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Abstract. We study some optimal control problems on networks with junctions, approximate
the junctions by a switching rule of delay-relay type and study the passage to the limit when ε, the
parameter of the approximation, goes to zero. First, for a twofold junction problem we characterize
the limit value function as viscosity solution and maximal subsolution of a suitable Hamilton-Jacobi
problem. Then, for a threefold junction problem we consider two different approximations, recovering
in both cases some uniqueness results in the sense of maximal subsolution.
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1. Introduction. In this paper, we are interested in optimal control problems
with dynamics inside a network. Each arc Ei of the network has its own controlled
dynamics fi and cost `i. When passing from an arc to another one through a node,
the system then drastically experiences a discontinuity. We refer to this situation as
a “junction”. Recently there was an increasing interest in dynamical systems and
differential equation on network, for example in connection with problems of data
transmission and traffic flows (e. g. Garavello-Piccoli [22], Engel et al. [21]).
For dynamic programming and Hamilton-Jacobi-Bellman (HJB) equation, in optimal
control, the presence of junctions is a problem because, by the discontinuous fea-
ture of HJB, the uniqueness of the solution of HJB is not in general guaranteed. In
particular for an optimal control problem we cannot characterize the value function
as the unique solution of HJB. Some authors have recently studied optimal con-
trol and HJB on networks as well as discontinuous HJB also not necessarily coming
from an optimal control problem, see for instance Achdou-Camilli-Cutr̀ı-Tchou [1],
Camilli-Marchi [17], Camilli-Marchi-Schieborn [18], Camilli-Schieborn [19], Imbert-
Monneau-Zidani [26], Achdou-Oudet-Tchou [2], Achdou-Tchou [4], and the recent
Lions-Souganidis [28]. The optimal control problem on networks is related to n-
dimensional optimal control problems on multi-domains, where the dynamics and
costs incur in discontinuities when crossing some fixed hypersurfaces. These problems,
started with Bressan-Hong [15], [16], have been studied, in connection with HJB, in
Barles-Briani-Chasseigne [10], Barnard-Wolenski [14], Rao-Zidani [30], Barles-Briani-
Chasseigne [11], Rao-Siconolfi-Zidani [29], Barles-Chasseigne [13], Achdou-Oudet-
Tchou [3], Barles-Briani-Chasseigne-Imbert [12], Imbert-Monneau[25].
In this paper we study a possible approximation of an optimal control problem on a
network with a junction. Some preliminary and partial results have been presented
in Bagagiolo [7]. The main critical point is a uniqueness result for the viscosity so-
lution of HJB equation that turns out to be discontinuous in the (one-dimensional)
space-variable (we refer the reader to, for example, Bardi-Capuzzo Dolcetta [9] for a
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2 F. BAGAGIOLO, AND R. MAGGISTRO

comprehensive account of viscosity solutions for Hamilton-Jacobi equations). Indeed,
when using the classical double-variable technique for proving comparison results
between sub- and super- viscosity solutions we cannot in general conclude as in the
standard way because the points of minimum and of maximum, even if very close, may
belong to different arcs for which dynamics and costs are absolutely non-comparable
(the junction, indeed). Consider the situation where two half-lines (the edges) are
separated by one point (the junction). Also note that the possible angle between the
lines is irrelevant, being the discontinuity of dynamics and costs through the junction
the only relevant fact. Our approach is to replace the junction, which represents a
unique threshold for passing both from one edge to the other one and vice-versa, by
a so-called delayed thermostat consisting in two different thresholds for passing sep-
arately from one edge to the other one and vice-versa (see Figure 1). The problem
is then transformed in a so-called hybrid problem (continuous/discrete evolution, see
for example Goebel-Sanfelice-Teel [23]) for which the discontinuity of HJB is replaced
by some suitable mutually exchanged boundary conditions on the extreme points of
the two branches. This allows to get a uniqueness result for HJB for this kind of
thermostatic problem. It is not unusual in the engineering literature on control prob-
lems to overcome discontinuities in dynamics by inserting some regularizing effects as
hysteresis: switching and/or continuous. The thermostat is the fundamental brick of
switching hysteresis model. See for instance Kokotovich [34] (pp. 17-23), Seidman
[31], Hante-Leugering-Seidman [24]. In Ceragioli-De Persis-Frasca [20] and Seidman
[32] the thermostat is applied to solve several control problems coming from different
contexts and discontinuities. The approximation of sliding mode behaviour through
a thermostatic switching rule and the consequent passage to the limit of the switch-
ing threshold is discussed in Liberzon [27] (pp. 14-15), Utkin [35] (pp. 30-31) and
Alexander-Seidman [5]. The study of this kind of switching hysteresis in connection
with Dynamic Programming and HJB for optimal control is not so advanced and
moreover the limit problem when the switching threshold goes to zero was probably
never studied. Hence our results may shed light for new formulations for the junction
problem as indeed it happens for our three-fold problem that we will study below.
We start from the results in Bagagiolo [6] (see also Bagagiolo-Danieli [8]), where the
author studies the dynamic programming method and the corresponding HJB prob-
lem for optimal control problems whose dynamics has a thermostatic behavior. This
means that the dynamics f (as well as the cost `) besides the control, depends on the
state variable x ∈ R, which evolves with continuity via the equation x′ = f , and also
depends on a discrete variable i ∈ {−1, 1}, whose evolution is governed by a delayed
thermostatic rule, subject to the evolution of the state x. In Figure 1 the behavior of

Fig. 1. The two-fold junction and its thermostatic approximation.
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such a rule is explained, correspondingly to the choice of the fixed threshold parame-
ter ε > 0. The output i ∈ {−1, 1} can (and must) jump from 1 to −1 only when the
input x, coming from the right (i.e. from values larger than or equal to −ε), possibly
goes below the threshold −ε; it can (and must) jump from −1 to 1 only when x,
coming from the left (i.e. from values smaller than or equal to ε) possibly goes above
the threshold ε. In all other situations it remains constant. In particular, when x > ε
then i is equal to 1, and when x < −ε then i is equal to −1. We refer to Visintin [36]
page 102 for a formal definition of such a switching rule. The controlled evolution is
then given by 

x′(t) = f(x(t), i(t), α(t)),

i(t) = hε [x] (t)

x(0) = x0, i(0) = i0

where α : [0,+∞]→ A is the measurable control, and hε [·] represents the thermostatic
delayed relationship between the input x and the output i. The initial value i0 ∈
{−1, 1} must be coherent with the thermostatic relation: i0 = 1 (resp. i0 = −1)
whenever x0 > ε (resp. x0 < −ε). The infinite horizon optimal control problem is
then, given a running cost ` and a discount factor λ > 0, the minimization over all
measurable controls, of the cost

(1) Vε(x0, i0) = inf
α∈A

∫ ∞
0

e−λt`(x(t), i(t), α(t))dt

where A is the set of measurable controls. In [6], the problem is written as a coupling
of two exit time optimal control problems which mutually exchange their exit-costs.
In particular, using the notations

(2) Ωε1 = {x > −ε} , Ω
ε

1 = {x ≥ −ε} , Ωε−1 = {x < ε} Ω
ε

−1 = {x ≤ ε} ,

in Ω
ε

1 × {1} (resp. Ω
ε

−1 × {−1}), the function x 7→ Vε(x, 1) (resp. x 7→ Vε(x,−1))

coincides with the value function of the exit-time optimal control problem on Ω
ε

1

(resp. Ω
ε

−1 ), where the exit-cost on −ε (resp. on ε) is given by Vε(−ε,−1) (resp.
Vε(ε, 1)). Under standard hypotheses, in [6] is proved the following theorem.

Theorem 1.1. The value function Vε in (1) is the unique bounded, continuous
viscosity solution on Ω

ε

1×{1}∪Ω
ε

−1×{−1} of the following coupled Dirichlet problem,
where the boundary conditions (the two exit-costs) are also in the viscosity sense (V ′

stays for derivative with respect to x)
(3)

λVε(x, 1) + supa∈A {−f(x, 1, a)V ′ε (x, 1)− `(x, 1, a)} = 0 in Ωε1 × {1}
Vε(−ε, 1) = Vε(−ε,−1)

λVε(x,−1) + supa∈A {−f(x,−1, a)V ′ε (x,−1)− `(x,−1, a)} = 0 in Ωε−1 × {−1}
Vε(ε,−1) = Vε(ε, 1)

In the present paper, we approximate some junction problems by a suitable com-
binations of delayed thermostats. Every thermostat is characterized by its two thresh-
olds (ε and −ε in the preceding description). We study the limit of the value functions
Vε and of the HJB problem when the threshold distance ε tends to zero, and hence
recovering the junction situation.

In Barles-Briani-Chasseigne [10], among others, a one-dimensional two-fold junc-
tion problem is studied and some possible approximations are given. Here we in-
troduce a different kind of approximation (thermostatic) and recover, by a different
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proof, similar results: we characterize the limit problem and we get that the limit of
Vε is the corresponding maximal viscosity subsolution. This corresponds to the value
function of the junction optimal control problem where, on the junction point, some
further dynamics (besides the already given ones) are considered: the ones given by
a suitable convexification of “non-inward pointing” dynamics (“regular” dynamics in
[10]) and somehow corresponding to stable equilibria on the junction point (stable
equilibria of dynamics interpreted as forces). In [10] the case where on the junction
one can also use the so-called “singular” dynamics (i.e., a suitable convexification of
“inward pointing” dynamics; somehow corresponding to unstable equilibria) is also
treated. In particular in this case all possible dynamics on the junction can be used:
singular, regular and the already given ones of the original control problem. All
such possible dynamics at the interface are also used in Rao-Siconolfi-Zidani [29] to
prove uniqueness of the solution for HJB. In our paper, the use of the thermostatic
approximation leads to consider only the “regular problem”, and hence to have a
characterization as maximal subsolution. Hence the problem in [29] and our limit
problem are substantially different. Indeed, as said before, the concept of thermo-
stat is based on the concept of switching that occurs when suitable thresholds are
reached. For the occurrence of the switching it is necessary that the threshold is
reached with a suitable signed velocity. And such a sign is exactly the one requested
by the construction of the regular dynamics. Moreover, it is important to note that
there exist several ways to define a junction optimal control problem and everyone of
them has different HJ representation with different possible approximations by more
regular problem. The case of a “threefold” junction (see Figure 3) is not treated in
[10], and indeed the convexification of dynamics seems to be not more applicable (the
physical interpretation as forces equilibrium is also failing). However, inspired by the
previous thermostatic approximation, we introduce a special kind of “convexification
parameters” that somehow corresponds to the length of the time intervals that the
dynamics spends on every single branch of a “threefold” thermostatic approximation.
Here, we have more than one way for passing to the limit, and we recover uniqueness
results for the limit problems in the sense of maximal subsolution. The approach can
be extended to the n-fold junctions (Figure 2), but with higher notation complexity.

The paper is organized as follows: basic assumption are set in section 2. In
section 3, we introduce the thermostatic approximation of a two-junction problem and
study the passage to the limit for ε→ 0 in the problem studied in [6]. In section 4 we
study the three-junction problem both in the case with uniform switching thresholds
and with non uniform switching thresholds. This corresponds to two different limit
optimal control problems with different admissible behaviors on the junction.

2. Basic assumption on the junction problem and the delay thermostat.
Let the junction be given by a finite number of co-planar half-lines Ri, i = 1, . . . , n,
originating from the same point O, and we consider the half-lines as closed, that is
the point O ∈ Ri for every i. On each branch Ri we consider a one-dimensional
coordinate x ≥ 0 such that x(O) = 0. The state position may be then encoded by
the pair (x, i). In Sect. 4, for convenience of notation, we will sometimes change the
sign of x . We consider a controlled evolution on such a star-shaped network, given
by the following dynamics. On Ri the system is driven by a continuous and bounded
dynamics fi : R×A→ R, with A compact, fi Lipschitz and controllability holds:

(4) ∃L > 0 such that ∀ x, y ∈ R, ∀ a ∈ A it is |fi(x, a)− fi(y, a)| ≤ L|x− y|.
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Fig. 2. A star-shaped network (7-fold junction).

(5) ∀ i ∃ a−i , a
+
i ∈ A s.t. fi(0, a

−
i ) < 0 < fi(0, a

+
i )

The controlled system on the network is then, for an initial state (x, i) with x ∈ Ri,

(6)

 y′(t) = fj(y(t), α(t)) for t > 0 and y(t) ∈ Rj
y(0) = x
x ∈ Ri

where α : [0,+∞[→ A belongs to A, the set of measurable controls, and j = j(t) is
the switching variable that switches to j′ when y(t) enters the new half-line Rj′ .

To this controlled systems we associate an infinite horizon optimal control prob-
lem. For every branch Ri we consider a running cost `i : R × A → [0,+∞[, and the
problem is given by the minimization, over all controls α ∈ A, of the cost functional

(7) J(x, i, α) =

∫ +∞

0

e−λt`j(y(t), α(t))dt.

In (7), λ > 0 is a fixed discount factor, the trajectory y(·) is the solution of (6),
and the index j switches as explained above. Moreover, for every i, the function
`i : R× A→ R is continuous and bounded, and there exists a modulus of continuity
ω` : [0,∞[→ [0,+∞[ (i.e. continuous, increasing and ω`(0) = 0), such that, for any
x, y ∈ R and a ∈ A and for any i

(8) |`i(x, a)− `i(y, a)| ≤ ω` (|x− y|) .

We finally consider the value function

V (x, i) = inf
α∈A

J(x, i, α).

Of course, the concept of solution (or trajectory) for the system (6) and the
definition of the cost (7) are not well-posed. Indeed, at the junction point O, we can
choose the index i we prefer, but the existence of the trajectory is not guaranteed, due
to possible fast oscillations of the index i (as when, for a generic ordinary differential
equation, the dynamics is discontinuous in the space variable). The main goal of the
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present paper is just an approximation and the corresponding passage to the limit,
for such possible oscillating behavior in the context of optimal control. To this end,
we are going to use delayed thermostat operator and, in addition to what already
said in the Introduction, here we point out that, fixed the thresholds −ε, ε, for each
continuous scalar input t 7→ u(t), and for each initial output i0 ∈ {−1, 1} coherent
with u(0), there exists a unique output t 7→ i(t) =: hε[u](t) ∈ {−1, 1} satisfying
i(0) = i0. For a regular scalar dynamics g, and for a coherent initial state (x, i0),
there exists a unique solution of the thermostatic system y′ = g(y, i, t)

y(0) = x
i(t) = hε[y](t), i(0) = i0

The main reason for that is indeed the “splitting” of the thresholds, which avoids
fast oscillations of the switching variable i, and allows to construct the solution by a
suitable gluing of pieces of solutions with constant i (see [6]).

3. A twofold junction problem. We consider a one-dimensional optimal con-
trol problem for which the controlled dynamics and the cost, f, `, suddenly change
when passing from one half-line to the other one: f(x, ·) = f1(x, ·) (resp. f(x, ·) =
f−1(x, ·)) if x > 0 (resp. if x < 0), where f1 : [0,+∞[×A→ R, f−1 :]−∞, 0]×A→ R.
The point x = 0 may represent a “junction”, a node on a network with two entering
edges (see Figure 1). For ε > 0 we approximate the junction problem by a delayed
thermostatic problem. Still denoting by f1, f−1 two extensions by constancy in the
space variable x of the dynamics to [−ε,+∞[×A and to ]−∞, ε]×A respectively, we
may consider the controlled system

(9)


x′(t) = fi(t)(x(t), α(t)),

i(t) = hε [x] (t)

x(0) = x0, i(0) = i0

Similarly to f1, f−1, we extend the running costs `1, `−1.
Let Vε be the value function of the thermostatic optimal control problem with

dynamics given by (9) and corresponding costs. We define the function

Ṽε : R \ {0} → R, Ṽε(x) =

{
Vε(x, 1) x > 0

Vε(x,−1) x < 0.

In general, Vε(0,−1) 6= Vε(0, 1).

Theorem 3.1. As ε → 0+, Ṽε uniformly converges on R \ {0} to a continuous
function which, if (4) and (8) hold, continuously extends to a function Ṽ on the whole
R. If (5) holds, Ṽ coincides with the (already known as unique) viscosity solution of

(10)


λV +H1(x, V ′) = 0 for x > 0

λV +H−1(x, V ′) = 0 for x < 0

V (0) = min
{
u0(0), Vsc(−1)(0), Vsc(1)(0)

}
where H1, H−1 are the Hamiltonians in (3), u0(0) is the convexification

(11) u0(0) =
1

λ
min
A0

{µ`−1(0, a−1) + (1− µ)`1(0, a1)}



HYBRID APPROXIMATIONS OF JUNCTIONS ON NETWORKS 7

(12) A0 =
{

(µ, a−1, a1) ∈ [0, 1]×A×A :

µf−1(0, a−1) + (1− µ)f1(0, a1) = 0, f1(0, a1) ≤ 0, f−1(0, a−1) ≥ 0
}

and Vsc(i)(0) is the value function at x = 0 of the state-constraint optimal control
problem on the branch i.

Proof. We are going to use the notations in (2). We also recall that the state-
constraint problem in branch i is the optimal control problem restricted to the branch
i and such that, at the point x = 0 we can only use controls that make us to not leave
the branch. We first prove that Vε uniformly converges to a continuous function on
R \ {0}. We have some cases and we illustrate some of them.

i) f−1(0, a) ≤ 0 for all a ∈ A. Hence, when starting from a point of Ω
ε

−1 × {−1},
it is impossible to switch on the other branch Ω

ε

1 × {1}. Hence, x → Vε(x,−1) is
the value function of the optimal control problem with dynamics f−1 and cost `−1

and state-constraint in Ω
ε

−1 × {−1}, which uniformly converges on ] − ∞, 0] to the
value function with same dynamics and cost and with state constraints in ] −∞, 0]
(dynamics and costs are bounded), that is to Vsc(−1). In the other branch, being
Vε(−ε,−1) convergent to Vsc(−1)(0), we also get the uniform convergence of Vε(·, 1) to
the unique solution of the first line of (10) with viscosity boundary datum Vsc(−1)(0).
Indeed, they are respectively the value function of the exit-time problem in [−ε,+∞[
and [0,+∞[ with the same dynamics, same cost and with convergent exit-costs.

ii) ∃ a−1, a1 ∈ A such that f1(0, a1) < 0 < f−1(0, a−1). In this case, when ε is
sufficiently small, starting from (ε, 1) (resp. from (−ε,−1)) we can always switch on
the other branch, and we can reach (−ε,−1) (resp. (ε, 1)) in a time interval whose
length is infinitesimal as ε. It is then easy to check that the difference |Vε(ε, 1) −
Vε(−ε,−1)| (as well as |Vε(0, 1)− Vε(0,−1)|) is also infinitesimal as ε. Moreover, for
every pair (ε1, ε2) with ε1, ε2 > 0, ‖Vε1 − Vε2‖ is also infinitesimal as max{ε1, ε2}.
As before, Vε uniformly converges on R \ {0} to a solution of the first two lines of
(10), which also continuously extends to x = 0. We denote by Ṽ such extended limit
function and, assuming (5) (which of course implies the conditions in ii)), we prove
that it satisfies the third equation of (10), from which the conclusion of the proof.
Again, we proceed illustrating some cases.

a) Vsc(−1)(0) strictly realizes the minimum in (10). Then, there exists a mea-
surable control α such that the corresponding trajectory starting from x = 0 with
dynamics f−1 does not exit from ]−∞, 0], and the corresponding cost, with running
cost `−1, is strictly less than u0(0) and Vsc(1)(0). The control α has exactly the same
cost for the thermostatic problem with initial point (0,−1) (no switchings occur).
Now, we observe that, for every (µ, a−1, a1) ∈ A0 with f−1(0, a−1), f1(0, a1) 6= 0,
the alternation of the constant controls a−1, a1 correspondingly to every switching,
gives a cost for the thermostatic problem in (0,−1) as well as in (0, 1), which, when ε
goes to zero, converges to (µ`−1(0, a−1) + (1− µ)`1(0, a1)) /λ. Indeed, the condition
µf−1(0, a−1) + (1− µ)f1(0, a1) = 0 implies that f−1(0, a−1), f1(0, a1) are in the same
(inverse) proportion as µ and 1 − µ, and the corresponding time-durations for cov-
ering the distance 2ε (from one threshold to the other one) are in the same (direct)
proportion as µ and 1− µ. Hence, the required convergence holds.
From this we get that Vsc(−1)(0) = Vε(0,−1) and so Ṽ (0) = Vsc(−1)(0).

b) u0(0) strictly realizes the minimum. Then, let (µ, a−1, a1) ∈ A0 be such that
µ`−1(0, a−1) + (1 − µ)`1(0, a1) is the minimum in the definition of u0(0). Again, as
in the previous point, we get that a switching trajectory using controls a−1 and a1 is
near optimal for Vε, and then the conclusion.
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Remark 3.2. In this one-dimensional case, Theorem 3.1 also proves that Ṽ = U+,
where U+ is the value function of the so-called regular problem in [10]. In the sequel
we are also given a different proof of such an equality where, using the thermostatic
approximation, we show that Ṽ is the maximal subsolution of a suitable Hamilton-
Jacobi problem as in [10], namely next problem (13).

Theorem 3.3. Assume (4), (5), and (8). The function Ṽ is a viscosity solution
of the Hamilton-Jacobi-Bellman problem

(13)


λV +H1(x, V ′) = 0 in {x > 0} =: Ω1

λV +H−1(x, V ′) = 0 in {x < 0} =: Ω−1

min {λV +H1, λV +H−1} ≤ 0 on x = 0

max {λV +H1, λV +H−1} ≥ 0 on x = 0.

Here we mean that Ṽ is a subsolution of the first three equations and a supersolution
of the first two together with the fourth one.

Proof. From Theorem 3.1, Ṽ is a viscosity solution of the first two lines of (13).
We now prove the third equation in (13). Let ϕ ∈ C1(R) be a test function

such that Ṽ − ϕ has a strict relative maximum at x = 0. By uniform convergence,
there exists a sequence xε ∈ Ω

ε

1 of points of relative maxima for Vε(·, 1) − ϕ which
converge to x = 0. We may have two mutually exclusive cases: 1) at least for a
subsequence, at xε the HJB equation satisfied by Vε(·, 1) has the right sign ”≤” (if xε
is an interior point, then we always have the right sign, being the equation satisfied),
2) it is definitely true that the boundary point xε = −ε is a strict maximum point
and the HJB equation has the wrong sign ”>”. Also note that the boundary of Ω

ε

1,
i.e. x = −ε, is also converging to x = 0.

Case 1). As ε→ 0, we get λṼ +H1 ≤ 0 in x = 0 and the third equation in (13).
Case 2). Since the boundary conditions in (3) are in the viscosity sense and by

virtue of the controllability condition (5), we have

(14) Vε(−ε, 1) = Vε(−ε,−1)

The same argumentations and cases also hold for the branches Ω
ε

−1. If the corre-
sponding case 1) holds, then we get the conclusion as before. Otherwise we have

(15) Vε(ε,−1) = Vε(ε, 1)

We prove that case 2) cannot simultaneously holds in both branches. Indeed,
observe that (−ε,−1) is in the interior of Ω

ε

−1 and (ε, 1) is in the interior of Ω
ε

1,
therefore, using (14) and (15), we get the following contradiction and conclude

Vε(−ε,−1)− ϕ(−ε) < Vε(ε,−1)− ϕ(ε) = Vε(ε, 1)− ϕ(ε)
< Vε(−ε, 1)− ϕ(−ε) = Vε(−ε,−1)− ϕ(−ε)

To prove the fourth equation in (13), we argue in the same way.

We prove that Ṽ is the maximal subsolution of (13), and use the following lemma.

Lemma 3.4. Assume that ∀ ε > 0 small enough, the optimal strategy for the
approximating problem ε, starting by any (x, 1), (x,−1) with x ∈ [−ε, ε], is to have
infinitely many switches between the two branches (i.e. no state-constraint behavior
is optimal). Let (µ̄, ā−1, ā1) ∈ A0 be such that f−1(0, ā−1) > 0, f1(0, ā1) < 0, and that

(16) Ṽ (0) = u0(0) =
1

λ
{µ̄`−1(0, ā−1) + (1− µ̄)`1(0, ā1)}.
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For every x ∈ [−ε, ε], we consider the two switching trajectories (compare with (9))
y′(t) = fi(t)(0, āi(t)),

i(t) = hε [y] (t),

y(0) = x, i(0) = 1,

,


y′(t) = fi(t)(0, āi(t)),

i(t) = hε [y] (t),

y(0) = x, i(0) = −1.

On the branches, they have constant velocity (f1(0, ā1) and f−1(0, ā−1) towards left
and right respectively), and switch infinitely many times. We consider the functions

(17)

V̄ε(x, 1) =

∫ ∞
0

e−λt`i(t)(0, āi(t))dt with i(0) = 1,

V̄ε(x,−1) =

∫ ∞
0

e−λt`i(t)(0, āi(t))dt with i(0) = −1.

Then V̄ε(·, 1) and V̄ε(·,−1) are differentiable in [−ε, ε] and

(18) sup
x∈[−ε,ε]

|V̄
′

ε (x, 1)− V̄
′

ε (x,−1)| → 0 for ε→ 0.

Proof. The derivability comes form the constancy of dynamics and costs. We can
rewrite the two functions in (17) as

(19)

V̄ε(x, 1) =

∫ x+ε
|f1(0,ā1)|

0

e−λt`1(0, ā1)dt+ e
−λ(x+ε)
|f1(0,ā1)| V̄ε(−ε, 1),

V̄ε(x,−1) =

∫ ε−x
f−1(0,ā−1)

0

e−λt`−1(0, ā−1)dt+ e
−λ(ε−x)
f−1(0,ā−1) V̄ε(ε,−1),

where the upper extremal of the integration is the reaching time of the threshold in
the corresponding initial branch. Then we have

(20) V̄ε(−ε, 1) = V̄ε(−ε,−1) and V̄ε(ε,−1) = V̄ε(ε, 1),

and by (16) for any i, limε→0 V̄ε(x, i) = Ṽ (0) = u0(0) uniformly in x ∈ [−ε, ε]. A
direct calculation gives

V̄
′

ε (x, 1) =
1

|f1(0, ā1)|
e
−λ(x+ε)
|f1(0,ā1)| `1(0, ā1)− λe

−λ(x+ε)
|f1(0,ā1)|

|f1(0, ā1)|
V̄ε(−ε, 1),

V̄
′

ε (x,−1) = − 1

f−1(0, ā−1)
e
−λ(ε−x)
f−1(0,ā−1) `−1(0, ā−1) +

λe
−λ(ε−x)
f−1(0,ā−1)

f−1(0, ā−1)
V̄ε(ε,−1).

and then for ε→ 0

V̄
′

ε (x, 1) −→
µ̄
(
`1(0, ā1)− `−1(0, ā−1)

)
|f1(0, ā1)|

,

V̄
′

ε (x,−1) −→
(µ̄− 1)

(
`−1(0, ā−1)− `1(0, ā1)

)
f−1(0, ā−1)

.

Recalling the definition of A0 (12), calculating µ, we get (18) by

V̄
′

ε (x, 1) −→ `1(0, ā1)− `−1(0, ā−1)

f−1(0, ā−1)− f1(0, ā1)
, V̄

′

ε (x,−1) −→ `1(0, ā1)− `−1(0, ā−1)

f−1(0, ā−1)− f1(0, ā1)
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Theorem 3.5. For each u bounded, continuous subsolution of (13), it is u ≤ Ṽ
in R.

Proof. We can assume to be in the situation as in Lemma 3.4. Indeed, otherwise in
at least one branch Ṽ coincides with the corresponding state-constraint value function
which, see for example Soner [33], is greater than any subsolution (note that, in general
the state-constraint value functions do not satisfy the third line of (13)). We then
also get u ≤ Ṽ on the other branch.
We assume by contradiction that supx∈R(u− Ṽ )(x) > δ > 0. If

∃r > 0|∀δ′ > 0 ∃ x ∈]r,+∞[: sup
x∈R

(
(u− Ṽ )(x)− (u− Ṽ )(x)

)
≤ δ′,

then, by Theorem 3.3 and known comparison techniques we get a contradiction be-
cause, in ]r,+∞[, Ṽ is a supersolution and u is a subsolution of the same HJB.
Similarly for the opposite case ] −∞,−r[. Hence we may restrict to the case where
u− Ṽ has the maximum with respect to r in x = 0. Since V̄ε(x, i) converges to Ṽ (0),
with V̄ε defined in (19), then for small ε,

(21) u(zi)− V̄ε(zi, i) = max
[−ε,ε]

(u(·)− V̄ε(·, i)) >
δ

2
> 0,

with zi ∈ [−ε, ε]. If for example max(u(·) − V̄ε(·, 1)) is reached in x = −ε and
max(u(·)− V̄ε(·,−1)) is reached only in ε, then using (20) we get the contradiction

(22)
u(−ε)− V̄ε(−ε, 1) = u(−ε)− V̄ε(−ε,−1)
< u(ε)− V̄ε(ε,−1) = u(ε)− V̄ε(ε, 1).

This implies that in at least one branch we can assume zi not equal to corresponding
switching threshold. Then assume z−1 ∈ [−ε, ε[.

We are now comparing u and V ε. By (19), we have for every i = −1, 1

λV̄ε(x, i)− fi(x, āi)V̄
′

ε (x, i)− `i(x, āi) ≥ −O(ε),

in x ∈ [−ε, ε[ or in ]−ε, ε] respectively, where, here and in the sequel O(ε) is a suitable
positive infinitesimal quantity as ε → 0. Recalling that V̄ε(·, i) is derivable in [−ε, ε]
and recalling the sign of fi(0, āi) we then get for every i = −1, 1

(23) λV̄ε(x, i) +Hi(x, p) ≥ −O(ε),

for every x ∈ [−ε, ε[ and for every p subgradient in x with respect to [−ε, ε] of V̄ε(·,−1)
(respectively for any x ∈]− ε, ε] and p subgradient of V̄ε(·, 1)).

Let η : [−ε, ε] → R be continuous and c > 0 such that (see [33], condition (A1)
in the case of an interval)

(24) ]x+ ξη(x)− ξc, x+ ξη(x) + ξc[ ⊆ ]− ε, ε[ ∀x ∈ [−ε, ε], 0 < ξ ≤ c.

For any 0 < ξ ≤ c, we define the function in [−ε, ε]× [−ε, ε]:

Φξ(x, y) = u(x)− V̄ε(y,−1)−
∣∣∣∣x− yξ − η(z−1)

∣∣∣∣2 − ∣∣y − z−1
∣∣2 .

Let (x−1
ξ , y−1

ξ ) be a point of maximum for Φξ ∈ [−ε, ε]×[−ε, ε]. Recalling z−1 ∈ [−ε, ε[
by standard estimates (see Soner [33] or Bardi- Capuzzo Dolcetta [9] pp. 271) for small
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ξ we get x−1
ξ ∈]− ε, ε[, y−1

ξ ∈ [−ε, ε[ and

(25)
x−1
ξ − y

−1
ξ

ξ
→ η(z−1) and x−1

ξ , y−1
ξ → z−1 as ξ → 0.

We have the following possible cases, for a subsequence ξ → 0:
(i) (x−1

ξ , y−1
ξ ) ∈ ] − ε, 0[×[−ε, ε[; (ii) x−1

ξ = 0 and y−1
ξ ∈] − ε, ε[; (iii) (x−1

ξ , y−1
ξ ) ∈

]0, ε[×]− ε, ε[.
Case (i). We get for any small ξ

(26) λu(x−1
ξ ) +H−1

(
x−1
ξ ,

2

ξ

(
x−1
ξ − y

−1
ξ

ξ
− η(z−1)

))
≤ 0,

(27) λV̄ε(y
−1
ξ ,−1) +H−1

(
y−1
ξ ,

2

ξ

(
x−1
ξ − y

−1
ξ

ξ
− η(z−1)

)
+ 2(z−1− y−1

ξ )

)
≥ −O(ε).

and we conclude in the standard way getting the contradiction to (21) first sending
ξ → 0 and then ε→ 0.
Case (ii). By x−1

ξ = 0 we have that

(28)

min

{
λu(0) +H1

(
0,

2

ξ

(−y−1
ξ

ξ
−η(z−1)

))
,

λu(0) +H−1

(
0,

2

ξ

(−y−1
ξ

ξ
− η(z−1)

))}
≤ 0.

If λu(0)+H−1

(
0, 2

ξ

(
−y−1

ξ

ξ −η(z−1)

))
≤ 0 for a subsequence ξ tends to 0 we conclude

as in Case (i). Otherwise, we have

(29) λu(0) +H1

(
0,

2

ξ

(−y−1
ξ

ξ
− η(z−1)

))
≤ 0.

The inequality (27) and (29) cannot be compared because they have different Hamil-
tonians. However, noting that y−1

ξ ∈]− ε, ε[, we have

(
V̄ε(y

−1
ξ ,−1)

)′
=

2

ξ

(
x−1
ξ − y

−1
ξ

ξ
− η(z−1)

)
+ 2(z−1 − y−1

ξ ).

By (18), we have

V̄ε(y
−1
ξ , 1) = V̄ε(y

−1
ξ ,−1) +O(ε),

(
V̄ε(y

−1
ξ , 1)

)′
=
(
V̄ε(y

−1
ξ ,−1)

)′
+O(ε),

and using (23) in y−1
ξ for i = 1, we get

(30) λV̄ε(y
−1
ξ , 1) +H1

(
y−1
ξ ,

2

ξ

(−y−1
ξ

ξ
− η(z−1)

)
+ 2(z−1 − y−1

ξ )

)
≥ −O(ε).

By (29) and (30) we obtain a contradiction as in the case (i).
Case (iii). For x−1

ξ ∈]0, ε[ we have

(31) λu(x−1
ξ ) +H1

(
x−1
ξ ,

2

ξ

(
x−1
ξ − y

−1
ξ

ξ
− η(z−1)

))
≤ 0

that cannot be compared with (27). Being also y−1
ξ ∈ [−ε, ε[, we conclude as before.
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4. A threefold junctions problem. Here, we consider a junction given by
three half-lines entering the same point (see Figure 3). In this case we have three labels
{1, 2, 3}, one for every half-line R1, R2, R3, that we identify with the labelled half-line
Ri = [0,+∞[×{i}. We also consider the controlled dynamics fi : Ri × A → R and
the running costs `i : Ri × A → [0,+∞[. We approximate these triple discontinuity
by a thermostatic-type combination in the following way. We extend fi and `i to
[−εi,+∞[×{i} × A, where εi > 0 are not necessarily the same for every i. The

Fig. 3. The threefold junctions and its thermostatic-type approximation.

thermostatic controlled dynamics is given by

(32)


x′(t) = fi(t)(x(t), α(t)),

i(t) = h̃[x](t),

i(0) = i0 ∈ {1, 2, 3} , x(0) = x0 ∈ [−εi0 ,+∞[,

where h̃[x](t) is the delayed thermostatic rules as show Figure 3. In this ther-
mostatic representation, denoting by Rεi := [−εi,+∞[×{i} (and by int(Rεi) =
] − εi,+∞[×{i}), we can only switch from Rε1 to Rε2 , from Rε2 to Rε3 and from
Rε3 to Rε1 . This is an arbitrary choice, because in the limit problem, at the junction-
point, a switch to any of the other branches is possible. However, we will recover
this kind of behavior in the limit procedure because the transitions times become
smaller and smaller and, indeed, the limit equation (54) is independent from that
choice. Moreover, in the switching rule given by h̃, also the variable x is subject to a
discontinuity at the switching instant unlike the twofold case in previous section (see
Figure 3 and also note in the thermostat, the branch Rε1 is oriented in the opposite
way with respect to the standard one). For every i0 ∈ {1, 2, 3} and ∀x0 ∈ [−εi0 ,+∞[
we consider the value function

(33) Vε1,ε2,ε3(x0, i0) = inf
α∈A

∫ ∞
0

e−λt`i(t)(x(t), α(t))dt,

and we also have for every i = 1, 2, 3 the Hamiltonians

(34) Hi(x, p) = sup
a∈A
{−fi(x, a) · p− `i(x, a)} .

where we drop the index i in the entries of fi, `i and hence in Hi. We will sometimes
use this simplification of the notation in the sequel too, without recalling it.
As in Theorem 1.1 we have the following proposition
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Proposition 4.1. For any choice of ε1, ε2, ε3 > 0 the value function Vε1,ε2,ε3 of
the switching three-thermostatic optimal control problem is the unique bounded and
continuous function on Rε1 ∪Rε2 ∪Rε3 which satisfies, in the viscosity sense

(35)



λVε1,ε2,ε3(x, 1) +H1

(
x, V ′ε1,ε2,ε3(x, 1)

)
= 0 in int(Rε1),

Vε1,ε2,ε3(−ε1, 1) = Vε1,ε2,ε3(ε2, 2);

λVε1,ε2,ε3(x, 2) +H2

(
x, V ′ε1,ε2,ε3(x, 2)

)
= 0 in int(Rε2),

Vε1,ε2,ε3(−ε2, 2) = Vε1,ε2,ε3(ε3, 3);

λVε1,ε2,ε3(x, 3) +H3

(
x, V ′ε1,ε2,ε3(x, 3)

)
= 0 in int(Rε3),

Vε1,ε2,ε3(−ε3, 3) = Vε1,ε2,ε3(ε1, 1).

The proof is essentially an adaptation of the one of the Theorem 1.1 in [6] to whom
the reader is strongly referred. However, a very short sketch of the proof is given in
the Appendix.

In the following subsections we are going to consider two different limit junction
problems. In subsection 4.1 the limit problem is given by the fact that on the junc-
tion point the admissible dynamics and costs are given by some suitably interpreted
balance of the behaviours on all three branches. In subsection 4.2 instead, a balance
among only two branches is also admitted. The main difference in the two limiting
procedures is that in the first case the three thresholds go to zero with the same veloc-
ity, whereas in the second case different velocities are admitted. Such differences will
lead to two HJB limit problems which differ by the definition of the admissible test
functions (see the comments after Definition 4.12) which will lead to distinct ways for
proving a comparison result.
We finally note that a similar control problem with n branches is studied in [2]. How-
ever, in that work no convexification or balance of the dynamics and costs are taken
into account at the junction. The considered optimal control is then different from
ours.

4.1. Uniform switching thresholds. We assume (ε1, ε2, ε3) = (ε, ε, ε). Look-
ing to the twofold junction it is easy to see that the convexification parameters µ, 1−µ
are given by the ratio between the time spent using fi(0, ai) to go from a threshold to
the other one (namely 2ε/fi(0, ai)) and the total time to perform a complete switch-
ing. Coherently, when f1, f2, f3 < 0 (dropping the entries in the dynamics), namely
when we perform the whole cycle, the right convex parameters to be considered are

(36) µ1 =
f2f3

f2f3 + f1f3 + f1f2
, µ2 =

f1f3

f2f3 + f1f3 + f1f2
, µ3 =

f1f2

f2f3 + f1f3 + f1f2
.

Moreover (µ1, µ2, µ3) ∈ [0, 1]3 and
∑3
i=1 µi = 1. Observe that now we have not

anymore the interpretation as balance of forces, indeed in general
∑3
i=1 µifi(0, ai) 6= 0,

regardless to our choice of the signs of the branches Ri and dynamics fi. Also note that
(36) is meaningful with the same interpretation when at most one fi is null, in which
case we definitely remain in the corresponding branch. To identify the right limit
optimal control problem when ε→ 0 we define its controlled dynamics. In particular,
calling TR = R1 ∪R2 ∪R3, if (x, i) ∈ TR, with x 6= 0 then the dynamics is the usual
fi(x, ai) with ai ∈ A. If instead x = 0, being (0, i) = (0, j) for i, j ∈ {1, 2, 3}, i 6= j, we
can either choose any dynamics makes us to stay inside a single branch Ri or we may
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rest at zero “formally” using any combination
∑3
i=1 µifi(0, ai) with fi(0, ai) and µi

as before (where µi plays a role in the definition of the corresponding cost, see below).
The set of controls in the junction point is then

A(0) = A0 ∪ Ã

with (note that in Ã the index i is also at disposal)

A0 = {(a1, a2, a3) ∈ A3| fi(0, ai) ≤ 0 with at most one equal to 0},

Ã = {(a, i) ∈ A× {1, 2, 3}| fi(0, a) ≥ 0 } .

Then, calling â the generic element of A(0) we define

f0(0, â) =

{
fi(0, a) if â ∈ Ã,
0 if â ∈ A0.

With the same arguments, if (x, i) ∈ TR and x 6= 0 then the running cost is `i(x, ai)
with ai ∈ A, otherwise we define

`0(0, â) =

{
`i(0, a) if â ∈ Ã,
µ1`1(0, a1) + µ2`2(0, a2) + µ3`3(0, a3) if â ∈ A0.

The quadruples f = (f1, f2, f3, f0) and ` = (`1, `2, `3, `0) then define the threefold
junction optimal control problem. In particular given an initial state (x0, i0) ∈ TR
and a measurable control α(t) ∈ A ∪ A(0) we consider a possible admissible trajec-
tory in TR whose evolution, denoted by (x(t), i(t)), is such that i(t) remains constant
whenever x(t) > 0 and x(t) evolves with dynamics described above. Given an initial
state, the set of measurable controls for which there exists a unique admissible trajec-
tory is not empty and we denote it by A(x0,i0). We then consider an infinite horizon
problem with a discount factor λ > 0 given by

J(x0, i0, α) =

∫ +∞

0

e−λt`(x(t), i(t), α(t))dt,

where ` is the running cost described above and the corresponding value function is

(37) V (x0, i0) = inf
α∈A(x0,i0)

J(x0, i0, α).

In the sequel when x = 0 we will drop the index i. If we remain in x = 0 for all
the time using controls in A0 then the best cost is given by

(38) u1,2,3(0) =
1

λ
inf
A0

{µ1`1(0, a1) + µ2`2(0, a2) + µ3`3(0, a3)} .

Remark 4.2. In general A0 is not compact. However, if (ak1 , a
k
2 , a

k
3) ∈ A0 is a

minimizing sequence for u1,2,3(0) converging to (ā1, ā2, ā3) /∈ A0, the quantity inside
the bracket in (38) loses meaning but we still have the inequality

lim
k→∞

{
µk1`1(0, ak1) + µk2`2(0, ak2) + µk3`3(0, ak3)

}
≥ min{`i(0, āi)|fi(0, āi) = 0}.

and we can still get an optimal behavior among the ones making us stay at x = 0.
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Theorem 4.3. Assume (4), (5), and (8). Then, V is continuous on TR. More-
over when x = 0,

(39) V (0) = min
{
u1,2,3(0), Vsc(1)(0), Vsc(2)(0), Vsc(3)(0)

}
,

where Vsc(i)(0) is the value function at x = 0 of the state- constraint optimal control
problem on Ri. Therefore
i) if V (0) = u1,2,3(0), then V is the unique bounded and continuous solution of the
three problems (one for every i ∈ {1, 2, 3})

(40)

{
λu+Hi(x, u

′) = 0 in int(Ri)

u(0) = u1,2,3(0)

ii) if V (0) = Vsc(i)(0), for some i = 1, 2, 3, then V satisfies: V = Vsc(i) in Ri, and
uniquely solves (for every j ∈ {1, 2, 3} \ {i})

(41)

{
λu+Hj(x, u

′) = 0 in int(Rj)

u(0) = Vsc(i)(0).

Proof. The continuity of V comes from controllability (5) and regularity (4) and
(8) in a standard way. Moreover, (39) comes from (37) because the four terms in the
minimum are exactly the only allowed values (see also Remark 4.2). Finally (40) and
(41) follow from standard properties of Dirichlet problems in the viscosity sense.

Theorem 4.4. Assume (4), (5), and (8). The value function V (37) (also char-
acterized by Theorem 4.3) satisfies

(42) V (x, i) = lim
ε→0

Vε,ε,ε(x, i) ∀ (x, i) ∈ Ri, i = 1, 2, 3.

where Vε,ε,ε is the value function of the approximating thermostatic problem (35) with
uniform thresholds (ε, ε, ε), and the convergence is uniform. Moreover, when x = 0
the limit is independent from i = 1, 2, 3.

Proof. We first prove that (42) holds for x = 0 (the junction point). The fact
that the limit (42), whenever it exists, is independent from i when x = 0 comes from
the controllability hypothesis (5) because |Vε,ε,ε(0, i) − Vε,ε,ε(0, j)| is infinitesimal as
ε. In the sequel, we drop the symbol i in the expression Vε,ε,ε(0, i).
We prove (42) at x = 0 for a convergent subsequence still denoted by (ε, ε, ε) which
exists because Vε,ε,ε are equi-bounded. The uniqueness of the limit will give the whole
(42). By contradiction, suppose that V (0) < limVε,ε,ε(0). By (5), for every ε > 0, we
have Vε,ε,ε(0) ≤ Vsc(i)(0) for every i = 1, 2, 3. Hence, the absurd hypothesis implies
V (0) = u1,2,3(0) by (39). Suppose that (a1, a2, a3) ∈ A0 realizes the minimum in the
definition of u1,2,3(0). We analyze some possible cases, the others are similar.

1) f1(0, a1), f2(0, a2), f3(0, a3) < 0. Hence, using a suitably switching control
between those constant controls, we get Vε,ε,ε(0) is not larger then u1,2,3(0) plus an
infinitesimal quantity as ε→ 0, which is a contradiction.

2) f1(0, a1) = 0, f2(0, a2), f3(0, a3) < 0. In this case we arrive at R1 and we stop
with f1(0, a1) in x = 0. Hence, u1,2,3(0) = 1

λ`1(0, a1) cannot be lower than Vsc(1)(0)
which is a contradiction.

If there is no minimizing (a1, a2, a3) (see Remark 4.2) then the cost u1,2,3(0)
cannot be better than the state-constraint value Vsc(i)(0). Then as before, we have
again a contradiction.
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Now assume limVε,ε,ε(0) < V (0). Let δ > 0 be such that, for ε small enough, it
is Vε,ε,ε(0) + δ < V (0). A measurable control α which almost realizes the optimum
(less than β > 0) for Vε,ε,ε(0) must be such that there are infinitely many switching
between all branches Rεi (i.e for every i, fi(x, αi) < 0 ∀ x ). Indeed, if it is not
the case, then, for at least one branch Rεi , the trajectory definitely remains inside
it. Hence, for small ε, Vε,ε,ε(0) is almost equal to Vsc(i)(0), which is a contradiction.
We can restrict to consider a piecewise constant control that we call again α since
Vε,ε,ε defined either by measurable controls or by piecewise constant controls, satisfies
the same problem (35) which admits a unique solution (see e. g. [9] Remark 2.15
page 109). Then, to obtain the optimum, on each branch Rεi let xi1, . . . , x

i
ni be the

points corresponding to the discontinuity instants ti1, . . . , t
i
ni of the control α and let

aij be the constant controls ∀i = 1, 2, 3, ∀ j = 1, . . . , ni − 1. On the assumption that

fi(0, a
i
j) < 0 ∀ i, j we consider the dynamics fi(0, a

i
j) and the running cost `i(0, a

i
j)

on every spatial interval [xij , x
i
j+1]. Now, for every i we consider

(43) inf
a∈A

{
`i(0, a)

|fi(0, a)|
|fi(0, a) < 0

}
.

If (43) is a minimum for every i obtained in (ā1, ā2, ā3) then in each Rεi we use constant
dynamics fi(0, āi) and constant running cost `i(0, āi).
Therefore |J(·, i, α)− J(·, i, āi)| ≤ O(ε) and we get

(44)
Vε,ε,ε(0) ≥ J(·, i, α)− β ≥ J(·, i, āi)−O(ε)− β
≥ u1,2,3(0)−O(ε)− β ≥ V (0)−O(ε)− β,

that is a contradiction. If, for some i, (43) is not a minimum then we can consider
the minimizing sequence aki that realizes the infimum less than O( 1

k ). In particular
aki → ãi ∈ A for k → +∞ and fi(0, a

k
i )→ fi(0, ãi) = 0 being fi(0, a

k
i ) < 0. However,

since the optimal strategy is to switch among the branches, we cannot stop in the
branch Rεi with dynamics fi(0, ãi) paying the cost `i(0, ãi). Then, always taking into
account that fi(0, a

i
j) < 0 we have

(45)
Vε,ε,ε(0) ≥ J(·, i, α)− β ≥ J(·, i, aki )−O

(
1

k

)
−O(ε)− β

≥ u1,2,3(0)−O
(

1

k

)
−O(ε)− β ≥ V (0)−O

(
1

k

)
−O(ε)− β,

which is again a contradiction.
Therefore at the end, Vε,ε,ε(0) cannot be less than V (0)− δ by the definition of V (0).
This is a contradiction. Hence we have limVε,ε,ε(0) = V (0). The equations solved by
Vε,ε,ε and by V ((35), (40), and (41) respectively) are the same for all (x, i) ∈ int(Ri)
and the boundary datum converges to V (0). Hence, representing the solutions as the
value functions of the corresponding optimal control problems, we get (42) and the
uniform convergence.

To show that V (37) is a viscosity solution of the next problem (54), we introduce the
test functions for the differential equations on the branches and give the definition of
viscosity subsolution and supersolution of (54).

Definition 4.5. Let ϕ : TR→ R be a function such that

(46)

ϕ|Ri := ϕi : Ri −→ R
(x, i) 7−→ ϕi(x, i) if x 6= 0,∀i ∈ {1, 2, 3}
(0, i) 7−→ ϕi(0, i) = ϕj(0, j) ∀j ∈ {1, 2, 3} \ {i},
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with ϕ ∈ C0(TR) and ϕi ∈ C1(Ri).

Definition 4.6. A continuous function u : TR→ R is a viscosity subsolution of
(54) if for any (x, i) ∈ TR, any ϕ as in (46) such that u− ϕ has a local maximum at
(x, i) with respect to TR, then

(47)
λu(x, i) +Hi(x, ϕ

′
i(x, i)) ≤ 0 x ∈ int(Ri),

min {λu(0, i) +Hi(0, ϕ
′
i(0, i)), i = 1, 2, 3} ≤ 0 x = 0.

A continuous function u : TR → R is a viscosity supersolution of (54) if for any
(x, i) ∈ TR, any ϕ as in (46) such that u − ϕ has a local minimum at (x, i) with
respect to TR, then

(48)
λu(x, i) +Hi(x, ϕ

′
i(x, i)) ≥ 0 x ∈ int(Ri),

max {λu(0, i) +Hi(0, ϕ
′
i(0, i)), i = 1, 2, 3} ≥ 0 x = 0.

In particular note that if x = 0 then the local maximum/minimum is with respect to
all the three branches and ϕ′i(0, i) is the right derivative on the branch i, (ϕ′i)

+. Since
(0, i) = (0, j) for i, j ∈ {1, 2, 3}, i 6= j, we drop the index i in the pair (0, i).

We will prove the following theorem using the thermostatic approximation, namely
considering the approximating value function Vε,ε,ε. Differently from the twofold
junction problem in which the index that identifies the branch is included in the sign
of x and the test function ϕ ∈ C1(R), here, we need to extend the test function ϕi in
(46) from Ri to Rεi . To do that we distinguish the case in which V − ϕ has a local
maximum point at x = 0 from that where x = 0 is a local minimum point, both
respect to all three branches.
If V − ϕ has a local maximum point at x = 0 then we suppose that

(49) ϕ′1(0)+ ≤ ϕ′2(0)+ ≤ ϕ′3(0)+.

Note that our switching sequence is 1 → 2 → 3 → 1 which is coherent with such an
order. If the order is different, then we consider a different switching sequence in the
approximating thermostatic ε-problem, still coherent with the order. This is always
possible because the limit function V is independent from the switching order of the
chosen approximating problem. Then we define

(50) ϕ̃i : [−ε,+∞[×{i} −→ R, ϕ̃i =

{
ϕi(x, i) x ≥ 0

ϕis(−x, is) x < 0

for i = 1, 2 and with is the next transition to i. If i = 3 we construct ϕ̃3 in two
different way, correspondingly to the cases:

(51) if ϕ′1(0)+ = ϕ′3(0)+ then ϕ̃3 =

{
ϕ3(x, 3) x ≥ 0,

ϕ1(−x, 1) x < 0.

(52) if ϕ′1(0)+ < ϕ′3(0)+ then ϕ̃3 =

{
ϕ3(x, 3) x ≥ 0,

ϕ3(−x, 3) x < 0.

By the assumption (49), the first case gives, ϕ′1(0)+ = ϕ′2(0)+ = ϕ′3(0)+, and that
the second case gives, at least for small ε, ϕ̃1(ε, 1) = ϕ1(ε, 1) ≤ ϕ3(ε, 3) = ϕ̃3(−ε, 3).
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Finally in both cases we then have ϕ̃1(ε, 1) ≤ ϕ̃3(−ε, 3).
If instead V − ϕ has a local minimum point at x = 0 then we suppose that

(53) ϕ′1(0)+ ≥ ϕ′2(0)+ ≥ ϕ′3(0)+,

and that the switching order is the coherent one, as above. In this case we construct
ϕ̃3 as in (50)–(52)(with the only difference of the case ϕ′1(0)+ < ϕ′3(0)+ replaced by
ϕ′1(0)+ > ϕ′3(0)+). In this case, for at least small ε it is ϕ̃1(ε, 1) ≥ ϕ̃3(−ε, 3).
The function ϕ̃i is not differentiable in x = 0, hence we cannot write a unique HJB
equation for the function Vε,ε,ε(·, i) in branch Rεi . To overcome the problem of dis-
continuity of ϕ̃′i in x = 0 we interpret the behaviour of the dynamic fi(x, ai) < 0
for x ∈] − ε, 0[ as entering in the next branch of the switching rule. More pre-
cisely, considering for example the branches Rε1 and Rε2, we define the function

Vε,ε,ε(x, 1) =: Ṽε,ε,ε(−x, 2), the dynamics −f1(x, a) =: f̃2(−x, a) and the relative

running costs `1(x, a) =: ˜̀
2(−x, a) for x ∈] − ε, 0[. In this way, for any x ∈] − ε, 0[ a

local maximum point of Vε,ε,ε(·, 1)− ϕ̃1(·, 1), we get that Vε,ε,ε(·, 1) satisfies

λṼε,ε,ε(−x, 2) + sup
a∈A

{
−f̃2(−x, a)ϕ2(−x, 2)′ − ˜̀2(−x, a)

}
≤ 0.

which is equivalent, for the considerations before, to

λVε,ε,ε(x, 1) + sup
a∈A
{−f1(x, a)ϕ̃1(x, 1)′ − `1(x, a)} ≤ 0.

The same ideas can be applied to the other pairs of branches (Rε2, R
ε
3) and (Rε3, R

ε
1).

Theorem 4.7. Assume (4), (5), and (8). The value function V (37) is a viscosity
solution of the Hamilton-Jacobi-Bellman problem

(54)



λV +H1(x, V ′) = 0 in int(R1)

λV +H2(x, V ′) = 0 in int(R2)

λV +H3(x, V ′) = 0 in int(R3)

min {λV +H1, λV +H2, λV +H3} ≤ 0 on x = 0

max {λV +H1, λV +H2, λV +H3} ≥ 0 on x = 0

Proof. From Proposition 4.1 and Theorem 4.4 and by classical convergence result,
we get the first three eqaution in (54).
We now prove the fourth equation in (54). Let ϕ as given in (46) such that V −ϕ has
a strict relative maximum at x = 0 with respect all the three branches and consider
the assumption (49). For every i it is

(55) λV (0) + sup
a∈A,fi(0,a)≥0

{−fi(0, a)ϕ′+i (0)− `i(0, a)} ≤ 0.

Indeed, for every ε > 0, and for every t > 0, we have (Vε,ε,ε solves DPP; α p.c. stays
for piece-wise constant control)

Vε,ε,ε(0, i) ≤ inf
α p.c.,fi(0,α)≥0

(∫ t

0

e−λs`i(x(s), α(s))ds+ e−λtVε,ε,ε(x(t), i)

)
and hence, passing to the limit ε→ 0+,

V (0) ≤ inf
α p.c.,fi(0,α)≥0

(∫ t

0

e−λs`i(x(s), α(s))ds+ e−λtV (x(t), i)

)
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and finally we get the desired inequality (55), being x = 0 a local maximum for V −ϕi
with respect to Ri. Hence, we only need to prove that, with our hypotheses, for at
least one i, we get

(56) λV (0) + sup
a∈A,fi(0,a)≤0

{−fi(0, a)ϕ′i(0)+ − `i(0, a)} ≤ 0.

For each i let (xiε, i) be a sequence of local maximum points for Vε,ε,ε−ϕ̃i with respect
to Rεi convergent to (0, i), with ϕ̃i as in (50). For each ε, for at least one branch i we
may assume xiε 6= −ε. Indeed, if it is not the case, recalling that, by controllability
implies Vε,ε,ε(−ε, i) ≤ Vε,ε,ε(ε, is), we get the contradiction

Vε,ε,ε(ε, 1)− ϕ̃1(ε, 1) < Vε,ε,ε(−ε, 1)− ϕ̃1(−ε, 1) ≤ Vε,ε,ε(ε, 2)− ϕ̃2(ε, 2) <
Vε,ε,ε(−ε, 2)− ϕ̃2(−ε, 2) ≤ Vε,ε,ε(ε, 3)− ϕ̃3(ε, 3) < Vε,ε,ε(−ε, 3)− ϕ̃3(−ε, 3) ≤
Vε,ε,ε(ε, 1)− ϕ̃1(ε, 1).

Now, let i be such that xiε 6= −ε for every ε (or at least for a subsequence). If
xiε > 0 for all ε, in the limit we get

λV (0) + sup
a∈A

{
−fi(0, a)ϕ′i(0)+ − `i(0, a)

}
≤ 0,

and we get the conclusion. If xiε ∈]− ε, 0[, in the limit we get

λV (0) + sup
a∈A

{
−fi(0, a)ϕ̃′i(0)− − `i(0, a)

}
≤ 0,

and in particular

λV (0) + sup
a∈A,fi(0,a)≤0

{
−fi(0, a)ϕ̃′i(0)− − `i(0, a)

}
≤ 0.

where ϕ̃′i(0)− is the left derivative of ϕ̃i at x = 0. Now, if we are in the first case (all
the right derivatives coincide) then we have ϕ̃′i(0)− = ϕ′is(0)+ = ϕ′i(0)+, and hence
we get (56). If instead ϕ′1(0)+ < ϕ′3(0)+ then if i = 1 then is = 2, hence, by our
hypotheses, in the inequality above it is

−fi(0, a)ϕ̃′i(0)− = −fi(0, a)ϕ′is(0)+ ≥ −fi(0, a)ϕ′i(0)+,

and we conclude. Same arguments if i = 2 and is = 3. If instead i = 3, then
ϕ̃3(0)− = ϕ′3(0)+ and we conclude.

Finally, if xiε = 0, then we still get

λV (0) + sup
a∈A,fi(0,a)≤0

{
−fi(0, a)ϕ̃′i(0)− − `i(0, a)

}
≤ 0,

and we conclude as before, i.e. studying the two cases as above.
Now we suppose V −ϕ have a local minimum with respect to TR at (0, i) and consider
(53). We have to prove that, for at least one i, we have

(57) λV (0) + sup
a∈A
{−fi(0, a)ϕ′i(0)+ − `i(0, a)} ≥ 0.

If for some i and for ε→ 0+, Vε,ε,ε(·, i) coincides with the state-constraint value
function on Riε, then Vε,ε,ε(·, i) and V (·, i) coincides on Ri and hence V satisfies the



20 F. BAGAGIOLO, AND R. MAGGISTRO

same HJB equation as Vε,ε,ε, which is (57). Hence we suppose that no Vε,ε,ε(·, i)
coincide with the corresponding state-constraint value function.

For each i let (xε, i) be a sequence of local minimum points for Vε,ε,ε − ϕ̃i with
respect to Riε, which converges to (0, i). In this case we may assume that, for a fixed
i, the sequence is such that either xiε 6= −ε or xiε = −ε but the HJB equation satisfied
by Vε,ε,ε has the right sign (≥ 0). Indeed, if it is not the case (i.e. xiε = −ε and HJB
has the wrong sign), we must have Vε,ε,ε(−ε, i) = Vε,ε,ε(ε, is), and hence we get the
following contradiction

Vε,ε,ε(ε, 1)− ϕ̃1(ε, 1) > Vε,ε,ε(−ε, 1)− ϕ̃1(−ε, 1) = Vε,ε,ε(ε, 2)− ϕ̃2(ε, 2) >
Vε,ε,ε(−ε, 2)− ϕ̃2(−ε, 2) = Vε,ε,ε(ε, 3)− ϕ̃3(ε, 3) > Vε,ε,ε(−ε, 3)− ϕ̃3(−ε, 3) ≥
Vε,ε,ε(ε, 1)− ϕ̃1(ε, 1).

If xiε > 0, in the limit we exactly get

λV (0) + sup
a∈A
{−fi(0, a)ϕ′i(0)+ − `i(0, a)} ≥ 0.

If xiε ∈ [−ε, 0[ in the limit we get

λV (0) + sup
a∈A
{−fi(0, a)ϕ̃′i(0)− − `i(0, a)} ≥ 0.

If all the right derivatives at x = 0 of ϕi(0) coincide, then we conclude because
ϕ̃′i(0)− = ϕ′is(0)+ = ϕ′i(0)+ . Otherwise, if i = 3 then we have ϕ̃′i(0)− = ϕ′3(0)+ and
we conclude; if i = 1 or i = 2, by the hypotheses on Vε,ε,ε(·, i) not coincident with the
state-constraint value function, we get that the supremum above is approximated by
controls such that fi(0, a) ≤ 0, which means

−fi(0, a)ϕ̃′i(0)− = −fi(0, a)ϕ̃is(0)+ ≤ −fi(0, a)ϕi(0)+

and we conclude.
If xiε = 0, then in the limit we get (still recalling that Vε,ε,ε(·, i) is not the state-

constraint value function)

λV (0) + sup
a∈A,fi(0,a)≤0

{−fi(0, a)ϕ̃′i(0)− − `i(0, a)} ≥ 0

and we conclude as before.

Now we want to prove that V (37) is the maximal subsolution of (54). Assume that
∀ ε > 0 small enough, the optimal strategy for the approximating problem ε, starting
by any (x, i) with x ∈ [−ε, ε], is to run through infinitely many switches between the
three branches (i.e. no state-constraint behaviour is optimal). Let µ1, µ2, µ3 be as in
(36) and (a1, a2, a3) ∈ A0 realize the minimum in (38) such that

(58) V (0) = u1,2,3(0) =
1

λ
{µ1`1(0, a1) + µ2`2(0, a2) + µ3`3(0, a3)}.

For every x ∈ [0, ε], we define the following functions

(59) V̄ ε(x, i) =

∫ x
|fi(0,ai)|

0

e−λt`i(0, ai)dt+ e
−λx

|fi(0,ai)|u1,2,3(0),

where the upper extremal of the integration is the reaching time of the point 0 in
the corresponding branch starting from x ∈ [0, ε]. For x ∈ [0, ε], Vε,ε,ε,(x, i) is not
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larger then V̄ ε(x, i) plus an infinitesimal quantity as ε→ 0. The functions in (59) are
differentiable in [0, ε]. A direct computation gives

V̄ ε(x, i)′ =
`i(0, ai)

|fi(0, ai)|
e

−λx
|fi(0,ai)| − λe

−λx
|fi(0,ai)|

|fi(0, ai)|
u1,2,3(0),

and then for ε→ 0

V̄ ε(x, 1)′ −→ (1− µ1)`1(0, a1)− µ2`2(0, a2)− µ3`3(0, a3)

|f1(0, a1)|
,

V̄ ε(x, 2)′ −→ −µ1`1(0, a1) + (1− µ2)`2(0, a2)− µ3`3(0, a3)

|f2(0, a2)|
,

V̄ ε(x, 3)′ −→ −µ1`1(0, a1)− µ2`2(0, a2) + (1− µ3)`3(0, a3)

|f3(0, a3)|
.

Moreover by (59) we have for every i = 1, 2, 3

(60) λV̄ ε(x, i)− fi(x, ai)V̄ ε(x, i)′ − `i(x, ai) ≥ −O(ε),

in x ∈ [0, ε]. In (60) when x = 0 we use the right derivative of V̄ ε(x, i) and V̄ ε(0, i) =
u1,2,3(0) for every i. Furthermore, by differentiability of V̄ ε(x, i) and recalling the
sign of fi(0, ai) we then get for every i

λV̄ ε(x, i) +Hi(x, q) ≥ −O(ε),

for every x ∈ [0, ε] and for every q subgradient in x of V̄ ε(x, i).
We now define on TR ∩

(
∪3
i=1[0, ε]× {i}

)
the function

(61) V̄ (x) =

{
V̄ ε(x, i) if x ∈ int(Ri),
u1,2,3(x) if x = 0.

which is in C1([0, ε]) and that we extend to whole TR maintaining its differentiability.

Theorem 4.8. For each u bounded, continuous subsolution of (54), it is u ≤ V
in TR.

Proof. We can assume to be in the settings above for which (58) holds. Indeed,
otherwise in at least one branch V coincides with the corresponding state-constraint
value function, greater than any subsolution (see Soner [33]). We then also have u ≤ V
on the other branches. By contradiction, suppose sup(x,i)∈TR(u−V )(x, i) > δ > 0. If

∃r > 0|∀δ′ > 0 ∃ (x, i) ∈]r,+∞[×{i} : sup
(x,i)∈TR

(
(u− V )(x, i)− (u− V )(x, i)

)
≤ δ′,

then, by Theorem 4.7 and known comparison techniques we get a contradiction be-
cause, in ]r,+∞[×{i}, V is a supersolution and u is a subsolution of the same HJB.
Hence we may restrict to the case where u − V has the maximum with respect to r
in x = 0. Since V̄ ε(x, i) converges to V (0), with V̄ ε defined in (59), then for small ε,

(62) u(zi, i)− V̄ ε(zi, i) = max
[0,ε]×{i}

(u(·, i)− V̄ ε(·, i)) > δ

2
> 0.

Since u(x, i) is a continuous subsolution of (54) then satisfies

(63) λu(x, i)− fi(x, ai) · p− `i(x, ai) ≤ 0 ∀p ∈ D+u(x, i) 6= ∅,
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where D+u(x, i) is the set of super-differentials of u at a point (x, i). Now, taking
into account (60) and (62) we have that

(64) p− V̄ ε(x, i)′ ≤ −λδ
2|fi(x, ai)|

+O(ε),

whence, for ε < 1
2

∣∣∣ λδ
2|fi(x,ai)|

∣∣∣, we get that p − V̄ ε(x, i)′ ≤ −δ̄, for a suitable δ̄ > 0

regardless to x. Hence u(x, i) − V̄ ε(x, i) is decreasing and, taking ε as above, has
maximum point in x = 0. By the previous consideration we get that V̄ (x) (61) is
an admissible test function and that u − V̄ has a local maximum point in x = 0 for
suitable small ε > 0. Hence, being u a subsolution, exists ī ∈ {1, 2, 3} such that

(65) λu(0) +Hī

(
0,
(
V̄ ε(0, ī)′

))
≤ 0.

Moreover, by(59), we have

(66) λV̄ ε(0, ī) +Hī

(
0,
(
V̄ ε(0, ī)′

))
≥ −O(ε).

Subtracting (66) to (65) we contradict (62) and then, for ε→ 0, u ≤ V in TR.

4.2. Non-uniform switching thresholds. In this section we suppose that the
three thresholds of the three-thermostatic optimal control problem are not the same
for all Rεi . This imply that the time spent in a single branch Rεi to reach the
relative threshold depends on the value of εi. Accordingly to this, the convexification
parameters µ̄1, µ̄2, µ̄3 are such that if at limit for (ε1, ε2, ε3)→ (0+, 0+, 0+) the optimal
behavior is to switch only between two branch, Ri and Rj for i, j ∈ {1, 2, 3}, i 6= j,
then µ̄i + µ̄j = 1. If instead the optimal behavior is to switch among all three
branches Ri then µ̄i = µi as in (36). To identify the limit optimal control problem
when (ε1, ε2, ε3) → (0+, 0+, 0+) we define the controlled dynamics. Using the same
notation of the last section, if (x, i) ∈ TR with x 6= 0 then the dynamics is the usual
fi(x, ai) with ai ∈ A. If instead x = 0, being (0, i) = (0, j) for i, j ∈ {1, 2, 3}, i 6= j, we
can either choose any dynamics makes us to stay inside a single branch Ri or we may
rest at zero using any combination

∑3
i=1 µ̄ifi(0, ai) with fi(0, ai) and µ̄i as before. In

detail, the set of controls in the junction is A(0) = A ∪ Ã with

A = {(a1, a2, a3, σ, µ̄1, µ̄2, µ̄3) ∈ A3 × {12, 13, 23, 123} × [0, 1]3|
σ = ij ⇒ µ̄i + µ̄j = 1, fi(0, ai) ≤ 0;

σ = 123⇒ µ̄i = µi, fi(0, ai) ≤ 0 with at most one equal to 0},

Ã = {(a, i) ∈ A× {1, 2, 3}| fi(0, a) ≥ 0} .

In Ã the index i is at disposal, while in A, the notation ij means that the switching
is only between Ri and Rj (as well as 123 means that the switching performs among
all the three branches).
Then, as in the last section, calling â the generic element of A(0) we define

f0(0, â) =

{
fi(0, a) if â ∈ Ã,
0 if â ∈ A.
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With the same arguments, if (x, i) ∈ TR and x 6= 0 then the running cost is `i(x, ai)
with ai ∈ A, otherwise we define

`0(0, â) =



`i(0, a) if â ∈ Ã,
µ̄1`1(0, a1) + µ̄2`2(0, a2) if σ = 12 and â ∈ A,
µ̄1`1(0, a1) + µ̄3`3(0, a3) if σ = 13 and â ∈ A,
µ̄2`2(0, a2) + µ̄3`3(0, a3) if σ = 23 and â ∈ A
µ1`1(0, a1) + µ2`2(0, a2) + µ3`3(0, a3) if σ = 123 and â ∈ A.

The quadruples f = (f1, f2, f3, f0) and ` = (`1, `2, `3, `0) then define a threefold
junction optimal control problem, different from the one in subsection 4.2. We still
denote by A(x0,i0) the nonempty set of measurable controls for which there exists a
unique admissible trajectory and consider the cost functional (λ > 0)

J(x0, i0, α) =

∫ +∞

0

e−λt`(x(t), i(t), α(t))dt

where ` is the running cost described above. The corresponding value function is

(67) V ∗(x0, i0) = inf
α∈A(x0,i0)

J(x0, i0, α).

Observe that if we stay in x = 0 for all time using controls in A the cost is

u0(0) =
1

λ
min
A

3∑
i=1

µ̄i`i(0, ai) =
1

λ
min {u1,2(0), u1,3(0), u2,3(0), u1,2,3(0)}

where u1,2(0) is the minimum over A of the cost `0 when σ = 12, u1,3(0) is the
minimum over A of the cost `0 when σ = 13 and similarly the others.

Theorem 4.9. Assume (4), (5), and (8). The value function V ∗ (67) character-
ized by Theorem 4.3, but with u0(0) in place of u1,2,3(0), namely

(68) V ∗(0) = min
{
u0(0), Vsc(1)(0), Vsc(2)(0), Vsc(3)(0)

}
,

satisfies

(69) V ∗(x, i) = lim inf
(ε1,ε2,ε3)→(0+,0+,0+)

Vε1,ε2,ε3(x, i) ∀ (x, i) ∈ Ri, i = 1, 2, 3.

where Vε1,ε2,ε3 is the value function of the approximating thermostatic problem (35),
with non uniform thresholds (ε1, ε2, ε3), and the convergence is uniform. Moreover,
when x = 0, the limit is independent from i = 1, 2, 3.

Proof. We prove (69) at x = 0. The independence from i of (69) comes from the
controllability (5): |Vε1,ε2,ε3(0, i) − Vε1,ε2,ε3(0, j)| is infinitesimal as max {ε1, ε2, ε3}.
In the sequel, we omit the symbol i in the expression Vε1,ε2,ε3(0, i).
By contradiction, suppose V ∗(0) < lim inf Vε1,ε2,ε3(0). By (5), for every ε1, ε2, ε3 > 0,
we have Vε1,ε2,ε3(0) ≤ Vsc(i)(0) for every i = 1, 2, 3. Hence, it implies V ∗(0) = u0(0).

Let (a1, a2, a3, σ, µ̄1, µ̄2, µ̄3) ∈ A realize the minimum in the definition of u0(0). We
analyze some possible cases, the other ones being similar.

1) f1(0, a1), f2(0, a2), f3(0, a3) < 0 and σ = 123. Taking (ε1, ε2, ε3) = (ε, ε, ε) and
using a suitably switching control between those constants controls, Vε,ε,ε(0) is not
larger than u1,2,3(0) plus an infinitesimal quantity as ε→ 0, which is a contradiction.
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2) f1(0, a1), f2(0, a2), f3(0, a3) < 0 and σ = 23. Here, taking the triple
(ε1, ε2, ε3) = (ε2, ε, ε), Vε,ε,ε(0) is not larger than u2,3(0) plus an infinitesimal quantity
as ε→ 0, which is a contradiction.

3) f1(0, a1) = 0, f2(0, a2), f3(0, a3) < 0. In this setting we can study two sub-cases
according to the value of σ.

3.1) If σ = 123, taking (ε1, ε2, ε3) = (ε, ε, ε), we arrive in R1 and we stop there.
Therefore, u1,2,3(0) = 1

λ`1(0, a1) cannot be lower than Vsc(1)(0) that is a contradiction.
3.2) If σ = 23 we take the triple (ε1, ε2, ε3) = (ε2, ε, ε) and argue as in case 2).

We remark that if σ = 12 or 13 then considering (ε, ε, ε2) and (ε, ε2, ε) respectively
we can conclude as in 3.1).

4) f1(0, a1), f2(0, a2) = 0, f3(0, a3) < 0. Also in this case we have different sub-
cases according to the value of σ.

4.1) If σ = 123 we take the triple (ε, ε, ε) and conclude using Remark 4.2 since
u1,2,3(0) cannot be lower than a state constraints. Then as before a contradiction.

4.2) If σ = 23 taking the triple (ε2, ε, ε) we get u2,3(0) = 1
λ`2(0, a2) that is no

lower thanVsc(2)(0), that is a contradiction.
Now we assume lim inf Vε1,ε2,ε3(0) < V ∗(0). Let δ > 0 be such that, for arbitrarily

small suitably chosen (ε1, ε2, ε3) , it is Vε1,ε2,ε3(0) + δ < V ∗(0). A measurable control
α which almost realizes the optimum (less then β) for Vε1,ε2,ε3(0) must be such that
there are infinitely many switching between all branches Rε1 , Rε2 , Rε3 . Indeed, if it is
not the case, then, for a least one branch, say Rεi , the trajectory definitely remains
inside it. Hence, for small (ε1, ε2, ε3), Vε1,ε2,ε3(0) is almost equal to Vsc(i)(0), which
is a contradiction. As in Theorem 4.4, we can limit to consider a piecewise constant
control that we call again α. To prove that Vε1,ε2,ε3(0) cannot be less than V ∗(0)− δ
we proceed as in Theorem 4.4 considering O(max{ε1, ε2, ε3}) and u0(0) instead of
O(ε) and u1,2,3(0) respectively.
In conclusion we have lim inf Vε1,ε2,ε3(0) = V ∗(0). The equations solved by Vε1,ε2,ε3
and by V ∗(0)((35), (40), and (41) suitably modified) are the same in the interior of
Ri and the boundary datum converges to V ∗(0). Then, representing the solutions as
the value functions of the corresponding optimal control problems, we get (69) and
the uniform convergence.

Remark 4.10. As we show in the proof of Theorem 4.9, we can restrict us to
consider as thresholds (ε, ε, ε), (ε, ε, ε2), (ε, ε2, ε), (ε2, ε, ε). Hence, given the dynamics
f1, f2, f3 and the running costs `1, `2, `3 satisfying the controllability assumptions
exists a unique choice of previous triples such that

V ∗(x, i) = lim inf
(ε1,ε2,ε3)→(0,0,0)

Vε1,ε2,ε3(x, i) = lim
(·,·,·)→(0,0,0)

V(·,·,·)(x, i) ∀ (x, i) ∈ Ri.

We do not consider triples of the kind (c1ε, c2ε, c3ε), c1, c2, c3 ∈ R because they do
not bring new possible optimal behaviours. Similarly, we do not consider triples as
(ε2, ε2, ε) because at the limit this would means to stay in x = 0 without using the
balance of the dynamics, which is physically meaningless.

Remark 4.11. When the optimal strategy is to switch among all branches we have
that `i(0, ai) = `j(0, aj) ∀i, j ∈ {1, 2, 3}, i 6= j and V ∗(x, i) = V (x, i), where V is the
value function (37) of the threefold junction problem with uniform thresholds.

We introduce test functions ψ : TR → R such that ψ ∈ C1(TR) and on each branch
ψi : Ri → R is such that ψi(x, i) = ψj(x, j) for every i, j ∈ {1, 2, 3}, i 6= j when x = 0.

Definition 4.12. A continuous function u : TR → R is a viscosity subsolution
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of (72) if for any (x, i) ∈ TR, for any test function ψ as above such that u−ψ has a
local maximum at (x, i), then

(70)
λu(x, i) +Hi(x, ψ

′
i(x, i)) ≤ 0 (x, i) ∈ int(Ri),

min {λu(0, i) +Hi(0, ψ
′
i(0, i)), i = 1, 2, 3} ≤ 0 x = 0;

A continuous function u : TR → R is a viscosity supersolution of (72) if for any
(x, i) ∈ TR, any ψ ∈ C1(TR) such that u− ψ has a local minimum at (x, i), then

(71)
λu(x, i) +Hi(x, ψ

′
i(x, i)) ≥ 0 x ∈ int(Ri),

max {λu(0, i) +Hi(0, ψ
′
i(0, i)), i = 1, 2, 3} ≥ 0 x = 0.

In particular, if x = 0 then the local maximum/minimum may be considered with
respect to two of the three branches only.

Note the difference with Definition 4.6 where, for x = 0, the max/min is respect to
all three branches.

Theorem 4.13. Assume (4), (5), and (8). The function V ∗ is a viscosity solution
and the maximal subsolution of the HJB problem, in the sense of Definition 4.12.

(72)



λV +H1(x, V ′) = 0 in int(R1),

λV +H2(x, V ′) = 0 in int(R2),

λV +H3(x, V ′) = 0 in int(R3),

min {λV +H1, λV +H2, λV +H3} ≤ 0 on x = 0,

max {λV +H1, λV +H2, λV +H3} ≥ 0 on x = 0.

Proof. By Proposition 4.1 and Theorem 4.9, V ∗ satisfies the first three equations
of (72). For the other equations suppose, for example, that the optimal strategy is to
switch only between the two branches R1 and R2.
Then V ∗ = lim(ε,ε,ε2)→(0,0,0) Vε,ε,ε2 = V1,2. If V ∗ − ψ assumes its maximum or
minimum in x = 0 with respect to R1 ∪ R2, then, by the twofold junction problem,
V ∗ is a viscosity solution and the maximal subsolution of

λV +H1(x, V ′) = 0 in int(R1),

λV +H2(x, V ′) = 0 in int(R2),

min {λV +H1, λV +H2} ≤ 0 on x = 0,

max {λV +H1, λV +H2} ≥ 0 on x = 0.

If instead V ∗−ψ has a maximum point at x = 0 with respect to R1∪R3 we prove that
the min {λV +H1, λV +H2} is still lower or equal to zero. We consider two cases:

1) If the optimal behavior consists to reach R2 and stay there, namely V ∗(x, 2) =
Vsc(2)(x), and supposing that the cost to pay in R1 to reach the junction is lower
than the one in R3, then V ∗ = V1,2 on R1 ∪ R2. Now, since (by the assumption)
V ∗ − ψ has maximum point at x = 0 locally with respect to the branch R3, then
ψ3(x, 3) ≥ V ∗(x, 3) for x near to zero. The optimality of Vsc(2) implies that V ∗(·, 3) ≥
Vsc(2)(·) = V ∗(·, 2) and hence ψ3(·, 3) ≥ V ∗(·, 2). Then gluing ψ3 over R2 we obtain
that V ∗ − ψ3 has a maximum point in x = 0 locally with respect to R2. Hence,
min {λV +H1, λV +H2} ≤ 0.

2) If the optimal strategy is to switch between R1 and R2 and the maximum point
at x = 0 is still with respect to R1 ∪R3 we conclude because ψ3(·, 3) ≥ V ∗(·, 2).
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If V ∗ = V1,2 and V ∗ −ψ has a maximum point at x = 0 with respect to R2 ∪R3,
with similar argument as before we conclude that min {λV +H1, λV +H2} ≤ 0.
In conclusion we have shown that the following condition hold: exists a couple of
indexes (̄i, j̄), fixed a priori, such that V ∗ = Vī,j̄ on Rī ∪ Rj̄ and that for all ψ ∈
C1(TR) such that V ∗ − ψ has the maximum point at x = 0 with respect to any
couple of edges, min{λV +Hī, λV +Hj̄} ≤ 0. From the latter condition follows that
min{λV +H1, λV +H2, λV +H3} ≤ 0. Proceeding as before also for the fifth equation
of (72) we have that V ∗ is a viscosity solution of (72). Now, let u be a continuous
subsolution of (72) satisfying the above condition with the same couple of indexes
(̄i, j̄) that we suppose to be (1, 2). Then

(73) V ∗ ≥ u on R1 ∪R2 =⇒ V ∗(0) ≥ u(0).

Furthermore V ∗ is a supersolution of the third equation of (72), u is a subsolution of
the same equation and hence by (73) follows V ∗ ≥ u on R3. We can conclude that
V ∗ ≥ u on TR and hence it is the maximal subsolution of (72).

Similarly V ∗ = lim(ε2,ε,ε)→(0,0,0) Vε2,ε,ε = V2,3, V ∗ = lim(ε,ε2,ε)→(0,0,0) Vε,ε2,ε = V1,3.

Appendix. Proof of the Proposition 4.1.
As in Theorem 1.1 in [6] by virtue of the total controllability and Dynamic Program-
ming (at least for small ε) we have

(74) Vε1,ε2,ε3(x0, i0) = inf
α∈A

{∫ t(x0,i0)(α)

0

e−λs`i0(x(s), α(s))ds

+ e−λt(x0,i0)(α)Vε1,ε2,ε3(−εi0+ , i0+)

}
.

Namely, in each connected component Rεi , Vε1,ε2,ε3 is the value function of the exit
time problem from Rεi with exit cost Vε1,ε2,ε3(−εi0+ , i0+). Here t(x0,i0)(α) is the first
switching time, i0+ is the next value of the output i0 and εi0+ the relative threshold.
We get that the value function Vε1,ε2,ε3 is bounded and uniformly continuous on
each of the three connected components of O = Rε1 ∪ Rε2 ∪ Rε3 . Put together all
these considerations, by a classical result on the boundary conditions in the viscosity
sense follows that Vε1,ε2,ε3 is a viscosity solution of the system (35) on each branch
with condition in viscosity sense. Regarding the uniqueness we prove that every
solution of (35) is a fixed point of a contraction map G : BC(O) → BC(O), where
BC(O) = BC(Rε1)×BC(Rε2)×BC(Rε3) is the space of the bounded and continuous
function on O. Hence, by completeness arguments the uniqueness follows. We sketch
how the contraction map G is constructed. For every c ≥ 0 and for every i0 ∈ {1, 2, 3},
let z

(i0)
c be the solution of the correspondent Hamilton-Jacobi equation (35)i0 with

boundary datum c. Hence, for each (ξ, η, σ) ∈ BC(O) we define

G(ξ, η, σ) :=

(
z

(1)(
z

(2)

ξ(−ε2)
(ε2)
)(·), z(2)(

z
(3)

η(−ε3)
(ε3)
)(·), z(3)(

z
(1)

σ(−ε1)
(ε1)
)(·)).

This means that, for instance, the first component of G(ξ, η, σ) is the solution on the
branch Rε1 with boundary datum equal to the value on ε2 of the solution on the branch

Rε2 with boundary datum equal to ξ(−ε2). Then for every (ξ, η, σ), (ξ̂, η̂, σ̂) ∈ BC(O),
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for the first component of G we have

‖(G(ξ, η, σ))1 − (G(ξ̂, η̂, σ̂))1‖∞ ≤ |z(2)
ξ(−ε2)(ε2)− z(2)

ξ̂(−ε2)
(ε2)|

≤ e
−λ(2ε2)

M |ξ(−ε2)− ξ̂(−ε2)| ≤ e
−λ(2ε2)

M ‖ξ − ξ̂‖∞,

with M the bound of the dynamics fi. A similar inequality holds for the others
components of G. Since λ > 0 we get the conclusion.
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