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NO-GAP SECOND-ORDER CONDITIONS VIA A DIRECTIONAL

CURVATURE FUNCTIONAL∗

CONSTANTIN CHRISTOF† AND GERD WACHSMUTH‡

Abstract. This paper is concerned with necessary and sufficient second-order conditions for
finite-dimensional and infinite-dimensional constrained optimization problems. Using a suitably de-
fined directional curvature functional for the admissible set, we derive no-gap second-order optimality
conditions in an abstract functional analytic setting. Our theory not only covers those cases where
the classical assumptions of polyhedricity or second-order regularity are satisfied but also allows to
study problems in the absence of these requirements. As a tangible example, we consider no-gap
second-order conditions for bang-bang optimal control problems.

Key words. second-order condition, bang-bang control, polyhedricity, second-order regularity,
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1. Introduction. The aim of this paper is to develop a theoretical framework
for necessary and sufficient second-order optimality conditions (henceforth referred to
as SNC and SSC, respectively). The main feature of our approach is that we use a
suitably defined “directional” curvature functional to take into account the influence
of the admissible set. Our definition of curvature allows us to derive no-gap second-
order conditions that provide more flexibility than classical results. In particular,
our approach makes it possible to exploit additional information about the gradient
of the objective functional. Such information is, e.g., often available in the optimal
control of partial differential equations (PDEs) where the gradient of the objective is
typically characterized by an adjoint equation and, as a consequence, enjoys additional
regularity properties.

Let us briefly clarify what we understand by “no-gap second-order conditions”. For
simplicity, we focus on the minimization of a smooth function f over Rd. In this case,
it is well known that local optimality of x̄ implies ∇f(x̄) = 0 and h⊤∇2f(x̄)h ≥ 0 for
all h ∈ R

d. On the other hand, ∇f(x̄) = 0 and h⊤∇2f(x̄)h > 0 for all h ∈ R
d \ {0}

is equivalent to x̄ being a local minimizer satisfying a quadratic growth condition.
Hence, the only difference between the necessary and the sufficient condition is a
non-strict vs. a strict inequality in the second-order condition. Moreover, this change
is as small as possible. Such a pair of optimality conditions is denoted as “no-gap
second-order conditions”.

The analysis found in this paper originated from the idea to extend the results of
[11]. In this paper, the authors derived an SSC for a class of bang-bang optimal control
problems that does not fit into the classical setting of polyhedricity and second-order
regularity, cf. [4]. Our results turned out to be of relevance for other problems as well
and ultimately gave rise to the abstract framework of Section 4 that not only covers
large parts of the classical SNC and SSC theory but also allows to study situations
where the admissible set exhibits a singular or degenerate curvature behavior, cf.
Section 6. We hope that with the subsequent analysis we can, on the one hand, offer
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an alternative view on well-known SNC and SSC results and, on the other hand, also
provide some new ideas for the study of problems that do not satisfy the classical
assumptions of polyhedricity and second-order regularity.

Let us give some references: There are several contributions addressing second-
order optimality conditions for optimization problems posed in infinite-dimensional
spaces. We mention exemplarily [18, 3, 5, 4, 8, 9]. No-gap optimality conditions
in the infinite-dimensional case can be found, e.g., in [5, Theorems 2.7, 2.10], [8,
Theorems 2.2, 2.3], and [23, Theorem 5.7]. Note that the latter results all rely on
the concept of polyhedricity (in contrast to our Theorem 4.5) and require that the
Hessian of the Lagrangian is a Legendre form. In the finite-dimensional case, one
can further employ the notion of second-order regularity to derive no-gap optimality
conditions, see, e.g., [3]. Note that, in our approach, the Legendre form condition is
substituted by a more general non-degeneracy condition, see (NDC) in Theorem 4.4
and the discussion in Subsection 5.1.

Before we begin with our analysis, we give a short overview over the contents and
the structure of this paper:

In Section 2, we clarify the notation, make our assumptions precise and recall
several definitions that are needed for our investigation.

In Section 3, we define the directional curvature functional that is at the heart
of our SNC and SSC analysis. Here, we also discuss basic properties of the curvature
functional as, e.g., positivity and lower semicontinuity, that are used in the remainder
of the paper.

Section 4 addresses SNC and SSC for constrained optimization problems on an
abstract functional analytic level. The main results of this section (and of the paper
as a whole) are Theorems 4.3 to 4.5. These theorems illustrate the advantages of
working with the directional curvature functional and demonstrate that our approach
allows for a very short and elegant derivation of the second-order theory.

In Section 5, we demonstrate that the framework of Section 4 indeed covers the
classical SNC and SSC theory for optimization problems with polyhedric or second-
order regular sets. Here, we further comment on how the assumptions (NDC) and
(MRC) appearing in our second-order conditions can be verified in practice and in-
terpreted in the context of generalized Legendre forms and Tikhonov regularization.
Section 5 also includes two tangible examples that demonstrate the usefulness of the
theorems in Section 4.

Section 6 is devoted to problems that are covered by our analysis but do not fall
under the scope of the classical SNC- and SSC-framework. The first example that we
consider in this context is a finite-dimensional optimization problem whose admissible
set exhibits a singular curvature behavior. In Subsection 6.2, we then study no-gap
second-order conditions for bang-bang optimal control problems in the measure space
M(Ω). Here, we prove a novel SNC for bang-bang controls and further sharpen the
SSC in [11] to close the gap between the two conditions, see Theorems 6.4 and 6.12,
and the comparison in Example 6.14.

Section 7 summarizes our findings and gives some pointers to further research.

2. Notation, Preliminaries and Basic Concepts. Throughout this paper,
we always consider the following situation.

Assumption 2.1 (Standing Assumptions and Notation).
(i) X is the (topological) dual of a separable Banach space Y ,

(ii) ι : Y → X⋆ denotes the canonical embedding of Y into the dual X⋆ of X,
(iii) the admissible set C is a closed, non-empty subset of X.
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Note that, under the above assumptions, X is necessarily a Banach space with a
weak-⋆ sequentially compact unit ball, cf. the Banach–Alaoglu theorem. We remark
that the overwhelming majority of our results also holds when the space Y is assumed
to be reflexive instead of separable. We restrict our analysis to the above setting since
it allows to study more interesting practical examples, see Subsection 6.2. For our
analysis, we need the following classical concepts (cf. [4, Section 2.2.4]).

Definition 2.2. Let x ∈ C be given. We define the radial cone, the strong outer
tangent cone and the weak-⋆ outer tangent cone to C at x, respectively, by

RC(x) := {h ∈ X | ∃T > 0 ∀t ∈ [0, T ], x+ th ∈ C},

TC(x) :=

{

h ∈ X

∣

∣

∣

∣

∃tk ց 0, ∃xk ∈ C such that
xk − x

tk
→ h

}

,

T ⋆
C (x) :=

{

h ∈ X

∣

∣

∣

∣

∃tk ց 0, ∃xk ∈ C such that
xk − x

tk

⋆
⇀ h

}

.

Moreover, we define the weak-⋆ (outer) normal cone to x by

N ⋆
C(x) := {x⋆ ∈ ι(Y ) | ∀h ∈ T ⋆

C (x) : 〈x⋆, h〉 ≤ 0}.

Finally, given a ϕ ∈ −N ⋆
C(x), we define the weak-⋆ critical cone by

K⋆
C(x, ϕ) := T ⋆

C (x) ∩ ϕ⊥.

We emphasize that N ⋆
C(x) is defined to be a subset of ι(Y ) and may thus be

identified with a subset of the predual space Y . Note that all “cones” in the above
are indeed cones in the mathematical sense, i.e., h ∈ RC(x) implies αh ∈ RC(x) for
all α ≥ 0 etc. We point out that RC(x) ⊂ TC(x) ⊂ T ⋆

C (x). If C is convex, then [4,
Proposition 2.55]

RC(x) = R
+(C − x), TC(x) = cl(RC(x)) ∀x ∈ C.

If, in addition, X is reflexive, then we have T ⋆
C (x) = TC(x) by Mazur’s lemma. We

remark that T ⋆
C (x) is in general not closed since the weak-⋆ topology is not sequential

on infinite-dimensional spaces, cf. [19, Example 5.9].

3. The Directional Curvature Functional. The basic idea of our SNC and
SSC approach is to not discuss the curvature properties of the admissible set C sep-
arately, i.e., independently of the optimization problem at hand, but to develop a
second-order analysis that takes into account the gradient of the objective. To accom-
plish the latter, we introduce the directional curvature functional.

Definition 3.1. Let x ∈ C and ϕ ∈ −N ⋆
C(x) be given. The weak-⋆ directional

curvature functional Qx,ϕ
C : K⋆

C(x, ϕ) → [−∞,∞] associated with the triple (x, ϕ,C) is
defined by

(1) Qx,ϕ
C (h) := inf







lim inf
k→∞

〈ϕ, rk〉

∣

∣

∣

∣

∣

∣

{rk} ⊂ X, {tk} ⊂ R
+ : tk ց 0, tk rk

⋆
⇀ 0,

x+ tk h+
1

2
t2k rk ∈ C







.

In case that X is finite-dimensional, the curvature functional Qx,ϕ
C coincides with a

generalized derivative of second order of the indicator function δC : X → {0,∞},
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which is termed “second subderivative” in [21, Definition 13.3]. A similar concept in
infinite dimensions is called “second-order epiderivative” in [14, Section 1]. Therein,
it is required that the second-order difference quotients associated with the indicator
function of the set C, the point x, and the element ϕ ∈ −N ⋆

C(x) Mosco epi-converge,
whereas our definition just uses the weak-⋆ limes superior (in the sense of Kuratowski)
of the epigraphs of the difference quotients, see also Remark 3.5 below. The functional
Qx,ϕ

C (·) may thus be identified with a second-order weak-⋆ lower subderivative.
Definition 3.1 can be motivated as follows: Consider an optimization problem of

the form min J(x) := 〈ϕ, x〉 s.t. x ∈ C, where ϕ satisfies ϕ ∈ −N ⋆
C(x̄) for some x̄ ∈ C,

i.e., 〈ϕ, h〉 ≥ 0 for all h ∈ T ⋆
C (x̄). Then x̄ is a critical point and we have to study

perturbations into the critical directions h ∈ K⋆
C(x̄, ϕ) to decide whether x̄ is a local

minimizer or not. If we fix a critical direction h ∈ K⋆
C(x̄, ϕ), then the definition of

T ⋆
C (x̄) yields the existence of sequences {rk} ⊂ X , {tk} ⊂ R

+ with tk ց 0, tk rk
⋆
⇀ 0

and xk := x̄+tk h+ 1
2 t

2
k rk ∈ C, and we may calculate that J(xk)−J(x̄) = 1

2 t
2
k 〈ϕ, rk〉.

This identity suggests that the limiting behavior of the dual pairing 〈ϕ, rk〉 between
the gradient ϕ of the objective J and the second-order correction rk is a decisive
factor in the study of the optimality of the critical point x̄. Since the directional
curvature functional Qx̄,ϕ

C (·) allows to estimate the limes inferior of precisely that
quantity for all possible sequences {rk} and {tk}, it is only natural to consider it
an adequate tool for the derivation of optimality conditions. Note that, instead of
looking at the accumulation points of the corrections rk, which is the idea of second-
order tangent sets, cf. Definition 5.2, we only study accumulation points of the scalar
sequences 〈ϕ, rk〉 when working with the functional Qx̄,ϕ

C (·). Thus, it is possible to
obtain information even when the second-order corrections rk diverge or cannot be
analyzed properly. Before turning our attention to SNC and SSC, in what follows,
we first state some preliminary results on the properties of the directional curvature
functional that are needed for our investigation.

Lemma 3.2. Let x ∈ C be given. Then the following assertions hold.
(i) For all ϕ ∈ −N ⋆

C(x), h ∈ K⋆
C(x, ϕ), α > 0, we have Qx,ϕ

C (αh) = α2Qx,ϕ
C (h).

(ii) If C is convex, then Qx,ϕ
C (h) ≥ 0 for all ϕ ∈ −N ⋆

C(x) and h ∈ K⋆
C(x, ϕ).

Proof. Assertion (i) can be checked by a simple scaling argument. To prove
(ii), suppose that C is convex, let h ∈ K⋆

C(x, ϕ) and ϕ ∈ −N ⋆
C(x) be arbitrary but

fixed, and let {rk}, {tk} be sequences as in the definition of Qx,ϕ
C (h). Then it holds

2
tk
h + rk ∈ RC(x) ⊂ T ⋆

C (x) due to the convexity of C and, consequently, 〈ϕ, rk〉 =
〈

ϕ, 2
tk
h+ rk

〉

≥ 0. Taking the limes inferior for k → ∞ and the infimum over all {rk},

{tk} now yields the claim.

In addition to Lemma 3.2, we have the following weak-⋆ lower semicontinuity
result.

Lemma 3.3. Let x ∈ C and ϕ ∈ −N ⋆
C(x) be given. Let {hn} ⊂ K⋆

C(x, ϕ) be a
sequence such that hn

⋆
⇀ h holds for some h ∈ X and such that there exist sequences

{rn,k} ⊂ X and {tn,k} ⊂ R
+ and a constant M > 0 with

tn,k ց 0, tn,krn,k
⋆
⇀ 0, 〈ϕ, rn,k〉 → Qx,ϕ

C (hn) for all n as k → ∞ and

‖tn,k rn,k‖X ≤ M, x+ tn,k hn +
1

2
t2n,k rn,k ∈ C for all n, k.

Then, h is an element of the critical cone K⋆
C(x, ϕ) and it holds

(2) Qx,ϕ
C (h) ≤ lim inf

n→∞
Qx,ϕ

C (hn).
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Proof. Consider a countable dense subset {yi} of Y and choose a sequence kn

such that

(3) tn,kn ≤ 1

n
, 〈ϕ, rn,kn 〉 ≤ Qx,ϕ

C (hn) +
1

n
and |〈yi, tn,kn rn,kn〉| ≤ 1

n
∀i ≤ n

holds for all n ∈ N. Then, our assumptions on rn,k imply ‖tn,kn rn,kn‖X ≤ M , and
we may deduce from (3) that the sequences tn := tn,kn and rn := rn,kn + 2

tn
(hn − h)

satisfy

tn ց 0, tnrn
⋆
⇀ 0, x+ tn h+

1

2
t2n rn ∈ C and lim inf

n→∞
〈ϕ, rn〉 ≤ lim inf

n→∞
Qx,ϕ

C (hn).

The above yields h ∈ T ⋆
C (x) and, since we trivially have h ∈ ϕ⊥, h ∈ K⋆

C(x, ϕ).
Moreover, we obtain (2) from the definition of Qx,ϕ

C (h). This proves the claim.

We point out that Lemma 3.3 is in particular applicable if for every h ∈ K⋆
C(x, ϕ)

we can find sequences {rk} ⊂ X and {tk} ⊂ R
+ that realize the infimum in (1) with

strong convergence tkrk → 0. Since sets C with the latter property prove to be useful
also in different contexts, we introduce the following concept.

Definition 3.4 (Mosco Regularity Condition (MRC)). We say that C is Mosco
regular in (x, ϕ) ∈ C × −N ⋆

C(x) if

(MRC)
∀h ∈ K⋆

C(x, ϕ) ∃{rk} ⊂ X, {tk} ⊂ R
+ :

tk ց 0, tk rk → 0, x+ tk h+
1

2
t2k rk ∈ C, Qx,ϕ

C (h) = lim
k→∞

〈ϕ, rk〉 .

Remark 3.5. It is easy to see that (MRC) holds in (x, ϕ) ∈ C × −N ⋆
C(x) if and

only if

Qx,ϕ
C (h) = inf







lim inf
k→∞

〈ϕ, rk〉

∣

∣

∣

∣

∣

∣

{rk} ⊂ X, {tk} ⊂ R
+ : tk ց 0, tk rk → 0,

x+ tk h+
1

2
t2k rk ∈ C







for all h ∈ K⋆
C(x, ϕ), i.e., if and only if the functional Qx,ϕ

C (·) remains unchanged when
we replace the weak-⋆ convergence of tk rk with strong convergence. In the context of
Kuratowski limits, the latter means that the weak-⋆ limes superior and the strong limes
superior of the epigraphs of the second-order difference quotients associated with the
indicator function of the set C, the point x, and the element ϕ ∈ −N ⋆

C(x) coincide.
We again refer to [14] for details.

We will see in the following section that the condition (MRC) is also of significance for
the study of second-order optimality conditions as it allows to weaken the regularity
assumptions on the objective needed for the derivation of SNC. Note that (MRC) is
always satisfied when X is finite-dimensional. Further conditions ensuring (MRC) can
be found in Lemmas 5.3 and 5.7.

4. Necessary and Sufficient Second-Order Conditions. Having introduced
the directional curvature functional Qx,ϕ

C (·), we now turn our attention to SNC and
SSC for minimization problems of the form

(P) Minimize J(x), such that x ∈ C.

In the remainder of this paper, when discussing optimality conditions for a problem
of the type (P), we always require that (in addition to our standing Assumption 2.1)
the following assumption holds.
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Assumption 4.1.
(i) x̄ is a fixed element of the set C (the minimizer/candidate for a minimizer),

(ii) J : C → R is a function such that there exist a J ′(x̄) ∈ ι(Y ) and a bounded
bilinear J ′′(x̄) : X ×X → R with

(4) lim
k→∞

J(x̄+ tk hk) − J(x̄) − tk J
′(x̄)hk − 1

2 t
2
k J

′′(x̄)h2
k

t2k
= 0

for all {hk} ⊂ X, {tk} ⊂ R
+ satisfying tk ց 0, hk

⋆
⇀ h ∈ X and x̄+tkhk ∈ C.

Note that we use the abbreviations J ′(x̄)h := 〈J ′(x̄), h〉 and J ′′(x̄)h2 := J ′′(x̄)(h, h)
for all h ∈ X in (4), and that (4) is automatically satisfied if J admits a second-order
Taylor expansion of the form

(5) J(x̄ + h) − J(x̄) − J ′(x̄)h− 1

2
J ′′(x̄)h2 = o(‖h‖2

X) as ‖h‖X → 0.

We begin our investigation by stating necessary conditions of first order.

Theorem 4.2 (First-Order Necessary Condition). Suppose that x̄ is a local min-
imizer of (P), i.e., assume that there is an ε > 0 with

J(x) ≥ J(x̄) ∀x ∈ C ∩BX
ε (x̄),

where BX
ε (x̄) denotes the closed ball of radius ε around x̄. Then, J ′(x̄) ∈ −N ⋆

C(x̄).

Proof. Let h ∈ T ⋆
C (x̄) be given. By definition, there are sequences {xk} ⊂ C,

{tk} ⊂ R
+ with tk ց 0 and (xk − x̄)/tk

⋆
⇀ h. We set hk := (xk − x̄)/tk. Then

for large enough k, we have (due to (4) and the boundedness of weakly-⋆ convergent
sequences)

0 ≤ J(xk) − J(x̄)

tk
=
J(x̄ + tk hk) − J(x̄)

tk
= J ′(x̄)hk + O(tk) → J ′(x̄)h.

The above and our assumption J ′(x̄) ∈ ι(Y ) yield J ′(x̄) ∈ −N ⋆
C(x̄) as claimed.

Using Theorem 4.2, we can provide second-order optimality conditions for (P).

Theorem 4.3 (SNC Involving the Directional Curvature Functional). Suppose
that x̄ is a local minimizer of (P) such that

(6) J(x) ≥ J(x̄) +
c

2
‖x− x̄‖2

X ∀x ∈ C ∩BX
ε (x̄)

holds for some c ≥ 0 and some ε > 0. Assume further that one of the following
conditions is satisfied.

(i) The map h 7→ J ′′(x̄)h2 is weak-⋆ upper semicontinuous.
(ii) The admissible set C satisfies (MRC) in (x̄, J ′(x̄)) ∈ C × −N ⋆

C(x̄).
Then

(7) Q
x̄,J′(x̄)
C (h) + J ′′(x̄)h2 ≥ c ‖h‖2

X ∀h ∈ K⋆
C(x̄, J ′(x̄)).

Proof. We first consider the case with (i): From the definition of Q
x̄,J′(x̄)
C (·),

it follows that for every h ∈ K⋆
C(x̄, J ′(x̄)) and every δ > 0 we can find sequences

{rk} ⊂ X and {tk} ⊂ R
+ such that tk ց 0, tk rk

⋆
⇀ 0, xk := x̄ + tk h + 1

2 t
2
k rk ∈ C

and

(8) lim
k→∞

〈J ′(x̄), rk〉 ≤ Q
x̄,J′(x̄)
C (h) + δ.

6



Since xk → x̄ strongly in X , (6) entails J(xk) ≥ J(x̄) + c
2 ‖xk − x̄‖2

X for large enough
k. Hence, we may use (4), J ′(x̄)h = 0 and the weak-⋆ lower semicontinuity of the
norm ‖ · ‖X to obtain

(9)

0 = lim
k→∞

J(xk) − J(x̄) − tk J
′(x̄)

(

h+ 1
2 tkrk

)

− 1
2 t

2
k J

′′(x̄)
(

h+ 1
2 tkrk

)2

t2k

≥ lim sup
k→∞

c
2 t

2
k‖h+ 1

2 tk rk‖2
X − tk J

′(x̄)
(

1
2 tkrk

)

− 1
2 t

2
k J

′′(x̄)
(

h+ 1
2 tkrk

)2

t2k

≥ c

2
‖h‖2

X − 1

2
lim inf
k→∞

〈J ′(x̄), rk〉 − 1

2
lim sup

k→∞

(

J ′′(x̄)
(

h+ 1
2 tkrk

)2)
.

From (8), (9) and the weak-⋆ upper semicontinuity of h 7→ J ′′(x̄)h2, it follows

c‖h‖2
X ≤ Q

x̄,J′(x̄)
C (h) + δ + J ′′(x̄)h2.

Passing to the limit δ ց 0 in this inequality yields the claim in the first case.
It remains to prove (7) under assumption (ii). To this end, we note that, if

(MRC) holds in (x̄, J ′(x̄)) ∈ C×−N ⋆
C(x̄), then for every h ∈ K⋆

C(x̄, J ′(x̄)) we can find
{rk} ⊂ X , {tk} ⊂ R

+ such that tk ց 0, tk rk → 0, xk := x̄+ tk h+ 1
2 t

2
k rk ∈ C and

lim
k→∞

〈J ′(x̄), rk〉 = Q
x̄,J′(x̄)
C (h).

Now, the second-order condition (7) follows analogously to case (i).

Theorem 4.4 (SSC Involving the Directional Curvature Functional). Assume
that the map h 7→ J ′′(x̄)h2 is weak-⋆ lower semicontinuous, that J ′(x̄) ∈ −N ⋆

C(x̄) and
that

(10) Q
x̄,J′(x̄)
C (h) + J ′′(x̄)h2 > 0 ∀h ∈ K⋆

C(x̄, J ′(x̄)) \ {0}.

Suppose further that

(NDC)

for all {hk} ⊂ X, {tk} ⊂ R
+ with x̄+ tk hk ∈ C, hk

⋆
⇀ 0, tk ց 0

and ‖hk‖X = 1, it is true that

lim inf
k→∞

(

〈J ′(x̄), hk/tk〉 +
1

2
J ′′(x̄)h2

k

)

> 0.

Then x̄ satisfies the growth condition (6) with some constants c > 0 and ε > 0.

Proof. We argue by contradiction. Assume that there are no c > 0, ε > 0 such
that (6) holds. Then there are sequences {xk} ⊂ C and {ck} ⊂ R

+ such that

ck ց 0, ‖xk − x̄‖X → 0, and J(xk) < J(x̄) +
ck

2
‖xk − x̄‖2

X .

Define tk := ‖xk − x̄‖X and hk := (xk − x̄)/tk. Then ‖hk‖X = 1 for all k and we may

7



extract a subsequence (not relabeled) such that hk
⋆
⇀ h ∈ T ⋆

C (x̄). From (4), it follows

(11)

0 = lim
k→∞

J(x̄+ tk hk) − J(x̄) − tk J
′(x̄)hk − 1

2 t
2
k J

′′(x̄)h2
k

t2k

≤ lim inf
k→∞

ck

2 ‖xk − x̄‖2
X − tk J

′(x̄)hk − 1
2 t

2
k J

′′(x̄)h2
k

t2k

= lim inf
k→∞

−J ′(x̄)hk − 1
2 tk J

′′(x̄)h2
k

tk

≤ − lim sup
k→∞

J ′(x̄)hk

tk
− lim inf

k→∞

1
2 tk J

′′(x̄)h2
k

tk

≤ − lim sup
k→∞

J ′(x̄)hk

tk
− 1

2
J ′′(x̄)h2.

Thus, lim supk→∞ J ′(x̄)hk/tk is bounded from above and from tk ց 0 we infer
lim supk→∞ J ′(x̄)hk ≤ 0. Together with J ′(x̄) ∈ −N ⋆

C(x̄) we find J ′(x̄)h = 0. Using
h ∈ T ⋆

C (x̄), this yields h ∈ K⋆
C(x̄, J ′(x̄)). Setting rk := 2 (hk − h)/tk and using (11),

J ′(x̄)h = 0 and Definition 3.1, we obtain

J ′′(x̄)h2 ≤ −2 lim sup
k→∞

J ′(x̄)hk

tk
= − lim sup

k→∞
J ′(x̄) rk ≤ − lim inf

k→∞
J ′(x̄) rk

≤ −Qx̄,J′(x̄)
C (h).

From (10), we may now deduce that h is zero. This is a contradiction with (NDC),
see the properties of the sequences {hk}, {tk} and (11).

The acronym (NDC) stands for “non-degeneracy condition”. Comments on (NDC)
are provided in Subsection 5.1. By combining the previous two theorems, we arrive
at our main theorem on no-gap second-order conditions.

Theorem 4.5 (No-Gap Second-Order Optimality Condition). Assume that the
map h 7→ J ′′(x̄)h2 is weak-⋆ lower semicontinuous, that J ′(x̄) ∈ −N ⋆

C(x̄), that (NDC)
holds, and that one of the conditions (i) and (ii) in Theorem 4.3 is satisfied. Then,
the condition

Q
x̄,J′(x̄)
C (h) + J ′′(x̄)h2 > 0 ∀h ∈ K⋆

C(x̄, J ′(x̄)) \ {0}

is equivalent to the quadratic growth condition (6) with constants c > 0 and ε > 0.

Some remarks regarding Theorems 4.3 to 4.5 are in order.

Remark 4.6.
(i) Note that Theorem 4.3 yields that there are two ways to obtain the second-

order necessary condition (7) in the situation of Assumption 4.1: We can
assume either that the second derivative of J at x̄ has additional (semi)-
continuity properties (this is case (i)) or that the set C is sufficiently well-
behaved at x̄ (this is case (ii)). The observation that one has the choice to
impose additional assumptions either on the appearing sets or the appearing
functions can be made frequently when working with the directional curvature
functional.

(ii) We point out that the regularity condition (MRC) is not helpful in the deriva-
tion of the SSC in Theorem 4.4. At the heart of the proof of Theorem 4.4 is,

8



after all, the contradiction argument which only provides a weak-⋆ convergent
subsequence.

(iii) It is easy to see that the differentiability assumptions on J in Assumption 4.1
can be weakened when one is interested in only one of the results in The-
orems 4.3 and 4.4. To derive the necessary condition (7) in case (ii) of
Theorem 4.3, for example, it suffices to assume that

h ∈ X, {rk} ⊂ X, {tk} ⊂ R
+, tk ց 0, tk rk → 0 in X

⇒ max

(

0,
J(x̄+ tkh+ 1

2 t
2
krk) − J(x̄) − tkJ

′(x̄)(h+ 1
2 tkrk) − 1

2 t
2
kJ

′′(x̄)h2

t2k

)

→ 0

holds for some bounded, linear mapping J ′(x̄) : X → R and some bilinear
form J ′′(x̄) : X×X → R. We refrain from stating the minimal differentiabil-
ity properties in each of the Theorems 4.3 to 4.5 since this would just obscure
the basic ideas of our analysis.

(iv) We point out that it is possible to modify the proofs of Theorems 4.3 and 4.4 to
obtain second-order conditions in the setting of two-norms discrepancy, i.e.,
in the situation where the objective J only satisfies a second-order Taylor
expansion à la (5) w.r.t. some norm ‖ · ‖Z that is stronger than ‖ · ‖X. We
leave it to the interested reader to work out this easy extension of our analysis
in detail.

(v) In the finite-dimensional setting, results similar to Theorems 4.3 to 4.5 have
been obtained in [21, Theorem 13.24].

5. How to Apply and Interpret the Results of Section 4 in the Con-

text of the Classical Theory. In this section, we comment on the verification and
interpretation of the conditions (NDC) and (MRC) appearing in our second-order
conditions, see Subsection 5.1, Lemma 5.3, and Lemma 5.7. Further, we address the
computation of the directional curvature functional for polyhedric and second-order
regular sets, see Subsection 5.2. Finally, we compare our theorems of Section 4 with
classical results. In Subsection 5.3, we use the observations of Subsections 5.1 and 5.2
to state two corollaries of Theorem 4.5 that reproduce (and slightly extend) classical
results found, e.g., in [4] and [9]. We conclude this section with two examples that
illustrate the usefulness of Theorems 4.3 to 4.5.

5.1. Remarks on the Non-Degeneracy Condition (NDC). The condition
(NDC) appearing in our SSC can be interpreted as a generalized Legendre condition,
cf. [4, Section 3.3.2] and Lemma 5.1 (ii). In contrast to a classical Legendre condition,
our requirement (NDC) is a condition on the interplay between the curvature of C
in x̄ in the direction J ′(x̄) and the properties of J ′′(x̄). In practice, (NDC) can be
ensured, e.g., by assuming ellipticity of the second derivative J ′′(x̄) or by assuming
that the admissible set C has “positive” curvature at x̄ (or some combination of the
both). Some sufficient criteria can be found in the following lemma.

Lemma 5.1. Each of the following conditions is sufficient for (NDC).
(i) C is a convex subset of X, J ′(x̄) ∈ −N ⋆

C(x̄), and J ′′(x̄)h2 ≥ r > 0 for all
h ∈ X with ‖h‖X = 1.

(ii) C is a convex subset of X, J ′(x̄) ∈ −N ⋆
C(x̄), and J ′′(x̄) is a Legendre form

in the sense that h 7→ J ′′(x̄)h2 is weak-⋆ lower semicontinuous and

hk
⋆
⇀ h and J ′′(x̄)h2

k → J ′′(x̄)h2 ⇒ hk → h

9



holds for all sequences {hk} ⊂ X.
(iii) There exist c, ε > 0 with J ′(x̄) (x − x̄) ≥ c

2 ‖x − x̄‖2 for all x ∈ BX
ε (x̄) ∩ C

and the map h 7→ J ′′(x̄)h2 is weak-⋆ lower semicontinuous.
(iv) X is finite-dimensional.

Proof. Case (iv) is trivial. To prove (NDC) in the cases (i) to (iii), we have to
show that for all {tk}, {hk} satisfying tk ց 0, hk

⋆
⇀ 0 and ‖hk‖X = 1, x̄+ tk hk ∈ C

for all k, it holds lim infk→∞
(

〈J ′(x̄), hk/tk〉 + 1
2 J

′′(x̄)h2
k

)

> 0. Therefore, we assume
that sequences {tk}, {hk} with the above properties are given.

We first discuss the case that C is convex. For such a C, it holds hk ∈ RC(x̄)
and, as a consequence, J ′(x̄)hk ≥ 0, so it suffices to prove lim infk→∞ J ′′(x̄)h2

k > 0
to obtain the claim. The latter is trivially true under assumption (i). Similarly, in
case (ii), we have lim infk→∞ J ′′(x̄)h2

k ≥ 0 by lower semicontinuity. Moreover, if we
had J ′′(x̄)h2

k → 0 (along a subsequence), we would obtain the contradiction hk → 0
(along a subsequence). Hence, lim infk→∞ J ′′(x̄)h2

k > 0 and (NDC) is proved for (ii).
In case (iii), we have

〈J ′(x̄), hk/tk〉 = t−2
k 〈J ′(x̄), tk hk〉 ≥ c

2
t−2
k ‖tk hk‖2 =

c

2

for k large enough. Together with lim infk→∞ J ′′(x̄)h2
k ≥ J ′′(x̄) 02 = 0, the above

yields the desired inequality lim infk→∞
(

〈J ′(x̄), hk/tk〉 + 1
2 J

′′(x̄)h2
k

)

> 0. This com-
pletes the proof.

Note that in case (iii) of Lemma 5.1, the second derivative J ′′(x̄) is allowed to be
negative definite. This effect occurs whenever the curvature of the set C at x̄ is such
that it can compensate for negative curvature of the objective J . In Subsection 6.2,
we will see an example, where the latter actually happens. We further point out
that, under the assumptions of Lemma 5.1 (iii), the directional curvature functional
is coercive in the sense that

(12) Q
x̄,J′(x̄)
C (h) ≥ c ‖h‖2

X ∀h ∈ K⋆
C(x̄, J ′(x̄)),

where c is the constant in Lemma 5.1 (iii). Indeed, for h ∈ K⋆
C(x̄, J ′(x̄)), tk ց 0,

tk rk
⋆
⇀ 0 and xk := x̄+ tk h+ 1

2 t
2
k rk ∈ C, we have

lim inf
k→∞

J ′(x̄) rk = lim inf
k→∞

J ′(x̄)
xk − x̄

1
2 t

2
k

≥ lim inf
k→∞

c
‖xk − x̄‖2

X

t2k
= lim inf

k→∞
c ‖h+

1

2
tk rk‖2

X ≥ c ‖h‖2
X .

The above gives a lower estimate for the directional curvature functional that is often
also interesting for its own sake. We will get back to this topic in Subsection 6.2.

5.2. Directional Curvature, Polyhedricity and Second-Order Regular-

ity. In this section, we discuss how the notion of directional curvature is related to
the classical concepts of polyhedricity and second-order regularity, and how these
properties can be used to calculate the functional Qx,ϕ

C (·) for a given tuple (x, ϕ) ∈
C × −N ⋆

C(x). Recall the following definitions, cf. [4, Section 3.2.1, Definitions 3.51,
3.85], [20], and [23, Lemma 4.1].

Definition 5.2 (Polyhedricity and Second-Order Regularity).
(i) The set C is said to be polyhedric at x ∈ C if C is convex and

TC(x) ∩ ϕ⊥ = cl
(

RC(x) ∩ ϕ⊥) ∀ϕ ∈ X⋆.
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(ii) The strong (outer) second-order tangent set to a tuple (x, h) ∈ C × TC(x) is
given by

T 2
C (x, h) :=

{

r ∈ X
∣

∣

∣
∃tn ց 0, dist

(

x+ tn h+ 1
2 t

2
n r, C

)

= o(t2n)
}

.

(iii) The set C is called (outer) second-order regular at x ∈ C if for all h ∈ TC(x)
and all xn ∈ C of the form xn := x+ tnh+ 1

2 t
2
nrn with tn ց 0 and tnrn → 0

it holds

lim
n→∞

dist
(

rn, T 2
C (x, h)

)

= 0.

Note that sequences {xn}, {rn} as in (iii) exist for all h ∈ TC(x) and that a set C can
only be (outer) second-order regular at x ∈ C if T 2

C (x, h) 6= ∅ for all h ∈ TC(x) (since
otherwise dist(·, T 2

C (x, h)) = +∞ by the usual conventions).
First, we show that the boundary of polyhedric sets is not curved.

Lemma 5.3 (Curvature of Polyhedric Sets). Assume that X is reflexive and that
C is polyhedric at x ∈ C. Then (MRC) is satisfied in (x, ϕ) for all ϕ ∈ −N ⋆

C(x) and

Qx,ϕ
C (h) = 0 ∀h ∈ K⋆

C(x, ϕ).

Proof. From the reflexivity, Mazur’s lemma and the convexity and closedness
of C, it follows T ⋆

C (x) = TC(x). Consequently, K⋆
C(x, ϕ) = TC(x) ∩ ϕ⊥ for every

ϕ ∈ −N ⋆
C(x). For h ∈ RC(x) ∩ ϕ⊥ the choice tk = 1/k, k ∈ N sufficiently large,

and rk = 0 shows Qx,ϕ
C (h) = 0, see also Lemma 3.2 (ii). Now, let h ∈ K⋆

C(x, ϕ) =
TC(x) ∩ ϕ⊥ be given. Owing to the polyhedricity of C at x, there exists a sequence
{hk} ⊂ RC(x) ∩ ϕ⊥ with hk → h in X . Now, we can apply Lemma 3.2 (ii) and
Lemma 3.3 (with M = 0) to obtain

0 ≤ Qx,ϕ
C (h) ≤ lim inf

k→∞
Qx,ϕ

C (hk) = 0.

The recovery sequence in (MRC) can be constructed straightforwardly from {hk}.

Lemma 5.3 shows that, for a polyhedric set C, the directional curvature functional
is always identical zero. This is, of course, exactly what one would expect (cf. also
with [14, Example 2.10] in this context). The situation is different when C possesses
curvature in the sense of second-order regularity – a concept that is promoted and
extensively used in [4]. The curvature of second-order regular sets is addressed in the
next lemma.

Lemma 5.4 (Curvature of Second-Order Regular Sets). Assume that C is outer
second-order regular at x ∈ C, that ϕ ∈ −N ⋆

C(x), and that (MRC) is satisfied in
(x, ϕ). Then

Qx,ϕ
C (h) = inf

r∈T 2
C

(x,h)
〈ϕ, r〉 ∀h ∈ K⋆

C(x, ϕ).

Proof. Let h ∈ K⋆
C(x, ϕ) be given. Then (MRC) yields that we can find sequences

{rk} ⊂ X , {tk} ⊂ R
+ such that tk ց 0, tk rk → 0, x+ tk h+ 1

2 t
2
k rk ∈ C and

Qx,ϕ
C (h) = lim

k→∞
〈ϕ, rk〉 .
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Note that the above implies in particular that h ∈ TC(x). From the outer second-order
regularity of C in x, we now obtain

lim
k→∞

dist
(

rk, T 2
C (x, h)

)

= 0,

i.e., there exists a sequence {r̃k} ⊂ T 2
C (x, h) with

(13) Qx,ϕ
C (h) = lim

k→∞
〈ϕ, rk〉 = lim

k→∞
〈ϕ, r̃k〉 ≥ inf

r∈T 2
C

(x,h)
〈ϕ, r〉 .

If, on the other hand, r ∈ T 2
C (x, h) is arbitrary but fixed, then we know that there

are sequences {tk} ⊂ R
+, {sk} ⊂ X with

tk ց 0, x+ tkh+
1

2
t2k(r + sk) ∈ C, sk → 0,

and we obtain from the definition of Qx,ϕ
C (h) that

Qx,ϕ
C (h) ≤ inf







lim inf
k→∞

〈ϕ, rk〉

∣

∣

∣

∣

∣

∣

{rk} ⊂ X, {tk} ⊂ R
+ : tk ց 0, tk rk → 0,

x+ tk h+
1

2
t2k rk ∈ C







≤ lim inf
k→∞

〈ϕ, r + sk〉 = 〈ϕ, r〉 .

This yields

Qx,ϕ
C (h) ≤ inf

r∈T 2
C

(x,h)
〈ϕ, r〉

which, together with (13), proves the claim.

We would like to point out that Lemma 5.3 cannot be obtained as a corollary of
Lemma 5.4. The reason for this is that polyhedric sets do not necessarily have to be
second-order regular. In fact, we have the following result.

Lemma 5.5 (Necessary Condition for Second-Order Regularity). Assume that C
is outer second-order regular at x ∈ C. Then, for all h ∈ TC(x), it holds T 2

C (x, h) 6= ∅
and there exists a positive sequence tk ց 0 such that dist(x + tk h,C) = O(t2k) as
k → ∞.

Proof. Let h ∈ TC(x) be given. As explained after Definition 5.2, the outer
second-order regularity of C at x ∈ C implies T 2

C (x, h) 6= ∅.
Now, let r ∈ T 2

C (x, h) be given. By definition, there is a positive sequence tk ց 0
such that dist

(

x+ tk h+ 1
2 t

2
k r, C

)

= o(t2k). Using the latter and the triangle inequal-
ity, we obtain

dist(x+ tk h,C) ≤ dist
(

x+ tk h+
1

2
t2k r, C

)

+
1

2
t2k ‖r‖X = o(t2k) + O(t2k) = O(t2k).

This finishes the proof.

Using Lemma 5.5, we can prove that even the most elementary examples of
infinite-dimensional polyhedric sets can lack the property of second-order regularity.

Example 5.6. Let (0, 1) be equipped with Lebesgue’s measure. Define X :=
L2(0, 1) and C := {v ∈ L2(0, 1) : v ≥ 0}, and let x be the unique element of X with
x(ξ) = 1 for a.a. ξ ∈ (0, 1). Then, C is polyhedric at x and it holds TC(x) = L2(0, 1).
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Consider now an arbitrary but fixed α ∈ (−1/2,−1/4) and let h ∈ L2(0, 1) be defined
via h(ξ) = −ξα for a.a. ξ ∈ (0, 1). Then, for all sequences tk ց 0, it holds

dist(x + tk h,C) =
(

∫ t
−1/α

k

0

(1 − tk ξ
α)2 dξ

)1/2

= c1/2
α t

−1/(2 α)
k 6= O(t2k),

where cα = 2 α2

(α+1) (2 α+1) > 0. Hence, T 2
C (x, h) = ∅ and, consequently, C cannot be

outer second-order regular at x by Lemma 5.5. Using similar arguments, we can show
that C fails to be outer second-order regular at all x ∈ C \ {0}.

Note that, due to the effects appearing in Example 5.6, the concept of second-
order regularity is typically not suited for the analysis of optimal control problems
with pointwise control or state constraints. It is, however, quite useful when the
optimization problem at hand is finite-dimensional or involves constraints of the form
G(x) ∈ K, where K ⊂ R

d is a closed, convex, non-empty set, cf. Example 5.13. To
simplify the derivation of second-order optimality conditions for problems of the latter
type, we provide a calculus rule for the curvature of preimages.

Lemma 5.7. Let Z be a Banach space. Assume that C = G−1(K) holds for some
twice continuously Fréchet differentiable function G : X → Z and some closed, convex,
non-empty set K ⊂ Z. Suppose further that a tuple (x, ϕ) ∈ C × −N ⋆

C(x) is given
such that the Zowe-Kurcyusz constraint qualification

(ZKCQ) G′(x)X − RK(G(x)) = Z

is satisfied in x, such that K is second-order regular in G(x), and such that the
maps h 7→ G′(x)h and h 7→ G′′(x)h2 are weak-⋆-to-strong continuous. Then, C
satisfies (MRC) in (x, ϕ), it holds K⋆

C(x, ϕ) = ϕ⊥ ∩G′(x)−1TK(G(x)), and for every
h ∈ K⋆

C(x, ϕ) it is true that

(14) Qx,ϕ
C (h) = inf

r∈G′(x)−1(T 2
K

(G(x),G′(x)h)−G′′(x)h2)
〈ϕ, r〉 .

Proof. The proof of Lemma 5.7 follows the lines of that of [4, Proposition 3.88]:
Let h ∈ K⋆

C(x, ϕ) be fixed, and let {rk} ⊂ X, {tk} ⊂ R
+ be sequences satisfying

tk ց 0, tk rk
⋆
⇀ 0 and x+ tk h+ 1

2 t
2
k rk ∈ C, i.e., G(x+ tk h+ 1

2 t
2
k rk) ∈ K. Then, by

a Taylor expansion of G, cf. [6, Theorem 5.6.3], and using our assumptions on G′′(x),
we obtain

(15)

G
(

x+ tk h+
1

2
t2k rk

)

= G(x) + tkG
′(x)h+

1

2
t2k

(

G′(x)rk +G′′(x)
(

h+
1

2
tk rk

)2
)

+ o(t2k)

= G(x) + tkG
′(x)h+

1

2
t2k
(

G′(x)rk +G′′(x)h2 + ϕk

)

∈ K

with some ϕk satisfying ϕk → 0 in Z. Since G′(x) is weak-⋆-to-strong continu-
ous, (15) implies G′(x)h ∈ TK(G(x)) and, by [4, Corollary 2.91], h ∈ TC(x) =
G′(x)−1TK(G(x)). This yields K⋆

C(x, ϕ) = ϕ⊥ ∩ G′(x)−1TK(G(x)) and shows that
it makes sense to use the second-order tangent sets T 2

C (x, h) and T 2
K(G(x), G′(x)h) in

the following. Next, we will prove that dist(rk, T 2
C (x, h)) → 0. We start by observing

that

0 ≤ Dk := dist
(

G′(x)rk , T 2
K(G(x), G′(x)h) −G′′(x)h2

)

≤ dist
(

G′(x)rk +G′′(x)h2 + ϕk, T 2
K(G(x), G′(x)h)

)

+ ‖ϕk‖Z → 0,
13



where we used (15), tkG
′(x)rk → 0 and the outer second-order regularity of K at

G(x).
Now, let {ηk} ⊂ Z be a sequence with G′(x)rk +G′′(x)h2 +ηk ∈ T 2

K(G(x), G′(x)h)
and ‖ηk‖Z ≤ Dk + 1/k. From [24, Theorem 2.1] and [4, Proposition 2.95], we obtain
that there exists a ρ > 0 with

BZ
ρ (0) ⊂ G′(x)BX

1 (0) − (K −G(x)) ∩BZ
1 (0).

In particular, we may find sequences µk ∈ X and λk ∈ RK(G(x)) such that

(16) ηk = G′(x)µk − λk and ‖µk‖X ≤ ρ−1‖ηk‖Z .

From (16) and the inclusions

RK(G(x)) ⊂ TTK(G(x))(h),(17a)

T 2
K(G(x), G′(x)h) + TTK(G(x))(G

′(x)h) ⊂ T 2
K(G(x), G′(x)h),(17b)

which follow from the fact that TK(G(x)) is a closed convex cone and [4, Proposition
3.34], we obtain

G′(x)(rk + µk) ∈ T 2
K(G(x), G′(x)h) + λk −G′′(x)h2 ⊂ T 2

K(G(x), G′(x)h) −G′′(x)h2.

Using the identity

(18) T 2
C (x, h) = G′(x)−1

(

T 2
K(G(x), G′(x)h) −G′′(x)(h, h)

)

∀h ∈ TC(x)

that is found, e.g., in [4, Proposition 3.33], we infer

rk + µk ∈ G′(x)−1
(

T 2
K(G(x), G′(x)h) −G′′(x)h2

)

= T 2
C (x, h).

The above implies that we indeed have

dist(rk, T 2
C (x, h)) ≤ ‖µk‖X ≤ ρ−1‖ηk‖Z ≤ ρ−1

(

Dk + 1/k
)

→ 0.

Arguing as in the first part of the proof of Lemma 5.4, we now obtain

lim inf
k→∞

〈ϕ, rk〉 ≥ inf
r∈T 2

C
(x,h)

〈ϕ, r〉 ,

and, as a consequence,

Qx,ϕ
C (h) ≥ inf

r∈T 2
C

(x,h)
〈ϕ, r〉 .

On the other hand, an argumentation analogous to that employed in the second part
of the proof of Lemma 5.4 yields

Qx,ϕ
C (h) ≤ inf







lim inf
k→∞

〈ϕ, rk〉

∣

∣

∣

∣

∣

∣

{rk} ⊂ X, {tk} ⊂ R
+ : tk ց 0, tk rk → 0,

x+ tk h+
1

2
t2k rk ∈ C







≤ inf
r∈T 2

C
(x,h)

〈ϕ, r〉 ≤ Qx,ϕ
C (h).

Hence, equality holds everywhere, (14) is valid (cf. (18)) and (MRC) is satisfied in
(x, ϕ) by the observation in Remark 3.5. This completes the proof.
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Under stronger assumptions on x and G, the right-hand side of (14) is directly
related to the directional curvature functional of K.

Lemma 5.8. In the situation of Lemma 5.7, assume that Z is the dual of a sepa-
rable Banach space and that there exists a λ ∈ N ⋆

K(G(x)) with ϕ+G′(x)⋆λ = 0 such
that (MRC) of K holds in (G(x),−λ) and

(19) Z = G′(x)X − RK(G(x)) ∩ λ⊥.

Then,

(20) Qx,ϕ
C (h) = Q

G(x),−λ
K (G′(x)h) + 〈λ,G′′(x)h2〉 ∀h ∈ K⋆

C(x, ϕ).

Proof. Let h ∈ K⋆
C(x, ϕ) be arbitrary but fixed. From (17), (19) and [24, The-

orem 2.1], it follows (analogously to the proof of Lemma 5.7) that for every w ∈
T 2

K(G(x), G′(x)h) −G′′(x)h2 there exist an r ∈ X and an η ∈ RK(G(x)) ∩ λ⊥ with

w = G′(x) r − η and G′(x) r = w + η ∈ T 2
K(G(x), G′(x)h) −G′′(x)h2.

Note that an r with the latter properties necessarily satisfies 〈−λ,w〉 = 〈−λ,G′(x)r〉
and G′(x) r ∈ G′(x)X ∩

(

T 2
K(G(x), G′(x)h) −G′′(x)h2

)

. Consequently, we may de-
duce
(21)

inf
w∈T 2

K
(G(x),G′(x) h)−G′′(x)h2

〈−λ,w〉 ≥ inf
w∈G′(x)X∩(T 2

K
(G(x),G′(x) h)−G′′(x)h2)

〈−λ,w〉.

On the other hand, we trivially have

inf
w∈T 2

K
(G(x),G′(x) h)−G′′(x)h2

〈−λ,w〉 ≤ inf
w∈G′(x)X∩(T 2

K
(G(x),G′(x) h)−G′′(x)h2)

〈−λ,w〉,

so equality has to hold in (21). Using this equality, (18), Lemmas 5.4 and 5.7, the
identity ϕ+ G′(x)⋆λ = 0 and a straightforward calculation, we obtain

Qx,ϕ
C (h)

= inf
r∈T 2

C
(x,h)

〈ϕ, r〉 = inf
r∈G′(x)−1(T 2

K
(G(x),G′(x)h)−G′′(x)h2)

〈−λ,G′(x)r〉

= inf
w∈G′(x)X∩(T 2

K
(G(x),G′(x) h)−G′′(x)h2)

〈−λ,w〉 = inf
w∈T 2

K
(G(x),G′(x) h)−G′′(x)h2

〈−λ,w〉

= inf
w∈T 2

K
(G(x),G′(x)h)

〈−λ,w〉 + 〈λ,G′′(x)h2〉 = Q
G(x),−λ
K (G′(x)h) + 〈λ,G′′(x)h2〉.

This proves the claim.

Several things are noteworthy regarding Lemma 5.8 and its assumptions.

Remark 5.9.
(i) The pull-back formula (20) is, in fact, valid in a setting that is far more

general than the one considered in Lemmas 5.7 and 5.8. It holds, e.g., also
for polyhedric sets K provided the strengthened Zowe-Kurcyusz condition (19)
is satisfied, cf. [23, Theorem 5.7]. It is further remarkable that the estimate

Qx,ϕ
C (h) ≥ Q

G(x),−λ
K (G′(x)h) + 〈λ,G′′(x)h2〉 ∀h ∈ K⋆

C(x, ϕ),

which yields an SSC for the problem (P), can often be proved without any
constraint qualifications at all. To avoid overloading this paper, we leave a
detailed discussion of the latter topics for future research.
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(ii) A possible interpretation of the formula (20) is that the (directional) curvature
of the set C has its origin in the nonlinearity of G or in the curvedness of K.

(iii) The condition (19) is well-known and appears, e.g., also in the study of the
uniqueness of Lagrange multipliers. It is precisely the ordinary Zowe-Kurcyusz
constraint qualification for the set K̃ := {u ∈ K : (u−G(x)) ∈ λ⊥}. We refer
to [22, Theorem 2.2] for details on this topic.

5.3. Two Corollaries of Theorem 4.5 and Some Tangible Examples. If
we combine the findings of Subsections 5.1 and 5.2 with the analysis of Section 4, then
we arrive, e.g., at the following two results.

Theorem 5.10 (No-Gap Second-Order Condition for Polyhedric Sets). Suppose
that X is reflexive and that C is polyhedric at x̄. Assume that J ′(x̄) ∈ −N ⋆

C(x̄) holds
and that J ′′(x̄) is a Legendre form in the sense of Lemma 5.1 (ii). Then, the condition

J ′′(x̄)h2 > 0 ∀h ∈ K⋆
C(x̄, J ′(x̄)) \ {0}

is equivalent to the quadratic growth condition (6) with constants c > 0 and ε > 0.

Proof. Use Lemmas 5.1 and 5.3 in Theorem 4.5.

Theorem 5.11 (No-Gap Second-Order Condition under Second-Order Regular-
ity). Let Z be a Banach space. Assume that C = G−1(K) holds for some twice
continuously Fréchet differentiable function G : X → Z and some closed, convex, non-
empty set K ⊂ Z. Assume further that J ′(x̄) ∈ −N ⋆

C(x̄) holds, that J ′′(x̄) is weak-⋆
lower semicontinuous, that (NDC) holds, that the maps h 7→ G′(x̄)h and h 7→ G′′(x̄)h2

are weak-⋆-to-strong continuous, that K is second-order regular in G(x̄), and that the
constraint qualification

G′(x̄)X − RK(G(x̄)) = Z

is satisfied. Then, the condition

(22)

J ′′(x̄)h2 + inf
r∈G′(x̄)−1(T 2

K
(G(x̄),G′(x̄)h)−G′′(x̄)h2)

〈J ′(x̄), r〉 > 0

∀h ∈ J ′(x̄)⊥ ∩G′(x̄)−1TK(G(x̄)) \ {0}

is equivalent to the quadratic growth condition (6) with constants c > 0 and ε > 0.
If, moreover, we know that Z is the dual of a separable Banach space and that there
exists a Lagrange multiplier λ ∈ N ⋆

K(G(x̄)) satisfying J ′(x̄) + G′(x̄)⋆λ = 0 such that
(MRC) holds in (G(x̄),−λ) and such that

Z = G′(x̄)X − RK(G(x̄)) ∩ λ⊥,

then (22) is equivalent to

∂xxL(x, λ)h2 +Q
G(x̄),−λ
K (G′(x̄)h) > 0 ∀h ∈ J ′(x̄)⊥ ∩G′(x̄)−1TK(G(x̄)) \ {0},

where L(x, λ) := J(x) + 〈λ,G(x)〉 is the Lagrangian associated with (P).

Proof. Use Lemmas 5.4, 5.7 and 5.8 in Theorem 4.5.

We remark that no-gap second-order conditions for specific classes of optimization
problems with polyhedric admissible sets (in particular, optimal control problems
with box constraints) can be found frequently in the literature. We only mention
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[2, Theorem 2.7], [8, Theorems 2.2, 2.3], and [9, Theorem 4.13] as examples here.
Theorem 5.10 reproduces these results on an abstract level.

Second-order conditions similar to those in Theorem 5.11, on the other hand, have
been studied extensively in [4] in various formats and settings, see ibidem Theorems
3.45, 3.83, 3.86, 3.109, 3.137, 3.145, 3.148, 3.155 and Proposition 3.46. It should be
noted that the no-gap conditions derived in [4, Section 3.3.3] all require X to be finite-
dimensional and, in addition, all need further assumptions on, e.g., the second-order
tangent set T 2

K(G(x̄), G′(x̄)h). Such assumptions are not needed for the derivation of
our second-order condition (22), but may be required for reformulations of (22) as we
have seen in the second part of Theorem 5.11.

We conclude this section with two simple examples that demonstrate the useful-
ness of Theorems 5.10 and 5.11.

Example 5.12 (A Simple Optimal Control Problem with Control Constraints).
Consider a minimization problem of the form

(23)
Minimize j(y) +

γ

2

∫

Ω

u2 dLd

such that u ∈ L2(Ω), −1 ≤ u ≤ 1 a.e. in Ω, S(u) = y,

where Ω ⊂ R
d is a bounded domain, j : L∞(Ω) → R is twice continuously differen-

tiable, γ > 0 is a Tikhonov parameter, Ld is the Lebesgue measure, and S : L2(Ω) →
L∞(Ω) is (for simplicity) linear and compact. In this situation, the space X := L2(Ω)
is obviously reflexive, the set C := L2(Ω, [−1, 1]) is closed, non-empty and polyhedric
at every point, and the reduced objective J(u) := j(Su)+ γ

2

∫

Ω u
2 dLd is a C2-function

with

J ′(u)h = j′(Su)(Sh) + γ(u, h)L2(Ω) ∀u, h ∈ L2(Ω),

J ′′(u)(h1, h2) = j′′(Su)(Sh1, Sh2) + γ(h1, h2)L2(Ω) ∀u, h1, h2 ∈ L2(Ω).

Note that the map h 7→ J ′′(u)h2 is weakly lower semicontinuous for all u ∈ L2(Ω),
and that J ′′(u) is a Legendre form for all u ∈ L2(Ω) since

(24)
hk ⇀ h and J ′′(u)h2

k → J ′′(u)h2 ⇒ hk ⇀ h and ‖hk‖2
L2(Ω) → ‖h‖2

L2(Ω)

⇒ hk → h.

Consequently, Theorem 5.10 is applicable in case of problem (23), and we may deduce
that, given some ū ∈ C with p̄ + γū ∈ −N ⋆

C(ū), where p̄ = S⋆(j′(Sū)) is the adjoint
state, the condition

j′′(Sū)(Sh, Sh) + γ‖h‖2
L2(Ω) > 0 ∀h ∈ K⋆

C(ū, p̄+ γū) \ {0}

is equivalent to the quadratic growth condition

J(u) ≥ J(ū) +
c

2
‖u− ū‖2

L2(Ω) ∀u ∈ C ∩BL2(Ω)
ε (ū)

with c > 0 and some ε > 0. Note that the Tikhonov regularization is of particular
importance in the above setting: The condition γ > 0 ensures (in combination with
the compactness of S) that the derivative J ′′(u) is a Legendre form for all u ∈ L2(Ω)
and thus guarantees (NDC). We will see in Subsection 6.2 that the situation changes
drastically when the regularization parameter γ equals zero.
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Example 5.13 (A Simple Optimal Control Problem with a Scalar Constraint).
Consider a minimization problem of the form

Minimize j(y) +
γ

2

∫

Ω

u2 dLd

such that u ∈ L2(Ω), Su = y, Tu ∈ BH
1 (0),

where Ω ⊂ R
d is a bounded domain, j : L∞(Ω) → R is twice continuously differ-

entiable, γ > 0 is a Tikhonov parameter, Ld is the Lebesgue measure, H is some
Hilbert space, and S : L2(Ω) → L∞(Ω), T : L2(Ω) → H are (for simplicity) linear
and compact. Define X := L2(Ω), Z := R, G(u) := ‖Tu‖2

H − 1, K := (−∞, 0],
C := G−1(K), and J(u) := j(Su)+ γ

2

∫

Ω u
2 dLd. Then X and Z are Hilbert spaces, C

is non-empty, convex and closed, K is non-empty, convex and closed, G is twice con-
tinuously differentiable with G′(u)h = 2(Tu, Th)H and G′′(u)(h1, h2) = 2(Th1, Th2)H

for all u ∈ L2(Ω), J is twice continuously differentiable with the same derivatives
as in Example 5.12, the map h 7→ J ′′(u)h2 is weakly lower semicontinuous for all
u ∈ L2(Ω), J ′′(u) is a Legendre form for all u ∈ L2(Ω) (cf. Example 5.12), (ZKCQ)
is satisfied in every u ∈ C (just use a distinction of cases), and K is second-order
regular at every z ∈ K with

TK(z) =

{

R if z ∈ (−∞, 0),

(−∞, 0] if z = 0,
T 2

K(z, h) =











R if z ∈ (−∞, 0), h ∈ R,

R if z = 0, h ∈ (−∞, 0),

(−∞, 0] if z = 0, h = 0.

Now, let ū ∈ C be given, such that p̄ + γū ∈ −N ⋆
C(ū), where p̄ = S⋆(j′(Sū)) is the

adjoint state. Using the above observations and (22), we obtain that the condition
(25)

j′′(Sū)(Sh, Sh) + γ‖h‖2
L2(Ω) + inf

r∈G′(ū)−1(T 2
K

(G(ū),G′(ū)h)−2‖T h‖2
H)

〈p̄+ γū, r〉 > 0

∀h ∈
(

p̄+ γū
)⊥ ∩G′(ū)−1TK(G(ū)) \ {0}

is equivalent to the quadratic growth condition (6) with constants c > 0 and ε > 0.
Note that G′(ū) : L2(Ω) → R is surjective if ‖T ū‖H > 0. Consequently, if 0 < ‖T ū‖ ≤
1, we may use the second part of Theorem 5.11 to simplify (25). This yields

j′′(Sū)(Sh, Sh) + γ‖h‖2
L2(Ω) > 0 ∀h ∈

(

p̄+ γū
)⊥ \ {0}

for the case 0 < ‖T ū‖ < 1 and the condition

j′′(Sū)(Sh, Sh) + γ‖h‖2
L2(Ω) + 2λ‖Th‖2

H > 0

∀h ∈
(

p̄+ γū
)⊥ ∩

{

h ∈ L2(Ω) \ {0} : (Tu, Th)H ≤ 0
}

for the case ‖T ū‖H = 1. Here, λ ≥ 0 is the (in this case necessarily unique) Lagrange
multiplier associated with ū.

We remark that Example 5.13 can also be studied with different means. We chose
the approach with the second-order regularity here to illustrate Theorem 5.11.

6. Advantages of our Approach. Having demonstrated that the framework of
Section 4 indeed allows to reproduce classical results for minimization problems with
polyhedric and second-order regular sets, we now turn our attention to the benefits
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offered by our approach in comparison with the classical theory. The main advantages
of our method are the following.

(i) Our approach splits the task of proving no-gap second-order optimality con-
ditions for problems of the type (P) into subproblems that can be tackled
independently from each other (namely, verifying (NDC), checking the differ-
entiability of J , and computing the directional curvature functional Qx,ϕ

C (·)).
We can further state our second-order conditions without imposing any pre-
liminary assumptions (as, e.g., polyhedricity or second-order regularity) on
the admissible set C, cf. Theorem 4.5. All of this makes our method more
flexible than the classical “all-at-once” approach.

(ii) Our results can also be employed in situations where the admissible set ex-
hibits a singular or degenerate curvature behavior, cf. the examples in Sub-
sections 6.1 and 6.2.

(iii) Our approach does not require a detailed analysis of the curvature of the set
C. To obtain the second-order condition in Theorem 4.5, we only have to
study the behavior of the quantity 〈J ′(x̄), rk〉 that appears in the definition
of the functional Q

x̄,J′(x̄)
C (·), i.e., we only have to analyze how the derivative

J ′(x̄) acts on the second-order corrections rk and not how the rk behave in
detail. This is a major difference to the concept of second-order regularity,
cf. Definition 5.2 (iii), and often very advantageous since it allows to exploit
additional information about the gradient of the objective. We will see this
effect in Subsection 6.2 below.

In the following, we demonstrate by means of two tangible examples that the
above points are not only of academic interest but also of relevance in practice. We
begin with a simple finite-dimensional optimization problem whose admissible set
exhibits a singular curvature behavior.

6.1. Singular Curvature in Finite Dimensions. Consider a two-dimensional
optimization problem of the form

(26) Minimize J(x), such that x ∈ C = {(x1, x2) ∈ R
2 | x2 ≥ |x1|α}

with a twice continuously differentiable objective J : R2 → R and some α ∈ (1, 2). Set
x̄ := (0, 0) and suppose that x̄ is a critical point of (26) with a non-vanishing gradient,
i.e., J ′(x̄) = (0, β) ∈ −N ⋆

C(x̄) = {0} × [0,∞) for some β > 0. Then, for every critical
direction h ∈ K⋆

C(x̄, J ′(x̄)) = {(h1, h2) ∈ R
2 | h2 = 0} and all sequences {tk} ⊂ R

+

and {rk} ⊂ R
2 satisfying tk ց 0, tk rk → 0 and x̄+ tk h+ 1

2 t
2
k rk ∈ C, it holds

(27)

lim inf
k→∞

〈J ′(x̄), rk〉

= 2 lim inf
k→∞

J ′(x̄)⊤ x̄+ tk h+ 1
2 t

2
k rk

t2k
= 2β lim inf

k→∞

(x̄+ tk h+ 1
2 t

2
k rk)2

t2k

≥ 2β lim inf
k→∞

|(x̄+ tk h+ 1
2 t

2
k rk)1|α

t2k
= 2β lim inf

k→∞
|(h+

1

2
tk rk)1|αtα−2

k .

The above implies

(28) Q
x̄,J′(x̄)
C (h) = +∞ ∀h ∈ K⋆

C(x̄, J ′(x̄)) \ {0} = {h ∈ R
2 | h1 6= 0, h2 = 0}.

Using (28), Theorem 4.5 and the fact that the conditions (MRC) and (NDC) are
trivially satisfied for (26), we obtain (analogous to [4, Example 3.84]) the following
result.
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Theorem 6.1. If x̄ = (0, 0) is a critical point of (26) with J ′(x̄) 6= 0, then x̄ is
a local minimizer of (26) and there exist parameters c > 0 and ε > 0 such that the
quadratic growth condition (6) is satisfied.

Note that the second derivative J ′′(x̄) is not important for local optimality of x̄.
The reason for this is that the curvature of the boundary ∂C is singular at the origin
and can thus compensate for any negative curvature that the objective J might have
at x̄. It should be noted further that the set C in (26) is neither polyhedric (trivially)
nor second-order regular at x̄ (since T 2

C (x̄, h) = ∅ for all h ∈ K⋆
C(x̄, J ′(x̄)) \ {0}, cf.

Lemma 5.5, and the estimate (27)). This demonstrates that (26) does not fall under
the setting of Theorems 5.10 and 5.11 and is indeed not covered by what is typically
seen as the classical second-order theory.

We remark that, given an optimization problem of the form

(29) Minimize J(x), such that x ∈ C = {(x1, x2) ∈ R
2 | x2 ≤ |x1|α}

with J ∈ C2(R2), J ′(x̄) = (0,−β) ∈ −N ⋆
C(x̄) = {0} × (−∞, 0], β > 0, x̄ := (0, 0), we

can use exactly the same arguments as for (26) to prove

Q
x̄,J′(x̄)
C (h) = −∞ ∀h ∈ K⋆

C(x̄, J ′(x̄)) = {h ∈ R
2 | h2 = 0}.

The above yields in combination with Theorems 4.2 and 4.3 that x̄ = (0, 0) can never
be a local minimizer of (29) unless the derivative J ′(x̄) is identical zero.

6.2. No-Gap Second-Order Conditions for Bang-Bang Problems. In this
section, we demonstrate that the analysis of Section 4 is not only relevant for finite-
dimensional toy problems à la (26) and (29), but also applicable in more complicated
situations. In what follows, we will use it to derive no-gap second-order conditions for
bang-bang optimal control problems. As a motivation, let us consider the optimization
problem (23) in Example 5.12 with γ = 0, i.e., the problem

(30)
Minimize j(y)

such that u ∈ L2(Ω), −1 ≤ u ≤ 1 a.e. in Ω, S(u) = y.

From Theorem 4.2, we obtain that every minimizer ū of (30) satisfies p̄ ∈ −N ⋆
C(ū),

where p̄ = S⋆(j′(Sū)) is the adjoint state. In particular, this implies that a minimizer
ū with Ld({p̄ = 0}) = 0 can only take the values ±1 a.e. in Ω. Such a solution ū is
called bang-bang.

The major problem that arises when SSC for a bang-bang control ū are considered
is the verification of the non-degeneracy condition (NDC). Recall that in Example 5.12
the latter is satisfied since the Tikhonov regularization causes the second derivative
of the reduced objective to be a Legendre form in L2(Ω), cf. (24). For (30) such
an argumentation is obviously not possible and this is not an artificial problem: It
can be shown that quadratic growth in L2(Ω) is in general not possible for a bang-
bang solution ū of (30), i.e., the growth condition (6) typically does not hold with
X = L2(Ω) and c, ε > 0, cf. [7, end of Section 2].

Hence, Theorem 4.5 cannot be applicable when we work with the space X =
L2(Ω). Note that, if we calculate the critical cone K⋆

C(ū, p̄) for a bang-bang control
ū in the L2-setting, then we end up with K⋆

C(ū, p̄) = TC(ū) ∩ p̄⊥ = {0} so that
the conditions j′′(Sū)(Sh, Sh) > 0 ∀h ∈ K⋆

C(ū, p̄) \ {0} and j′′(Sū)(Sh, Sh) ≥ 0
∀h ∈ K⋆

C(ū, p̄), which are the natural candidates for the SSC and SNC, respectively,
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are both void. This also indicates that it is not useful to discuss (30) as a problem in
X = L2(Ω).

The above discussion shows that, if we want to derive no-gap second-order condi-
tions for a bang-bang optimal control problem of the type (30), then we have to work
with a space X that is different from L2(Ω). As it turns out, the right choice is the
measure space X = M(Ω). Therefore, we consider the following setting.

Assumption 6.2 (Standing Assumptions and Notation for the Bang-Bang Set-
ting). We suppose that Ω ⊂ R

d, d ≥ 1, is a bounded domain with a Lipschitz boundary,
cf. [16, Definition 1.2.1.1]. We define the space Y := C0(Ω) = cl‖.‖∞

(Cc(Ω)) endowed
with the usual supremum norm. Its dual space can be identified with X := M(Ω)
which is the space of signed finite Radon measures on Ω endowed with the norm
‖µ‖M(Ω) := |µ|(Ω), cf. [1, Theorem 1.54]. The space L1(Ω) is identified with a closed

subspace of M(Ω) via the isometric embedding x 7→ xLd, where Ld is Lebesgue’s
measure. Note that this implies ‖x‖L1(Ω) = ‖x‖M(Ω) for all x ∈ L1(Ω). Finally,
C := L∞(Ω, [−1, 1]) = {x ∈ L∞(Ω) : −1 ≤ x ≤ 1 a.e. in Ω} ⊂ M(Ω).

The reason for using the space X = M(Ω) is the following observation, cf. [11,
Proposition 2.7].

Lemma 6.3. Let x̄ ∈ C and ϕ̄ ∈ −N ⋆
C(x̄) be given. Define

(31) K(ϕ̄) :=
1

4
lim inf

sց0

(

s

Ld({|ϕ̄| ≤ s})

)

∈ [0,+∞].

Then, there exists a family of constants {cε} satisfying cε ց 0 as ε ց 0 such that

(32) 〈ϕ̄, x− x̄〉C0(Ω),M(Ω) ≥
(

1

2
K(ϕ̄) − cε

)

‖x− x̄‖2
L1(Ω) ∀x ∈ C ∩BX

ε (x̄) ∀ε > 0.

Proof. We adapt the proof of [11, Proposition 2.7]. Define K := K(ϕ̄). If K = 0,
then the claim is trivially true. If K > 0, then it necessarily holds that Ld({ϕ̄ =
0}) = 0 and we obtain from ϕ̄ ∈ −N ⋆

C(x̄) that x̄ is bang-bang with x̄ = −sgn ϕ̄ a.e.
in Ω. Using the latter and N ⋆

C(x̄) ⊂ C0(Ω), we may calculate that for all h ∈ X and
all t > 0 with x̄+ th ∈ C and ‖h‖X = ‖h‖L1(Ω) = 1, it holds

∫

Ω

ϕ̄
h

t
dLd =

∫

Ω

|ϕ̄| |h|
t

dLd ≥
∫

{|ϕ̄|>Kt}
|ϕ̄| |h|

t
dLd

≥
∫

Ω

K|h|dLd −
∫

{|ϕ̄|≤Kt}
K|h|dLd ≥ K −K‖h‖L∞(Ω)Ld({|ϕ̄| ≤ Kt}).

By using t := ‖x − x̄‖L1(Ω), h := (x − x̄)/‖x − x̄‖L1(Ω) and ‖h‖L∞(Ω) ≤ 2/t, this
implies

〈ϕ̄, x− x̄〉C0(Ω),M(Ω) ≥
(

K − 2K2 sup
0<t≤ε

Ld({|ϕ̄| ≤ Kt})

Kt

)

‖x− x̄‖2
L1(Ω)

for all x ∈ C ∩BX
ε (x̄) \ {x̄} and all ε > 0. Note that the coefficient on the right-hand

side of the last estimate satisfies

lim
εց0

(

K − 2K2 sup
0<t≤ε

Ld({|ϕ̄| ≤ Kt})

Kt

)

= K − 2K2

(

lim sup
tց0

Ld({|ϕ̄| ≤ t})

t

)

=
1

2
K.

This proves the claim.
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Lemma 6.3 shows that Lemma 5.1 (iii) is applicable when we consider a bang-
bang solution x̄ whose gradient ϕ̄ := J ′(x̄) satisfies K(ϕ̄) > 0. This allows us to verify
(NDC) and to obtain the following result from Theorem 4.5.

Theorem 6.4 (No-Gap Second-Order Condition for Bang-Bang Problems). We
consider an optimization problem of the form (P) with C, X etc. as in Assumption 6.2.
Assume that x̄ ∈ C is fixed, that J satisfies the conditions in Assumption 4.1, that the
map X ∋ h 7→ J ′′(x̄)h2 ∈ R is weak-⋆ continuous, that ϕ̄ := J ′(x̄) ∈ −N ⋆

C(x̄), and
that the constant K(ϕ̄) in (31) is positive. Then, the condition

(33) Qx̄,ϕ̄
C (h) + J ′′(x̄)h2 > 0 ∀h ∈ K⋆

C(x̄, ϕ̄) \ {0}

is equivalent to the quadratic growth condition

(34) J(x) ≥ J(x̄) +
c

2
‖x− x̄‖2

L1(Ω) ∀x ∈ C ∩BX
ε (x̄)

with constants c > 0 and ε > 0.

Proof. We only need to check that Theorem 4.5 is applicable. The setting in
Assumption 6.2 clearly fits into that of Assumption 2.1, and Assumption 4.1 is trivially
satisfied. From K(ϕ̄) > 0 and Lemma 6.3, we further obtain that there exist constants
c, ε > 0 with J ′(x̄) (x − x̄) ≥ c

2 ‖x − x̄‖2 for all x ∈ BX
ε (x̄) ∩ C. This yields, in

combination with the weak-⋆ continuity of h 7→ J ′′(x̄)h2 and Lemma 5.1 (iii), that
(NDC) holds. Note that the weak-⋆ continuity of h 7→ J ′′(x̄)h2 also implies (i) in
Theorem 4.3. This shows that Theorem 4.5 is applicable and proves the claim.

Some remarks concerning Lemma 6.3 and Theorem 6.4 are in order.

Remark 6.5.
(i) Theorem 6.4 provides no-gap second-order conditions even in the case that

we cannot characterize the directional curvature functional Qx̄,ϕ̄
C (·) precisely.

(ii) Recall that the condition in Lemma 5.1 (iii) not only implies (NDC) but also
yields a coercivity estimate for the functional Qx̄,ϕ̄

C (·), see (12). Using this
estimate and (32), we obtain that, in the situation of Theorem 6.4,

(35) Qx̄,ϕ̄
C (h) ≥ K(ϕ̄) ‖h‖2

X ∀h ∈ K⋆
C(x̄, ϕ̄).

Here, K(ϕ̄) > 0 is again defined by (31). We point out that (35) implies
that the set C = L∞(Ω, [−1, 1]) possesses positive curvature as a subset of
the space M(Ω). This is not true if C is considered as a subset of the space
L2(Ω) as we have seen in Example 5.12 (in L2(Ω), C is polyhedric and the
curvature functional is zero).

(iii) From (35), it follows that J ′′(x̄)h2 > −K(ϕ̄) ‖h‖2
X for all h ∈ K⋆

C(x̄, ϕ̄) \ {0}
is a sufficient condition for quadratic growth in the situation of Theorem 6.4,
cf. (33). We point out that this SSC is sharper than that found in [11, Corol-
lary 2.15]. In this contribution the authors work with the slightly more re-
strictive “global” level set assumption

K̃ ≤ s

4 Ld({|ϕ̄| ≤ s})
∀s > 0

for some K̃ > 0. Note that such a K̃ necessarily satisfies K̃ ≤ K(ϕ̄). We
further point out that the SSC in [11, Corollary 2.15] can be improved to

∃ε > 0 : J ′′(x̄)h2 ≥ −
(

K̃ − ε
)

‖h‖2
X ∀h ∈ K⋆

C(x̄, ϕ̄),
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cf. [10, Theorem 2.4].
(iv) We expect that the SSC J ′′(x̄)h2 > −K(ϕ̄) ‖h‖2

X ∀h ∈ K⋆
C(x̄, ϕ̄) \ {0} can

also be formulated as an inequality on the so-called extended critical cone
introduced in [7], cf. [11, Theorem 2.14] and [10, Theorem 2.4]. We do not
pursue this approach here.

The next step is the calculation of the curvature functional Qx̄,ϕ̄
C (·) for a bang-

bang solution x̄ in order to obtain a no-gap optimality condition that is more explicit
than (33). Hence, we have to compute the (directional) curvature of the set C :=
L∞(Ω, [−1, 1]) as a subset of the space M(Ω). In the remainder of this section, we
will consider a bang-bang solution x̄ whose gradient ϕ̄ := J ′(x̄) ∈ −N ⋆

C(x̄) is in C1(Ω).
Let us first fix our assumptions on the x̄ under consideration.

Assumption 6.6 (Assumptions and Notation for the Calculation of Qx̄,ϕ̄
C (·)).

In addition to Assumption 6.2, we suppose that x̄ ∈ C and ϕ̄ ∈ −N ⋆
C(x̄) are given.

We require ϕ̄ ∈ ι(C0(Ω) ∩ C1(Ω)) and define Z := {z ∈ Ω : ϕ̄(z) = 0}. We assume
Z ⊂ {z ∈ Ω : |∇ϕ̄(z)| 6= 0}. Here and in the sequel, |∇ϕ̄(z)| denotes the Euclidean
norm of ∇ϕ̄(z) ∈ R

d.
Finally, we denote by Hd−1 the (d− 1)-dimensional Hausdorff measure, which is

scaled as in [15, Definition 2.1].

In the above situation, the set Z is a (d − 1)-dimensional C1-submanifold of Rd

due to the implicit function theorem, cf. [17, Theorem 2.32]. This implies in particular
that Ld(Z) = Ld({ϕ̄ = 0}) = 0 and that x̄ is indeed bang-bang with x̄ = −sgn ϕ̄ a.e.
in Ω. To calculate Qx̄,ϕ̄

C (·), we need the following directional Taylor-like expansion of
the L1(Ω)-norm.

Lemma 6.7 ([12, Corollary 5.10]). Given Assumption 6.6, for all v ∈ Cc(Ω) ∩
H1(Ω) and all sequences tk ∈ (0,∞) with tk ց 0, it is true that

(36)

∫

Ω

|−ϕ̄+ tkv|dLd =

∫

Ω

|ϕ̄|dLd + tk

∫

Ω

x̄vdLd + t2k

∫

Z

v2

|∇ϕ̄|dHd−1 + o(t2k).

Proof in the case d = 1. To give the reader an idea of how Lemma 6.7 is obtained,
we prove (36) in the one-dimensional setting. The proof of the general case is similar
but much more technical, see [12, Corollary 5.10]. So let us suppose that d = 1 and
that v ∈ Cc(Ω) ∩ H1(Ω) and {tk} ⊂ (0,∞) with tk ց 0 are given. Then, Ω is an
interval and the compactness of the support supp(v), the regularity of ϕ̄ and our
assumption Z ⊂ {z ∈ Ω : |ϕ̄′(z)| 6= 0} yield that the set Z ∩ supp(v) is finite. Denote
the elements of Z ∩ supp(v) with ai, i = 1, ..., n, assume that a1 < a2 < ... < an

holds and choose bi, i = 1, ..., n + 1, such that bi < ai < bi+1 for all i = 1, .., n and
supp(v) ⊂ [b1, bn+1] ⊂ Ω. Then, we may write

(37)
1

tk

∫

Ω

|−ϕ̄+ tkv| − |ϕ̄|
tk

−x̄v dL1 =
n
∑

i=1

1

tk

∫ bi+1

bi

|−ϕ̄+ tkv| − |ϕ̄|
tk

+sgn(ϕ̄)v dL1.

Consider now an arbitrary but fixed i ∈ {1, ..., n}, assume w.l.o.g. that ϕ̄′(ai) > 0
(the case ϕ̄′(ai) < 0 is analogous) and choose an ε > 0 such that ϕ̄′ ≥ δ > 0 holds in
(ai − ε, ai + ε) ⊂ (bi, bi+1). Then, it follows from our construction, the boundedness
of v, the fact that ϕ̄ ≤ −c < 0 and 0 < c ≤ ϕ̄ holds in [bi, ai − ε] and [ai + ε, bi+1] for
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some c > 0, respectively, and a simple distinction of cases that

(38)

1

tk

∫ bi+1

bi

|−ϕ̄+ tkv| − |ϕ̄|
tk

+ sgn(ϕ̄)v dL1

=

∫ ai

bi

2
max(0, ϕ̄− tkv)

t2k
dL1 +

∫ bi+1

ai

2
max(0,−ϕ̄+ tkv)

t2k
dL1

=

∫ ai

ai−ε

2
max(0, ϕ̄− tkv)

t2k
dL1 +

∫ ai+ε

ai

2
max(0,−ϕ̄+ tkv)

t2k
dL1 + o(1),

where the Landau symbol refers to the limit k → ∞. Note that the integrand of the
second integral on the right-hand side of (38) is only non-zero in a z ∈ (ai, ai + ε) if

δ(z − ai) ≤
∫ z

ai

ϕ̄′(s)dL1(s) = ϕ̄(z) ≤ tkv(z) ≤ tk‖v‖L∞(Ω).

Consequently, for all large enough k, we have

∫ ai+ε

ai

2
max(0,−ϕ̄+ tkv)

t2k
dL1

=

∫ ai+Ctk

ai

2
max(0,−ϕ̄(z) + tkv(z))

t2k
dL1(z)

=

∫ C

0

2
max(0,−ϕ̄(ai + tkz) + tkv(ai + tkz))

t2k
tkdL1(z)

=

∫ C

0

2 max

(

0,−
∫ 1

0

ϕ̄′(ai + stkz)dsz + v(ai + tkz)

)

dL1(z)

=

∫ C

0

2 max (0,−ϕ̄′(ai)z + v(ai)) dL1(z) + o(1),

where C := ‖v‖L∞(Ω)/δ and where the last identity follows from the dominated con-
vergence theorem. From ϕ̄′(ai) > 0, we now obtain

∫ C

0

2 max (0,−ϕ̄′(ai)z + v(ai)) dL1(z)

= 2

∫ max(0,v(ai))/ϕ̄′(ai)

0

−ϕ̄′(ai)z + v(ai)dL1(z) =
max(0, v(ai))

2

ϕ̄′(ai)
.

If we use exactly the same argumentation for the first integral on the right-hand side
of (38) and combine our results with (37), then we arrive at the identity

1

tk

∫

Ω

|−ϕ̄+ tkv| − |ϕ̄|
tk

− x̄v dL1 =

n
∑

i=1

v(ai)
2

|ϕ̄′(ai)|
+ o(1).

Rewriting the above yields (36) in the case d = 1. This completes the proof.

The next lemma provides a link between the curvature of C and ∇ϕ̄.

Lemma 6.8. For all v ∈ Cc(Ω), all h ∈ K⋆
C(x̄, ϕ̄), and all α > 0, it holds

(39)
α2

2
Qx̄,ϕ̄

C (h) − α 〈v, h〉C0(Ω),M(Ω) +

∫

Z

v2

|∇ϕ̄|dHd−1 ≥ 0.
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Proof. Let α > 0 and h ∈ K⋆
C(x̄, ϕ̄) be given. From the cone property of K⋆

C(x̄, ϕ̄),
it follows αh ∈ K⋆

C(x̄, ϕ̄). This implies that there exist sequences {rk} ⊂ X , {tk} ⊂ R
+

with tk ց 0, tk rk
⋆
⇀ 0 and x̄+ tk αh+ 1

2 t
2
k rk ∈ C. Fix such sequences {rk}, {tk}

and define hk := αh + 1
2 tk rk. Then, it holds hk ∈ RC(x̄) ⊂ L∞(Ω) and hk

⋆
⇀ αh in

X , and Lemma 6.7 yields

t2k

∫

Z

v2

|∇ϕ̄|dHd−1 + o(t2k)

=

(

sup
q∈L∞(Ω,[−1,1])

∫

Ω

(−ϕ̄+ tkv)qdLd

)

−
∫

Ω

(

|ϕ̄| + tkx̄v
)

dLd

=

(

sup
p∈L∞(Ω) : x̄+tkp∈L∞(Ω,[−1,1])

∫

Ω

(−ϕ̄+ tkv)(x̄ + tkp)dLd

)

−
∫

Ω

(

|ϕ̄| + tkx̄v
)

dLd

=

(

sup
p∈L∞(Ω) : x̄+tkp∈L∞(Ω,[−1,1])

∫

Ω

(−ϕ̄+ tkv)(tkp)dLd

)

≥
∫

Ω

(−ϕ̄+ tkv)(tkhk)dLd ∀v ∈ Cc(Ω) ∩H1(Ω).

(40)

If we divide (40) by t2k and let k → ∞, then we obtain (with 〈ϕ̄, hk〉C0(Ω),M(Ω) =

〈ϕ̄, 1
2 tkrk〉C0(Ω),M(Ω))

1

2
lim inf
k→∞

〈ϕ̄, rk〉C0(Ω),M(Ω) − 〈v, αh〉C0(Ω),M(Ω) +

∫

Z

v2

|∇ϕ̄|dHd−1 ≥ 0

for all v ∈ Cc(Ω) ∩ H1(Ω). Taking the infimum over all sequences {rk}, {tk}, using
the positive homogeneity of the functional Qx̄,ϕ̄

C (·), and employing a density argument,
we now arrive at

α2

2
Qx̄,ϕ̄

C (h) − 〈v, αh〉C0(Ω),M(Ω) +

∫

Z

v2

|∇ϕ̄|dHd−1 ≥ 0 ∀v ∈ Cc(Ω).

This is the desired estimate.

We are now in the position to prove a lower bound for the curvature of C.

Proposition 6.9. For all h ∈ K⋆
C(x̄, ϕ̄) with Qx̄,ϕ̄

C (h) < ∞ there exists a g such
that

h = gHd−1|Z , g ∈ L1
(

Z,Hd−1
)

∩ L2
(

Z, |∇ϕ̄|Hd−1
)

,

1

2

∫

Z
g2|∇ϕ̄|dHd−1 ≤ Qx̄,ϕ̄

C (h).

Proof. Let h ∈ K⋆
C(x̄, ϕ̄) ⊂ M(Ω) with Qx̄,ϕ̄

C (h) < ∞ be given. Then, for all
v ∈ Cc(Ω) with v = 0 on Z, we obtain from (39) that

α

2
Qx̄,ϕ̄

C (h) ≥ 〈v, h〉C0(Ω),M(Ω) ∀α > 0,

i.e., 〈v, h〉C0(Ω),M(Ω) ≤ 0. Using ±v, we find 〈v, h〉C0(Ω),M(Ω) = 0. Hence, the map

h̃ : Cc(Z) → R, ṽ 7→ 〈v, h〉C0(Ω),M(Ω) , v ∈ Cc(Ω), v|Z = ṽ

25



is well-defined as it is independent of the extension v of ṽ appearing in its definition.
Note that, given a ṽ ∈ Cc(Z), we can always find a v ∈ Cc(Ω) with v|Z = ṽ, cf. the
submanifold property of Z. From (39) with

α =

(
∫

Z

ṽ2

|∇ϕ̄|dHd−1

)1/2

β, β > 0 arbitrary but fixed,

it now follows

(

β

2
Qx̄,ϕ̄

C (h) +
1

β

)(
∫

Z

ṽ2

|∇ϕ̄|dHd−1

)1/2

≥ h̃(ṽ) ∀ṽ ∈ Cc(Z).

Now, since Cc(Z) is dense in the Lebesgue-space L2
(

Z,Hd−1/|∇ϕ̄|
)

, the functional

h̃ can be uniquely extended. Thus, there exists an f ∈ L2
(

Z,Hd−1/|∇ϕ̄|
)

with

(

β

2
Qx̄,ϕ̄

C (h) +
1

β

)(
∫

Z

ṽ2

|∇ϕ̄|dHd−1

)1/2

≥ h̃(ṽ) =

∫

Z

ṽf

|∇ϕ̄|dHd−1 ∀ṽ ∈ Cc(Z).

Note that f is independent of β due to the density of Cc(Z) in L2
(

Z,Hd−1/|∇ϕ̄|
)

.
We thus arrive at

〈v, h〉C0(Ω),M(Ω) = h̃(v|Z) =

∫

Z

vf

|∇ϕ̄|dHd−1 ∀v ∈ Cc(Ω)

with

(
∫

Z

f2

|∇ϕ̄|dHd−1

)1/2

≤
(

β

2
Qx̄,ϕ̄

C (h) +
1

β

)

∀β > 0.

Choosing β = (2/Qx̄,ϕ̄
C (h))1/2 for Qx̄,ϕ̄

C (h) > 0 and β arbitrarily large for Qx̄,ϕ̄
C (h) = 0,

defining g := f/|∇ϕ̄| and using the density of Cc(Ω) in C0(Ω) now yields the claim.
Note that g ∈ L1

(

Z,Hd−1
)

follows trivially from h = gHd−1|Z ∈ M(Ω).

Next, we address the reverse estimate to that in Proposition 6.9.

Lemma 6.10. Let g ∈ Cc(Z) be given and let h := gHd−1|Z ∈ M(Ω). Then, h is
an element of the critical cone K⋆

C(x̄, ϕ̄), it holds

(41)
1

2

∫

Z
g2|∇ϕ̄|dHd−1 = Qx̄,ϕ̄

C (h),

and for every sequence {tk} ⊂ R
+ with tk ց 0 there exists a sequence {rk} ⊂ X such

that x̄+tkh+ 1
2 t

2
krk ∈ C holds for all k and such that tkrk

⋆
⇀ 0, ‖h+ 1

2 tkrk‖X → ‖h‖X

and 〈ϕ̄, rk〉C0(Ω),M(Ω) → Qx̄,ϕ̄
C (h) holds for k → ∞.

Proof. Since ϕ̄ ∈ C0(Ω) and Z = {ϕ̄ = 0}, it trivially holds 〈ϕ̄, h〉C0(Ω),M(Ω) = 0

and, consequently, h ∈ ϕ̄⊥. It remains to show that h is an element of the weak-⋆
tangent cone T ⋆

C (x̄), that (41) holds, and that for each {tk} ⊂ R
+ with tk ց 0 we

can find a sequence {rk} with the desired approximation properties. To prove these
three assertions, we proceed in two steps:

Step 1 (Proof in a Rectification Neighborhood): In what follows, we first consider
a prototypical situation, where the support of the function g is contained in a recti-
fication neighborhood of the C1-manifold Z, i.e., in an open set where Z resembles
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a C1-graph. As we will see, in this simplified setting, we can manually construct a
sequence {hk} such that rk := 2(hk − h)/tk satisfies the conditions in the lemma, see
(42), (43), (44) and (45) below.

Let us denote with ∂i, i = 1, ..., d, the partial derivatives of a function and assume
that a point p ∈ Z, an open ball B ⊂ R

d−1, an open interval J := (a, b), and a map
γ ∈ C1(B) are given such that

p ∈ B × J, B × J ⊂ Ω, Z ∩ (B × J) = {(z, γ(z)) : z ∈ B}
W := {(z, z′) : z ∈ B, |z′ − γ(z)| < ε} ⊂ B × J, ∂dϕ̄(p) > 0

for some ε ∈ (0, 1). Let 0 ≤ ψ ∈ C(W ) and g ∈ C(Z ∩ (B × J)) be continuous and
bounded functions and let tk ∈ (0,∞) be a sequence with tk ց 0. Assume w.l.o.g.
that

tk‖g‖L∞‖
√

1 + |∇γ|2‖L∞ ≤ ε

for all k (else consider {tk}k≥K , K ∈ N sufficiently large) and extend ψ by zero outside
of W . With some abuse of notation, we extend the sign of g from Z ∩W to W by

sign(g)(z, z′) := sign g(z, γ(z)).

We further define the sets

Gk :=

{

(z, z′) ∈ B × J

∣

∣

∣

∣

tk
g−(z, γ(z))

2
≤ z′ − γ(z)
√

1 + |∇γ(z)|2
≤ tk

g+(z, γ(z))

2

}

⊂ W,

where g+ and g− are abbreviations for max(0, g) and min(0, g), respectively, and set

(42) hk :=
2 sign(g)

tk
1Gk

,

where 1A : Ω → {0, 1} denotes the characteristic function of a set A ⊂ Ω. We claim
that the above hk satisfies

lim
k→∞

(
∫

Ω

hkψvdLd

)

=

∫

Z∩(B×J)

gψv dHd−1 ∀v ∈ C0(Ω),(43)

lim
k→∞

(
∫

Ω

|hk|ψdLd

)

=

∫

Z∩(B×J)

|g|ψdHd−1,(44)

and

lim
k→∞

(
∫

Ω

2hk

tk
ϕ̄ψdLd

)

=
1

2

∫

Z∩(B×J)

g2ψ|∇ϕ̄|dHd−1.(45)

This can be seen as follows: Given a v ∈ C0(Ω), we may calculate (using the abbrevi-
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ations dz := dLd−1(z) and dz′ := dL1(z′))

∫

Ω

hkψvdLd =
2

tk

∫

B

∫ γ(z)+tk
g+(z,γ(z))

2

√
1+|∇γ(z)|2

γ(z)+tk
g−(z,γ(z))

2

√
1+|∇γ(z)|2

sign(g)vψdz′dz

= 2

∫

B

∫

g+(z,γ(z))
2

√
1+|∇γ(z)|2

g−(z,γ(z))
2

√
1+|∇γ(z)|2

(sign(g)vψ)|(z,γ(z)+tkz′)dz
′dz

→ 2

∫

B

∫

g+(z,γ(z))
2

√
1+|∇γ(z)|2

g−(z,γ(z))
2

√
1+|∇γ(z)|2

(sign(g)vψ)|(z,γ(z))dz
′dz

=

∫

B

√

1 + |∇γ(z)|2(gvψ)|(z,γ(z))dz =

∫

Z∩(B×J)

gψv dHd−1.

This yields (43). To obtain (44), we can use exactly the same calculation as above
(just replace v with sign(g)). It remains to prove (45). To this end, we compute

∫

Ω

2hk

tk
ϕ̄ψdLd =

4

tk

∫

B

∫

g+(z,γ(z))
2

√
1+|∇γ(z)|2

g−(z,γ(z))
2

√
1+|∇γ(z)|2

(sign(g)ϕ̄ψ)|(z,γ(z)+tkz′)dz
′dz

= 4

∫

B

∫

g+(z,γ(z))
2

√
1+|∇γ(z)|2

g−(z,γ(z))
2

√
1+|∇γ(z)|2

∫ 1

0

∂dϕ̄(z, γ(z) + stkz
′)ds (sign(g)ψ)|(z,γ(z)+tkz′)z

′dz′dz

→ 4

∫

B

∫

g+(z,γ(z))
2

√
1+|∇γ(z)|2

g−(z,γ(z))
2

√
1+|∇γ(z)|2

z′dz′(sign(g)∂dϕ̄ ψ)|(z,γ(z)) dz

=
1

2

∫

B

(

1 + |∇γ(z)|2
)

(g2∂dϕ̄ ψ)|(z,γ(z))dz.

Differentiating ϕ̄(z, γ(z)) w.r.t. zi yields ∂dϕ̄(z, γ(z)) ∂iγ(z) = −∂iϕ̄(z, γ(z)) for all
i = 1, . . . , d− 1. Thus,

∂dϕ̄(z, γ(z))
√

1 + |∇γ(z)|2 = |∇ϕ̄(z, γ(z))| ∀z ∈ B.

Hence, we arrive at

∫

Ω

2hk

tk
ϕ̄ψdLd → 1

2

∫

B

√

1 + |∇γ(z)|2 (|∇ϕ̄|g2ψ)|(z,γ(z))dz

=
1

2

∫

Z∩(B×J)

g2ψ|∇ϕ̄|dHd−1.

This proves that (45) holds and that {hk} indeed has the desired properties.
Step 2 (Proof in the General Case): In this second part of the proof, we demon-

strate that, given an arbitrary but fixed h := gHd−1|Z ∈ M(Ω), g ∈ Cc(Z), we can
always use a partition of unity and the manifold property of Z to reduce the situation
to the case studied in Step 1, see (46), (47) and (48) below.

Recall that the implicit function theorem and the definition of Z imply that
for every p ∈ Z there exist an orthogonal transformation R ∈ O(d), an open ball
B ⊂ R

d−1, an open interval J := (a, b), and a map γ ∈ C1(B) with values in J such
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that

p ∈ R(B × J), R(B × J) ⊂ Ω, Z ∩R(B × J) = R({(z, γ(z)) : z ∈ B}),

W := {(z, z′) : z ∈ B, |z′ − γ(z)| < ε} ⊂ B × J,

R({(z, z′) ∈ B × J : γ(z) < z′}) ⊂ {ϕ̄ > 0},
R({(z, z′) ∈ B × J : z′ < γ(z)}) ⊂ {ϕ̄ < 0}

for some ε > 0. Since supp(g) is compact, we may find points p1, . . . , pL ∈ Z with
associated Rl, Bl etc. such that the sets Rl(Wl), l = 1, . . . , L, cover supp(g). Define

U :=
L
⋃

l=1

Rl(Wl) ⊂ Ω

and choose a partition of unity (ψl)
L
l=1 subordinate to the Rl(Wl)-cover of the set U ,

i.e., a collection of continuous functions ψl ∈ C(U, [0, 1]) such that

supp(ψl) ⊂ Wl,
∑

l

ψl = 1 on U.

Consider now an arbitrary but fixed sequence tk ∈ (0,∞) with tk ց 0, extend the
functions ψl by zero and define (for k large enough)

signl(g)(Rl(z, z
′)) := sign g

(

Rl(z, γl(z))
)

∀(z, z′) ∈ Wl,

Gl,k :=

{

(z, z′) ∈ Bl × Jl

∣

∣

∣

∣

g−(Rl(z, γl(z)))

2
≤ t−1

k (z′ − γl(z))
√

1 + |∇γl(z)|2
≤ g+(Rl(z, γl(z)))

2

}

,

hk :=

L
∑

l=1

2 signl(g)

tk
1Rl(Gl,k)ψl.

Then, it holds x̄ + tkhk ∈ C = L∞(Ω, [0, 1]) (cf. the signs of the involved functions
and ‖hk‖L∞ ≤ 2/tk), and we may deduce from (b) that for all v ∈ C0(Ω), we have

lim
k→∞

(
∫

Ω

hkvdLd

)

=
L
∑

l=1

∫

Z∩Rl(Bl×Jl)

gψlv dHd−1 = 〈v, h〉C0(Ω),M(Ω)(46)

lim
k→∞

(
∫

Ω

|hk|dLd

)

=

L
∑

l=1

∫

Z∩Rl(Bl×Jl)

|g|ψldHd−1 = ‖h‖X(47)

and

lim
k→∞

(
∫

Ω

2hk

tk
ϕ̄dLd

)

=
1

2

L
∑

l=1

∫

Z∩Rl(Bl×Jl)

g2ψl|∇ϕ̄|dHd−1(48)

=
1

2

∫

Z
g2|∇ϕ̄|dHd−1.

The above proves h ∈ T ⋆
C (x̄) and h ∈ K⋆

C(x̄, ϕ̄), see (a). From (46), (47) and (48), we
obtain further that rk := 2(hk − h)/tk satisfies x̄+ tkh+ 1

2 t
2
krk ∈ C for all k and

tkrk
⋆
⇀ 0, ‖h+

1

2
tkrk‖X → ‖h‖X , 〈ϕ̄, rk〉C0(Ω),M(Ω) → 1

2

∫

Z
g2|∇ϕ̄|dHd−1

as k → ∞. If we combine this with Proposition 6.9 and Definition 3.1, then the claim
follows immediately.
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Using Proposition 6.9 and Lemma 6.10, we finally arrive at an explicit formula for
the directional curvature functional in the bang-bang case.

Theorem 6.11. For every tuple (x̄, ϕ̄) ∈ C×−N ⋆
C(x̄) that satisfies the conditions

in Assumption 6.6, it holds

(49)

{

h ∈ K⋆
C(x̄, ϕ̄)

∣

∣ Qx̄,ϕ̄
C (h) < ∞

}

=
{

gHd−1|Z
∣

∣ g ∈ L1
(

Z,Hd−1
)

∩ L2
(

Z, |∇ϕ̄|Hd−1
)}

.

Moreover, for every element h = gHd−1|Z of the above set, it is true that

(50) Qx̄,ϕ̄
C (h) =

1

2

∫

Z
g2|∇ϕ̄|dHd−1.

Proof. Proposition 6.9 yields that “⊂” holds in (49) and that “≥” holds in (50).
To obtain the reverse inclusion/inequality, we consider an arbitrary but fixed h =
gHd−1|Z ∈ M(Ω) with some g ∈ L1

(

Z,Hd−1
)

∩L2
(

Z, |∇ϕ̄|Hd−1
)

. Using a compact
exhaustion of the domain Ω and mollification, it is easy to see that we can find a
sequence (gn) ⊂ Cc(Z) with gn → g in L1

(

Z,Hd−1
)

∩ L2
(

Z, |∇ϕ̄|Hd−1
)

. The latter
implies that hn := gnHd−1|Z satisfies hn

⋆
⇀ h in X and that

1

2

∫

Z
g2

n|∇ϕ̄|dHd−1 → 1

2

∫

Z
g2|∇ϕ̄|dHd−1.

On the other hand, we obtain from Lemma 6.10 that hn ∈ K⋆
C(x̄, ϕ̄) holds for all n

and that there exist {rn,k} ⊂ X and {tn,k} ⊂ R
+ with x̄+ tn,k hn + 1

2 t
2
n,k rn,k ∈ C

for all n, k and

tn,k ց 0, tn,krn,k
⋆
⇀ 0, 〈ϕ̄, rn,k〉C0(Ω),M(Ω) → Qx̄,ϕ̄

C (hn)

and ‖hn +
1

2
tn,krn,k‖X → ‖hn‖X

for all n as k → ∞. Note that, since the sequence ‖hn‖X is bounded and since the
norms ‖hn + 1

2 tn,krn,k‖X converge to ‖hn‖X , in the above situation, we may assume
w.l.o.g. that ‖tn,krn,k‖X ≤ M holds for some constant M that is independent of n
and k (just shift the index k appropriately for each n). From Lemmas 3.3 and 6.10,
we may now deduce that h is an element of the critical cone K⋆

C(x̄, ϕ̄) and that

Qx̄,ϕ̄
C (h) ≤ lim inf

n→∞
Qx̄,ϕ̄

C (hn) = lim inf
n→∞

1

2

∫

Z
g2

n|∇ϕ̄|dHd−1 =
1

2

∫

Z
g2|∇ϕ̄|dHd−1 < ∞.

This proves “⊃” in (49) and “≤” in (50).

We combine Theorems 6.4 and 6.11 and arrive at the main result of this section.

Theorem 6.12 (Explicit No-Gap Second-Order Condition for Bang-Bang Prob-
lems). Consider an optimization problem of the form (P) with C, X etc. as in
Assumption 6.2. Assume that x̄ ∈ C is fixed, that J satisfies the conditions in As-
sumption 4.1, that the map X ∋ h 7→ J ′′(x̄)h2 ∈ R is weak-⋆ continuous, that x̄ and
ϕ̄ satisfy the conditions in Assumption 6.6, and that the constant K(ϕ̄) in (31) is
non-zero. Then, the condition

(51)

1

2

∫

Z
g2|∇ϕ̄|dHd−1 + J ′′(x̄)

(

gHd−1|Z
)2
> 0

∀g ∈ L1
(

Z,Hd−1
)

∩ L2
(

Z, |∇ϕ̄|Hd−1
)

\ {0}
is equivalent to the quadratic growth condition (34) with constants c > 0 and ε > 0.
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We conclude this section with some remarks.

Remark 6.13.
(i) The inequality (51) with “≥” instead of “>” is still a necessary optimality

condition when K(ϕ̄) = 0.
(ii) Theorem 6.12 is still valid when Z = ∅ and (51) is empty. In this case,

the only thing that has to be checked to obtain (34) is the level-set condition
K(ϕ̄) > 0.

(iii) We expect that the assumptions on ϕ̄ in Theorem 6.12 can be weakened (the
Taylor expansion in Lemma 6.7, for example, also holds in a far more general
setting, see [12, Proposition 5.9]).

(iv) The techniques used in the proofs of Lemma 6.8 and Proposition 6.9 might be
useable in other situations as well (e.g., the idea to exploit the subdifferential
structure of the admissible set C, cf. (40)).

(v) We point out that (MRC) does not hold in the situation of Theorem 6.12 (from
C ⊂ L1(Ω) it follows TC(x̄) ∩ ϕ̄⊥ = {0} 6= K⋆

C(x̄, ϕ̄) and this is incompatible
with the condition (MRC), cf. Remark 3.5).

(vi) The first addend on the left-hand side of (51) measures the curvature of the
set C in x̄ (compare, e.g., with Theorem 5.11). Note that the surface integral
in (51) is only meaningful for a C1-function ϕ̄. This shows that exploiting
the regularity of the gradient ϕ̄ = J ′(x̄) is essential for the derivation of
Theorem 6.12.

Finally, we would like to compare our Theorem 6.12 with the results of [11] by
means of an example.

Example 6.14. We consider the optimal control problem

(52)

Minimize
1

2
‖y − yd‖2

L2(Ω)

such that − ∆y + a(y) = u in Ω, y = 0 on ∂Ω

and − 1 ≤ u ≤ 1 in Ω.

Here, the state equation is to be understood in the weak sense. We assume that Ω ⊂ R
d,

d ∈ {1, 2, 3}, is a bounded domain with Lipschitz boundary ∂Ω, that yd ∈ L2(Ω) and
that a : R → R is twice continuously differentiable and monotonically increasing.
Further, we define the admissible set C := L∞(Ω; [−1, 1]).

Now, we can employ [11, Theorem 2.1] to obtain that the control-to-state operator
G : L2(Ω) → H1

0 (Ω) ∩C(Ω̄) which maps u to the solution y of the semilinear PDE in
(52) is well defined and twice continuously Fréchet differentiable. For ū, h ∈ L2(Ω),
the derivative zh := G′(ū)h solves the linearized PDE

−∆zh + a′(ȳ)zh = h in Ω, zh = 0 on ∂Ω,

with ȳ = Gū. Consequently, we can check that the reduced objective J : L∞(Ω) → R,
J(u) = 1

2 ‖Gu − yd‖2
L2(Ω) is twice continuously Fréchet differentiable and that the

derivatives are given by

J ′(ū)h =

∫

Ω

ϕ̄h dLd, J ′′(ū)h2 =

∫

Ω

[

1 − a′′(ȳ) ϕ̄
]

z2
h dLd.

Here, ϕ̄ ∈ H1
0 (Ω) ∩ C(Ω̄) is the solution of the adjoint equation

−∆ϕ̄+ a′(ȳ)ϕ̄ = ȳ − yd in Ω, ϕ̄ = 0 on ∂Ω.
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In order to apply the previous theorems, we have to check that the Taylor expansion (4)
from Assumption 4.1 is satisfied by J with the setting of spaces as in Assumption 6.2.
First of all, we mention that the quadratic form J ′′(ū) can be extended from L∞(Ω)2

to M(Ω)2 by using results for PDEs with measures on the right-hand side, see the
discussion in [11, Section 2.5]. Now, let sequences {hk} ⊂ L∞(Ω), {tk} ⊂ R

+ with

tk ց 0, hk
⋆
⇀ h in M(Ω) and −1 ≤ ū+tk hk ≤ 1 be given. Then, the twice continuous

Fréchet differentiability of J : L∞(Ω) → R yields

J(ū+ tk hk) = J(ū) + tk J
′(ū)hk +

1

2
t2k J

′′(ū+ θk tk hk)h2
k

for some θk ∈ [0, 1]. Further, [7, Lemmas 2.6, 2.7] imply that for all ε > 0, the
inequality

∣

∣J ′′(ū)h2
k − J ′′(ū+ θk tk hk)h2

k

∣

∣ ≤ ε ‖zhk
‖2

L2(Ω) ≤ C ε ‖hk‖2
L1(Ω) ≤ Ĉ ε

holds if k is large enough. Together with the above Taylor expansion, we find

J(ū+ tk hk) − J(ū) − tk J
′(ū)hk − 1

2 t
2
k J

′′(ū)h2
k

t2k
=
J ′′(ū+ θk tk hk)h2

k − J ′′(ū)h2
k

2

→ 0

as k → ∞. This shows that Assumption 4.1 is satisfied.
In order to proceed, we fix ū ∈ C such that the first-order condition J ′(ū) (u−ū) ≥

0 for all u ∈ C is satisfied. We further assume that the adjoint state ϕ̄ has the
additional regularity ϕ̄ ∈ C1(Ω̄) and we suppose that

(53) min
x∈N

|∇ϕ̄(x)| > 0, where N := {x ∈ Ω̄ : ϕ̄(x) = 0}.

On the one hand, this condition ensures that Assumption 6.6 holds. On the other
hand, from [13, Lemma 3.2] we know that this condition implies

Ld({|ϕ̄| ≤ s}) ≤ K̂ s ∀s > 0

for some K̂ > 0. From the definition (31), we directly infer K(ϕ̄) ≥ (4 K̂)−1 > 0,
such that we can apply Theorems 6.4 and 6.12.

We start by the interpretation of Theorem 6.4 and compare it to the results of
[11, 10]. As discussed in Remark 6.5, we obtain that the condition

(54) J ′′(ū)h2 > −K(ϕ̄) ‖h‖2
M(Ω) ∀h ∈ K⋆

C(ū, ϕ̄) \ {0}

implies a quadratic growth at ū in L1(Ω), and this sufficient condition is similar
to [11, Corollary 2.15]. Here, K⋆

C(ū, ϕ̄) is the critical cone of C = L∞(Ω; [−1, 1])
w.r.t. the weak-⋆ topology in M(Ω), see Definition 2.2. In our situation, we have
K⋆

C(ū, ϕ̄) = M(Z) with Z = {x ∈ Ω : ϕ̄(x) = 0}, see [11, Corollary 2.13] and (53).
Note that [10, Theorem 2.4] improves the constant in [11, Theorem 2.8], and therefore,
also [11, Corollary 2.15] can be improved slightly, see also Remark 6.5 (iii). However,
it is not possible to obtain a necessary optimality condition similar to (54).

By applying Theorem 6.12, we obtain that

(55)
1

2

∫

Z
g2|∇ϕ̄|dHd−1 + J ′′(ū)

(

gHd−1|Z
)2
> 0 ∀g ∈ L2

(

Z,Hd−1
)

\ {0}
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is equivalent to a quadratic growth of J at ū w.r.t. the norm in L1(Ω). Note that due
to (53), we do not need to employ weighted Lebesgue spaces on Z.

It is interesting to see that the sufficient condition (54) involves all signed finite
Radon measures with support contained in Z, whereas we only need to consider Radon
measures with L2-density (w.r.t. Hd−1) on Z for the no-gap condition (55).

To conclude, our technique of performing a careful analysis of the curvature of the
feasible set C = L∞(Ω; [−1, 1]) ⊂ M(Ω) allows us to formulate second-order no-gap
optimality conditions for the optimal control problem (52). This is not possible with
the techniques of [11] which only allow to produce sufficient optimality conditions.

7. Conclusion. Given the examples and applications in Sections 5 and 6, we may
conclude that the theoretical framework of Section 4 is indeed a handy tool in the
derivation of (no-gap) second-order optimality conditions for problems of the type (P).
Our results are not only applicable in those situations where the classical assumptions
of polyhedricity and second-order regularity are satisfied (see Theorems 5.10 and 5.11)
but also allow to study problems with more complicated admissible sets. This is
underlined by the no-gap second-order conditions which were derived in the bang-
bang setting of Subsection 6.2. Further investigation is needed for the study of the
directional curvature functional in the presence of pointwise state constraints, cf. the
comments after Example 5.6. We plan to discuss this topic in a forthcoming paper.
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