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EMBEDDING GRAPHS HAVING ORE-DEGREE AT MOST FIVE

BÉLA CSABA AND JUDIT NAGY-GYÖRGY

Abstract. Let H and G be graphs on n vertices, where n is sufficiently large. We prove
that if H has Ore-degree at most 5 and G has minimum degree at least 2n/3 then H is
a subgraph of G.

1. Notations

In this paper we will consider only simple graphs. We mostly use standard graph theory
notation: V (G) is the vertex set and E(G) is the edge set of graph G, v(G) = |V (G)|,
e(G) = |E(G)|, degG(x) (or deg(v) if it is unambigous) is the degree of vertex x ∈ V (G),
δ(G) the minimum and ∆(G) the maximum degree of G. We write NG(x) (or N(x)) for the
neighborhood of the vertex x ∈ V (G), and N(X) =

⋃
x∈X N(x). Let NG(x,A) = NG(x) ∩

A and denote degG(x,A) the number of neighbors of x in the set A. Let NG(X,A) =⋃
x∈X NG(x,A).

We let G denote the complement of G where V (G) = V (G) and E(G) =
(
V (G)
2

)
−E(G).

If A ⊂ V (G) we write G−A for the graph induced by the vertices of V (G)−A. Moreover
G[A] is a shorthand for G − (V (G) − A). Given two disjoint sets, A,B ⊂ V (G) we write
G[A,B] for the bipartite subgraph of G which contains the edges that connect a vertex of
A with a vertex of B.

If G has a subgraph isomorphic to H then we write H ⊂ G. In this case we call G the
host graph. Given graphs H and G, the mapping φ : V (H) → V (G) is a homomorphism,
if φ(x)φ(y) ∈ E(G) whenever xy ∈ E(H).

We say that G has an H-factor if there are ⌊v(G)/v(H)⌋ vertex-disjoint copies of H in
G (this notion is somewhat different from the common one: we do not require that v(G)
is a multiple of v(H)). Throughout the paper we will apply the relation “≪”: a ≪ b if a
is sufficiently smaller than b.

2. Introduction

The fundamental question of extremal graph theory can be formulated as an embedding
problem as follows: Given two graphs, H and G, under what conditions is H the subgraph
of G? Equivalently, one can consider embedding problems as packing problems as follows:
under what conditions can we find an edge disjoint copy of H and G in Kn? Sometimes it
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is more convenient to investigate the equivalent packing version of an embedding question,
we will use both notions in the paper.

For a fixed subgraph H ⊂ G Turán’s theorem tells that G has to be sufficiently dense in
terms of the chromatic number of H. If G and H have the same order, the density of G in
general is not sufficient anymore, instead one needs e.g. large minimum degree in G. The
most famous example of this type is Dirac’s celebrated theorem on Hamilton cycles [12]:
if n ≥ 3, G is a graph of order n and δ(G) ≥ n/2 then G has a Hamilton cycle.

His theorem was generalized by Ore [24]: Assume that n ≥ 3, G is a graph of order n
and for every xy 6∈ E(G) we have deg(x)+deg(y) ≥ n. Then G has a Hamilton cycle. This
result motivates the notion of the Ore-degree of an edge [17, 21]: the Ore-degree of xy is
the sum

θ(x, y) = deg(x) + deg(y)

of the degrees of its endpoints. The Ore-degree of G, denoted by θ(G), is the maximum
Ore-degree in E(G). The embedding problems that include minimum and maximum degree
conditions are called Dirac-type, while those involving the Ore-degree are called Ore-type
problems in the literature.

An excellent source of embedding results and conjectures is the survey [17] by Kierstead,
Kostochka and Yu, in which several Ore-type questions are considered as well. One can
easily formulate an Ore-type problem by replacing the maximum degree in a Dirac-type
embedding problem by half of the Ore-degree of the graph, or if one considers a packing
version, then one can replace even both maximum degrees. In some cases the resulting
questions were solved. For example, Kostochka and Yu proved [22] that if G1 and G2 are
graphs of order n such that θ(G1)∆(G2) < n then G1 and G2 pack. This is in fact a half-
Ore version of the famous packing result of Sauer and Spencer [25]: if ∆(G1) ·∆(G2) < n/2
then G1 and G2 pack. We remark that the full-Ore version of the Sauer-Spencer theorem,
when both maximum degrees are replaced by half of the corresponding Ore-degree, is
open. Another important Dirac-type theorem for which the half-Ore version was proved is
by Aigner-Brandt [1] and Alon-Fischer [2] on embedding 2-factors. The half-Ore version
was proved by Kostochka and Yu [23].

One of the most important Dirac-type embedding problems was formulated by Bollobás
and Eldridge [4] and independently by Catlin [5].

Conjecture 2.1 (Bollobás, Eldridge; Catlin). If G1 and G2 are graphs on n vertices with
maximum degree ∆1 and ∆2, respectively, and

(∆1 + 1)(∆2 + 1) ≤ n+ 1,

then G1 and G2 pack.

There are some resolved cases of the above conjecture, see e.g., [1, 2, 9, 11], but in general
it is wide open. Kostochka and Yu [21, 23] conjectured a half-Ore version of it, in which
∆1 is replaced by θ(G1)/2. In this paper we suggest a slightly stronger conjecture1:

1That is, instead of θ(G1)/2 we have ⌊θ(G1)/2⌋. Hence, the two conjectures differ in case θ(G1) is odd.
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Conjecture 2.2. If G1 and G2 are graphs on n vertices such that(⌊
θ(G1)

2

⌋
+ 1

)
(∆2 + 1) ≤ n+ 1,

then G1 and G2 pack.

In this paper we confirm the above conjecture for the cases 2 ≤ θ(G1) ≤ 5 (note that
the Ore-degree is either zero or at least 2). The cases θ(G1) = 2, 3, 4 are relatively easy.
The case θ(G1) = 5 is considerably harder. Note that there are expander graphs H with
θ(H) = 5. We present our main result as an embedding question as follows.

Theorem 2.3. There exists an n0 such that if n > n0, θ(H) ≤ 5 for a graph H of order
n and δ(G) ≥ 2n/3 for a graph G of order n then H is a subgraph of G.

Let us call a graph G with minimum degree 2n/3 an η-extremal graph, if there exists

A ⊂ V (G) with |A| = ⌊n/3⌋ such that e(G[A]) ≤ η
(n/3

2

)
< ηn2/18. If G has no such subset

we call it η-non-extremal. We also prove the following stability version of Theorem 2.3.

Theorem 2.4. There exist positive numbers γ0, η0, n0 such that if n > n0, η > η0, γ < γ0
and θ(H) ≤ 5 for a graph H of order n and δ(G) ≥ (2/3 − γ)n for any η-non-extremal
graph G of order n then H is a subgraph of G.

The structure of the paper is as follows. First we consider the cases θ(H) = 2, 3, 4 in a
separate section. Then we provide a list of further notions and tools necessary for proving
Theorem 2.3 and Theorem 2.4. Finally we turn to the proof of our main results.

3. Graphs having Ore-degree at most four

Let us begin with some simple observations. The proof of the claim below is left for the
reader.

Claim 3.1. Let H be a non-empty graph. Then θ(H) ≥ 2. If θ(H) = 2 then the connected
components of H are isolated vertices and edges, and H has at least one edge. If θ(H) = 3
then the components of H are paths having length at most 2, and H has at least one length-2
path.

Assume that H is a graph on n vertices with θ(H) ≤ 3. It is easy to see that H ⊆ Cn.
Let δ2(G) = minxy 6∈E(G){deg(x)+ deg(y)}. Applying the celebrated theorems of Dirac and
Ore we have the following.

Theorem 3.2. Suppose that G is a simple graph on n ≥ 3 vertices and H is a simple
graph on n vertices with θ(H) ≤ 3. If δ(G) ≥ n/2 or if δ2(G) ≥ n then H ⊆ G

Of course, other sufficient conditions for the existence of Hamilton cycles (e.g. by Pósa
or by Chvátal) also imply analogous results. The above theorem is tight as the following
example shows. Let n = 2k. Let H be the vertex disjoint union of k edges, and let G be a
complete bipartite graph with vertex class sizes k + 1 and k − 1. Then v(G) = v(H) = n,
θ(H) = 2, δ(G) = k − 1 = n/2− 1, and H 6⊂ G.

Let us consider the case θ(H) = 4. The proof of the claim below is left for the reader.
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Claim 3.3. Assume that H is a graph with θ(H) = 4. Then the connected components of
H are paths, cycles or claws (a claw is a K1,3).

One of the most important case is when H contains vertex disjoint triangles. The
following is a celebrated result of K. Corrádi and A. Hajnal:

Theorem 3.4 (Corrádi–Hajnal, [8]). If G is a graph of order n and δ(G) ≥ 2n/3 then G
has a K3-factor.

Let us consider a complete 3-partite graph G with vertex classes having cardinalities
k, k + 1 and k − 1, respectively. Clearly, G does not contain k vertex disjoint triangles,
showing that the minimum degree bound of the Corrádi-Hajnal theorem is tight. It also
shows that δ(G) has to be at least 2n/3 in order to guarantee that every H on n = 3k
vertices with θ(H) = 4 is a subgraph of G.

In [23] Kostochka and Yu proved the following:

Theorem 3.5. Each n-vertex graph G such that

θ(G) ≤ 2n

3
− 1

packs with every n-vertex graph H such that θ(H) ≤ 4.

Let G1 = G, then δ(G1) ≥ 2n/3. Hence, Conjecture 2.2 is a corollary of the above
theorem for the case θ(H) = 4. Let us briefly mention another way of proving Conjecture 2.2
for this case.

For θ(H) ≤ 3 we could use the existence of Hamilton cycles in the host graph in order to
embed H. For the case θ(H) = 4 one can first find the square of a Hamilton path, and then
find H in this special structure. Denote P 2

n the square of a Hamilton path on n vertices.
The following fairly simple result holds, we omit the proof.

Proposition 3.6. Suppose that H is a simple graph on n vertices with θ(H) ≤ 4. Then
H ⊆ P 2

n .

So if we find the square of a Hamiltonian path in a graph G with order n then we can
find an arbitrary subgraph with Ore-degree at most 4 in G. The following theorem was
proved by Fan and Kierstead in [14].

Theorem 3.7. If G is a simple graph on n vertices such that δ(G) ≥ 2n−1
3 then P 2

n ⊆ G.

Hence we have found an alternative proof of Conjecture 2.2 for the case θ(H) ≤ 4.
An even stronger theorem was proved by Chau [7] (for very large graphs, the proof

uses the Regularity lemma). He proved that the square of a Hamilton path packs with a
graph G on n vertices whenever θ(G) ≤ 2n/3 − 1. Let us mention that recently DeBiasio,
Faizullah and Khan [13] proved a similar result for packing the square of a Hamilton cycle
without using the Regularity lemma.

Finally, let us briefly mention the case when H contains only vertex disjoint K1,rs for
some fixed r ∈ N. It turns out that regardless of the value of r (as soon as it is a constant), it
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is sufficient if the minimum degree of G is slightly larger than n/2. Note that the Ore-degree
of H is r + 1, so it can be arbitrarily large.2

Proposition 3.8. Let r ∈ N and ǫ > 0. Then there exists an n0 = n0(r, ǫ) such that if G
is a graph on n vertices with δ(G) ≥ (1/2+ ǫ)n, n ≥ n0(r, ǫ), and (r+1)|n then G contains
a K1,r-factor.

Proof. Randomly divide the vertex set of G into the disjoint sets X and Y such that
r|X| = |Y |. We will embed the K1,r-factor into G[X,Y ]. By the Azuma-Hoeffding bound
(see Lemma 4.15 later) we get that if n is sufficiently large then with positive probability
for every v ∈ X we have deg(v, Y ) ≥ (1/2 + ǫ/2)|Y | and for every u ∈ Y we have that
deg(u,X) ≥ (1/2 + ǫ/2)|X|.

Let us construct a bipartite graph G′ with vertex classes X ′ and Y. We obtain X ′ by
blowing up the set X as follows: for every v ∈ X we will have r copies v1, . . . , vr ∈ X ′. If
vu ∈ E(G) then we will have all the viu (1 ≤ i ≤ r) edges in G′. There are no other edges
in G′.

Clearly, G′ has a perfect matching if and only if G[X,Y ] has a K1,r-factor. The existence
of a perfect matching in G′ follows easily by verifying the König-Hall conditions, hence we
proved what was desired. �

Let us remark that the above result can also be proved by a routine application of the
Regularity Lemma – Blow-up Lemma method, however, the proof presented here works
for much smaller values of n.

4. A review of tools for the proof

First we take a short review of the tools we use. The proofs of Theorem 2.3 and The-
orem 2.4 use the Regularity Lemma of Szemerédi [26]. While below we provide a brief
introduction to the subject, the reader may also want to consult with the survey paper by
Komlós and Simonovits [20].

If A and B are disjoint subsets of V (G) then we denote by e(A,B) the number of edges
with one endpoint in A and the other in B. The density between disjoint sets X and Y is
defined as

d(X,Y ) =
e(X,Y )

|X| · |Y | .

We need the following definition to state the Regularity Lemma.

Definition 4.1 (Regularity condition). Let ε > 0. A pair (A,B) of disjoint vertex sets of
G is ε-regular if for every X ⊂ A and Y ⊂ B satisfying

|X| > ε|A|, |Y | > ε|B|
we have

|d(X,Y )− d(A,B)| < ε.

2A more sophisticated case is analyzed in [27] for embedding a collection of stars, each star having at
most o(n/ log n) leaves.
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We will employ the fact that if (A,B) is an ε-regular pair as above, and we place at
most ε|A| new vertices into A, the resulting pair will remain ε′-regular, with ε′ ≤ √

ε.
An important property of regular pairs is the following:

Lemma 4.2. Let (A,B) be an ε-regular pair with density d. Then for any Y ⊂ B with
|Y | > ε|A| we have

|{x ∈ A : deg(x, Y ) ≤ (d− ε)|Y |}| ≤ ε|A|.
We will use the following form of the Regularity Lemma [26, 20]:

Lemma 4.3 (Degree form). For every ε > 0 there is an M =M(ε) such that if G = (V,E)
is any graph and d ∈ [0, 1] is any real number, then there is a partition of the vertex set
V into ℓ + 1 clusters V0, V1, . . . , Vℓ, and there is a subgraph G′ of G with the following
properties:

• ℓ ≤M ,
• |V0| < ε|V |,
• all clusters Vi, i ≥ 1, are of the same size m (and therefore m ≤ ⌊ |V |

ℓ ⌋ < ε|V |),
• degG′(v) > degG(v)− (d+ ε)|V | for all v ∈ V ,
• Vi is an independent set in G′ for all i ≥ 1,
• all pairs (Vi, Vj), 1 ≤ i < j ≤ ℓ are ε-regular, each with density either 0 or at least
d in G′.

Often we call V0 the exceptional cluster. In the rest of the paper we assume that
0 < ε≪ d≪ 1.

Definition 4.4 (Reduced graph). Apply Lemma 4.3 to the graph G = (V,E) with param-
eters ε and d and denote the clusters of the resulting partition by V0, V1, . . . , Vℓ, V0 being
the exceptional cluster. We construct a new graph Gr, the reduced graph of G′ in the fol-
lowing way: The non-exceptional clusters of G′ are the vertices of the reduced graph, hence
|V (Gr)| = ℓ. We connect two vertices of Gr by an edge if the corresponding two clusters
form an ε-regular pair with density at least d.

The following corollary is immediate:

Corollary 4.5. Let G = (V,E) be a graph of order n and δ(G) ≥ cn for some c > 0, and
let Gr be the reduced graph of G′ after applying Lemma 4.3 with parameters ε and d. Then
δ(Gr) ≥ (c− 2ε− d)ℓ.

Definition 4.6 (Super-Regularity condition). Given a graph G and two disjoint subsets A
and B of its vertices, the pair (A,B) is (ε, δ)-super-regular if it is ε-regular and furthermore

deg(a) ≥ δ|B| for all a ∈ A

and

deg(b) ≥ δ|A| for all b ∈ B.

Using Lemma 4.2 it is easy to show that every regular pair contains an “almost spanning”
super-regular pair, we leave the proof for the reader.
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Lemma 4.7. Assume that (A,B) is an ε-regular pair. Then there exists A′ ⊂ A and
B′ ⊂ B such that |A′| ≥ (1 − ε)|A|, |B′| ≥ (1 − ε)|B|, and the (A′, B′) pair is (ε(1 +
ε), d(A,B) − 2ε)-super-regular.

The Blow-up Lemma of Komlós, Sárközy and Szemerédi [18, 19] asserts that dense super-
regular pairs behave like complete bipartite graphs with respect to containing bounded
degree subgraphs.

Theorem 4.8 (Blow-up Lemma). Given a graph R of order r and positive parameters
δ,∆, there exists ε = ε(δ,∆, r) such that the following holds: Let ni for i = 1, . . . , r be
arbitrary positive integers and let us replace the vertices v1, v2, . . . , vr of R with pairwise
disjoint sets V1, V2, . . . , Vr of sizes n1, n2, . . . , nr (blowing up). We construct two graphs on
the same vertex set V =

⋃
i Vi. The first graph F is obtained by replacing each edge {vi, vj}

of R with the complete bipartite graph between Vi and Vj . A sparser graph G is constructed
by replacing each edge {vi, vj} arbitrarily with an (ε, δ)-super-regular pair between Vi and
Vj . If a graph H with ∆(H) ≤ ∆ is embeddable into F then it is already embeddable into
G.

The Blow-up Lemma is among the most important tools in many graph embedding
algorithms. However, for proving our main result we also need a somewhat different,
technically more involved version, introduced in [9]. In order to state this lemma, we need
some preparations.

Let G′ and H be graphs3 of order n. Assume that V (G′) = V0 ∪ V1 ∪ . . . ∪ Vℓ and
V (H) = L0∪L1∪. . .∪Lℓ are partitions such that there is a bijective mapping ψ0 : L0 → V0,
furthermore, |Vi| = |Li| = m for every 1 ≤ i ≤ ℓ.

Definition 4.9 ((d, ε)-goodness). Let x ∈ Li; a vertex v ∈ Vi is called (d, ε)-good for x if
y ∈ N(x) ∩ Lj implies degG′(v, Vj) ≥ (d− ε)m for every 1 ≤ j ≤ ℓ.

Assume that D = ∆(H) ≥ 1, and let Î ⊂ V (H) be a maximal set the elements of which
are of distance at least 5 from each other. Using the above assumptions and notations, the
modified version of the Blow-up Lemma is as follows.

Theorem 4.10 (Modified Blow-up Lemma [9]). For every positive integer D, K1, K2, K3

and every positive constant c there exist n0 such that if ε, ε′, δ, d are positive constants with

0 < ε≪ ε′ ≪ δ ≪ d≪ 1/D, 1/K1, 1/K2, 1/K3, c

then the following holds.
Suppose that G′ and H are graphs of order n with partitions defined as above such that

n ≥ n0. Suppose further that for every 1 ≤ i < j ≤ ℓ the pair (Vi, Vj) is ε-regular with
density 0 or d. Furthermore, suppose that the following conditions hold.

C1: |L0| = |V0| ≤ K1dn;

C2: L0 ⊂ Î;

3In fact G′ is the graph we obtain from G by applying the Regularity Lemma and doing further prepa-
rations, while H is the graph we want to embed into G.
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C3: Li is independent for every 1 ≤ i ≤ ℓ;
C4: |NH(L0) ∩ Li| ≤ K2dm for every 1 ≤ i ≤ ℓ;

C5: for every 1 ≤ i ≤ ℓ there is Bi ⊂ Î ∩ Li with |Bi| = δm, such that for B =
⋃

iBi

and every 1 ≤ i, j ≤ ℓ

| |NH(B) ∩ Li| − |NH(B) ∩ Lj| | ≤ εm;

C6: if (x, y) ∈ E(H) and x ∈ Li, y ∈ Lj for 1 ≤ i, j ≤ ℓ, then (Vi, Vj) is an ε-regular
pair with density d;

C7: if (x, y) ∈ E(H) and x ∈ L0 then y ∈ Lj (j > 0) implies degG′(ψ0(x), Vj) ≥ cm;
C8: for every 1 ≤ i ≤ ℓ, given any Ei ⊂ Vi such that |Ei| ≤ ε′m there exists a set

Fi ⊂ (Li ∩ (Î − B)) and a bijection ψi : Ei → Fi such that for every v ∈ Ei, v is
(d, ε)-good for ψi(v);

C9: for F =
⋃

i Fi we have that

|NH(F ) ∩ Li| ≤ K3ε
′m.

Then H could be embedded into G′ such that the image of Li is Vi for every 1 ≤ i ≤ ℓ, and
the image of each x ∈ L0 is ψ0(x) ∈ V0.

Let us give some remarks on the lemma. First, we need this version since it does not
demand super-regularity between cluster pairs, we have conditions C6 and C7 instead. It
enables us to directly work with the graph we obtain by applying the Regularity Lemma,
even though the number of clusters depends on the regularity constant ε.

Condition C1 requires that the number of “exceptional” vertices is small. By condition
C2 we make sure that embedding the vertices of L0 can be done without affecting the
neighborhood of other vertices of L0. It is clear that we need C3 since every cluster of
G′ is an independent set. Condition C4 ensures that embedding L0 will not significantly
affect the embedding of other Li sets. By condition C5 we can have sufficiently large sets
of buffer vertices (the vertices of B) such that the vast majority of them is embedded in
the end. The role of C8 and C9 is to eliminate a possible objection during the embedding.
Finally, C7 ensures that the neighbors of the L0 vertices have sufficiently large space.

The reader may notice that we have not defined which vertices would belong to Ei

(conditions C8 and C9), we only made assumption on the size of these sets – the Ei sets
are determined during the execution of the algorithm as follows. The embedding of H is
done sequentially: first we map the vertices of NH(L0), then NH(B), the neighbors of the
buffer vertices. These are small sets, hence, without any difficulty we can map them. At
this point we look at G and identify ∪Ei, the exceptional or “risky” vertices4, and cover
them right away with buffer vertices. The set of buffer vertices we use for this purpose is
denoted by F. The vast majority of the vertices of H is mapped after taken care of these
exceptional vertices.

4Roughly speaking, a vertex of G is exceptional, if after the mapping of NH(L0) and NH(B), it is not
contained in the vacant neighborhood of many buffer vertices.
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P. Hajnal, S. Herdade, A. Jamshed and E. Szemerédi in [15] proved the following stability
version of the Pósa-Seymour conjecture. Before stating it, we need the notion of (η, k)-
extremal graphs. Recall that we have already defined η-extremality of a graph, which is in
fact equivalent to (η, 3)-extremality, as one can see immediately from the definition below.

Definition 4.11. Given some integer k ≥ 3 and real η > 0 we say that graph G of order n

is (η, k)-extremal if there exists A ⊂ V (G) with |A| = ⌊n/k⌋ such that e(G[A]) ≤ η
(|A|

2

)
<

ηn2/(2k2). If such a subset A does not exist, we say that G is (η, k)-non-extremal.

Theorem 4.12. Let k ≥ 3 be an integer and η > 0 be a real number. There exists an
integer n0(η, k), and positive real number γ(η, k) such that any (η, k)-non extremal graph G,
with v(G) = n > n0(η, k), and having minimum degree δ(G) ≥ (k−1

k − γ(η, k))n, contains

a (k − 1)th power of a Hamiltonian cycle.

The authors of [15] remark that Theorem 4.12 works when γ = η1000 although a much
smaller exponent would suffice. When applying their theorem, we will assume that η and
γ are related according to this equation.

We mostly consider (η, 3)-extremal and (η, 3)-non-extremal host graphs, and, as we
indicated above, we may refer to them as η-extremal or η-non-extremal graphs.

Depending on the structure of G and H the embedding algorithm has several cases.
Hence, we will also need another notion of extremality, for the graph H to be embedded.

Definition 4.13 (ν-triangular extremality). We say that a graph H on n vertices is ν-
triangular extreme if it contains at least (1− ν)n/3 vertex disjoint triangles, here 0 < ε≪
d≪ ν ≪ 1.

A proper vertex coloring of a graph is equitable if the sizes of its color classes differ by
at most one. Kierstead and Kostochka proved the following.

Theorem 4.14 (Kierstead, Kostochka, [16]). If H is a graph having θ(H) ≤ 2k + 1 then
it has an equitable (k + 1)-coloring.

As our embedding method is in fact a randomized algorithm, we are going to use large
deviation bounds, for example the well-known Chernoff inequality, see [3]. We will also use
another, less common inequality, a corollary of the Azuma inequality. We will refer to it
as the Azuma-Hoeffding bound (sometimes it is called Hoeffding’s bound [6]):

Lemma 4.15. Let us assume that we are given an urn with r red and b blue balls. Let
N = r+b. We conduct the following experiment: randomly, uniformly draw m balls (where
1 ≤ m ≤ N) without replacement. Denote the number of chosen red balls by X. Then for
every 0 ≤ q ≤ N we have

P (|X − EX| ≥ q) ≤ 2e−
q2

2m .

It is easy to see, that EX = ma/N.
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5. Proof of the main results when H is not triangular extreme

The goal of this section is to prove Theorem 2.3 and Theorem 2.4 for the case when
H is not triangular extreme. We will achieve this goal through several subsections. The
triangular extreme case will be handled in Section 6.

Here is a sketch of the main ideas of this section. In subsection 5.1 we apply the
Regularity lemma for G and obtain the reduced graph Gr. We cover the vast majority of
Gr with disjoint K3s. In subsection 5.2 we decompose H, as a result we will obtain a large
independent set I such that the components of H − I are paths of length at most 2. In
subsection 5.3, using random methods and matchings, we find a homomorphic mapping
f : V (H) −→ V (Gr) such that f assigns almost the same number of vertices of H to every
clusters of Gr. Finally, in subsection 5.4 after somewhat involved preparations based on f
we apply the Modified Blow-up lemma in order to finish the embedding.

5.1. Preprocessing the host graph. Recall that in Theorem 2.4 (the stability version),
the minimum degree of the host graph is allowed to be slightly smaller than 2n/3. Our
strategy for proving Theorem 2.3 is to first prove the stability version, and then consider
only extremal host graphs in order to finish the proof, since the stability version implies
Theorem 2.3 whenever G is non-extremal.

We will only use the Regularity Lemma for the stability version, hence, we will apply it
for a host graph G having minimum degree δ(G) ≥ (2/3 − γ)n for some5 γ > 0, however,
throughout the section we do not assume that G is non-extremal6.

Step 1 Given 0 < ε≪ d≪ 1, let us set γ = d− ε, here γ is the parameter of the stability
version and ε and d are the parameters of the Degree Form of the Regularity
Lemma. Applying the Degree Form of the Regularity Lemma for G with the above
parameters we obtain ℓ′ + 1 clusters, V0, V1, . . . , Vℓ′ where V0 is the exceptional
cluster. Next we construct the reduced graphGr. Recall that V (Gr) = {V1, . . . , Vℓ′}
and ViVj ∈ E(Gr) if (Vi, Vj) form an ε-regular pair in G with density at least d.
Observe that by Corollary 4.5 the minimum degree of the reduced graph Gr is
δ(Gr) ≥ (2/3 − 2d)ℓ′.

Step 2 Let us now add 6dℓ′ fictive vertices to the vertex set of Gr. Connect each of the
fictive vertices to each of the original vertices of the reduced graph. The resulting
new graph has (1+ 6d)ℓ′ vertices and its minimum degree is at least (2/3− 2d)ℓ′ +
6dℓ′ = (2/3 + 4d)ℓ′ = 2

3(1 + 6d)ℓ′, hence it satisfies the degree condition of the
Corrádi-Hajnal theorem, and therefore it contains a triangle factor.

Step 3 Next we delete all those triangles from this factor that contain any of the fictive
vertices. The non-fictive vertices of deleted triangles will be put into the exceptional
cluster V0, this will increase its size by at most 12dℓ′m ≤ 12dn vertices of G, so we
have |V0| ≤ 13dn. The minimum degree of Gr may also decrease by at most 12dℓ′.
Then the reduced graph on the remaining vertices (that are in fact non-exceptional
clusters) has a triangle factor, which we denote by T . For simpler notation we will

5The value of γ is determined by the parameters of the Regularity Lemma, as we will see soon.
6Hence the results of this section hold for an extremal host graph as well.
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still denote this modified reduced graph by Gr, and the clusters of it will be denoted
by V1, . . . , Vℓ, where ℓ ≥ (1− 12d)ℓ′.

Step 4 Recall, that every vertex of the reduced graph is a cluster on m vertices. Using
Lemma 4.7 repeatedly, by deleting 4εm vertices from each cluster in the triangles
of T we can achieve that every cluster-edge in every triangle is a (2ε, d − 4ε)-
super-regular pair. For simpler notation we will denote the new cluster sizes by m.
Observe, that when doing so we increased the size of the exceptional cluster by at
most 4εn vertices, hence, we have that |V0| ≤ 14dn. The vertex set of the reduced
graph (the non-exceptional clusters) and its triangle factor T have not changed.

Summarizing, we have the following.

Lemma 5.1. After preprocessing G, we obtain a reduced graph Gr with vertices V1, . . . , Vℓ
(these are non-exceptional clusters in G) so that |Vi| = m, and every edge in Gr represents
a 2ε-regular pair. The minimum degree is δ(Gr) ≥ (2/3 − 14d)ℓ. The reduced graph has
a triangle factor T such that every edge of T represents a (2ε, d − 4ε)-super-regular pair.
Furthermore, the exceptional cluster V0 has at most 14dn vertices.

5.2. Structural properties of H. Observe that ∆(H) ≤ 4. In fact the only vertices that
can have 4 neighbors are centers of K1,4s. The presentation of the proof will be somewhat
simpler later if we assume that the subgraph H1 ⊂ H that we obtain by deleting every K1,4

from H is saturated, that is, we add edges to H1 one-by-one until we obtain a subgraph
with Ore-degree being equal to 5, but adding any new edge would make its Ore-degree
larger (of course, we do not add parallel or loop edges).

It is clear that we cannot add any edge that connects a vertex of a K1,4 to any other
vertex without increasing the Ore-degree to 6. Similarly, if T1 and T2 are arbitrary vertex
disjoint triangles in H, then we cannot add any edge that connects T1 and T2.

Let Di = {x ∈ V (H) : degH(x) = i} for i = 0, . . . , 4. It is easy to see that at most
two vertices can have degree at most 1 in the saturated part of H, therefore, we have that
|V (H1) ∩ (D0 ∪D1)| ≤ 2.

An important ingredient for proving Theorem 2.3 is the following decomposition of H :

Lemma 5.2. Let H be a graph of order n with θ(H) = 5. Then there exists I ⊂ V (H)
such that the following conditions hold:

(1) I is an independent dominating set in H with |I| ≥ n/3.
(2) degH(x) ≤ 2 for each x ∈ I.
(3) The connected components of H − I are paths with length at most 2.
(4) If x ∈ I with NH(x) = {y1, y2} then either y1y2 ∈ E(H) or y1 and y2 belong to

different components of H − I.

Proof. Observe that if x ∈ D4 then x is the center vertex of a star in H. Moreover, D3∪D4

is an independent vertex set by the condition on the Ore degree. Let

P = {xz1 . . . zry is a path of H : r ≥ 0, x 6= y, x, y ∈ D1 ∪D3, z1, . . . , zr ∈ D2}
∪ {xz1 . . . zrx is a cycle of H : r ≥ 2, x ∈ D3, z1, . . . , zr ∈ D2}.
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Therefore H − (D3 ∪ D4) consists of disjoint cycles and paths (note that a path with
length 0 is a vertex). We will consider the class of paths in H − (D3 ∪ D4) and connect
their endpoints with their neighbors in D3. Notice the r = 0 case in the above definition.
It e.g. takes care of K1,3s, as xy1, xy2, xy3 are all paths that belong to P (here x is the
center vertex of some K1,3, the yis are the leaves).

Claim 5.3. If x ∈ D3 and xy ∈ E(H), then y belongs to the vertex set of some P ∈ P
such that xy is an edge of P.

Proof. (of the Claim) If y ∈ D1 then by the definition of P we have P = xy. Assume
that y ∈ D2 and xy does not belong to any P ∈ P. Then we can build a path or cycle
P = xyz1 . . . zt greedily such that yz1, zizi+1 ∈ E(H) for all 1 ≤ i ≤ t−1, and zt ∈ D1∪D3

(if zt = x, then we found a cycle). Observe that there does not exist any P ′ ∈ P with
y ∈ P ′ such that x 6∈ P ′, since both neighbors of y must belong to P ′. Hence, y is available
when we build P. �

Let us consider the following auxiliary bipartite graph B: the color classes of B are D3

and P, and xP ∈ E(B) if and only if x ∈ D3, P ∈ P and x ∈ P.

Claim 5.4. If x ∈ D3 then 2 ≤ degB(x) ≤ 3, moreover, if P ∈ P then degB(P ) ≤ 2.

Proof. (of the Claim) First, observe that no x ∈ D3 can have three neighbors in some
P ∈ P : otherwise among the three neighbors one could find a vertex y that itself has
two neighbors in P, implying that y ∈ D3, contradicting with the definition of P. Since by
Claim 5.3 every neighbor of x belong to some P ∈ P, we get the lower bound for degB(x).
It is clear, that degB(x) ≤ 3. Finally, degB(P ) ≤ 2, since at most two vertices of P do not
belong to D2 by definition. �

Counting the number of edges between X and P in B shows that for every X ⊂ D3

we have |X| ≥ |NB(X)|, just Hence, by the König-Hall marriage theorem B has a D3-
saturating matching M. Let

I ′ = {y : (x, P ) ∈M,y ∈ P, x ∈ NH(y)}.
The following are immediate:

(i) |I ′| = |D3|,
(ii) every x ∈ D3 has a neighbor in I ′,
(iii) every y ∈ I ′ has a neighbor in D3,
(iv) I ′ ⊆ D1 ∪D2 is an independent set.

If x 6∈ I ′ then degH−I′(x) = 4 or degH−I′(x) ≤ 2, moreover, if degH−I′(x) = 4 then x is
the center vertex of some K1,4. Therefore the components of H − I ′ are paths, cycles and
stars, implying that the chromatic number of H − I ′ is at most 3.

Let I be an independent set with maximal size such that I ′ ⊆ I. Then we have

|I − I ′| ≥ 1

3
(|V (H − I ′)| − 2|I ′|)
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since I− I ′ is a maximal independent set which does not contain any vertex of I ′∪NH(I ′),
|NH(I ′)| ≤ 2|I ′| by (iv) above and we also use that χ(H − I ′ −NH(I ′)) ≤ 3. Therefore

|I| ≥ 1

3
(|V (H − I ′)| − 2|I ′|) + |I ′| = n

3
.

Moreover if x ∈ V (H − I) then x has a neighbour in I by (ii) and the maximality of I so
condition (1) holds.

Clearly, D3 ∩ I = ∅ by (ii). If x ∈ D4 then x 6∈ I, furthermore, NH(x) ⊆ I − I ′ by the
construction of I ′ and the maximality of I. Therefore condition (2) holds, implying that
the components of H − I are paths and cycles.

Suppose that C ⊂ H − I is a cycle. By the condition on the Ore-degree there exists an
x ∈ V (C) with degH(x) = 2, therefore I ∪ x is an independent set with larger size which
contradicts to the maximality of I.

Similarly, suppose that P ⊂ H − I is a path x0 . . . xk with k ≥ 3. Then by the condition
on the Ore-degree there exists an 0 < i < k with degH(xi) = 2 therefore I ∪ xi is an inde-
pendent set with larger size which contradicts to the maximality of I, therefore condition
(3) holds.

Suppose that x ∈ I with NH(x) = {y1, y2}. Suppose further that y1y2 6∈ E(H) and y1
and y2 belong to the same component of H − I. Using condition (3) this component have
to be a path y1x

′y2. If x
′ ∈ D2 then I ∪x′ is an independent set that contains I ′ and larger

than I, this contradicts to the maximality of I. If degH(x′) > 2 then y1, y2 ∈ D2 since
θ(H) ≤ 5 and xyi, x

′yi ∈ E(H) for i = 1, 2. This implies that x 6∈ I ′ using (iii). This allows
us to find a new independent set (I−{x})∪{y1, y2} which is clearly larger than I and also
contains I ′, contradicting to the maximality of I. Hence, condition (4) holds. �

Let

I1 = {x ∈ I ∩D2 : y1, y2 ∈ NH(x), P (y1) = P (y2)}
and

I2 = {x ∈ I ∩D2 : y1, y2 ∈ NH(x), P (y1) 6= P (y2)}.
Observe, that I1 contains exactly one vertex of each triangle of H by Lemma 5.2, more-

over, every vertex of I1 belongs to some triangle. Clearly, I1 ∪ I2 = I ∩D2.
In order to apply the Modified Blow-up Lemma, we need a subset of I − I1 −D0 that

contains vertices which are at distance at least 5 from each other. Denote Î the maximum
sized subset of I − I1 −D0 having this property.

Claim 5.5. If H is not ν-triangular extreme, then |Î| ≥ νn
40 .

Proof. For every x ∈ I there are at most 12 vertices in I at distance at most 4 from x,
therefore, using a simple greedy algorithm one can see that

|Î | ≥ |I − I1|
13

− 1 ≥ νn/3

13
− 1 ≥ νn

40

by Lemma 5.2, using also that |I1| ≤ (1 − ν)n/3, since H is not triangular extreme. We
subtracted 1 since |D0| ≤ 1. �
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Since Î ⊂ I − I1, depending on the structure of H, it is possible that Î ∩ I2 is small.
This happens only when H mainly contains K1,4s (recall, that H1 is saturated).

The set Î plays an important role in the embedding procedure of H, when applying the
Modified Blow-up Lemma. Since we will use it for three different purposes, it is useful

to divide it randomly into three disjoint parts, Î1, Î2 and Î3, each having either ⌊|Î |/3⌋ or

⌈|Î |/3⌉ vertices, so Î = Î1 ∪ Î2 ∪ Î3.
If Î were too small, our embedding algorithm would not work. In order to have that Î

is sufficiently large, we set ν = 4
√
γ (= 4

√
d− ε).

5.3. Homomorphism from H to Gr. We say that a homomorphism f : V (H) −→ V (Gr)
is balanced if ∣∣ |f−1(Vi)| − |f−1(Vj)|

∣∣ ≤ ε2m

for every Vi, Vj ∈ V (Gr), here ε, ℓ are the parameters of the Regularity Lemma. Such a
balanced homomorphism from H to Gr plays a key role in our embedding procedure. We
find it in two steps. First we determine f : V (H)−I −→ V (Gr), and then f : I −→ V (Gr).

We will use the Modified Blow-up lemma (Lemma 4.10) for embedding H into G. The Vi
clusters will be “almost” the partition sets of the Modified Blow-up Lemma. We also need
to partition the vertex set of H into L0, L1, . . . , Lℓ. In this section we are going to discuss
in detail how to find this partition. When f is at hand, the sets f−1(Vi) for 1 ≤ i ≤ ℓ will
be “first approximations” of the Li sets, but for obtaining the final Li sets we may need to
redistribute a small proportion of the vertices7.

It is notationally convenient to introduce another function, h, which maps V (H) to the
set {0, 1, . . . , ℓ} such that h(x) = i if x ∈ Li, that is, h(x) is the index of the set containing
x in the partition of V (H). Up to a certain point in the distribution of V (H) the two
functions, f and h, are in the following relation: f(x) = Vi if and only if h(x) = i.

5.3.1. Assigning the paths in H − I and the vertices of I − I2 − Î. Roughly speaking, in
order to find f restricted to V (H)− I we will randomly assign the vertices of H − I to the
vertices of Gr, so that components of H − I are assigned to clusters of some triangle of the
triangle factor T .

More precisely, let P be a path inH−I containing vertices xi for 1 ≤ i ≤ k = |P |+1, here
|P | ≤ 2 by Lemma 5.2. Pick uniformly at random a triangle T from T . Denote Vs1 , Vs2 , Vs3
the vertices of T. Then pick uniformly at random a permutation π on {1, 2, 3}, and let
f(xi) = Vsπ(i)

for every 1 ≤ i ≤ k. Set f(xi) = Vsπ(i)
for 1 ≤ i ≤ k and let h(xi) = sπ(i).

Suppose now that x ∈ I − I2 − Î . Then we have already assigned each vertex of NH(x)
to the same triangle T ∈ T randomly, if x 6∈ D0. Since degH(x) ≤ 2 there will be at least
one vertex of T that has no neighbor of x assigned to it. If there are two such vertices,
pick one of them randomly. In both cases denote Vs the chosen vertex, and let f(x) = Vs
and h(x) = s. If x ∈ D0 then choose T and then Vs from T randomly.

Later we will need the following.

7For example, f(V (H)) ∩ V0 is empty at the moment, while V0 and therefore L0 are non-empty sets in
general.
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Lemma 5.6. Let i ∈ {1, 2, . . . , ℓ} be arbitrary. Assume that x ∈ V (H)− I2 − Î . Then

Pr(h(x) = i) =
1

ℓ
.

Assume further that x′, x′′ ∈ V (H)− I such that x′ and x′′ belong to different components
of H − I. Then

Pr(h(x′) = h(x′′) = i) =
1

ℓ2
,

and

Pr(h(x′) = h(x′′)) =
1

ℓ
.

Similarly, if y, y′ ∈ V (H)− I2 − Î such that the distance of y and y′ is at least five, then

Pr(h(y) = h(y′) = i) =
1

ℓ2
,

and

Pr(h(y) = h(y′)) =
∑

i

Pr(h(y) = h(y′) = i) =
1

ℓ
.

Proof. It is clear that the vertices ofH−I are distributed uniformly at random, moreover, if
x′, x′′ belong to different components then h(x′) and h(x′′) are independent. From this the
second and third equations follow immediately. For the first equation we need to consider
vertices of I1,D0 and leaves of K1,4s as well. Since such vertices have at most one neighbor
which is uniformly distributed among the vertices of Gr (as we have just seen), these must
also be uniformly distributed, using the assigning method of this section. Finally, if y and
y′ are at distance at least five then h(y) and h(y′) define independent, uniformly distributed
random variables, so we obtain what was desired. �

5.3.2. Assigning the vertices of I2 ∪ Î. We have not taken care of all the vertices of D1,

since Î ∩ D1 may not be empty. Let Îs denote the subset of Î that consists of leaves

belonging to K1,4s of H. Note that every K1,4 contributes to Îs with exactly one leaf.
Set I ′2 = {x ∈ I2 : |f(N(x))| = 1}. In order to simplify the discussion regarding the

assignment of the vertices of I ′2 ∪ Îs, we are going to introduce fictive neighbors8 for them.

This goes as follows. Let F denote the set of fictive neighbors of the vertices of I ′2 ∪ Îs.
There is a bijection g : I ′2 ∪ Îs −→ F, every x ∈ I ′2 ∪ Îs has exactly one fictive neighbor

g(x) ∈ F, and every y ∈ F is the fictive neighbor of exactly one x = g−1(y) ∈ I ′2 ∪ Îs.

Denote this expanded graph by H+. We also let IF = I ′2 ∪ Îs.
We are going to distribute the vertices of F among the Li sets randomly: for every

y ∈ F we randomly, uniformly, independently from the other choices pick an index j ∈
{1, . . . , h(N(g−1(y))) − 1, h(N(g−1(y))) + 1, . . . , ℓ}, assign y to Vj , and also let h(y) = j.
With introducing fictive neighbors and distributing them randomly we have in fact achieved
that every vertex of IF behaves as it were from I2 − I ′2.

8We are not going to embed the fictive vertices, these are used only for assigning their neighbors in

I ′2 ∪ Îs.
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After these preparations we are ready to discuss the distribution of the vertices of I2∪IF
to vertices of the reduced graph in a balanced way. This is a significantly harder task than
the assignment of I−I2−IF , which was considered before. For that we will use proportional
(or many-to-one or star) and strong proportional matchings (this method was perhaps used
first in [11], and also played important role in [9]) in appropriately defined auxiliary graphs.

Definition 5.7 (proportional matching [11]). Let F(R,S) be a bipartite graph with |S| =
q|R| for some positive integer q. We say that M ⊂ E(F(R,S)) is a proportional matching
if every v ∈ R is adjacent to exactly q vertices in S and every u ∈ S is adjacent to exactly
one v ∈ R in M.

The following claim is a simple consequence of the König-Hall marriage theorem.

Claim 5.8 (Proportional König-Hall). We have a proportional matching in the graph
F(R,S) defined above if and only if |NF (A)| ≥ q|A| for every A ⊂ R.

Proof. The proof is very similar to a part of the proof of Proposition 3.8. We construct
a new bipartite graph F ′, one vertex class of it is S, the other is R′, the latter is the
blown-up R. That is, for every v ∈ R we will have q copies, v1, . . . , vq ∈ R′. We have an
edge viu ∈ E(F ′) for vi ∈ R′ and u ∈ S if and only if vu ∈ E(F), where vi is a copy of v.
It is clear that a perfect matching in F ′ is a proportional matching in F and vice versa,
and the König-Hall conditions for F ′ translate to the proportional König-Hall conditions
of the claim. �

We are going to need an auxiliary bipartite graph.

Definition 5.9 (Λ1-graph). The Λ1 = Λ1(Gr) graph is a bipartite graph having vertex

classes V (Gr) and S =
(
V (Gr)

2

)
, that is, S is the set of all unordered 2-element subsets of

V (Gr). We have an edge WS ∈ E(Λ1) for W ∈ V (Gr) and S ∈ S if and only if W is
adjacent to both vertices of S in Gr.

The lemma below is a special case of Lemma 20 in [9].

Lemma 5.10. There is a proportional matching M1 in Λ1.

Proof. We are going to check the proportional König-Hall conditions given in Claim 5.8.

• Let W ∈ V (Gr) be an arbitrary vertex. By the minimum degree condition on Gr

we have that W is adjacent to at least
(
2

3
(1− 14d)

)2

|S| − o(|S|) > 0.4|S|

pairs in S (count the number of pairs in NGr(W )).
• Next we take an arbitrary set A ⊂ V (Gr) with |A| = 0.4ℓ. Then any U ∈ V (Gr)
will have a neighbor in A. Say, W ∈ A such that UW ∈ E(Gr). Then for every
U ′ ∈ NGr(W ) the (U,U ′) pair is adjacent to W, hence,

|NΛ1(A)| ≥
2

3
(1− 14d)|S|.
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• Assume that A ⊂ V (Gr) with |A| = 2
3(1−14d)ℓ. Consider an auxiliary graph F with

vertex classes A and V (Gr), where for a W ∈ A and a U ∈ V (Gr) we have WU ∈
E(F ) if and only if WU ∈ E(Gr).We get that e(F ) ≥ |A| ·δ(Gr) ≥ (23 (1−14d))2ℓ2.
Using this lower bound for e(F ) simple calculation shows that more than 30% of
the vertices of V (Gr) must have more than (1/3 + 100d)ℓ neighbors in A.

It is easy to see that if a vertexW ∈ V (Gr) has more than (1/3+100d)ℓ neighbors
in A, then for every U ∈ V (Gr) the (W,U) ∈ S pair is adjacent to some vertex of
A. This implies that |NΛ1(A)| ≥ 0.7|S|.

• Finally, let A ⊂ V (Gr) with |A| = 0.7ℓ. Then every (W,W ′) ∈ S is a neighbor of
some U ∈ A, therefore, NΛ1(A) = S.

�

We need another kind of matching about which we demand that it “distributes” the
vertices at least slightly more evenly.

Definition 5.11 (strong proportional matching). Let µ be a real such that 0 < µ < 1. We
say that Λ1 allows a strong proportional matching with respect to µ if there is a proportional
matching in the following bipartite graph Λ2 = Λ2(Λ1). Its color classes are V (Gr) and S ′,
where we obtain S ′ from S in the following way. For every element U ∈ S we add ℓ

µ copies

U1, . . . , U ℓ
µ
to S ′, hence, |S ′| = |S| · ℓ/µ. If NΛ1(U) = {W1, . . . ,Wt} then we will have the

following edges: (Ui,Wi) for 1 ≤ i ≤ t, and (Uj ,Wi) for 1 ≤ i ≤ t and t < j ≤ ℓ
µ . In other

words, the first t copies of U have degree 1, while the others have the same degree, t. We
will refer to Λ2 as the Λ2-graph of Gr.

Claim 5.12. Let Λ1 and Λ2 be graphs as above. If A ⊂ V (Gr) then

|NΛ1(A)|(1 − µ)

|S| ≤ |NΛ2(A)|
|S ′| .

Proof. If U ∈ NΛ1(A) then Uℓ+1, . . . , U ℓ
µ
∈ NΛ2(A), therefore

|NΛ2(A)| ≥ ℓ

(
1

µ
− 1

)
|NΛ1(A)|.

Recall that |S ′| = |S| · ℓ/µ, so the claim follows. �

Using this fact we can prove the existence of a strong proportional matching relatively
easily, using the existence of a proportional matching in Λ1. We set the parameter µ: let
µ = ν (= 4

√
d− ε), then 0 < ε, d≪ µ≪ 1. We have the following.

Lemma 5.13. The Λ2-graph of Gr has a proportional matching, hence, Λ1 allows a strong
proportional matching M2.

Proof. Note that q = |S ′|/ℓ = |S|/µ. Let A ⊂ V (Gr) be arbitrary. We are going to show
that

|NΛ2(A)|
|S ′| ≥ |A|

ℓ
,

which implies the existence of the desired strong proportional matching in Λ2.
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• Suppose first that |A| ≤ (1− µ)ℓ. One can see from the proof of Lemma 5.10 that

|NΛ1(A)|
|S| ≥ (1 + 2µ)

|A|
ℓ

since µ is small. Then we can use Claim 5.12 and get that

|NΛ2(A)|
|S ′| ≥ (1− µ)(1 + 2µ)

|A|
ℓ
>

|A|
ℓ
.

• Assume now that |A| > (1 − µ)ℓ. Observe first, that every S ∈ S that has degree
larger than 1 is adjacent to some Vi ∈ A. Let W ∈ V (Gr)−A. Then S ′ contains at
most |S| elements that are adjacent to W in Λ2 and have degree 1. Hence, overall
S ′ has at most (|V (Gr)−A|) · |S| elements that are not adjacent to some vertex of
A in Λ2. Hence,

|NΛ2(A)|
|S ′| ≥ 1− µ

(
1− |A|

ℓ

)
≥ 1− µ ≥ |A|

ℓ
,

since

|S| · ℓ/µ− |S|(ℓ− |A|) = |S ′|(1− µ+ µ|A|/ℓ).
�

Let us first discuss the assignment of the vertices of (I2∪IF )− Î1. Consider the Λ1-graph
of Gr and apply Lemma 5.10. Recall that M1 denotes the proportional matching of Λ1

and M2 denotes the strong proportional matching. Assume that x ∈ (I2 ∪ IF ) − Î1 and
h(NH+(x)) = {i, j}. Denote Vk ∈ V (Gr) the cluster to which the pair (Vi, Vj) is matched
in M1. Then we let f(x) = Vk and h(x) = k.

It is more complicated to assign vertices of Î1 to the Li sets. Let i, j be fixed indices

such that 1 ≤ i < j ≤ ℓ. Define the following subset of Î1 :

Î1(i, j) =
{
x ∈ Î1 : h(NH+(x)) = {i, j}

}
.

Notice that Î1(i, j) contains those vertices of Î1 that have their neighbors in Li and Lj .

Next take a random equipartition of Î1(i, j) into the disjoint sets S1, . . . , Sℓ/µ. That is,

Î1(i, j) = S1 ∪ . . . ∪ Sℓ/µ,
and ||St| − |Sr|| ≤ 1 for every 1 ≤ t, r ≤ ℓ/µ, where the St sets are random subsets. For
example, one can find this random partition in the following way: take uniformly at random

a permutation π on Î1(i, j). Next take consecutive segments of lengths ⌊µ|Î1(i, j)|/ℓ⌋ or

⌈µ|Î1(i, j)|/ℓ⌉, starting from the first element of Î1(i, j) according to π. The elements of
the t-th segment will be the set St.

If the t-th copy of (Vi, Vj) is matched to Vk in M2 then we let f(x) = Vk and h(x) = k
for every x ∈ St. We repeat the above for every i, j pair.

Since adjacent vertices of H+ are assigned to adjacent vertices of Gr, with this we have
found a homomorphism f : V (H) −→ V (Gr). What is left is to prove that f is balanced.
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Lemma 5.14. Let A ⊆ V (H) and k ∈ {1, . . . , ℓ} be arbitrary. Then

Pr

(∣∣∣∣|A ∩ Lk| −
|A|
ℓ

∣∣∣∣ ≥ n3/4
)

≤ 1√
n
.

Proof. Let {x1, . . . , xa} denote the vertices of A (hence |A| = a). We define indicator
random variables X1, . . . ,Xa such that for every i ∈ {1, . . . , a} we have Xi = 1 if and only
if h(xi) = k. Set X =

∑
iXi. It is easy to see that X = |A ∩ Lk|. Our first goal is to show

the following.

Claim 5.15. The expected number of vertices of A assigned to Lk is EX = |A|
ℓ .

Proof. (of the Claim) We show that EXi = 1/ℓ for every i. Whenever xi ∈ A− I2 − Î this
is an immediate consequence of Lemma 5.6.

Assume now that xi ∈ A ∩ (I2 − I ′2 − Î), and denote the neighbors of xi by y and y′.
By Lemma 5.6 we have that the (h(y), h(y′)) pair is uniformly distributed in the set of
all possible two-element subsets of {1, . . . , ℓ}. For finding h(xi) we use the proportional
matching M1. Since every vertex of Gr has the same degree, (ℓ − 1)/2 in M1 and every

pair has degree 1, we get that EXi = 1/ℓ in this case, too. The case when xi ∈ A∩ (I ′2− Î)
is very similar. Since the non-fictive neighbors of xi are assigned to a randomly, uniformly
chosen vertex of Gr by Lemma 5.6, the fictive neighbor must also be uniformly distributed.

Hence, the argument we used for vertices from I2 − I ′2 − Î works here as well.

Assume that xi ∈ A ∩ (Î − Î1). For assigning such an xi we use M1, and since the

neighbors (fictive or non-fictive) of xi are uniformly distributed in
(V (Gr)

2

)
, similarly to

previous cases we conclude that h(xi) is uniformly distributed.

Finally, assume that xi ∈ A∩ Î1. As before, we know that its neighbors are uniformly dis-

tributed in
(V (Gr)

2

)
. Recall the definition of the Î1(i, j) sets. When distributing the vertices

of Î1 using the strong proportional matching we first divide the Î1(i, j) sets randomly into
ℓ/µ subsets, this procedure is independent from the random distribution of the vertices in

V (H) − I. Since the probability that xi ∈ Î1(i, j) is exactly 1/
(
ℓ
2

)
, we get that h(xi) = k

with probability 1/ℓ when using M2 for finding the function h. Hence, h(xi) is uniformly
distributed in this case, too.

Since EXi =
1
ℓ for every i, using linearity of expectation finishes the proof of the claim.

�

In order to finish the proof of the lemma we need a simple claim, a direct consequence
of Chebyshev’s inequality.

Claim 5.16. Let k, s ∈ N be fixed such that s ≥ k. Assume that Z1, . . . , Zs are indicator
random variables such that Pr(Zi = 1) = p for every i. Assume further that every Zi is
independent from at least s− k other indicator variables. Set Z =

∑
i Zi. Then

Pr(|Z − E[Z]| ≥ λ
√

(k + 1)sp) ≤ 1

λ2

for every λ > 0.
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Proof. (of the Claim) We estimate Var[Z] as follows:

Var[Z] =
∑

i

Var[Zi] +
∑

i 6=j

(E[ZiZj ]− E[Zi]E[Zj ]).

Let’s consider the terms of the first sum:

Var[Zi] = E[Z2
i ]− E

2[Zi] = p− p2 ≤ p

holds for every i. Next we consider the covariances. Whenever Zi and Zj are independent,
we have that E[ZiZj ] − E[Zi]E[Zj ] = 0. When they are not independent, we will use the
following bound:

E[ZiZj]− E[Zi]E[Zj] ≤ E[Zi]− E[Zi]E[Zj ] = p− p2 ≤ p

which holds for every i and j. Putting these together we obtain that Var[Z] ≤ (k + 1)sp.
Applying Chebyshev’s inequality finishes the proof. �

Now let xi and xj be two vertices of A−Î1. Observe that ifXi andXj are not independent
random variables then there exists a component P of H − I such that xi, xj ∈ V (P ) ∪
NH(V (P )). By Lemma 5.2 we have that if x, x′ ∈ V (P ) ∪NH(V (P )) then dist(x, x′) ≤ 4,
hence, for each x ∈ V (H) there are less than 34 vertices with distance at most 4. Set
λ = 2 4

√
n then Claim 5.16 implies that

Pr

(∣∣∣∣∣|(A− Î1) ∩ Lk| −
|A− Î1|

ℓ

∣∣∣∣∣ ≥
n3/4

2

)
≤ 1

2
√
n
.

Finally, we discuss the vertices in A ∩ Î1, which is a slightly more complicated case.
Consider a pair of indices (s, t) such that VsVk, VtVk ∈ E(Gr) (therefore, a copy of the
(Vs, Vt) pair is matched to Vk in the strong proportional matching M2). The random

variables that correspond to xi ∈ A ∩ Î1 are independent, since Î1 contains only such
vertices that are at distance at least 5 from each other. We get that

Pr

(∣∣∣∣∣|A ∩ Î1(s, t)| −
|A ∩ Î1|(

ℓ
2

)
∣∣∣∣∣ >

√
n log n

)
<

1

n
,

here we used the Chernoff bound (see e.g. [3]) for the case |A ∩ Î1| ≥
√
n log n, and the

trivial bound
√
n log n if A∩ Î1 is too small. This implies that after distributing the vertices

of Î1 using M2, the following will hold with probability at least 1/(2
√
n): the number of

vertices of A∩ Î1 assigned to Lk differs from its expectation by at most n3/4/2. This proves
the lemma. �

We also get the following:

Corollary 5.17. For every W ∈ V (Gr) we have | |f−1(W ) − F | − n/ℓ| = O(n3/4) with

probability at least 1− ℓ/n1/4.
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5.4. Finishing the embedding. In this section we will apply the Modified Blow-up
lemma (Theorem 4.10 in this paper) in order to embed a non-triangular extreme graph
H. Recall, that H is non-ν-triangular extreme, if it contains less than (1 − ν)n/3 vertex
disjoint triangles, where d≪ ν ≪ 1. The Modified Blow-up lemma has several conditions,
we will go through each of them to verify that they are satisfied.

Whenever it is possible, we will refer to lemmas, claims of [9], since the Modified Blow-
up lemma was introduced in that paper, moreover, proportional and strong proportional
matchings were used for distributing vertices among clusters of the host graph, exactly like
in the present paper.

An “almost final” partition of V (G), required by the Modified Blow-up lemma, is nat-
urally given by applying the Regularity Lemma and then preprocessing of Gr in Lemma
5.1. The exceptional set is V0, the Vi sets for 1 ≤ i ≤ ℓ are the non-exceptional clusters.
It is possible that we need to move around a small proportion of the vertices of G among
the clusters.

A provisional partition V (H) = L1∪ . . .∪Lℓ is provided by the balanced homomorphism
f : V (H) −→ V (Gr) of Section 5.3. Recall, that Li = f−1(Vi). It is clearly temporary,
since L0 is empty at this point.

5.4.1. Bad vertices in G – preparation for conditions C8 and C9. By definiton of the
reduced graph, if ViVj ∈ E(Gr) then the (Vi, Vj) pair is ε-regular. However, Vi may have
up to εm vertices that has only a small number of neighbors in Vj , or even no neighbor at
all (of course, similar holds for Vj). In order to avoid problems that may be caused by this,
we will discard a few vertices from the non-exceptional clusters, and place them into V0.

The procedure we use for determining the vertices to be placed to V0 is based on the
following notion. Given the proportional matching M1 provided by Lemma 5.10, for every
1 ≤ i ≤ ℓ let Si denote the set of pairs matched to the non-exceptional cluster Vi in M1.

We say that a vertex9 v ∈ V (G) − V0 has α-small degree to a pair S ∈
(
V (Gr)

2

)
, if v has

less than (d− α)m neighbors in at least one of the clusters of S. A vertex v ∈ Vi is called
α-bad, if v has α-small degree to at least |Si|/2 pairs in Si. The lemma below is from [9]
(can be found as Lemma 4.7), we omit the proof.

Lemma 5.18. By removing exactly 4εm appropriately chosen vertices from every non-
exceptional cluster of G′ we can achieve that no 6ε-bad vertices will remain in them.

Corollary 5.19. After performing the above procedure the edges of Gr will represent 2ε-
regular pairs with density at least d− 4ε, moreover,

3εn < 4εℓm ≤ |V0| ≤ 4εmℓ+ 14dn < 15dn.

5.4.2. Forming L0 and satisfying conditions C1, C2, C3, C4, C6 and C7. By Lemma 5.14

we have that ||Îj ∩ Li| − |Îj |/ℓ| = o(n) for every 1 ≤ i ≤ ℓ and j = 1, 2, 3 with high

probability. The sets Î1, Î2 and Î3 will be used for different purposes. In this section we

show how to fill up L0 with vertices of Î1.

9An ordinary vertex of G, not a cluster.
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First, take a random subset Ri ⊂ Î1∩f−1(Vi) of size
10 |Li|− |Vi| for every 1 ≤ i ≤ ℓ, and

let L0 = R1∪ . . .∪Rℓ. Clearly, we have achieved that |L0| = |V0|, |L1| = |V1|, . . . , |Lℓ| = |Vℓ|
since v(H) = v(G).

At this point C1 is satisfied by Remark 5.19, C2 and C3 hold by definition and C6 is
satisfied since the components of G− I are distributed randomly among Li sets so that if
xy ∈ E(H) for x, y ∈ V (G)− I, then Vh(x)Vh(y) ∈ E(Gr), and the vertices of I are assigned
to Li sets using proportional and strong proportional matchings.

The following lemma proves that C4 holds with high probability.

Lemma 5.20. For every 1 ≤ i ≤ ℓ we have |NH(L0) ∩ Li| ≤ 3|L0|/ℓ = 3|V0|/ℓ < 50dm
with high probability.

Proof. Fix an arbitrary index i ∈ {1, . . . , ℓ}. We have

|Rj | = |Lj | − |Vj | ≤ ℓ2n3/4 +
|V0|
ℓ

for each 1 ≤ j ≤ ℓ by Lemma 5.14. Therefore if x ∈ Î1 ∩ Lj then

Pr(x ∈ Rj) =
|Rj |

|Î1 ∩ Lj|
≤

|V0|
ℓ + ℓ2n3/4

|Î1|
ℓ − ℓ2n3/4

≤ |V0|
|Î1|

(1 + ε),

the first inequality follows from Lemma 5.14, the second inequality holds because |V0| ≥ 3εn

by Lemma 5.18 and Corollary 5.19 and |Î1| ≥ νn/40 by Claim 5.5. So if x ∈ Î1 then

px = Pr(x ∈ L0) ≤ |V0|

|Î1|
(1 + ε).

For each x ∈ Î1 we define a random variable: Zx = |NH(x) ∩ Li| if x is chosen for L0

and 0 otherwise. Note that 0 ≤ Zx ≤ 2. Clearly Z =
∑

x∈Î1
Zx = |NH(L0) ∩ Li|. Let us

estimate the expectation of Z.

E(Z) =
∑

x∈Î1

E(Zx) =
∑

x∈Î1
|NH(x)∩Li|=1

px +
∑

x∈Î1
|NH(x)∩Li|=2

2px

≤ |NH(L0) ∩ Li| ·
|V0|
|Î1|

(1 + ε)

≤ |NH(Î1)|
ℓ

(1 + ε) · |V0|
|Î1|

(1 + ε) ≤ 2|V0|
ℓ

(1 + ε)2,

where the last two inequalities come from Lemma 5.14 and the fact that |NH(Î1)| ≤ 2|Î1|.
Observe that if x, y ∈ Î1 then E(ZxZy) ≤ E(Zx)E(Zy). It is also clear that V ar(Zx) ≤

10Recall that we chose ε, d and ν such that ε ≪ d ≪ ν. One can see that |Î1 ∩ f−1(Vi)| > |Li| − |Vi| is
always satisfied by Claim 5.5 and Lemma 5.18.



EMBEDDING GRAPHS HAVING ORE-DEGREE AT MOST FIVE 23

4px(1− px) for every x ∈ Î1 using the definition of variance. Therefore

V ar(Z) =
∑

x∈Î1

V ar(Zx) +
∑

x,y∈Î1, x 6=y

(E(ZxZy)− E(Zx)E(Zy))

≤
∑

x∈Î1

V ar(Zx) ≤
∑

x∈Î1

4px(1− px) < n.

Applying the Chebyshev inequality we get that

Pr(|Z − E(Z)| ≥ λ
√
n) ≤ 1

λ2
.

Substituting λ = 4
√
n proves the lemma. �

Since we may not have condition C7 at this point, further work is required. Recall the
index function h. Let us fix an arbitrary bijective mapping ψ0 : L0 −→ V0. For all x ∈ L0

we have to check whether condition C7 of the Blow-up Lemma holds, that is, we need
that degG′(v, Vh(y1)),degG′(v, Vh(y2)) ≥ cm, where y1, y2 are the two neighbors of x and
v = ψ0(x).

If this condition does not hold for some x then a switching will be performed. Switching
goes as follows. First, uniformly at random we pick a cluster Vi from the common neigh-
borhood of Vh(y1) and Vh(y2). Note that this common neighborhood contains more than ℓ/4
clusters (in fact almost ℓ/3 clusters even in the worst case).

Then locate a vertex x′ ∈ Li∩ Î1 such that degG′(v, Vh(y′1)),degG′(v, Vh(y′2)) ≥ cm, where

x′y′1, x
′y′2 ∈ E(H). This is done randomly: we pick uniformly at random a pair of vertices

from the neighborhood of Vi among those into which v has at least cm neighbors. Denote
the set of these vertices of Gr by R. It is easy to see that deg(v, Vj) ≥ cm for at least 5ℓ/9
vertices Vj of Gr, since c is small (we can choose c = 100ν, say), and out of this many
vertices only slightly more than ℓ/3 are ruled out that are not neighbors of Vi. Hence, we
have more than ℓ/5 vertices in R from which we can choose one available pair randomly.

As soon as we have the pair of vertices, say Vj and Vk, the strong proportional matching

we used to distribute Î1 allows us to find an x′ with the property required above. Here is

a brief calculation: |Î1| ≥ νn/150, hence, |Î1(j, k)| ≥ νn/(75ℓ2) (we divided by
(ℓ
2

)
), one

copy of a pair in R therefore “sends” at least νµn/(75ℓ3) vertices of Î1, since the number
of copies is ℓ/µ in the definition of the Λ2 graph.

The number of copies of available pairs in R is at least
(ℓ/5

2

)
≈ ℓ2/50. Hence, the number

of candidates for switching is larger than νµn/(4000ℓ) for every x ∈ L0 for a given Vi. Since
we chose Vi from the common neighborhood of Vh(y1) and Vh(y2), overall we have at least
about νµn/12000 candidates for the vertices of L0. Hence if we choose ν, µ and d such that

d ≪ νµ ≪ 1, then we can perform the switching. Since we have ν = µ ≈ 4
√
d, we do not

get stuck when switching.
Once we have x′, we will switch the roles of x and x′, that is, we let Li = Li + x − x′,

L0 = L0 − x+ x′ and ψ0(x
′) = v. It is clear that we have condition C7 for x′, and that we

reassigned x to Li so that we did not violate other conditions of the Blow-up Lemma.
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The above calculation shows that we do not get stuck during switching even if every
vertex of L0 has to be switched. The randomness in the procedure also guarantees that
condition C4 will hold at the end. The lemma below is proved (in two separate statements,
Lemma 4.8 and Lemma 4.9) in [9]:

Lemma 5.21. Using the above switching procedure, for every x ∈ L0 one can find an

x′ ∈ Î1 − L0 so that at the end of switching for every 1 ≤ k ≤ ℓ with high probability we
have that

|Lk ∩NH(L0)| ≤ Kdm

where K ≤ 15000.

It is easy to see that conditions C1, C2, C3 and C6 are kept during the switching
procedure.

5.4.3. Condition C5. In order to satisfy condition C5 we find a set B ⊂ Î2. Recall that in

Î2 vertices have their neighbors in two different Li-sets (one of these neighbors could be a
fictive one). In the beginning let B = ∅.

Let (Vi, Vj), i 6= j be a pair of clusters and consider the set

Si,j = Î2 ∩NH+(Li) ∩NH+(Lj).

The vertices of Si,j were assigned to clusters using the proportional matching Λ1. Pick

δmℓ/
(ℓ
2

)
vertices from Si,j arbitrarily and place them into B. Repeat the above step for

every possible cluster pair. Finally, let Bi = B ∩ Li for all 1 ≤ i ≤ ℓ. It is easy to see that
the following lemma holds, we omit the proof:

Lemma 5.22. We have |Bi| = δm and |NH(B) ∩ Li| = 2δm.

Hence if we determine B and the Bi sets using the above procedure we can satisfy
condition C5.

5.4.4. Conditions C8 and C9. We briefly explained the role of conditions C8 and C9 right
after the Modified Blow-up lemma. As above, we will refer to a lemma11, Lemma 4.11
in [9] which proves that conditions C8 and C9 are satisfied:

Lemma 5.23. Given arbitrary sets Ei ⊂ Vi such that |Ei| ≤ ε′m, we can find the sets

Fi ⊂ Li ∩ Î3 and bijective mappings ψi : Fi −→ Ei for every 1 ≤ i ≤ ℓ such that the
following hold:
(1) if xy ∈ E(H) with x = ψ−1

i (v) and y ∈ Lj then deg(v, Vj) ≥ (d− 6ε)m,
(2) for F = ∪Fi we have |NH(F ) ∩ Li| ≤ 6ε′m.

With this we have finished proving an important special case of Theorem 2.3 and The-
orem 2.4:

11 Only straightforward modifications were made in the notation, that is, we use ε′ instead of ε′′ and Î3
instead of B′

2.
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Proposition 5.24. There exist positive numbers γ, ν, n0 such that if n > n0 and θ(H) ≤ 5
for a graph H of order n that is not ν-triangular extreme, and δ(G) ≥ (2/3 − γ)n for any
graph G of order n then H ⊂ G.

Let us emphasize that according to the above result, if H has relatively many vertices
that do not belong to triangles, then H ⊂ G even if δ(G) is somewhat smaller than 2n/3.
It does not even matter whether G is extremal or not. Basically, the reason of this is that
if H is not extremal then we can distribute a non-negligible number of vertices by the help
of the strong proportional matching and can use switching when necessary, so we can fill
up L0. If H were extremal, we could still embed the vast majority of it into G, but perhaps
some vertices would be left uncovered in V0.

6. Embedding in the triangular extreme case

In order to embed a triangular extreme H into G we will consider two cases. In the
first one we assume that G is not η-extremal, while in the second case G is an η-extremal
graph. The second case is considerably more complicated than the first one. In particular,
it has three more subcases depending on the structure of G. Observe that with finishing
the proof of the first case we will in fact finish proving Theorem 2.4 as well, and in the
second case we will have Theorem 2.3.

Denote the set of vertices of H belonging to a triangle by V∆′ , and the set of vertices
belonging to a triangle containing only vertices having exactly 2 neighbors by V∆. Clearly,
V∆ ⊂ V ′

∆, the subgraph H[V∆] consists of a triangle factor, moreover, if x ∈ V∆, y ∈ V (H),
and y do not belong to the triangle of x then xy 6∈ E(H).

Lemma 6.1. If H is ν-triangular extreme, then |V∆| ≥ n(1− 7ν).

Proof. By the definition of triangular extremality we have

|V∆′ | ≥ n(1− ν).

If v ∈ V∆′ and degH(v) = 3 then it must be adjacent to a vertex in V (H)−V∆′ , moreover,
a vertex in V (H)− V∆′ is adjacent to at most 2 vertices in V∆′ , so there are at most 2νn
vertices in V∆′ with degree 3, therefore

|V∆| ≥ n(1− ν − 3 · 2ν)
= n(1− 7ν).

�

6.1. Non-extremal host graphs. In this section we assume that G is not η-extremal
with η = (8ν)1/1000 +126ν, δ(G) ≥ (2/3− γ)n, and H is ν-triangular extreme (recall, that
ν = 4

√
γ). Let H ′ = H − V∆. By Lemma 6.1 we have that v(H ′) ≤ 7νn.

We give an itemized list of the embedding algorithm in this case.

Step 1. Add n− v(H ′) fictive isolated vertices to H ′, and apply Proposition 5.24

in order to embed this new graph into G. Denote Ĝ the subgraph of G which is

spanned by those vertices that are covered by the fictive vertices. Clearly, if Ĝ
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contains v(Ĝ)/3 vertex disjoint triangles, then we are done, so we will focus on
finding these triangles in the sequel.

Step 2. Let us first estimate the minimum degree of Ĝ from below:

δ(Ĝ) ≥ δ(G) − v(H ′) ≥ (2/3 − γ − 7ν)n ≥ (2/3 − 8ν)v(Ĝ).

Next we show that Ĝ is not η′-extremal for η′ = η − 7ν. Let A ⊂ V (Ĝ) with

|A| = v(Ĝ)/3. Then

e(Ĝ[A]) ≥ e(G[A]) − 7νn2 ≥ (η/18 − 7ν)n2 ≥ η′v(Ĝ)2/18.

Step 3. By the above we obtained that δ(Ĝ) ≥ (2/3 − 8ν)v(Ĝ) and Ĝ is η′-non-

extremal, where η′ = (8ν)1/1000. Hence we may apply Theorem 4.12 in order to find

the desired triangle factor in Ĝ.

With this we finished proving the following.

Lemma 6.2. Let H be a ν-triangular extreme graph on n vertices with θ(H) ≤ 5, and let
G be an η-non-extremal graph on n vertices with minimum degree δ(G) ≥ (2/3− γ)n. If n
is sufficiently large then H is a subgraph of G.

6.2. Extremal host graphs. Our goal in this section is to prove the following.

Lemma 6.3. There exists an n0 such that if n > n0, θ(H) ≤ 5 for a ν-triangular extreme
graph H of order n and δ(G) ≥ 2n/3 for an η-extremal graph G of order n with η ≤
(8ν)1/1000 + 126ν then H is a subgraph of G.

Note that with the above lemma we will finish the embedding of H into an extremal G.
Before starting to prove it, we need to know more about the structure of G. For that let
us consider a (µ, 2)-non-extremal graph G1 on N vertices (0 < µ < 1 is a constant) such
that N is even and

δ(G1) ≥ N/2− αN

where α ≤ µ/10. We are going to prove the following.

Lemma 6.4. Let G1 be as above. Then either G1 has a perfect matching, or it has the
following structure. Its vertex set can be divided into the disjoint subsets V1 and V2 such
that V (G1) = V1 ∪ V2, |V1| = |V2| = N/2, and e(G1[V1, V2]) ≤ 3αN2.

Proof. Assume that the largest matching M in G1 has less than N/2 edges, we will heavily
use this assumption on the maximality of M throughout the proof. We are going to prove
that the required partition of V (G1) exists.

Given any vertex a ∈ V (M), we let M(a) denote its neighbor in M, that is, aM(a) ∈M.
Denote u and v any two vertices that are not covered by M. We divide the set of edges of
M into six disjoint, not necessarily non-empty sets, based on how they are connected to u
and v.

• Let M1 denote those w1w2 edges for which uw1, uw2 ∈ E(G1), that is, V (M1) ⊂
NG1(u). Since M is maximal, v has no neighbor in V (M1).
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• Let M2 denote the set of those w1w2 edges in which u has exactly one neighbor,
moreover, v has no neighbor in V (M2).

• Next let M3 denote the set of those edges in which both u and v has a neighbor.
By the maximality of M they can have exactly one neighbor in all the edges of M3.
In fact, the maximality of M implies that NG1(u) ∩ V (M3) = NG1(v) ∩ V (M3).

• Let M4 denote the set of those edges of M that has exactly one vertex that is
adjacent to v (and has no neighbor of u).

• Let M5 denote the set of those edges of M for which V (M5) ⊂ NG1(v) (hence no
vertex of V (M5) is adjacent to u by maximality).

• Finally, letM6 denote the set of those edges for which V (M6)∩(NG1(u)∪NG1(v)) =
∅.

Let us set mi = |Mi| for every 1 ≤ i ≤ 6, hence, N ≥ 2(m1 + . . . + m6), since there
are unmatched points in V (G1). We decompose the proof of the lemma into several simple
claims.

Claim 6.5. Let S2 = NG1(u) ∩ V (M2) and S4 = NG1(v) ∩ V (M4). Then G1 has no edges
between M(S2) and M(S4).

Proof. If there were an edge betweenM(S2) andM(S4), we could find an augmenting path
for M, contradicting to the maximality of M. �

Claim 6.6. We have m6 ≤ αN.

Proof. Using the definition of the Mi sets and the fact that there are no edges between
unmatched points we get that

N/2 − αN ≤ degG1
(u) ≤ 2(m1 +m2) +m3

and

N/2− αN ≤ degG1
(v) ≤ 2(m4 +m5) +m3.

Summing up the two inequalities we get that

N − 2αN ≤ 2(m1 +m2 +m3 +m4 +m5) ≤ N − 2m6,

from which the claim follows. �

Claim 6.7. We have M3 = ∅.
Proof. Assume thatM3 6= ∅. First we show that m3 ≤ N/2−µN. By the maximality of M,
the subset S ⊂ V (M3) that consists of the non-neighbors of u and v must be an independent
set, otherwise we could find an augmenting path for M. Since G1 is (µ, 2)-non-extremal,
simple calculations shows that m3 cannot have more than N/2− µN edges.

Next let w ∈ V (M3)−NG1(u). By the maximality of M we get that w has no neighbor
in the following subsets: V (M3)−NG1(u), V (M1)∪V (M5), V (M2)−NG1(u) and V (M4)−
NG1(v). Since w cannot have any unmatched neighbor, we get the following

N

2
− αN ≤ degG1

(w) ≤ m2 +m3 +m4 + 2m6,



EMBEDDING GRAPHS HAVING ORE-DEGREE AT MOST FIVE 28

hence,
N

2
− 3αN ≤ m2 +m3 +m4.

We proved that m3 ≤ N/2 − µN. Since α ≤ µ/10, w must have neighbors in (V (M2) ∩
NG1(u))∪ (V (M4)∩NG1(v)), denote S this neighborhood. By the maximality of M the set
M(S) ∪M(NG1(u) ∩ V (M3)) must be an independent set. However, this set has at least
N/2−3αN vertices, as we have just seen. This contradicts with the (µ, 2)-non-extremality
of G1. Hence M3 = ∅. �

Claim 6.8. m2 +m4 ≤ 2αN.

Proof. Since M3 = ∅, we get that 2m1+m2 ≥ N/2−αN and 2m5+m4 ≥ N/2−αN, here
the first inequality follows from the degree bound of u, the second follows from the degree
bound of v. We also have that

N ≥ 2(m1 +m2 +m4 +m5) ≥ N − 2αN.

Subtracting the first two inequalities from the last one we obtain what was desired. �

Finally, we find the claimed partition of V (G1). First let V1 = V (M1) ∪ V (M2) ∪ {u}
and V2 = V (M4) ∪ V (M5) ∪ {v}. Observe that we can only have two unmatched points, u
and v, otherwise for u, v 6= w 6∈ V (M)

degG1
(w) ≤ 2|M | − (2m1 +m2 +m4 + 2m5) = m2 +m4 + 2m6 ≤ 4αN < δ(G1).

Clearly |Vi| > N/2 − αN (i = 1, 2). If |Vi| > N/2 then move |Vi| −N/2 points from Vi
to V3−i (i = 1, 2). Denote the set of the moved points by W. Then we distribute V (M6)
among V1 and V2 so that the resulting sets have equal size. With this we have found the
partition of V (G1).

Next observe that if v1v2 ∈ E(G1[V1, V2]) (so it is a crossing edge), then either v1 or v2
belongs to V (M2)∪V (M4)∪V (M6)∪W using the maximality ofM. Since the total number
of vertices of this union of sets is at most 5αN, we get that e(G1[V1, V2]) ≤ 5

2αN
2 < 3αN2,

what was desired. �

Proof. (of Lemma 6.3) First we write n in the form n = 3k + r, where r ∈ {0, 1, 2}. Since
G is η-extremal, there exists a set A ⊂ V (G) such that |A| = k and e(G[A]) ≤ ηn2/18. Set
B = V (G)−A, and also set µ = 10000

√
η.

We consider three cases in the proof of the lemma.

Case 1: G[B] is (µ, 2)-non-extremal, and for all B1 ⊂ B, |B1| = k+ ⌊r/2⌋ we have
that

e(G[B1, B −B1]) ≥ µn2.

Case 2: G[B] is (µ, 2)-non-extremal, and there exists a set B1 ⊂ B, |B1| = k+⌊r/2⌋
such that

e(G[B1, B −B1]) < µn2.

Case 3: G[B] is (µ, 2)-extremal.
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The proof of Lemma 6.3 is relatively simple when there are no “exceptional” vertices and
H consists of n/3 vertex disjoint triangles. For example, let us consider Case 1 in such an
ideal setup: A is an independent set of size k, B has exactly 2k vertices, G[A,B] = Kk,2k,
δ(G[B]) ≥ k and H has n/3 triangles. Then we can find a perfect matching M in G[B]
easily, since the minimum degree is sufficiently large in it. Next construct an auxiliary
bipartite graph F with vertex classes A and M. A vertex u ∈ A is adjacent to vw ∈M in
F if and only if uv, uw ∈ E(G). It is clear that F has a perfect matching as G[A,B] = Kk,2k.
Since every edge of F translates to a triangle of G, the existence of a perfect matching in
F implies the existence of a triangle factor in G, and this is what we wanted to prove.

However, H may contain other structures, not only triangles, even though most of H
consists of vertex-disjoint triangles. Furthermore, our assumptions on the structure of G
are approximate. For example, in Case 1 a randomly chosen vertex of A is expected to
have almost all of its neighbors in B. However, A may contain some vertices that have
perhaps only a bit more than k neighbors in B, and similarly, B may also contain some
vertices that have only a few neighbors in A. In general, we will call a vertex exceptional
whenever its neighborhood differs a lot from what we expect in case we choose a vertex
randomly, according to the structure of G. For all the three cases above we give rigorous
definitions for the exceptional sets.

We try to avoid having unnecessary complications, and therefore apply preprocessing
methods that may reduce the number of exceptional vertices, and more importantly af-
ter preprocessing we can have structural assumptions on the distribution of exceptional
vertices. One of the preprocessing algorithms follows below, it is needed in all the three
cases.

Preprocessing #1:

If A contains a vertex u and B contains a vertex v such that

deg(u,A) + deg(v,B) > deg(u,B) + deg(v,A),

then we switch the two vertices, that is, we let A = A−u+ v and B = B− v+u. We stop
when such vertices cannot be found. Since in every step the number of edges between A
and B increases, Preprocessing #1 stops in a finite number of steps.

Let us define two subsets of exceptional vertices:

A′ =

{
v ∈ A : degG(v,B) <

4n

9

}
,

B′ =

{
v ∈ B : degG(v,A) <

2n

9

}
.

Claim 6.9. Apply Preprocessing #1. If A′ 6= ∅ then B′ = ∅.

Proof. Simple calculation shows the claim using the definition of A′ and B′. �
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Of course this also means that if B′ 6= ∅ then A′ = ∅. We also need the following
definitions of other kind of exceptional vertices:

A′′ =

{
v ∈ A−A′ : degG(v,B) ≤ 2n

3
− 10η1/2n

}
,

B′′ =
{
v ∈ B −B′ : degG(v,A) ≤

n

3
− 10η1/2n

}
.

One may say that the vertices in A′′∪B′′ are “less exceptional” but still need some extra
attention.

Claim 6.10. We have the following upper bounds: |A′| ≤ ηn, |B′| ≤ 3ηn, |A′′| ≤ η1/2n/45
and |B′′| ≤ η1/2n/30.

Proof. Using that G is η-extremal, the sum of the degrees inside A is at most ηn2/9,

implying that e(G[A,B]) ≥ (1− η)2n
2

9 .

(1) e(G[A,B]) ≤
(
n
3 − |A′|

)
2n
3 + |A′| · 4n

9 = 2n2

9 − 2n
9 |A′|, implying that |A′| ≤ ηn.

(2) e(G[A,B]) ≤
(
2n
3 + 2− |B′|

)
n
3 + |B′| · 2n9 = 2n2

9 + 2n
3 − n

9 |B′|, therefore |B′| ≤ 3ηn.

(3) e(G[A,B]) ≤
(
n
3 − |A′′|

)
2n
3 + |A′′|

(
2n
3 − 10η1/2n

)
= 2n2

9 − 10η1/2n|A′′|, therefore
η1/2n|A′′| ≤ 2ηn2

90 implying that |A′′| ≤ η1/2n/45.

(4) e(G[A,B]) ≤
(
2n
3 + 2− |B′′|

)
n
3 + |B′′|

(
n
3 − 10η1/2n

)
= 2n2

9 + 2n
3 − 10η1/2n|B′′|,

therefore η1/2n|B′′| ≤ 3ηn2

90 , implying that |B′′| ≤ η1/2n/30.

�

The following simple claim plays a key role in the proof of Lemma 6.3.

Claim 6.11. Assume that we are after applying Preprocessing #1. If B′ 6= ∅ then the
bipartite subgraph G[B′, A] has a matching that covers every vertex of B′.

Proof. By the König-Hall theorem it is sufficient to show that for every S ⊂ B′ we have

|N(S) ∩A| ≥ |S|.
Let us assume that there exists an S ⊂ B′ for which the claimed inequality does not hold.
Denote s the cardinality of S. Let v ∈ S and u ∈ A−N(S). Then deg(v,A) ≤ s− 1, and
deg(u,B) ≤ 2n/3 − s. Let A = A − u + v and B = B − v + u. Clearly, this switching
will increase the number of edges between A and B, contradicting to the Preprocessing
algorithm #1. �

6.2.1. Case 1: Let us call a triangle uvw balanced if exactly one of its vertices belongs to
A. Recall that H ′ denotes the ”non-triangle” part of H. For embedding H into G we apply
an algorithm that has several steps. As this algorithm proceeds, more and more vertices
will get covered in A and in B. It is useful to introduce a notation for the vacant subset of
A and B after Step j (1 ≤ j ≤ 4): these will be denoted by A(j) and B(j). The embedding
algorithm is as follows.

Embedding Algorithm for Case 1:
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Step 0: Apply Preprocessing #1.
Step 1: If B′ 6= ∅: Cover the vertices of B′ by vertex-disjoint balanced triangles so that

every such triangle consists of a vertex of B′, a vertex of B − B′, and a vertex of
A. If A′ 6= ∅: Cover the vertices of A′ by vertex-disjoint balanced triangles.

Step 2: Cover the vertices of A(1)′′ and B(1)′′ by vertex-disjoint balanced triangles, so
that these triangles contain exactly one exceptional vertex (that is, the other two
vertices of these triangles belong to A(1) ∪B(1)).

Step 3: Embed H ′ so that its independent set I(H ′) provided by Lemma 5.2 is embedded
into A(2) and H − I(H ′) is embedded into B(2).

Step 4: If necessary embed (less than ⌈v(H ′)/3⌉) vertex-disjoint triangles into B(3) so as
to get that at the end of this step 2|A(4)| = |B(4)|.

Step 5: Find a triangle-factor in G[A(4) ∪B(4)].

Lemma 6.12. If the conditions of Lemma 6.3 and Case 1 are satisfied, then the Embedding
Algorithm for Case 1 finds a copy of H in G.

Proof. We begin with Step 1. Assume that B′ is non-empty. By Claim 6.11 we have a
matching M1 in the bipartite subgraph G[A,B′] that covers every vertex of B′. Let b ∈ B′

and a ∈ A such that ab ∈M1. Since b ∈ B′ we have deg(b,B) ≥ 4n/9. Similarly, deg(a,B) ≥
4n/9, since we must have A′ = ∅ in this case. Therefore |N(a) ∩ N(b) ∩ B| ≥ 2n/9. By
Claim 6.10 |B′| ≤ 3ηn, hence, for every ab ∈M1 we can find a v ∈ N(a)∩N(b)∩ (B−B′)
such that the abv triangles we obtain this way are vertex-disjoint. It is clear that these
triangles are balanced, too.

Let’s assume now that A′ is non-empty. Since no vertex can have more than n/3 neigh-
bors in A, we have that deg(a,B) > n/3 for every a ∈ A′. Recall that G[B] is (µ, 2)-non-
extremal, hence, the neighborhood N(a)∩B contains at least µn2/18 edges. Pick one such
edge with uncovered endpoints, it gives a triangle with a. Repeat the above procedure until
A′ is exhausted. Since |A′| ≤ ηn and η ≪ µ, it is clear that we can find vertex-disjoint
balanced triangles for A′. Note that in every subset S ⊂ B(1) with |S| = k we still have at
least µn2/18 − k · 10ηn > µn2/18− 4ηn2 edges in G[S] with uncovered endpoints.

We continue with Step 2. For the vertices of A(1)′′ we can use the method of Step 1
above, without any change. Next we consider the vertices of B(1)′′. Let b ∈ B(1)′′.We have
that deg(b,A) ≥ 2n/9 and deg(b,B) ≥ n/3. Pick a vacant point a ∈ N(b,A(1)) − A(1)′′,
there are more than 2n/9 − √

ηn ≫ |B(1)′′| such vertices. Since a ∈ A(1) − A(1)′′, we
have |N(a) ∩ N(b) ∩ B(1)| ≥ k − 10

√
ηn ≫ |B(1)′′|, hence, for every b ∈ B(1)′′ we can

find an a ∈ A(1) − A(1)′′ and a v ∈ N(a) ∩ N(b) ∩ B(1) such that the abv triangles are
vertex-disjoint and balanced.

Since |A(1)′′| + |B(1)′′| ≤ √
ηn/10 there will be more than µn2

18 − k · 10ηn − k · √ηn >
(µ/18−√

η)n2 edges with uncovered endpoints in G[S] for every subset S ⊂ B with |S| = k.
Let us consider Step 3. Apply Lemma 5.2 to H ′. Denote the resulting independent set

by I(H ′). By Lemma 5.2 we know that the components of H ′ − I(H ′) are paths having
length at most 2. Let us add 25

√
ηn fictive points to B(2), and connect them with every

vertex of B(2). It is easy to see that the minimum degree in the graph we obtain this way
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is large enough to find a Hamilton cycle. We delete the fictive vertices. Then the Hamilton
cycle is divided into shorter paths having average length 1/(25

√
η).

Since v(H ′) ≤ 7νn and ν ≪ √
η, we can apply a greedy procedure to map the vertices

in V (H ′) − I(H ′) using the collection of paths we obtained above. Next we have to map
the vertices of I(H ′). Since every vertex of B(2) has more than n/3− 2

√
ηn neighbors in

A(2), we can again use a greedy algorithm. For example, let x ∈ I(H ′) so that y1, . . . , yt
are the neighbors of x (1 ≤ t ≤ 4). Suppose that yi was mapped onto vi ∈ B(2) for every
1 ≤ i ≤ t. Since only non-exceptional vertices are left, the vis has at least n/3 − 4

√
ηn

common neighbors in A(2), out of these at most 7νn are covered (by some other vertex of
I(H ′)). Hence, we can always find a vacant vertex u ∈ A(2) for every x so that adjacent
vertices of H ′ are mapped onto adjacent vertices of G. With this we are done with Step 3.

For Step 4 we introduce some notation. Let h0 = |I(H ′)| and h1 = v(H ′)−h0. Recall that
n = 3k+r. Then we have v(H ′) = 3p+r for some p ∈ N. By Lemma 5.2 3h0 ≥ h0+h1, hence,
2h0 = h1 + s for some 0 ≤ s ≤ 7νn natural number. Set k′ = |A(2)|, then |B(2)| = 2k′ + r.
When embeddingH ′ we covered h1 vertices of B(2) and h0 vertices of A(2). The A(3), B(3)
sets are balanced, if 2|A(3)| = |B(3)|. We claim that B(3) contains s+ r vertices more than
what it should be for being balanced:

|B(3)| − 2|A(3)| = 2k′ + r − h1 − 2(k′ − h0) = r − h1 + 2h0 = r + s.

We show that r+s is divisible by three: h1 = 3p+r−h0, hence, h1+s = 3p+r−h0+s,
and using that 2h0 = h1+s, we get that 3h0 = 3p+ r+s, implying the claimed divisibility.
Now our task is to embed (r+s)/3 triangles into G[B(3)]. This can be done using the (µ, 2)-
non-extremality of G[B]. Since we have covered less than µn/20 vertices of B, G[B(3)] is
(µ/2, 2)-non-extremal. Hence, the neighborhood of any b ∈ B(3) contains many edges, so
we can find the (r+ s)/3 vertex-disjoint triangles in B(3) that are needed for the balance.
At the end we will have that 2|A(4)| = |B(4)|. Note that G[B(4)] is (µ/3, 2)-non-extremal,
since r + s ≤ 10νn ≪ √

ηn.
Finally, we finish the proof with Step 5. By Lemma 6.4 and the fact that G[B(4)] is

(µ/3, 2)-non-extremal and δ(G[B(4)]) ≥ (1/2−8
√
η)|B(4)|, we can find a perfect matching

M in G[B(4)].
In order to extend M into a triangle factor we consider the following auxiliary bipartite

graph: its vertex classes are the vertices of A(4) and the edges of M, and we have an edge
between a ∈ A(4) and b1b2 ∈ M if and only if ab1, ab2 ∈ E(G). Using the König-Hall
theorem, we can find a perfect matching in this graph, as there are no exceptional vertices
left: every edge of M is adjacent to almost all of A(4), and every vertex of A(4) is adjacent
to almost every edge of M. Observing that a perfect matching in the auxiliary graph gives
a triangle factor in G[A(4) ∪B(4)] finishes the proof. �

6.2.2. Case 2: In order to show that H ⊂ G in Case 2 we will give the details of an
embedding algorithm, which in many steps is similar to Embedding Algorithm 1, but there
will be differences as well. For example, we need Preprocessing #1 discussed earlier, but
we also need another version.
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Recall that in Case 2 the set B can be divided into two subsets, B1 and B2 such that
the number of edges between these two sets is less than µn2. Hence, in this case G[B] is
close to the union of two cliques having sizes |B1| = ⌊|B|/2⌋ and |B2| = ⌈|B|/2⌉.

We need the following:

Preprocessing #2:

If B1 has a vertex v1 and B2 has a vertex v2 such that

deg(v1, B2) + deg(v2, B1) > deg(v1, B1) + deg(v2, B2),

then we switch v1 and v2, that is, we let B1 = B1− v1+ v2 and B2 = B2− v2+ v1. We stop
when two such vertices cannot be found. Since every switching step decreases the number
of edges between B1 and B2, the algorithm stops in a finite number of steps.

Let us define two subsets:

B′
1 =

{
v ∈ B1 : deg(v,B1) <

k

3

}
,

B′
2 =

{
v ∈ B2 : deg(v,B2) <

k

3

}
.

Claim 6.13. Apply Preprocessing #1 and Preprocessing #2. If B′
1 6= ∅ then B′

2 = ∅.
Moreover, B′ ∩B′

1 = B′ ∩B′
2 = ∅.

Proof. Simple calculation shows the claim using the definitions of B′, B′
1 and B′

2. �

We also need the following definitions:

B′′
1 =

{
v ∈ B1 −B′

1 : deg(v,B1) ≤ k − 10µ1/2k
}
,

B′′
2 =

{
v ∈ B2 −B′

2 : deg(v,B2) ≤ k − 10µ1/2k
}
.

Recall the definition of A′, A′′, B′ and B′′. The following upper bounds hold.

Claim 6.14. We have that |A′| ≤ ηn, |B′| ≤ 3ηn, |A′′| ≤ η1/2n/45, |B′′|η1/2n/30,
|B′

1|, |B′
2| ≤ 5µn, and |B′′

1 |, |B′′
2 | ≤ µ1/2n/2.

Proof. The proofs of the first four inequalities go in the same way as in the proof of
Claim 6.10. For the other inequalities we use that e(G[B1, B2]) ≤ µn2.

(1) e(G[B1, B2]) ≥ |B′
1|
(
n
3 − k

3

)
≥ |B′

1|2n9 , hence |B′
1| ≤ 5µn. Essentially the same

computation shows that |B′
2| ≤ 5µn.

(2) e(G[B1, B2]) ≥ |B′′
1 |10

√
µk > |B′′

1 |4
√
µn, implying that |B′′

1 | ≤ µ1/2n/2. This com-

putation can be repeated in order to obtain that |B′′
2 | ≤ µ1/2n/2.

�

The following observation is an easy consequence of the minimum degree of G, using
that |A| = k, |B1| = k + ⌊r/2⌋ and |B2| = k + ⌈r/2⌉.
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Observation 6.15. Every v ∈ Bi has a neighbor in B3−i, where i ∈ {1, 2}.

As in the previous case, the embedding algorithm we use consists of several steps, during
which more and more vertices of G will be covered. Our notation will reflect this: for every
j ≥ 1 the vacant subset of A after finishing Step j will be denoted by A(j). The sets
B1(j), B2(j) are defined analogously.

Embedding Algorithm for Case #2

Step 0: Apply Preprocessing #1 and Preprocessing #2. Determine the sets of exceptional
vertices.

Step 1: Assuming that B′ is non-empty find the matching MB′ in the bipartite subgraph
G[A,B′] that covers every vertex of B′ using Claim 6.11.

Step 2: Cover the vertices of B′(1), B′
1(1) and B′

2(1) by vertex-disjoint balanced triangles
such that |B2(2)| is even when finishing this step. Use the algorithm described in
Lemma 6.17.

Step 3: Cover the vertices of A′(2), A′′(2) and B′′(2), B′′
1 (2), B

′′
2 (2) by vertex-disjoint bal-

anced triangles.
Step 4: Embed H ′ so that its independent set I(H ′) provided by Lemma 5.2 is embedded

into A(3) and H ′ − I(H ′) is embedded into G[B1(3)]. If necessary embed (at most
⌈v(H ′)/3⌉) vertex-disjoint triangles into B1(3) so as to get that 2|A(4)| = |B1(4)|+
|B2(4)|.

Step 5: Find a triangle-factor in G[A(4) ∪B(4)].

Call a balanced triangle uvw crossing, if v ∈ B1, w ∈ B2 and u ∈ A, otherwise it is called
non-crossing. So a non-crossing triangle contains one vertex from A and two vertices that
either both belong to B1 or to B2. Before we present the algorithm required in Step 2, we
need a claim.

Claim 6.16. Assume that b = |B′| > 0. Let q be a natural number with 0 ≤ q ≤ b. Then
we can cover the vertices of B′ by vertex-disjoint balanced triangles such that exactly q of
these are crossing, and b− q are non-crossing.

Proof. By Claim 6.11 we have a matching MB′ in G[A,B′] that covers B′. Let S ⊂ B′ be
an arbitrary subset with |S| = q, we are going to find crossing triangles for the vertices of
S, and non-crossing ones for B − S.

Let v ∈ S be arbitrary. By the definition of B′ we know that v has at least k/3 neighbors
in the opposite Bi set (in B2(1), if v ∈ B1(1), else in B1(1)), denote this neighborhood by
Nv. If deg(v,A) ≥ k/100 then v has more than k/200 such neighbors uv ∈ A that each has
at least k/4 neighbors in Nv. Hence, in this case the crossing triangle will be vwuv, where
w ∈ Nv is adjacent to uv. If deg(v,A) < k/100 then |Nv| ≥ 99k/100. Since A′ = ∅ (by
Claim 6.9) we get that MB′(v) has at least k/4 neighbors in Nv, so we can pick a vacant
vertex w among them. The crossing triangle in this case is vwMB′(v).

For v ∈ B−S we can essentially repeat the above argument. The only difference is that
this time we look for a w not in the opposite Bi set, but in the set of v, we leave the details
for the reader. �
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Lemma 6.17. It is possible to cover the vertices of B′(1), B′
1(1) and B′

2(1) by vertex-
disjoint balanced triangles such that |B2(2)| is even when finishing Step 2. of Embedding
Algorithm for Case #2.

Proof. We have two main cases, depending on whether |B2(1)| is odd or even. Assume first
that |B2(1)| is odd and B′

2(1) = ∅. We consider several sub-cases.

(i) |B′
1(1)| is odd: We will find crossing triangles for B′

1(1). Since every vertex of B′
1(1)

has at least 2k/3 neighbors in B2, we can easily find distinct neighbors for each of
them. By Claim 6.13 each v ∈ B′

1(1) has more than k/2 neighbors in A(1)−V (MB′).
The vast majority of these neighbors have almost full degree to B2(1), hence, we
can find the claimed vertex disjoint balanced triangles that cover B′

1(1).
Since |B2(1)| was odd and we used up an odd number of vertices from it, at

this point B2(1) has an even number of vacant vertices. Then we cover B′(1) so
that we use an even number of vacant vertices from B2(1) by Claim 6.16, just find
non-crossing triangles for every vertex of B′.

(ii) |B′
1(1)| is even and B′(1) 6= ∅: First, as above we find crossing triangles for B′

1(1).
Then apply Claim 6.16 with q = 1, find 1 crossing triangle for covering a vertex of
B′(1), and non-crossing ones for other vertices of B′(1). Clearly, we use up an odd
number of vertices from B2(1) this way.

(iii) |B′
1(1)| is even and B′(1) = ∅: Let v ∈ B1(1) − B′

1(1) − B′′
1 (1) be an arbitrary

vertex. By Observation 6.15 v must has at least one neighbor w ∈ B2 = B2(1).
Moreover, |N(v) ∩A(1) ∩N(w)| > k/4 since v (being non-exceptional) has almost
full degree into A, and deg(w,A) ≥ k/3 since B′ = ∅. Let u ∈ N(v) ∩A(1) ∩N(w)
be an arbitrary vacant vertex. The uvw triangle is a non-crossing one. Next we
find vertex-disjoint crossing triangles for B′

1(1), as is described above. Observe,
that with this we have used up an odd number of vertices of B2(1), hence, after
embedding it the vacant part of B2 will have even cardinality.

If |B2(1)| is odd and B′
2(1) 6= ∅, then only minor modifications are needed. The details

are as follows.

(i) |B′
2(1)| is odd: Repeat the method of the first case above, with B′

2(1) instead of
B′

1(1).
(ii) |B′

2(1)| is even and B′(1) 6= ∅: Again, repeat the method of the second case above,
with B′

2(1) instead of B′
1(1).

(iii) |B′
2(1)| is even and B′(1) = ∅: By Observation 6.15 every vertex v ∈ B2 has at least

one neighbor in B1. Pick a vertex v ∈ B2(1)−B′
2(1)−B′′

2 (1), then find a w ∈ B1(1)
and u ∈ A(1) such that uvw is a crossing triangle. Next find vertex-disjoint crossing
triangles for B′

2(1).

Our second main case is when |B2(1)| is even. We don’t want to give the details of
the whole argument, as it is very similar to the case when |B2(1)| is odd, we only give an
outline. First, regardless of whether B′

1(1) or B′
2(1) is non-empty, we find vertex-disjoint

crossing triangles for them. Doing so may change the parity of the vacant subset of B2

from even to odd. When B′(1) 6= ∅, then using Claim 6.16 we can easily find zero or one
crossing triangle, and non-crossing ones for the rest of B′(1), in order to get an even B2(2)
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at the end of Step 2. And when B′(1) = ∅, we use the minimum degree condition of G
(see step (iii) above) in order to find a crossing triangle – one can see that this is necessary
only when |B′

1(1)| or |B′
2(1)| is odd. �

Next we prove the correctness of the Embedding Algorithm for Case #2.

Lemma 6.18. If the conditions of Lemma 6.3 and Case 2 are satisfied, then the Embedding
Algorithm for Case 2 finds a copy of H in G.

Proof. Using Lemma 6.17 we can cover every vertex of B′(1), B′
1(1) and B

′
2(1) by vertex-

disjoint triangles, moreover, B2(2) will have even cardinality.
In Step 3 we cover the rest of the exceptional vertices. For A′(2), A′′(2) and B′′(2) one

can use the method discussed in Lemma 6.12 for Case 1. However, we have to be more
careful: only non-crossing triangles can be used since we need that |B2(3)| is even. This is
easily doable for the vertices of A′(2), A′′(2), since they have more than k/4 neighbors in
B1(2) and in B2(2) as well. For covering B

′′(2) observe that any v ∈ B′′(2) has more than
k/4 neighbors in its Bi set, as B

′
1(2)∩B′′(2) = B′

2(2)∩B′′(2) = ∅. Hence, it is easy to find
non-crossing vertex-disjoint triangles for them.

For B′′
1 (2) and B

′′
2 (2) we do the following. Say that v ∈ B′′

1 (2), then both deg(v,B1(2))
and deg(v,A(2)) ≥ k/4 ≫ |B′′

1 (2)| by Claim 6.14. So we can pick a vertex u ∈ (A(2) −
A′(2) −A′′(2)) ∩N(v) that is adjacent to almost every vertex of N(v) ∩ B1(2), hence, we
have many possibilities for a triangle that has two vertices in B1(2) and one vertex in A(2).
The same method can be applied for B′′

2 (2), too.
In Step 4 we can apply Lemma 6.12, since the minimum degree in G[B1(3)] is larger

than k − 10
√
µk. In Lemma 6.12 we also proved that after embedding H ′ and (r + s)/3

vertex-disjoint triangles into B the vacant part of B has exactly twice as many vertices as
the vacant part of A. It is easy to see that this statement still holds, that is, 2|A(4)| =
|B1(4)|+ |B2(4)|. This implies that |B1(4)|+ |B2(4)| is even. Since we managed to achieve
that |B2(4)| is even, |B1(4)| must be even as well.

In order to show that one can find the desired triangle factor in G[A(4) ∪ B(4)] we do
the following. Divide A(4) into two disjoint subsets, A1 and A2 such that 2|A1| = |B1(4)|
and 2|A2| = |B2(4)|. Then apply the method given in Lemma 6.12 for finding a triangle
factor in G[A1 ∪ B1(4)] and G[A2 ∪ B2(4)] separately. This is doable since every vertex
of A(4) has almost full degree into B1(4) ∪ B2(4) and every vertex of B1(4) ∪ B2(4) has
almost full degree into A(4) as the exceptional vertices have all been covered. This finishes
the proof of the lemma. �

6.2.3. Case 3: In this last case V (G) can be partitioned into three disjoint sets, A,B
and C such that |A| = k, |B| = k + ⌊r/2⌋, |C| = k + ⌈r/2⌉ (so |A| ≤ |B| ≤ |C|) and
e(G[A]), e(G[C]), e(G[B]) ≤ µn2/18. For proving that H ⊂ G in Case 3 we use very similar
methods to the previous ones. The main idea is again to first cover the exceptional vertices,
however, for embedding the vast majority ofH we will use the Blow-up Lemma. This makes
the presentation of this case short.

Let us introduce a slightly different kind of preprocessing.

Preprocessing #3:
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Ordinary switching: Let X,Y denote two different partition sets of V (G) (for example
X = A and Y = C). If there exists u ∈ X and v ∈ Y such that

d(u,X) + d(v, Y ) > d(u, Y ) + d(v,X),

then we switch u and v, that is, we let X = X − u+ v and Y = Y − v + u.
Circular switching: Let X1,X2,X3 denote the partition sets of V (G) in some order. For

us there will be two different orders: in both of them X1 = A and either X2 = B and
X3 = C or X2 = C and X3 = B. If there exists u ∈ X1, v ∈ X2 and w ∈ X3 such that

deg(u,X1) + deg(v,X2) + deg(w,X3) > deg(u,X2) + deg(v,X3) + deg(w,X1),

then we do a circular switching, that is, we let X1 = X1 − u + w, X2 = X2 − v + u and
X3 = X3 − w + v.

We stop when such vertices cannot be found. Since every switching step increases the
number of edges between the three partition sets, the algorithm stops in a finite number
of steps.

Let us define three exceptional sets:

A′ =

{
v ∈ A : either deg(v,B) <

k

3
or deg(v,C) <

k

3

}
,

B′ =

{
v ∈ B : either deg(v,A) <

k

3
or deg(v,C) <

k

3

}
,

C ′ =

{
v ∈ C : either deg(v,A) <

k

3
or deg(v,B) <

k

3

}
.

Claim 6.19. Let X,Y,Z denote the partition sets A,B,C of V (G) in some order. If
u ∈ X ′ then u has at least 2k/3 neighbors either in Y or in Z.

Proof. Follows easily from the minimum degree bound for G. �

Claim 6.20. After applying Preprocessing #3 there could remain at most two exceptional
sets out of the above three. Let X,Y denote any two different partition sets of V (G) such
that X has non-empty exceptional subset X ′. If there exist a vertex u ∈ X ′ such that
deg(u, Y ) < k/3, then every vertex of Y has more than 2k/3 neighbors in X.

Proof. An easy observation implies the first statement of the claim: if A′, B′ and C ′ are
all non-empty sets then one could do either an ordinary or a circular switching step. The
second statement is essentially equivalent to Claim 6.9. �

Claim 6.21. Let X,Y,Z denote the partition sets A,B,C of V (G) in some order. Assume
that X ′ is non-empty, and let XY ⊂ X ′ denote the set of those vertices that have less than
k/3 neighbors in Y, XZ ⊂ X ′ is defined analogously. Then there exists a matching MY in
the bipartite subgraph G[XY , Y ] that covers every vertex of XY , and similarly, there exists
a matching MZ in the bipartite subgraph G[XZ , Z] that covers every vertex of XZ . If X

′, Y ′

are non-empty then exists a matching M in the bipartite subgraph G[X ′∪Y ′, Z] that covers
every vertex of X ′ ∪ Y ′.
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Proof. The claim is easily seen to follow from Claim 6.11 and from Claim 6.20. �

We also need the following definitions of exceptional sets:

A′′ =
{
v ∈ A−A′ : either deg(v,B) ≤ k − 10µ1/2k or deg(v,C) ≤ k − 10µ1/2k

}
,

B′′ =
{
v ∈ B −B′ : either deg(v,A) ≤ k − 10µ1/2k or deg(v,C) ≤ k − 10µ1/2k

}
,

C ′′ =
{
v ∈ C − C ′ : either deg(v,A) ≤ k − 10µ1/2k or deg(v,B) ≤ k − 10µ1/2k

}
.

The following upper bounds hold.

Claim 6.22. We have |A′|, |B′|, |C ′| ≤ µn/2, and |A′′|, |B′′|, |C ′′| ≤ µ1/2n/30.

Proof. Let X denote any of the A,B,C sets and define X ′ and X ′′ analogously. Recall
that e(G[X]) ≤ µn2/18 in Case 3.

Since 2e(G[X]) ≥ |X ′|
(
2n
3 − k

3 − (k + 1)
)
≥ |X ′|2n9 we get that |X ′| ≤ µn/2. Similarly,

2e(G[X]) ≥ |X ′′| · 10√µk implying that |X ′′| ≤ √
µn/30. �

As before, when we refer to sets A(i), B(i) or C(i) below, we refer to the vacant subsets
of A,B and C, respectively, right after Step i.

Embedding Algorithm for Case #3

Step 0: Apply Preprocessing #3. Determine the sets of exceptional vertices.
Step 1: Cover the vertices of A′, B′ and C ′ by vertex-disjoint crossing triangles, using the

matching of Claim 6.21.
Step 2: Cover the vertices of A′′, B′′ and C ′′ by vertex-disjoint crossing triangles.
Step 3: Use Theorem 4.14 to find an equitable coloring of H ′. Denote the color classes of

H ′ by K1,K2 and K3, such that |K1| ≤ |K2| ≤ |K3|.
Step 4: Use the Blow-up Lemma (Theorem 4.8) in order to embed H ′ and the missing

number of vertex-disjoint triangles.

Lemma 6.23. If the conditions of Lemma 6.3 and Case 3 are satisfied, then the Embedding
Algorithm for Case 3 finds a copy of H in G.

Proof. For proving the lemma it is sufficient to use the ideas developed for the previous
two cases. By Claim 6.21 we have a matching that covers A′∪B′∪C ′. Using this matching
we can find a set of vertex-disjoint crossing triangles as in Claim 6.16. Covering of the
vertices of A′′ ∪B′′ ∪ C ′′ is also done similarly to previous cases.

Before we apply the Blow-up Lemma first assign the color class K1 to A(3), K2 to B(3)
and K3 to C(3). Observe that |A(3)| − |K1| = |B(3)| − |K2| = |C(3)| − |K3|. There are no
exceptional vertices left in Step 4, and

|A′ ∪B′ ∪ C ′ ∪A′′ ∪B′′ ∪ C ′′| ≤ √
µn,
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hence, the bipartite subgraphs G[A(3), B(3)], G[A(3), C(3)] and G[B(3), C(3)] are each
(ε, δ)-super-regular pairs with ε ≤ 4

√
µ and δ ≥ n/3 − 30

√
µn. Hence, embedding the rest

of H can be done by a routine application of the Blow-up Lemma. �

Putting together Lemma 6.12, Lemma 6.18 and Lemma 6.23 we obtain what was desired:
H is a subgraph of G when both graphs are extremal. �

References

[1] M. Aigner and S. Brandt (1993) Embedding arbitrary graphs of maximum degree two, J. London
Math. Soc., 48 39–51

[2] N. Alon and E. Fischer (1996) 2-factors in dense graphs, Discrete Math., 152, 13–23.
[3] N. Alon, J. Spencer, The probabilistic method. Third edition, John Wiley & Sons, Inc., 2008.
[4] B. Bollobás, S. E. Eldridge (1978), Packing of graphs and applications to computational complexity,

J. Combin. Theory Ser. B 25, 105–124.
[5] P. A. Catlin (1976), Embedding subgraphs and coloring graphs under extremal degree conditions,

Ph.D. thesis, Ohio State Univ., Columbus.
[6] B. Chazelle (2000), The discrepancy method, Randomness and Complexity, Cambridge: Cambridge

University Press
[7] P. Chau (2013), An Ore-type theorem on Hamiltonian square cycles, Graphs & Combinatorics, 29(4),

795 – 834.
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[11] B. Csaba, A. Shokoufandeh, E. Szemerédi (2003), Proof of a Conjecture of Bollobás and Eldridge for

graphs of maximum degree three, Combinatorica, 23, 35–72
[12] G. Dirac (1952), Some theorems on abstract graphs, Proc. London Math. Soc. 2, 69–81
[13] L. DeBiasio, S. Faizullah, I. Khan (2015), Ore-degree threshold for the square of a Hamiltonian cycle,

Discrete Mathematics and Theoretical Computer Science 17 13–32.
[14] G. Fan, H. A. Kierstead (1996), Hamiltonian square-paths, J. Combin. Theory Ser. B 67, 167–182
[15] P. Hajnal, S. Herdade, A. Jamshed, E. Szemerédi (2017), Proof of the Pósa-Seymour conjecture,
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