.(2.9)

In the following C shall denote a generic positive constant, independent of uh and h,
but not necessarily the same at each occurrence.

1This is not a severe restriction, because the true solution to problem (1.1), (1.2) satisfies a maxi-
mum principle. In order to comply with the growth restriction, we may apply a smooth modification
to f(v) for v outside the interval [min

x∈Rd u0,max
x∈Rd u0].
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3. The Canonical Entropy Test. All results in this paper can be obtained
by considering in (2.3) test functions of the form v = πh(η

′φ). Here, πh is a suitable
projection operator into the space Vh,q, φ is a smooth non-negative function, and η is
a convex entropy. Following [13], we define πh using an H1-projection such that for
all κ ∈ Th

∫

κ

∇(πh(η
′φ)) · ∇v dx =

∫

κ

∇(η′φ) · ∇v dx, ∀v ∈ Pq(κ)(3.1)

∫

κ

πh(η
′φ) dx =

∫

κ

η′φdx.

Using v = πh(η
′φ) in (2.3) yields

(3.2) NDG(uh, η
′φ) +NDG(uh, πh(η

′φ)− η′φ) +NSC(uh, η
′φ) = 0.

Note that NSC(uh, πh(η
′φ)) = NSC(uh, η

′φ), which is a consequence of the definition

of the H1-projection (3.1). We define the space-time entropy flux F̃ := (η, F1, . . . , Fd).

Then F̃ satisfies the extended compatibility relation

(3.3) F̃ ′
i = f̃ ′

iη
′, i = 0, . . . , d.

The first term in (3.2) may be rewritten as

NDG(uh, η
′φ) =

∑

n,κ

(∫

κ

∇ · F̃ (uh)φdx+

∫

∂κ∗

(
f̂ − f̃(u

(κ)
h ) · ν

)
η′(u

(κ)
h )φds

)

+

N−1∑

n=0

∫

Rd
n

(u+
h − u−

h )η
′(u+

h )φdx,

where the boundary integrals are split as in (2.5). Integration by parts yields

NDG(uh, η
′φ) = −

∫

R
d
T

F̃ (uh) · ∇φdx +
∑

n,κ

∫

∂κ∗

F̃ (u
(κ)
h ) · νφds(3.4)

+
∑

n,κ

∫

∂κ∗

(
f̂ − f̃(u

(κ)
h ) · ν

)
η′(u

(κ)
h )φds+

∫

R
d
N

η(u−
h )φdx

−

∫

Rd

η(u0)φdx +
N−1∑

n=0

∫

Rd
n

(
η(u−

h )− η(u+
h ) + (u+

h − u−
h )η

′(u+
h )
)
φdx,

where R
d
T := (0, T )× R

d has been defined, and we have equated u−
h ≡ u0 for n = 0.

(In practice one might use a suitable projection for the initial conditions, but this is
of minor importance here.) Using (3.3), we have

∑

n,κ

∫

∂κ∗

F̃ (u
(κ)
h ) · νφds =

∑

n,κ

1

2

∫

∂κ∗

(F̃ (u
(κ)
h )− F̃ (u

(κe)
h )) · νφds

=
∑

n,κ

1

2

∫

∂κ∗

∫ u
(κ)
h

u
(κe)
h

F̃ ′(ξ) · νφdξ ds

=
∑

n,κ

1

2

∫

∂κ∗

{
f̃ · νη′

∣∣∣
u
(κ)
h

u
(κe)
h

−

∫ u
(κ)
h

u
(κe)
h

f̃(ξ) · νη′′(ξ) dξ

}
φds.(3.5)
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After rewriting the second surface integral over ∂κ∗ in (3.4) to include contributions
from both sides of the interface, and noting

f̂(u
(κ)
h , u

(κe)
h ; ν)(η′(u

(κ)
h )− η′(u

(κe)
h ))φ =

∫ u
(κ)
h

u
(κe)
h

(f̂(u
(κ)
h , u

(κe)
h ; ν)η′′(ξ)φdξ,

we can substitute expression (3.5) into (3.4) to obtain

NDG(uh, η
′φ) = −

∫

R
d
T

F̃ (uh) · ∇φdx +

∫

R
d
N

η(u−
h )φdx −

∫

Rd

η(u0)φdx(3.6)

+
N−1∑

n=0

∫

Rd
n

(
η(u−

h )− η(u+
h ) + (u+

h − u−
h )η

′(u+
h )
)
φdx

+
∑

n,κ

1

2

∫

∂κ∗

∫ u
(κe)
h

u
(κ)
h

(
f̃(ξ) · ν − f̂

)
η′′(ξ)φdξ ds.

For later use, we note that, for any convex entropy, and non-negative function φ,

(3.7)
(
η(u−

h )− η(u+
h ) + (u+

h − u−
h )η

′(u+
h )
)
φ ≥ 0.

Furthermore, by assumption, f̂ is strictly monotone, which implies the E-flux property
in the sense of Osher [17], and so

(3.8)

∫ u
(κe)
h

u
(κ)
h

(
f̃(ξ) · ν − f̂(u

(κ)
h , u

(κe)
h ; ν)

)
η′′(ξ)φdξ ≥ 0.

4. Stability. First, we state a discrete L2-stability result. Use η = 1
2u

2
h and

φ ≡ 1 in (3.2), and observe that for this choice η′(uh) ∈ Vh,q. Consequently the
second term in (3.2) vanishes. From (2.6) and (3.6), we obtain

∑

n,κ

{∫

κ

ε(uh) |∇uh|
2
dx+

1

2

∫

∂κ∗

∫ u
(κe)
h

u
(κ)
h

(f̃(ξ) · ν − f̂(u
(κ)
h , u

(κe)
h ; ν))dξ ds

}

+

N−1∑

n=0

1

2

∫

Rd
n

(u+
h − u−

h )
2 dx+

1

2

∫

R
d
N

(u−
h )

2 dx =
1

2

∫

Rd

u2
0 dx.(4.1)

Therefore, noting (3.8), clearly we have discrete L2-stability in the sense

(4.2) ||uh(·, t
−
N )||L2(Rd) ≤ ||u0||L2(Rd), N = 1, 2, . . . .

At the interfaces Rd
n, equation (4.1) explicitly states an L2-bound on the jumps of the

solution. For a strictly monotone numerical flux, a bound on the interface jumps of
the solution uh at ∂κ∗ is also implied [5], i.e. there exists a constant C > 0 such that

(4.3)

∫

∂κ∗

∫ u
(κe)
h

u
(κ)
h

(f̃(ξ) · ν − f̂(u
(κ)
h , u

(κe)
h ; ν)) dξ ds ≥ C

∫

∂κ∗

(u
(κ)
h − u

(κe)
h )2 ds.

Now take η = 1
pu

p
h, with an even integer p ≥ 4, and φ ≡ 1 in (3.2). Using (3.6),

and the inequalities (3.7), (3.8), we obtain immediately

1

p
||uh(t

−
N , ·)||p

Lp(Rd)
+NSC(uh, u

p−1
h ) +NDG(uh, πh(u

p−1
h )− u

p−1
h ) ≤

1

p
||u0||

p
Lp(Rd)

.

(4.4)
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The term involving the projection error can be written

NDG(uh, πh(u
p−1
h )− u

p−1
h ) =

∑

n,κ

{∫

κ

∇ · f̃(uh)(πh(u
p−1
h )− u

p−1
h ) dx

+

∫

∂κ

(f̂ − f̃(u
(κ)
h ) · ν)(πh((u

(κ)
h )p−1)− (u

(κ)
h )p−1) ds

}
.

The H1-projection (3.1) is a simple Neumann problem. For a smooth enough function
v, we have the standard error bound ||v − πhv||L∞(ω) ≤ Chq+1||v||W q+1,∞(κ) for ω = κ

or ω = ∂κ. Setting v = wp−1, where w ∈ Vh,q, we can further rewrite the projection
error (cf. [20])

(4.5) ||πh(w
p−1)− wp−1||L∞(κ) ≤ Ch2pq+1||w||p−3

L∞(κ)||∇w||2L∞(κ).

Using Lipschitz-continuity of the numerical flux, and the definition of the artificial
viscosity (2.7), we thus obtain

|NDG(uh, πh(u
p−1
h )− u

p−1
h )| ≤ Ch2−βpq+1

∑

n,κ

∫

κ

ε(uh)||uh||
p−3
L∞(κ)||∇uh||

2
L∞(κ) dx.

Split the triangulation into T >
h := {κ ∈ Th : ||uh||L∞(κ) > 1} and T <

h := {κ ∈ Th :
||uh||L∞(κ) < 1} to obtain

|NDG(uh, πh(u
p−1
h )− u

p−1
h )| ≤

Ch2−βpq+1





∑

κ∈T >
h

∫

κ

ε(uh)||uh||
p−2
L∞(κ)||∇uh||

2
L∞(κ) dx+

∑

κ∈T <
h

∫

κ

ε(uh)|∇uh|
2 dx






where the standard estimate

(4.6) |κ|||∇uh||
2
L∞(κ) ≤ ||∇uh||

2
L2(κ)

has been used. To proceed, we need the following lemma:
Lemma 4.1. For a shape regular triangulation Th = {κ}, there is a h-independent

constant Ĉ(q, p) such that ∀κ ∈ Th
(4.7)∫

κ

||v||p−2
L∞(κ)|∇v|2 dx ≤ Ĉ(q, p)

∫

κ

∇v · ∇(πh(v
p−1)) dx, v ∈ Pq(κ), p = 2, 4, · · · .

The proof is given in the appendix. This lemma was proved in [18] for linear elements.
In [10] the authors give a proof for v ∈ Pq(κ) and πh a Lagrangian interpolation
operator. In the appendix we present a novel proof for the lemma, which is simpler
and applicable to the H1-projection (3.1). Using Lemma 4.1, L2-stability (4.1), and
(4.6), there follows

|NDG(uh, πh(u
p−1
h )− u

p−1
h )| ≤ Ch2−βpq+1

+ Ĉ(q, p)h2−βpq+1
∑

n,κ

∫

κ

ε(uh)∇uh · ∇(πh(u
p−1
h )) dx.(4.8)

Finally, substituting this result into (4.4), we have

||uh(t
−
N , ·)||p

Lp(Rd)
+p(1−Ĉ(q, p)h2−βpq+1)NSC(uh, πh(u

p−1
h )) ≤ ||u0||

p
Lp(Rd)

+Ch2−βpq+2.
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Clearly, in order to keep the Lp norm bounded or all tn, n = 1, . . . , N , it is required
that

Ch2−βpq+2 ≤ ∞,

p− Ĉ(q, p)h2−βpq+2 ≥ 0.

From these conditions we get

(4.9) h2−β . min{
1

pq+2
,

1

Ĉ(q, p)pq+1
},

and note that as h → 0 this will still permit us to let p → ∞ eventually.
It is worth pointing out that so far the presence of streamline-diffusion stabiliza-

tion (or lack thereof) is clearly not essential. In previous proofs [18, 20, 10], the control
over the residual provided by the streamline-diffusion stabilization becomes significant
when extending the discrete stability to a uniform bound. We now establish a uniform
bound in L∞ without using streamline-diffusion stabilization:

Proposition 4.1. Let uh be the solution produced by scheme (2.3). There exists

a constant C > 0 such that

(4.10) ||uh||L∞([0,T ]×Rd) ≤ C

Proof. Fix t ∈ [tn, tn+1] for some n = 0, . . . , N − 1. For κ ∈ T n
h we define κ> ⊂ κ

as the subset of κ with first coordinate x0 ≡ t ∈ [tn, t], and analogously we define
∂κ>

∗ ⊂ ∂κ∗.
Using the divergence theorem the following identity is easily established:

∫

Rd

η(uh(t, ·)) dx =

∫

Rd

η(uh(t
+
n , ·)) dx(4.11)

+
∑

κ∈T n
h

∫

κ>

∇ · F̃ (uh) dx−
∑

κ∈T n
h

∫

∂κ>
∗

F̃ (u
(κ)
h ) · ν ds.

We consider the entropy η = 1
pu

p
h for even p ≥ 4. If we re-write the surface integral

over ∂κ∗ to include contributions from both sides of the interface, the last term on
the right hand side is equal to

1

2

∑

κ∈T n
h

∫

∂κ>
∗

(F̃ (u
(κe)
h )− F̃ (u

(κ)
h )) · ν ds =

1

2

∑

κ∈T n
h

∫

∂κ>
∗

∫ u
(κe)
h

u
(κ)
h

F̃ ′(ξ) · νdξ ds.

Using the pointwise estimate

F̃ ′ · ν ≤

(
d∑

i=0

f̃ ′
i

) 1
2
(

d∑

i=0

(η′νi)
2

) 1
2

≤ ||f̃ ′||∞|η′|,

we can bound

(4.12)

∫ u
(κe)
h

u
(κ)
h

F̃ ′(ξ) · νdξ ≤ C

∫ u
(κe)
h

u
(κ)
h

|η′(ξ)| dξ ≤
C

p

{
(u

(κe)
h )p + (u

(κ)
h )p

}
.
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Consequently, re-distributing the surface integrals to include contributions only from
the interior face, one has

1

2

∑

κ∈T n
h

∫

∂κ>
∗

(F̃ (u
(κe)
h )− F̃ (u

(κ)
h )) · ν ds ≤

C

p

∑

κ∈T n
h

∫

∂κ>
∗

(u
(κ)
h )p ds

≤
C

h

1

p

∑

κ∈T n
h

∫

κ>

u
p
hdx,(4.13)

where a trace inverse inequality has been used.
We now consider the divergence term in (4.11). To that end, we first note the

pointwise estimate

∇ · F̃ ≤

(
d∑

i=0

(f̃ ′
i)

2

) 1
2
(

d∑

i=0

(up−1
h ∂xi

uh)
2

) 1
2

≤
1

p
||f̃ ′||∞|∇(up

h)|,

whence

∑

κ∈T n
h

∫

κ>

∇ · F̃ (uh) dx ≤
C

p

∑

κ∈T n
h

∫

κ

|∇(up
h)| dx

≤
C

hp

∑

κ∈T n
h

∫

κ

u
p
h dx.(4.14)

Substituting (4.13) and (4.14) into (4.11), we see that for some positive constants C1,
C2, we have

∫

Rd

uh(t, x)
p
dx ≤

C1

h

∫ t

tn

∫

Rd

uh(τ, x)
p dxdτ + C2.

Since we already have discrete stability ||uh(t
−
n , ·)||Lp(Rd) < ∞ for tn for n =

0, 1, . . . , N , a simple Gronwall argument allows us to conclude

sup
0≤t≤tN

||uh(t, ·)||Lp(Rd) ≤ C,

for all h and p satisfying (4.9). Using an inverse estimate, the rest of the proof can
be completed as in [18, 10].

5. Entropy Consistency. We must prove the weak consistency of scheme (2.3)
with all entropy inequalities. This is formally stated in the following theorem:

Theorem 5.1. Let uh be the solution produced by scheme (2.3). Then, for all

convex entropies, and associated space-time entropy fluxes (3.3), there holds

(5.1) lim inf
h→0

{∫

(0,T )×Rd

F̃ (uh) · ∇φdx

}
≥ 0, ∀φ ∈ C∞

0 ((0, T )× R
d;R+).

In the remainder of this section we prove Theorem 5.1. It is well known that it is
sufficient to show (5.1) for all Kružkov entropy pairs, i.e. convex entropies ηk = |u−k|
with k ∈ R, and associated entropy fluxes [15, 7]. Following [13, 7] we define a
regularized Kružkov entropy function ηk,δ, converging to ηk as δ → 0, uniformly on
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compact sets, while maintaining convexity and uniformly bounded first derivatives.
This allows us to define an associated regularized entropy flux Fk,δ , which converges
uniformly on compact sets to the Kružkov entropy flux. Such a regularization can be
accomplished with standard mollifiers. A more detailed exposition can be found, for
example, in [7, 13, 19]. For the remainder of this section we simply identify η ≡ ηk,δ
and F ≡ Fk,δ for some fixed δ > 0, which allows us to assume differentiability and
that all derivatives η(q) are bounded. After establishing (5.1) for the regularized
entropy pairs, we let δ → 0, and conclude theorem 5.1 for the Kružkov entropy pairs
by applying dominated convergence.

Before we proceed with the proof, we give a few preparatory lemmas. First, note
that in (4.1) there is no term controlling the L2-norm of the flux divergence. Such
terms arise in a straightforward manner from the streamline-diffusion stabilization [13,
5, 18]. The next lemma shows that we can control the flux divergence even in the
absence of the streamline-diffusion stabilization. We shall need this result to complete
our proofs.

Lemma 5.1. Let uh be the solution produced by scheme (2.3). Then there exists

a constant C > 0, independent of h and uh, such that

∑

n,κ

∫

κ

h2β |∇ · f̃(uh)|
2 dx < Ch

4β
3(5.2)

where β is defined in (2.7).

Proof. Split the integral in (5.2) into integrals over κ< := κ∩{x : |∇uh(x)| < h−
β

3 }

and κ> := κ ∩ {x : |∇uh(x)| > h− β
3 }. Using (2.9) we have

h2β
∑

n,κ

∫

κ<

|∇ · f̃(uh)|
2 dx ≤ Ch2β

∑

n,κ

∫

κ<

|∇uh|
2 dx ≤ Ch

4β
3 ,

and

h2β
∑

n,κ

∫

κ>

|∇ · f̃(uh)|
2 dx ≤ Ch2β

∑

κ∈Th

∫

κ>

|∇ · f̃(uh)||∇uh| dx

≤ Ch2β
∑

n,κ

∫

κ>

|∇ · f̃(uh)||∇uh|
2h

β
3 dx

≤ Ch2β+ β

3

∑

n,κ

||∇uh||
2
L∞(κ)

∫

κ

|∇ · f̃(uh)| dx

≤ Ch2β− 2β
3

∑

n,κ

||∇uh||
2
L∞(κ)

∫

κ

ε(uh) dx

≤ Ch
4β
3

∑

n,κ

∫

κ

ε(uh)|∇uh|
2 dx.

Here we have used the definition of the artificial viscosity (2.7) in the second-but-last
inequality, and again the standard inverse estimate (4.6) in the last inequality. The
lemma now follows from L2-stability (4.1).

Lemma 5.2. Let uh be the solution produced by scheme (2.4), and let ε(uh) be

defined as in (2.7). Then there exists a constant C ≥ 0 such that for small enough h

(5.3)
∑

n,κ

∫

κ

ε(uh) dx ≤ Chβ− 1
2
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Proof. Using the definition (2.7), we have

∑

n,κ

∫

κ

ε(uh) dx =
∑

n,κ

∫

κ

hβ |∇ · f̃(uh)| dx+
∑

n,κ

∫

∂κ

hβ|u
(κ)
h − u

(κe)
h | dx

≤

(
∑

n,κ

∫

κ

h2β |∇ · f̃(uh)|
2 dx

) 1
2
(
∑

n,κ

∫

κ

dx

) 1
2

+hβ− 1
2

(
∑

n,κ

∫

∂κ

h dx

) 1
2
(
∑

n,κ

∫

∂κ

(u
(κ)
h − u

(κe)
h )2 dx

) 1
2

.

The lemma follows from shape-regularity (2.1), Lemma 5.1, and the L2-stability re-
sults (4.1), (4.3).

Recall that we have assumed β > 1
2 , so the left-hand side of (5.3) tends to zero

as h → 0. We are now ready to prove the main result.
Proof. (of Theorem 5.1) We start by considering (3.2) for the regularized Kruzkov

entropy and general non-negative φ with compact support in (0, T )×R
d. Furthermore,

using the H1 projection (3.1), we obtain from (3.6), noting (3.7), (3.8),
∫

R
d
T

F̃ (uh) · ∇φdx ≥ NDG(uh, πh(η
′φ)− η′φ) +NSC(uh, η

′φ).

Split the shock-capturing term as follows:

NSC(uh, η
′φ) =

(
∑

n,κ

∫

κ

ε|∇uh|
2η′′(uh)φdx+

∑

n,κ

∫

κ

ε∇uh · ∇φη′(uh) dx

)
.

Clearly, the first term is non-negative, while the second term vanishes as h → 0, i.e.

∑

n,κ

∫

κ

ε∇uh · ∇φη′(uh) dx ≤ C

(
∑

n,κ

∫

κ

ε|∇uh|
2 dx

) 1
2
(
∑

n,κ

∫

κ

ε(uh) dx

) 1
2

vanishes by L2-stability (4.1) and Lemma 5.2. Now define eη,h := πh(η
′φ)− η′φ, and

write

NDG(uh, eη,h) =
∑

n,κ

{∫

κ

∇ · f̃(uh)eη,h dx+

∫

∂κ

(
f̂ − f̃(u

(κ)
h ) · n

)
eη,h ds

}
.

Using the definition of the shock-capturing operator (2.7), we finally obtain by the
estimates provided in [13] (see (3.8c) in [13])

|NDG(uh, eη,h)| ≤ C
∑

n,κ

h2−β

∫

κ

ε(uh)
(
||∇uh||

2
L∞(κ) + 1

)
||φ||W q+1,∞(κ)(1 + ||uh||

q−1
L∞(κ)) dx

≤ C
∑

n,κ

h2−β

∫

κ

ε(uh)
(
|∇uh|

2 + 1
)
dx(5.4)

where (4.6) and the uniform L∞-stability. The remaining integrals are bound by L2-
stability and Lemma 5.2, and we can conclude that |NDG(uh, eη,h)| → 0, as h → 0.

We have thus proved Theorem 5.1 for the regularized Kružkov entropy pair ηδ,k,
Fδ,k. Using the uniform convergence of ηδ,k and Fδ,k as δ → 0 on compact sets to ηk
and Fk respectively, the entropy inequality (5.1) follows by dominated convergence.
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6. Conclusion. We have considered a class of space-time DG schemes for scalar
hyperbolic conservation laws which do not use any streamline diffusion stabilization.
We have shown that a shock-capturing term, somewhat simplified compared to similar
schemes [13], provides sufficient stabilization. For all orders of polynomial approxi-
mation, the scheme admits a bound on the solution in L∞([0, T ]×R

d), and is weakly
consistent with all entropy inequalities.

Moreover, the scheme is consistent with the initial data. The proof is omitted
here, as it clearly does not depend on streamline-diffusion stabilization. See [13] and
the references cited therein for details on consistency with the initial data.

Using DiPerna’s theorem [7] we can conclude that the scheme converges to the
unique entropy solution of (1.1) for all polynomial orders. Similar convergence proofs
for nonlinear conservation laws have thus far only been available for schemes that use
streamline diffusion stabilization.

Acknowledgments. The authors are supported by the Deutsche Forschungs-
gemeinschaft (German Research Association) through grant GSC 111. The second
author would like to thank Dr. Lukas Doering from Lehrstuhl I für Mathematik in
RWTH Aachen, for many helpful discussions and suggestions on the appendix.

Appendix A. Proof of Lemma 4.1. First, we review some properties and theo-
rems in polynomial inequalities. More specifically, we introduce the Kneser inequality
and its extension to multivariate polynomials which is the main interest here. Then
some properties in the equivalency of norms in finite dimensional spaces are revisited.
Then we are ready to give a short proof of Lemma 4.1.

Recall the classic Kneser inequality [2, p. 260]:
Theorem A.1. Suppose f = gh where g ∈ Pm

c and h ∈ Pn−m
c , where Pm

c

denotes the polynomials of order m of one complex variable and complex coefficients.

Then

(A.1) ‖g‖[−1,1]‖h‖[−1,1] ≤
1

2
Cn,mCn,n−m‖f‖[−1,1],

where by ‖ · ‖[−1,1] we mean the uniform norm on the interval [−1, 1] of real numbers

for continuous functions, and the coefficient Cn,m is defined as

Cn,m := 2m
m∏

k=1

(
1 + cos

(2k − 1)π

2n

)
.

One might simplify the complicated form of the coefficients Cn,m with this corollary
from [2, p. 261]:

Corollary A.1. Under the assumptions of Theorem A.1, the following holds:

(A.2)
(‖g‖[−1,1]‖h‖[−1,1]

‖f‖[−1,1]

)1/n
. 3.3.

By a change of variables, inequality (A.1) can be easily extended to any real
interval J = [a, b], i.e.

(A.3) ‖g‖J‖h‖J ≤ Kn‖f‖J .

Let us call Kn Kneser’s constant, which only depends on n. Using (A.2), we can
set Kn = 3.3n . Also note that by the definition of the uniform norm we may write
‖ · ‖J = ‖ · ‖L∞(J).
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Here we are interested in the case where the polynomial coefficients are real, and
we seek the extension of Theorem A.1 to general multivariate real polynomials of total
degree n in a convex domain J ⊂ R

d. We can prove the following theorem, based on
[14, proof of Theorem 2.2]:

Theorem A.2. Assume J ⊂ R
d is convex and f is a polynomial of d variables of

total degree n defined on J such that f = gh where the factors g and h are polynomials

of total degree less than n. Then the following holds

(A.4) ‖g‖L∞(J)‖h‖L∞(J) ≤ Kn‖f‖L∞(J),

where Kn is the same as the constants defined in (A.1) or (A.2).
Proof. Let us assume the x0, x1 ∈ J are the maximum points of g and h respec-

tively, i.e.

‖g‖L∞(J) = |g(x0)|, ‖h‖L∞(J) = |h(x1)|.

Define the line segment S := {x = tx1 + (t− 1)x0; t ∈ [0, 1]}. Due to convexity of J ,
one knows that S ⊂ J . So the Kneser inequality holds on this line

‖g‖L∞(S)‖h‖L∞(S) ≤ Kn‖f‖L∞(S).

The special property of segment S, x0, x1 ∈ S, gives

‖g‖L∞(J) = ‖g‖L∞(S), ‖h‖L∞(J) = ‖h‖L∞(S),

On the other hand it is clear that ‖f‖L∞(S) ≤ ‖f‖L∞(J), so (A.4) holds.
Also we will use the following equivalency of Lp norms for a general function f

in a finite (N -) dimensional space XN and 1 ≤ q ≤ p ≤ ∞,

(A.5)
1

|J |1/q−1/p
‖f‖Lq(J) ≤ ‖f‖Lp(J) ≤

Ĉ(XN , p, q, d)

|J |1/q−1/p
‖f‖Lq(J),

where the left inequality comes directly from Hölder’s inequality and the right in-
equality can be found in [3, p. 140]. Note that by the dependency on XN we mean
the dependency on the type of this space like d and N (or, in our case, equivalently
the polynomial total degree n).

Now we are ready to present the proof of Lemma 4.1.
Proof. [Proof of Lemma 4.1] Let us consider J = κ in the result showed before.

By definition of the H1 projection (3.1) one has

∫

κ

∇v · ∇(πh(v
p−1)) dx =

∫

κ

∇v · ∇(vp−1) dx = (p− 1)

∫

κ

|∇v|2vp−2 dx.

The goal of the proof is to find a lower bound for the ‖|∇v|2vp−2‖L1(κ) for even integer
p as the following

‖|∇v|2vp−2‖L1(κ) ≥ C‖|∇v|2‖L1(κ)‖v
p−2‖L∞(κ)(A.6)

Here |∇v|2 and vp−2 are polynomials; since v ∈ Pq, we know that

∇v ∈ (Pq−1)d, vp−2 ∈ Pq(p−2), |∇v|2vp−2 ∈ Ppq−2.
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Using the equivalence of norms (L1 and L∞) as in (A.5) gives

‖|∇v|2vp−2‖L1(κ) ≥
|J |

Ĉ(Ppq−2)
‖|∇v|2vp−2‖L∞(κ)

Next we apply the Kneser inequality in the form of (A.4) and again norm equivalency
(A.5) to get

‖|∇v|2vp−2‖L1(κ) ≥
|J |

Kpq−2Ĉ(Ppq−2)
‖|∇v|2‖L∞(κ)‖v

p−2‖L∞(κ)

≥
1

Kpq−2Ĉ(Ppq−2)
‖|∇v|2‖L1(κ)‖v

p−2‖L∞(κ).

So the lower bound constant in (A.6) is
1

Kpq−2Ĉ(Ppq−2)
; which yields

∫

κ

||v||p−2
L∞(κ)|∇v|2 dx ≤

Kpq−2Ĉ(Ppq−2)

p− 1

∫

κ

∇v · ∇(πh(v
p−1)) dx.

For brevity we show the constant
Kpq−2Ĉ(Ppq−2)

p− 1
by its two effective parameters

as Ĉ(q, p).
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