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Abstract

Nondominated sorting, also called Pareto Depth Analysis (PDA), is widely used in
multi-objective optimization and has recently found important applications in multi-
criteria anomaly detection. Recently, a partial differential equation (PDE) continuum
limit was discovered for nondominated sorting leading to a very fast approximate sorting
algorithm called PDE -based ranking. We propose in this paper a fast real-time stream-
ing version of the PDA algorithm for anomaly detection that exploits the computational
advantages of PDE continuum limits. Furthermore, we derive new PDE continuum limits
for sorting points within their nondominated layers and show how the new PDEs can be
used to classify anomalies based on which criterion was more significantly violated. We
also prove statistical convergence rates for PDE-based ranking, and present the results of
numerical experiments with both synthetic and real data.

1 Introduction

Sorting, or ordering of multivariate data is an important and challenging problem in many
fields of computational science. Since there is no canonical linear ordering for multivariate
data, many different notions of ordering have been proposed in the literature [25], and the
problem is very much application dependent.

In the context of multiobjective optimization, ordering by dominance relations has achieved
prominence. A general multiobjective optimization problem involves finding among a set
of feasible solutions those that minimize a collection of objectives. One feasible solution is
said to dominate another if it gives a smaller value for every objective. The collection of
feasible solutions that are not dominated by any other solution are called Pareto-optimal or
nondominated. In the database community the Pareto-optimal solutions are called the skyline
of the dataset [24].

The notion of Pareto-optimality is widely used in evolutionary algorithms for multiobjective
optimization [29], such as the Nondominated Sorting Genetic Algorithm (NSGA-II) [11], the
Strength Pareto Evolutionary Algorithm (SPEA) [32, 33], and the Pareto envelope-based
selection algorithm (PESA) [10], among many others (see [16] for a survey). Central to many
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of these algorithms is the assignment of a fitness to each feasible solution based on sorting all
the feasible solutions via dominance.

The NSGA-II algorithm assigns its fitness level via nondominated sorting, sometimes called
Pareto Depth Analysis (PDA), which arranges the feasible solutions into layers by repeatedly
peeling off the Pareto-optimal solutions. Nondominated sorting has also found applications in
gene selection and ranking [18], anomaly detection [21, 22], and multiquery image retrieval [20].
As it turns out, nondominated sorting is equivalent to the longest chain problem, which has a
long history in combinatorics and probability [2, 17, 30].

Due to the wide use of NSGA-II, there has been significant interest in fast algorithms for
nondominated sorting [11, 23, 15]. Recently, Calder et al. [6] established a continuum limit
for nondominated sorting that corresponds to solving a Hamilton-Jacobi partial differential
equation (HJE). This result shows that there is a simple asymptotic structure underlying
nondominated sorting, and this opens the door to extremely fast algorithms based on exploiting
this structure. Calder et al. [7] recently proposed a sublinear algorithm for approximate
nondominated sorting called PDE-based ranking that is based on estimating the distribution
of the data and solving the HJE numerically.

The purpose of this paper is twofold. First, we show how to use PDE-based ranking to
significantly improve the performance of algorithms that are based on nondominated sorting.
To illustrate this in a concrete setting, we propose a new real-time version of the multi-criteria
PDA anomaly detection algorithm from [22] that uses PDE-based ranking in place of non-
dominated sorting. The computational complexity is reduced by an order of magnitude (from
quadratic to linear), and this allows the model to be updated in real-time upon the acquisition
of each additional data sample. We also prove in Theorem 2 a statistical convergence rate for
the PDE-based ranking continuum approximation.

Second, we present a new partial differential equation (PDE) continuum limit for ordering
solutions within the layers generated by nondominated sorting in two dimensions. This new
continuum limit allows us to efficiently explore the tradeoff between multiple objectives. In
the context of multi-criteria anomaly detection, we show how to use this PDE continuum
limit to classify anomalies based on which criterion is more significantly violated. We give a
derivation of these new continuum limits and present a convergence analysis. In both cases,
we trade exact algorithms of high computational complexity for fast approximate algorithms
that are convergent, meaning that the error in the approximation goes to zero as the sample
size grows.

This paper is organized as follows. In Section 2 we review the continuum limit for nondom-
inated sorting from [6], and present the PDA multicriteria anomaly detection algorithm from
[22]. In Section 3, we derive two new PDE continuum limits for ordering points within Pareto
fronts, in Section 4 we construct fast upwind schemes for solving these PDEs numerically. In
Section 5, we present our fast PDE-based anomaly detection and classification algorithm in
the context of streaming data, and in Section 6 we present the results of numerical experiments
for both real and synthetic data streams.

2



0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) n = 50
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6

Figure 1: Illustration of nondominated sorting of i.i.d. random variables X1, . . . ,Xn drawn
from the uniform distribution on [0, 1]2.

2 Previous work

2.1 Nondominated sorting

Nondominated sorting arranges a set of points in R
d into layers by repeatedly peeling off the

coordinatewise minimal points. The coordinatewise partial order on R
d is defined by

x ≦ y ⇐⇒ ∀i xi ≤ yi (x, y ∈ R
d).

Let Sn = {X1, . . . ,Xn} ⊂ R
d be a collection of n points in R

d. We say a point Xi ∈ Sn is
minimal (or nondominated), if no other non-identical point in Sn is smaller with respect to
the coordinatewise partial order ≦. The first nondominated layer, denoted F1, consists of the
minimal points from Sn. The second nondominated layer, denoted F2, consists of the minimal
points from Sn \ F1 and the kth layer is defined recursively by

Fk = Minimal points from Sn \ (F1 ∪ · · · ∪ Fk−1).

Nondominated sorting refers to the process of arranging the set Sn into the nondominated
layers F1,F2,F3, . . . , which are also called Pareto fronts. See Figure 1 for a demonstration of
nondominated sorting applied to random points. The index of the Pareto front that a point
Xi ∈ Sn lies on is often called the Pareto depth or Pareto rank of Xi, and provides the fitness
score for the NSGA-II algorithm. In the context of multiobjective optimization, d represents
the number of objectives.

The original nondominated sorting algorithm proposed in [11] requires O(dn2) memory and
operations. The quadratic memory complexity in n renders the algorithm intractable for even
moderate n. Jensen [23] proposed an algorithm with asymptotic complexity of O(n(log n)d−1)
as n → ∞. The two dimensional version of Jensen’s algorithm was discovered independently
in the combinatorics community by Felsner and Wernisch [14]. Fortin et al. [15] recently made
some improvements to Jensen’s algorithm regarding its treatment of points with identical
coordinates. The exponential complexity of the Jensen-Fortin algorithm with respect to d
suggests it may not be useful for high dimensional problems. However, recent numerical
results have suggested a better asymptotic complexity as d → ∞ with n fixed [22]. We also
mention there are several other notable approaches to nondominated sorting [28, 8, 13].

Calder et al. [6] discovered a Hamilton-Jacobi equation continuum limit for nondominated
sorting. The result applies in the setting where Sn = {X1, . . . ,Xn} is a sequence of i.i.d. ran-
dom variables with probability density f on the unit box (0, 1)d. Define the Pareto depth
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function Un : Sn → N associated with nondominated sorting of Sn by Un(Xi) = k if and only
if Xi ∈ Fk. The following continuum limit was established in [6, 4].

Theorem 1 (HJE Continuum Limit). With probability one

n−
1
dUn −→ Cdu uniformly on [0, 1]d as n→∞

where Cd > 0 is a constant depending only on d, and u ∈ C0, 1
d ([0, 1]d) is the unique nonde-

creasing viscosity solution of the Hamilton-Jacobi equation

{
ux1 · · · uxd

= f in (0, 1]d

u = 0 on ∂(0, 1)d \ (0, 1]d.
(1)

Here uxi
:= ∂u

∂xi
denotes the partial derivative of u with respect to xi, and by nondecreasing

we mean that uxi
≥ 0 for all i. We note that when f = 1 is the uniform density, the solution

of (1) is

u(x) = d(x1 · · · xd)
1
d . (2)

Figure 1 gives an illustration of this continuum limit when X1, . . . ,Xn are independent and
uniformly distributed. The continuum limit in Theorem 1 states that the Pareto fronts con-
verge to the level sets of the viscosity solution u of (1). While the value of Cd is not needed
for sorting, we should mention that it is known only in dimension d = 2, in which case
C2 = 1 [26, 31].

Calder et al. [7] proposed a fast algorithm for approximate nondominated sorting called
PDE-based ranking that is based on estimating the density function f from a small subset
of the data X1, . . . ,Xn and then solving (1) numerically. PDE-based ranking can drastically
reduce the computation time of nondominated sorting in low dimensions (d = 2, 3) while
maintaining very high sorting accuracy.

Let us say a few words about viscosity solutions. Hamilton-Jacobi equations like (1)
generally do not admit classical solutions (i.e., continuously differentiable solutions) due to
the possibility of crossing characteristics. There are, however, infinitely many functions u
that are differentiable almost everywhere and satisfy (1) at each point of differentiability. The
notion of viscosity solution selects from among these infinitely many feasible solutions the one
that is ‘physically correct’ for a very wide range of problems. The viscosity solution is correct
in this context because it captures the continuum limit of the Pareto depth function [6].

The notion of viscosity solution is based on the maximum principle and enjoys very strong
stability properties. It is a notion of weak solution that allows merely continuous functions to
be solutions of a fully nonlinear PDE. While viscosity solutions may not possess the derivatives
appearing in the equation in the classical sense, the reader will not lose much in the way of
understanding by assuming that u is continuously differentiable. In the context of viscosity
solutions, the maximum principle is used to prove a comparison principle, which says that
subsolutions lie below supersolutions provided their boundary conditions do as well. The
reason the notion of viscosity solution is correct in this context is that nondominated sorting
also obeys a comparison principle; namely, if we introduce new points into our data set (i.e.,
we increase the point density), then the Pareto depth function increases as well. For more
details on viscosity solutions we refer the reader to [1].
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2.2 Anomaly detection

To illustrate the computational advantages of PDE-based ranking, we consider a concrete ap-
plication of nondominated sorting to anomaly detection [22]. Anomaly detection refers to the
problem of detecting patterns in data that deviate from the expected behavior. It is an impor-
tant and challenging problem with a wide array of applications, including computer intrusion
detection, video surveillance, credit card fraud, and biometrics [19, 9]. Many anomaly detec-
tion algorithms rely on the availability of a measure of distance (or similarity) between data
samples, and look for anomalies by finding samples that are far from their nearest neighbors
(see [22] and references therein). These algorithms are usually called similarity-based, and are
widely used due to their simplicity and robustness.

In contrast, feature-based algorithms seek to embed the data into a relatively low dimen-
sional Euclidean space and make use of the ambient Euclidean (or other) distance to detect
anomalies. Techniques used for feature-based algorithms include support vector machines
(SVM), clustering, neural networks, and statistical approaches based on density estimation [9].
In this paper we consider similarity-based approaches.

In many applications, multiple measures of similarity may be required to detect certain
types of anomalies. For example, when tracking pedestrians in video surveillance, one criterion
may correspond to differences in individual walking speeds, while another might correspond
to differences in the shapes of trajectories. Using multiple criteria allows one to detect a wider
range of anomalies than could be obtained from a single criterion alone.

Hsiao et al. [22] proposed an algorithm for multi-criteria anomaly detection that integrates
the information from multiple similarity measures via nondominated sorting (or Pareto Depth
Analysis (PDA)). Suppose we have a training set consisting of N objects Y1, . . . , YN and d
measures of similarity c1, . . . , cd for comparing these objects. Without loss of generality, we
assume 0 ≤ ci(·, ·) ≤ 1—a lower score indicates the objects are more similar with respect to
the ith criteria. The training phase of the algorithm consists of computing the n :=

(
N
2

)
dyads

Xi,j = (c1(Yi, Yj), . . . , cd(Yi, Yj)) ∈ [0, 1]d, (3)

and constructing the Pareto depth function Un by applying nondominated sorting to the n
points {Xi,j}Ni,j=1. Recall that Un(Xi,j) = k if and only if Xi,j belongs to the kth Pareto front.

The testing phase of the algorithm receives a new object Y and compares it to all training
samples to create N new dyads Z1, . . . , ZN given by

Zj = (c1(Y, Yj), . . . , cd(Y, Yj)).

Fix a number k, and let I ⊂ {1, . . . , N} denote the indices of training samples that are among
the k nearest neighbors of Y with respect to at least one similarity measure ci. The anomaly
score for Y is

ν =
1

|I|
∑

j∈I

Un(Zi), (4)

and Y is declared an anomaly when ν is larger than a predefined threshold ρ > 0. We note
that it is possible to allow different values of k for each criterion. The idea is that nominal
samples should be close to many of their nearest neighbors from the training data in one
or many similarities, and thus the dyads Z1, . . . , ZN will lie on earlier Pareto fronts. An
anomalous sample should be far from its nearest neighbors in the training set in many or all
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Figure 2: Illustration of the function Vn that orders the points within each nondominated
layer.

of the similarities, and the dyads will consequently fall on deeper fronts. The PDA anomaly
detection algorithm has been validated on real and synthetic data in [21, 22] and has been
shown to achieve state of the art results for integrating information from multiple similarities.

3 New PDE continuum limits

The Hamilton-Jacobi Equation (HJE) continuum limit (1) gives information about which
Pareto front a sample lies on. It is also important in applications to know where a sample
lies within its Pareto front, as this gives information about the trade-off between the multiple
objectives. We present here some new PDE continuum limits for ordering of points within
Pareto fronts in dimension two.

Suppose d = 2 and let Sn = {X1, . . . ,Xn} be a sequence of i.i.d. random variables with
continuous density f on (0, 1)2. Apply nondominated sorting to Sn and then order the points
within each Pareto front by x1-coordinate. This defines a function Vn : Sn → N given by

Vn(Xi) := Index of Xi within its Pareto front. (5)

Figure 2 gives an illustration of Vn.
By the continuum limit of nondominated sorting (Theorem 1), there are on the order of

n
1
2 Pareto fronts. Since there are n points in total, each front should have on the order of n

1
2

points. Therefore let us suppose that

n−
1
2Vn −→ v as n→∞

uniformly with probability one, where v : [0, 1]2 → R is continuously differentiable.
Fix a large value of n and consider a point x ∈ (0, 1)2. Fix ε > 0 and let

y = x+ ε∇⊥u(x),

where ∇⊥u = (ux2 ,−ux1). Since ∇⊥u is tangent to the level set {u = u(x)}, we have
u(y) ≈ u(x), i.e., x and y are roughly on the same Pareto front. Let A denote the rectangle
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whose diagonal is the line segment from x to y, and let Ln denote the number of points on
the Pareto front passing through x and y that fall within A. See Figure 3 for an illustration
of the setup. Then we have

ε∇v(x) · ∇⊥u(x) ≈ v(y)− v(x) ≈ n− 1
2 (Vn(y)− Vn(x)) = n−

1
2Ln. (6)

Here, ∇v = (vx1 , vx2) denotes the gradient of v. When ε > 0 is small, the random variables
within A are approximately uniformly distributed within A. Furthermore, as illustrated in
Figure 3, we can scale A to the unit box [0, 1]2 without changing the partial ordering within
A. Hence, it is reasonable to conjecture that Ln ∼ c

√
m as n→∞, where c > 0 is a universal

constant and m is the number of samples falling in A. While the value of c is not needed for
sorting (since we perform a normalization in (9) below), a simple scaling argument suggests
that c = 1, so we will take Ln ∼

√
m. By the law of large numbers

m ∼ n
∫

A

f dx ≈ n|A|f(x) = nε2ux1ux2f(x),

since the side lengths of A are |x1 − y1| = εux2 and |x2 − y2| = ux1 . Combining this with
ux1ux2 = f , (6) and Ln ∼

√
m yields

ε∇v(x) · ∇⊥u(x) ≈ f(x)ε.

Hence this simple heuristic argument suggests that v satisfies the linear transport equation

{
∇v · ∇⊥u = f in (0, 1)2

v = 0 on {x2 = 1}.
(7)

Recall u is the viscosity solution of (1). When f = 1 we have u(x) = 2
√
x1x2. If we plug this

into (7) and look for a separable solution of the form v(x) = f1(x1)f2(x2) we find that when
f = 1

v(x) = − log(x2)
√
x1x2. (8)

Since each Pareto front has in general a different number of points, the values of Vn within
different fronts are difficult to compare. Therefore it is natural to consider the following
normalization:

Wn(Xi) :=
Vn(Xi)

#F(Xi)
, (9)

where F(Xi) denotes the Pareto front that Xi belongs to. The quantity Wn(Xi) is an index
between 0 and 1 that gives information about where the point Xi falls within its Pareto front.
The arguments above suggest that

Wn −→ w uniformly with probability one, where

w(x) =
v(x)

v(1, ψ(u(x))
, (10)

and ψ is the inverse of x2 7→ u(1, x2). In other words, we are normalizing v(x) by the
asymptotic number of points on the front to which x belongs.
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Figure 3: A depiction of some quantities from the derivation of the new continuum limit PDE.

The expression in (10) is difficult to work with numerically. We will instead derive a PDE
for w. Differentiating (10) yields

v∇w = w∇v − w2vx2ψ
′(u)∇u.

Take the dot product of both sides with ∇⊥u and recall (7) to find that

v∇w · ∇⊥u = w∇v · ∇⊥u = wf.

Since w = 1 on {x1 = 1}, w can be characterized as the solution of the following transport
equation {

v∇w · ∇⊥u = wf in (0, 1)2

w = 1 on {x1 = 1}.
(11)

We note that it would seem equally reasonable to have chosen the boundary condition w = 0
on {x2 = 1} instead. However, in this case it is easy to verify that w = v would solve (11), so
the solution is not uniquely determined by the boundary condition w = 0 on {x2 = 1}. This
issue arises numerically as well. Indeed, we have found experimentally that if we solve (11)
numerically with an upwind scheme and the boundary condition w = 0 on {x2 = 1} we find
the solver automatically computes v instead of w, and it is unclear how to select the correct
solution without changing the boundary condition to w = 1 on {x1 = 1}. It is impossible to
specify both boundary conditions simultaneously since the characteristic curves, which are the
level curves of u, flow through both boundaries.

Note that when f = 1 we have u(x) = 2
√
x1x2 and v(x) = − log(x2)

√
x1x2. Plugging

these into (11) and using the method characteristics we find that for f = 1

w(x) =
log(x2)

log(x1) + log(x2)
. (12)

See Figure 4 for a comparison of Vn and Wn to their continuum limits (7) and (11),
respectively. While the arguments in this section are not rigorous, we present a convergence
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(a) Vn vs. v
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(b) Wn vs. w

Figure 4: Results of a simulation comparing the level sets of Vn and Wn to the solutions of
their continuum limits PDEs (7) and (11).

analysis in Section 3.1 that gives very strong numerical evidence for their validity. A rigorous
proof is the subject of current investigation and is far outside the scope of this paper.

On a more technical note, since u is not necessarily differentiable the velocity ∇⊥u in the
transport equations (7) and (11) is not well-defined. To make sense of these PDE rigorously,
we can instead write them in divergence form, since

−div(u∇⊥v) = ∇v · ∇⊥u.

This suggests that it is possible to prove existence and uniqueness of weak solutions (defined
via integration by parts) of (7) in the Sobolev space H1, under the requirement that u is
merely continuous. Such results are outside the scope of this paper, and we intend to pursue
them in a future work.

3.1 Convergence analysis

We present here a convergence analysis for the continuum limits (7) and (11) in the case that
f ≡ 1, i.e., the samples are independent and uniformly distributed on the unit box [0, 1]2. In
this case we can solve all three PDEs (1), (7), and (11) in closed form using the formulas (2),
(8), and (12), respectively.

We performed a convergence analysis by drawing X1, . . . ,Xn independent and uniformly
distributed on [0, 1]2 and computing Vn and Wn according to their definitions (5) and (9),
respectively. We measured the discrepancy with the continuum limits in the ℓ1 and ℓ∞ norms,
computed by

‖v − n− 1
2Vn‖ℓ1 :=

1

n

n∑

i=1

|v(Xi)− n−
1
2Vn(Xi)|.

and
‖v − n− 1

2Vn‖ℓ∞ := max
1≤i≤n

|v(Xi)− n−
1
2Vn(Xi)|,

respectively. The definitions of ‖w −Wn‖ℓ∞ and ‖w −Wn‖ℓ1 are similar. Figure 5 shows the
errors for a single realization and various values of n ranging from n = 102 to n = 108. Each
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2 Vn vs v
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(b) Wn vs w

Figure 5: Convergence analysis of conjectured continuum limits. In (a), the error is consistent
with O(n−α) where α ≈ 0.3 for the ℓ1 norm, and α ≈ 0.2 for the ℓ∞ norm. In (b), the error for
the ℓ1 norm is consistent with O(n−α) where α ≈ 0.25. Since w is discontinuous at x = (1, 1),
the convergence Wn → w cannot be uniform (i.e., in the ℓ∞ norm).

of the errors is observed to be converging to zero at a rate of O(n−α) where α ≈ 0.25, except
for ‖w − Wn‖ℓ∞ . Upon closer inspection, the function w(x) = log(x2)/(log(x1) + log(x2))
is discontinuous at x = (1, 1), hence uniform convergence is impossible. This discontinuity
reflects the fact that near x = (1, 1) the Pareto fronts cut off an infinitesimal portion of the top
corner of the box, and hence Wn transitions from 0 to 1 over an infinitesimally short distance.

4 Numerical schemes

We address in this section the problems of solving the PDEs (1), (7), (11) numerically. Since
each PDE involves the solution of the previous PDEs, they must be solved in the order (1)-
(7)-(11). We solve (1) numerically using the (formally) first order accurate upwind scheme
presented in [5]. The scheme is similar to fast sweeping, but only requires sweeping the grid
exactly once, and thus has linear complexity in the number of grid points.

Here, we show how to construct upwind finite difference schemes for the transport PDEs
(7) and (11). Fix a grid resolution h > 0 and for U ⊂ R

2 define Uh := U ∩ (hZ2). We will
solve the transport equations on the grid [0, 1]2h. Both PDEs are degenerate when ∇u = 0,
which can only happen when f vanishes (since ux1ux2 = f). To avoid this degeneracy, we
numerically precondition the density by replacing f with f+h2 before solving (1) numerically.

The transport equation (7) can be written out as

ux2vx1 − ux1vx2 = f on (0, 1)2

with v(x1, 1) = 0. The unknown function is v; u is obtained by solving (1). Since ux1 ≥ 0
and ux2 ≥ 0 the coefficients of vx1 and vx2 have opposite signs. Thus an upwind scheme will
use either (A) backward differences for vx1 and forward differences for vx2 , or (B) vice-versa.
The choice depends on the direction we want information to propagate. Since our boundary
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condition is v = 0 on {x2 = 1} and information flows along Pareto fronts in the positive x1
direction and negative x2 direction, the correct choice for an upwind scheme is (A) backward
differences in vx1 and forward differences in x2, which effectively forces the scheme to look
backwards along the current Pareto front (or level set of u).

Thus, our upwind scheme for (7) is

{
ux2D

−
1 vh − ux1D

+
2 vh = f in (0, 1)2h,

vh(0, x2) = vh(x1, 1) = 0.
(13)

where vh : [0, 1]2h → R is the numerical solution, and D±
i are the finite differences defined by

D±
i v(x) := ±

v(x± hei)− v(x)
h

,

where e1 = (1, 0) and e2 = (0, 1). At each grid point, (13) is linear equation that is readily
solved for vh(x) in terms of vh(x− he1) and vh(x+ he2) to obtain

vh(x) =
ux2(x)vh(x− he1) + ux1(x)vh(x+ he2) + hf(x)

ux1 + ux2

. (14)

The numerical solution vh is computed by sweeping the grid (0, 1)2h exactly once in the upwind
direction (1,−1) starting with the boundary condition vh(0, x2) = vh(x1, 1) = 0. We note
that the boundary condition vh(0, x2) = 0 is just for numerical convenience, and is not used
directly by the scheme, since ux2(0, x2) = 0 so on the line x1 = 0 so the solution depends only
on vh(x+ he2) when x1 = 0. When computing vh(x), we replace ux1 and ux2 in (14) by first
order finite differences of the solution uh of (1) on the same grid. Our numerical experiments
suggest that the scheme is not sensitive to the choice of discretization of ux1 and ux2 . We note
that convergence of the scheme (13) is a classical result when u ∈ C1, however, u is in general
only Hölder continuous. We leave the analysis of the scheme for u 6∈ C1 to future work.

We now consider the second transport equation (11). If we again write the PDE out we
have

vux2wx1 − vux1wx2 = wf in (0, 1)2

with boundary condition w(1, x2) = w(x1, 0) = 1. Since vux2 ≥ 0 and vux1 ≥ 0 we have
the same upwind choices as before. However, here we want information to propagate from
the boundary where x1 = 1 or x2 = 0 backwards along Pareto fronts (level sets of u) in the
direction (−1, 1). Thus we use forward differences for wx1 and backward differences for wx2 ,
and our upwind scheme for (15) has the form

{
vhux2D

+
1 wh − vhux1D

−
2 wh = whf in (0, 1)2h,

wh(1, x2) = wh(x1, 0) = 1.
(15)

This is a linear equation that can be solved for wh(x) in terms of wh(x+he1) and wh(x−he2)
to obtain

wh(x) =
vh(x)ux2(x)wh(x+ he1) + vh(x)ux1(x)wh(x− he2)

hf(x) + vh(x)ux2(x) + vh(x)ux1(x)
. (16)

This scheme can also be solved in a fast sweeping pattern visiting each grid point exactly once,
and thus has linear complexity. Note that the boundary condition wh(x1, 0) = 1 is not directly
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used by the scheme, since ux1(x1, 0) = 0. We impose the condition simply for convenience.
We note here as well that convergence of the scheme is classical when u ∈ C1, and we leave
the case of u 6∈ C1 to future work.

5 Real-time anomaly detection

We propose here a modification of the PDA multicriteria anomaly detection algorithm [22]
to the setting of online streaming data. Suppose we have a stream of possibly nonstationary
data {Yt}t∈N, and d measures of similarity c1, . . . , cd for comparing data samples. As before
we suppose that 0 ≤ ci(·, ·) ≤ 1. In the streaming setting, we observe the data Yt sequentially
and must determine whether Yt is an anomaly based only on the previous history {Ys : s < t}.
Due to memory and computational constraints, it may not be feasible to use this entire history,
especially when t is large. Therefore, we fix T ≥ 1 and consider the windowed history

Ht = {Ys : t− T ≤ s ≤ t− 1}. (17)

We use the history Ht as training data in order to determine whether Yt is an anomaly. Even
without memory constraints, only the recent history Ht can be considered reliable when the
data is nonstationary. As before, we define dyads

Xr,s = (c1(Yr, Ys), . . . , cd(Yr, Ys)) ∈ [0, 1]d

corresponding to every pair (Yr, Ys) of the data stream. If we use the PDA anomaly detection
algorithm with exact nondominated sorting, then we would need to store in memory all of
the n :=

(
T
2

)
= O(T 2) dyads corresponding to pairs from the history Ht. Since the addition

of a single new sample can potentially affect the arrangement of all the Pareto fronts, re-
training the model when new samples are acquired requires applying nondominated sorting to
all O(T 2) dyads, which has complexity slightly worse than O(T 2) for memory and operations.
This makes it impossible to update the model frequently in the streaming setting without
considering some type of approximation to the sorting.

Using PDE-based ranking we can reduce this complexity to O(T ). We keep a running
estimate of the marginal distribution of the dyads using the following kernel density estimator

ft(x) =
1

nhd

∑

t−T≤r<s≤t−1

K

(
x−Xr,s

h

)
. (18)

Although there are O(T 2) terms in the sum above, the density estimation ft(x) can be updated
recursively in O(T ) time by writing ft(x) = ft−1(x) + gt(x) where

gt(x) =
1

nhd

t−1∑

s=t−T

K
(
x−Xs,t

h

)
−K

(
x−X(t−T−1),s

h

)
.

In our experiments, we use a simple histogram estimator, which is a special case of (18).
We then compute an approximation Ut of the Pareto depth function by solving the HJE (1)
numerically using the estimated density ft. By Theorem 1 the continuum approximation of
the anomaly score is

νt =
1

|It|
∑

s∈It

Ut(Xs,t), (19)
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where It ⊂ {t−T, . . . , t−1} denotes the indices of samples from the history Ht that are among
the k nearest neighbors of Yt with respect to ci for at least one i ∈ {1, . . . , d}. We declare Yt
anomalous if νt is greater than a predefined threshold ρ. The steps above work in arbitrary
dimension d ≥ 2 as well.

For the anomaly classification, we specialize to the case of d = 2. If Yt is declared an
anomaly, we then solve the transport equations (7) and (11) using the schemes (13) and (15),
respectively, to obtain Wt := wh. We define the anomaly classification score

µt =
1

|It|
∑

s∈It

Wt(Xs,t), (20)

and we declare Yt a c1-anomaly if µt > 0.5, and a c2-anomaly if µt < 0.5. The idea is
that if a sample is a c1-anomaly, then the first coordinate of the dyads c1(Ys, Yt) should be
larger on average than in the training set, which is our windowed history. Therefore, the
dyads corresponding to Yt will be on average further to the right along each Pareto front.
This corresponds to a front index larger than 0.5 on average. The situation is similar for
c2 anomalies, except that the dyads will be biased towards the left side of the fronts. See
Algorithm 1 for a summary of our algorithm in pseudocode.

Algorithm 1 PDE-based online anomaly detection

1: Given: ρ > 0 and T ∈ N

2: fT ← (18) {Initialize density}
3: for t = T + 1→∞ do

4: ft ← ft−1 + gt {Update density estimation}
5: Ut ←(1) {Solve HJE continuum limit}
6: νt ← (19) {Compute anomaly score}
7: if νt > ρ then

8: Declare Yt to be anomalous
9: Wt ← (15) {Solve transport equations}

10: µt ← (20) {Compute anomaly classification score}
11: if µt > 0.5 then Yt is a c1-anomaly
12: if µt ≤ 0.5 then Yt is a c2-anomaly
13: end if

14: end for

There are some obvious modifications we could make to improve the performance of the
algorithm. First, the continuum limit PDE need not be solved at every iteration, and could
instead be solved only periodically, or whenever the density estimation ft has substantially
changed. Second, to keep track of a larger history without incurring additional costs, the
history Ht could contain T elements equally (or randomly) spaced among the previous αT
samples, where α≫ 1. The algorithm would remain otherwise unchanged and the complexity
of each iteration remains O(T ).

Since the PDE-based anomaly detection algorithm is based on continuum approximations,
it is natural to seek a quantification of the approximation error. If we assume the dyads are
i.i.d. we can prove the following convergence rate.
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Theorem 2 (Convergence Rate). Let X1, . . . ,Xn be i.i.d. with a Lipschitz continuous prob-
ability density f : [0, 1]2 → [m,∞), where m > 0. For h > 0 let ûh denote the numerical
solution of (1) obtained via estimating f from X1, . . . ,Xn via a histogram aligned to the grid
of spacing h on [0, 1]2. Then there exist constants C1, C2 > 0 such that

max
[0,1]2

h

|ûh − u| ≤ C1

√
h (21)

holds with probability at least 1− exp(−C2nh
5 − 2 log(h)), where u is the viscosity solution of

(1).

Theorem 2 suggests we should choose h as a function of n so that nh5 ≫ log(h−1). In
particular, if we choose h = h(n)→ 0+ so that

lim
n→∞

nh5

log(n)
=∞,

then by the Borel-Cantelli Lemma ûh → u almost surely and uniformly on [0, 1]2 as n →∞.
We also note that Theorem 2 extends easily to higher dimensions d ≥ 3. In this case the same
convergence rate (21) holds with probability at least

1− exp(−C2nh
2d+1 − d log(h)).

Proof of Theorem 2. Let X1, . . . ,Xn be independent and identically distributed random vari-
ables on [0, 1]2 with Lipschitz continuous density f : [0, 1]2 → [0,∞). Recall that f is assumed
to be positive on [0, 1]2, i.e., there exists m > 0 such that f ≥ m. Let h := 1/K > 0 be the
grid resolution for solving (1) numerically and for estimating the density f with a histogram
estimator, where K ∈ N. For 1 ≤ i ≤ k and 1 ≤ j ≤ K let

Bij = [(i− 1)h, ih) × [(j − 1)h, jh)

denote the grid cell corresponding to (i, j), and let Nij denote the number of samples from
X1, . . . ,Xn falling in Bij . Then Nij is a Binomial random variable with parameters n and

pij =

∫

Bij

f(x) dx.

By the Chernoff-Hoeffding bound (see, e.g., [12]) we have

P (|Nij − ENij| ≥ t) ≤ exp

(−2t2
n

)
(22)

for all t ≥ 0. Let xij = (ih, jh) denote the grid points. The histogram estimation of f at grid
point xij is given by

f̂h(xij) :=
Nij

n|Bij|
=
Nij

nh2
.

Combining this with (22) we have

P

(∣∣∣f̂h(xij)− Ef̂h(xij)
∣∣∣ ≥ t

)
≤ exp

(
−2nh4t2

)
(23)
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Since Ef̂h(xij) = pij/h
2 we have

∣∣∣f(xij)− Ef̂h(xij)
∣∣∣ = 1

h2

∣∣∣∣∣

∫

Bij

f(xij)− f(x) dx
∣∣∣∣∣ ≤

1

h2

∫

Bij

|f(xij)− f(x)| dx ≤ Ch, (24)

due to the fact that f is Lipschitz. Here, C depends on the Lipschitz constant of f , which is
defined by

Lip(f) = sup
x 6=y

|f(x)− f(y)|
|x− y| .

It follows from (24) that

|f(xij)− f̂h(xij)| ≤
∣∣∣f̂h(xij)− Ef̂h(xij)

∣∣∣+
∣∣∣f(xij)− Ef̂h(xij)

∣∣∣

≤
∣∣∣f̂h(xij)− Ef̂h(xij)

∣∣∣+ Ch.

Combining this with (23) and the union bound, there exists C1 > 0 such that

P

(
‖f̂h − f‖∞ ≥ λ

)
≤ exp

(
−2nh4(λ−C1h)

2 − 2 log(h)
)
, (25)

for all λ > C1h, where
‖u− v‖∞ := max

xij∈[0,1]2h

|u(xij)− v(xij)|.

Let uh and ûh denote the numerical solutions of (1) on the grid of spacing h > 0 computed
with f and f̂h on the right hand side, respectively. Standard maximum principle arguments
(see [5]) yield

‖ûh − uh‖∞ ≤ C‖f̂h − f‖∞, (26)

where the constant C depends on the lower bound m > 0 on f . By [5, Theorem 1,2], there
exists a constant C > 0 such that

‖uh − u‖∞ ≤ C
√
h.

Combining this with (26) we have

‖ûh − u‖∞ ≤ C2(‖f̂h − f‖∞ +
√
h),

for some C2 > 0. By (25)

P

(
‖ûh − uh‖∞ ≥ C2(λ+

√
h)
)
≤ exp

(
−2nh4(λ− C1h)

2 − 2 log(h)
)
.

Setting λ = C
√
h for large enough C we have

P

(
‖ûh − u‖∞ ≥ C3

√
h
)
≤ exp

(
−C4nh

5 − 2 log(h)
)
,

for all 0 < h ≤ 1.
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6 Numerical results

We present several experiments that provide numerical evidence supporting the above ar-
guments and outlining the effectiveness of our algorithm. The first two experiments were
performed using synthetic data from [21, 22]. The streaming experiments consist of 1500 total
samples with a window history of T = 500. To underscore the adaptive nature of our algo-
rithm, each of these experiments incurs a significant trend change in the middle of the stream.
The third and final experiment was performed with a real pedestrian trajectory data set from
a video surveillance problem.

To evaluate the performance of the streaming algorithm we use a Receiver Operating
Characteristic (ROC) curve and its resulting Area Under the Curve (AUC). We consider how
the AUC varies with time as the algorithm takes in points from a stream. When changing
the trend in the simulated streams, we also accordingly change the data used to generate
the ROC curves, thereby giving us an appropriate method to visualize the learning aspect of
the algorithm. In each simulated data stream we evaluate both the anomaly detection and
anomaly classification. The results presented below represent the average of 20 trials. All
PDEs were solved on a 100 × 100 grid.

In each experiment, we compare our continuum limits against the exact sorting PDA
algorithm from [21, 22] and we see little to no difference in anomaly detection performance.
The PDE-approximations reduce the complexity by an order of magnitude—from O(T 2) to
O(T ). To give an idea of the difference in CPU time, each trial in the experiments below
takes 27 seconds to process with the PDE-approximations, compared to 413 seconds with
exact sorting. If we increase the stream length and data history T by a factor of 3, the
PDE-approximations take 160 seconds, while the exact sorting PDA algorithm takes over 9.3
hours.

6.1 Uniformly distributed data

The first experiment conducted with synthetic data took i.i.d. uniform samples on [0, 1]2 to
be nominal, and uniform samples from the region [0, 1.1]2 \ [0, 1]2 to be anomalous. Halfway
through the stream the nominal region was changed to the box [0, 2]2, and the corresponding
anomalous region was changed to [0, 2.2]2\[0, 2]2. The two similarity criteria were simply taken
to be the component-wise differences |∆x1| and |∆x2|, respectively. The nearest neighbour
parameters were chosen as k1 = 6, k2 = 7. At each time step in the simulated stream there
was a 0.05 probability of drawing from the anomalous region.

Figure 6(a) shows the resulting AUCs at each time step. As expected, one can see a
significant drop in the AUC of the anomaly detection at the mid-point when the trend is
changed. We observe a sharp recovery of the AUC of the anomaly detection once the training
history Ht contains a significant number of samples from the new distribution. This illustrates
how the algorithm can quickly and efficiently learn a new trend in the data. Note that the
AUC for the anomaly classification remains unchanged throughout the experiment because
the classification of the anomalies in the new trend are the same with respect to the old trend.

6.2 Categorical data

For the second experiment, we used the synthetic categorical data from [22]. Each sample
consists of 2 groups of categorical data A1 and A2. Each group is comprised of 20 different
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attributes, where each attribute can assume a different number of values. The number of
possible values for the jth attribute of the ith group, denoted ni,j, is chosen uniformly at
random between 6 and 10. Each attribute is then assigned a categorical distribution with
parameters p1, . . . , pni,j

which are in turn drawn from a Dirichlet distribution with parameters
α1, . . . , αni,j

.
The nominal distribution is characterized by setting α1 = 5 and αk = 1 for every k 6= 1

for every attribute. This forces a bias towards attributes assuming the value one. For the
anomalous distribution we set αk = 1 for every k, so that no attribute has a bias towards
assuming any particular value. Halfway through the stream the nominal distributions were
changed so that for every attribute, the parameters of the categorical distribution were drawn
from a Dirichlet distribution with parameters α2 = 5 and αk = 1 for every k 6= 2. This shifts
the nominal bias towards the value two. The anomalous distribution was unchanged.

To generate a nominal sample, we draw from the nominal distribution for each group. To
generate an anomalous sample, we randomly choose a group with probability 0.5 and draw
from the anomalous distribution for that group, and nominal distribution for the other. At
each time step in the stream there was a 0.05 probability of drawing an anomalous sample.

The similarity between samples was computed between respective groups using the Inverse
Occurrence Frequency (IOF) measure presented in [3]. The Goodall2 and Overlap metrics
gave similar performance. The nearest neighbour parameters were chosen as k1 = k2 = 10.
Figure 6(b) shows the resulting AUCs at each time step. Similar to the previous experiment
we observe a drop in the AUC of the anomaly detection and a recovery thereafter. We also
observe a similar drop in anomaly classification and the corresponding recovery. In contrast
to the previous example, the new anomalies are anomalies in both criteria with respect to the
old trend, so that the classification has no bias towards a specific criteria.

6.3 Pedestrian trajectories

Our third experiment consisted of data from a real pedestrian trajectory data set [27], with
over 100,000 trajectories. The first similarity criterion used to compare trajectories was their
difference in shape, given by the ℓ2-distance between interpolated trajectories. The second was
their difference in walking speed, given by the ℓ2-distance between the velocity histograms of
each trajectory.

As a preliminary experiment, we tested the anomaly detection and anomaly classification
on 1666 trajectories from a single day. These trajectories were hand-labelled as normal or
anomalous by [22]. In each experiment the training set consisted of 500 trajectories randomly
drawn from a total of 1666 trajectories that day. The mean AUCs of the PDE-based and
exact sorting based algorithms were 0.9274± 0.0085 and 0.9363± 0.0072, respectively and the
ROC curves are shown in Figure 7(a). We observe very little difference between the exact
sorting and the PDE-approximations. We cannot present quantitative results for anomaly
classification in this setting as there is no ground truth labeled data available. Along with
some normal trajectories, we also plotted some anomalous trajectories with their respective
classification scores in Figure 7(b,c).

Finally, we applied the PDE-based streaming anomaly detection algorithm to a large por-
tion of the pedestrian dataset, spanning over several days of data. Figure 6(c) shows the AUC
as a function of artificial time for a simulated stream consisting of 15,000 trajectories with
an initial training set of 400 randomly drawn trajectories. The small labeled portion of the
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dataset (approx. 1000 trajectories) was used to generate the ROC curves.

7 Conclusion

In this paper, we showed how to use some recently discovered PDE continuum limits for non-
dominated sorting to perform anomaly detection and classification in real-time in a streaming
setting. The classification is performed using new PDE continuum limits for ordering within
the nondominated layers. We proved convergence rates for the continuum approximations and
presented the results of numerical experiments with synthetic and real data that show our
algorithm can adapt quickly and efficiently to a changing data stream. Although we focused
in this paper on the anomaly detection problem, the ideas are not restricted to this context.
Indeed, nondominated sorting is widely used in multiobjective optimization, and the ideas in
this paper potentially apply to any such application, leaving many interesting problems for
future work.

In particular, we outline below some directions for future work that we are currently
investigating.

1. The arguments used in Section 3 to derive the new PDE continuum limits (7) and (11)
for sorting points within layers are not rigorous. We are currently investigating a rigorous
proof of these conjectured continuum limits.

2. The upwind finite difference schemes for the transport equations (7) and (11) presented
in Section 4 are provably convergent only when u ∈ C1, which is not generally true, and
only when we assume the exact values of ux1 and ux2 are used in the scheme. It would be
interesting to prove convergence of these new upwind schemes without the assumption
that u ∈ C1, and under the more realistic condition that ux1 and ux2 are replaced by
their finite difference approximations in the schemes for (7) and (11).

3. The PDEs for sorting points within fronts were presented in only d = 2 dimensions here.
It would be interesting to extend these results to higher dimensions. In d ≥ 3 dimensions,
there is no canonical linear ordering of the points within each front. Instead, we can
consider nondominated sorting of the points within each front under a partial order that
“forgets” about one of the coordinates xk (that is, we project to R

d−1 by removing the
xk coordinate and apply the usual nondominated sorting). This is akin to sorting the
points within each front with respect to the xk direction. Thus, we have d different ways
to sort the points along each Pareto front, and similar arguments can be used to derive
d different continuum limit PDEs for sorting functions v1, . . . , vk of the form

∏

i 6=k

∇vk · ∇⊥
k,iu = ud−2

xk
f in (0, 1)d,

with boundary condition vk = 0 on {xk = 1}. Here, ∇⊥
k,iu := uxk

ei−uxi
ek, and e1, . . . , ed

are the standard basis vectors in R
d. We are currently investigating applications of these

continuum PDEs, as well as a rigorous proof in dimensions d ≥ 3.

18



References

[1] M. Bardi and I. Dolcetta. Optimal control and viscosity solutions of Hamilton-Jacobi-
Bellman equations. Springer, 1997.

[2] B. Bollobás and P. Winkler. The longest chain among random points in Euclidean space.
Proceedings of the American Mathematical Society, 103(2):347–353, 1988.

[3] L. Boriah, V. Chandola, and V. Kumar. Similarity measures for categorical data: A
comparative evaluation. red, 30(2):3, 2008.

[4] J. Calder. A direct verification argument for the Hamilton-Jacobi equation continuum
limit of nondominated sorting. arXiv preprint:1508.01565, 2015.

[5] J. Calder. Numerical schemes and rates of convergence for the Hamilton-Jacobi equation
continuum limit of nondominated sorting. arXiv preprint:1508.01557, 2015.
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Figure 6: Results of simulated data stream with (a) uniformly distributed data and (b) cate-
gorical data. In (c) we show the AUCs for the pedestrian trajectories dataset.
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Figure 7: Pedestrian experiment in a stationary setting. (a) ROC curves of PDE-based and
exact sorting anomaly detection, (b) trajectories classified as normal, and (c) some anomalous
trajectories with their classifications.
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