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Abstract

A general primal-dual splitting algorithm for solving systems of structured coupled monotone
inclusions in Hilbert spaces is introduced and its asymptotic behavior is analyzed. Each inclusion
in the primal system features compositions with linear operators, parallel sums, and Lipschitzian
operators. All the operators involved in this structured model are used separately in the proposed
algorithm, most steps of which can be executed in parallel. This provides a flexible solution
method applicable to a variety of problems beyond the reach of the state-of-the-art. Several
applications are discussed to illustrate this point.
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1 Introduction

Traditional monotone operator splitting techniques [8, (17, 23] 24, 28], [34] 136, 40, |42, [43]] have their
roots in matrix decomposition methods in numerical analysis [21}[44] and in nonlinear methods for
solving optimization and variational inequality problems [7, (11} [30, 33} [39]. These methods are
designed to solve inclusions of the type 0 € Bix + Byx, where By and B, are maximally monotone
operators acting on a Hilbert space . Extensions to sums of the type 0 € Zle Byx are typically
handled via reformulations in product spaces [8,[40]. In recent years, new splitting algorithms have
emerged for problems involving more complex models featuring compositions with linear opera-
tors [13] and parallel sums [19, 45] (see (1.9)). These algorithms rely on reformulations of the
inclusions as two-operator problems in a primal-dual space, in which the splitting is performed via
an existing method. This construct makes it possible to activate separately each of the operators
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present in the model, and it leads to flexible algorithms implementable on parallel architectures.
In the present paper, we pursue this strategy towards more sophisticated models involving systems
of structured coupled inclusions in duality. The primal-dual problem under consideration is the
following.

Problem 1.1 Let m and K be strictly positive integers, let (H;)1<i<m and (Gi)1<k<x be real Hilbert
spaces, let (11;)1<i<m € [0, 400", and let (v)1<i<x € [0,400[. For everyi € {1,...,m} and k
{1,...,K},let C;: H; — H; be monotone and y;-Lipschitzian, let A;: H; — 2 and By: G, — 29
be maximally monotone, let D;,: G, — 29 be maximally monotone and such that Dk_1 : G — Gy is
vi-Lipschitzian, let z; € H;, let i, € Gk, and let Ly; € B (H;, Gr). It is assumed that

0, h A L 1.1
B = max{lrgg)fnul 12}51)%(’/’“} +VA > where )\ € - lsll\llel s Z ki , (1.1)
and that the system of coupled inclusions
find =7 € H1,...,T;m € H,y, such that
K
21 € Ai7 + Z Ly <(Bk 0 Dy) (Z Ly;zi — Tk)) + C171
k=1
: (1.2)
. K m
Zm € AnTm+ Y Lip ((Bk DDQ(Z LyT; — m)) + ConTm
k=1 i=1
possesses at least one solution. Solve (1.2) together with the dual problem
find 77 € G1,...,0x € Gk such that
K
€ —ZLM Ai+Cy) 1( ZL,’W) + By 1 + Dy oy

i=1 k=1
: (1.3)

. m . K

—TK € — Z LKi (AZ + CZ) <Zz' — Z inﬁ> + Bglw + D;(lﬁ
i=1 k=1

The primal system (I.2]) captures a broad class of problems in nonlinear analysis in which m vari-

ables x1, ..., z,, interact. The ith inclusion in (1.2) features two operators A; and C; which model
some abstract utility of the variable z;, while the operator (By)1<k<x, (Dk)i<k<k, and (L) 1<i<m
1<k<K

model the interaction between z; and the remaining variables. One of the simplest realizations of
(1.2) is the problem considered in [10], namely

0 Ay71 +71 — T2
find 77 € H, 73 € H such that 1L (1.4)
0¢€ A2x_2 — X1 + T2,
where (#,|| - ||) is a real Hilbert space, and where A; and A; are maximally monotone operators

acting on H. In particular, if Ay, = 0f; and As = 0f, are the subdifferentials of proper lower
semicontinuous convex functions f; and f, from H to |—o0, +o0], (1.4) becomes

1
minimize fi(x1) + fa(z2) + =|lx1 — :c2||2. (1.5
r1EH, x2EH 2



This formulation arises in areas such as optimization [1]], the cognitive sciences [5], image recov-
ery [20], signal synthesis [29], best approximation [[9], and mechanics [[37]. In [3], we consid-
ered the extension of (L.5) which amounts to setting in Problem [1.1] for every i € {1,...,m} and
ke{l,...,K}, A; = 0f;, C; = 0, and B = Vg, where f;: H — |]—00,+oc] is a proper lower
semicontinuous convex function and g;: G, — R is convex and differentiable with a Lipschitzian
gradient. This leads to the minimization problem

m K m
minimize s [ .
21€EH1, 0y Tm EHm Zzl fz(xz) + ;ﬁ%(zl kzxz>, ( )

which has numerous applications in signal processing, machine learning, image recovery, partial
differential equations, and game theory; see [2| 6, [12] [14] 25| 27, 41]] and the references therein.
In the case when m = 1 in Problem [1.1] and under certain restrictions on the operators involved,
primal-dual algorithms have been proposed recently in [13] 19} [45]. On the other hand, a primal
algorithm was proposed in [3] for solving systems of inclusions of type in which the operators
(Ci)1<i<m and (Dkfl)KKK are zero, and the coupling operators (By)i<r<k are restricted to be
single-valued and to satisfy jointly a cocoercivity property.

The goal of the present paper is to develop a flexible algorithm to solve Problem [1.1] without
the restrictions imposed by current methods. In particular, no additional hypotheses will be placed
neither on the coupling operators (By)1<x<x and (Dy)i<k<k, nor on the number m of variables.
In the proposed parallel splitting algorithm, the structure of the problem is fully exploited to the
extent that the operators are all used individually, either explicitly if they are single-valued, or by
means of their resolvent if they are set-valued. The main algorithm is introduced and analyzed in
Section [2l The remaining sections are devoted to applications to problems which are not explicitly
solvable via existing techniques. Thus, in Section [3] we discuss applications to univariate inclusion
problems featuring general parallel sums, in the sense that the operators (Dy)1<r<x need not have
Lipschitzian inverses. In Section [4, we apply this framework to the regularization of inconsistent
common zero problems. Finally, Sections[5] and [6] address, respectively, applications to multivariate
and univariate structured convex minimization problems.

Notation. We denote the scalar product of a Hilbert space by (- | ) and the associated norm by
|- ||. The symbols — and — denote, respectively, weak and strong convergence, and Id denotes the
identity operator. Let # and G be real Hilbert spaces and let 2% be the power set of 7. The space
of bounded linear operators from % to G is denoted by B (H,G). Let A: H — 27*. We denote by
ranA = {u € H | (3= € H) u € Az} the range A, by dom A = {z € H | Az # @} the domain of 4,
by zer A = {z € H | 0 € Az} the set of zeros of A, by grad = {(z,u) € H x H | u € Az} the graph
of A, and by A~! the inverse of 4, i.e., the operator with graph {(u,z) € H x H | u € Az}. The
resolvent of A is J4 = (Id + A)~!. Moreover, A is declared monotone if

(V(z,u) € grad)(V(y,v) € grad) (z—y|u—wv) >0, 1.7

and maximally monotone if there exists no monotone operator B: H — 27 such that grad C
graB # graA. In this case, J4 is a nonexpansive operator defined everywhere on . Furthermore,
A is uniformly monotone at x € dom A if there exists an increasing function ¢: [0, +oo[ — [0, +o0]
that vanishes only at 0 such that

(Vu € Az)(V(y,v) € grad) (z—y|u—1v) = ¢(|z —yl), (1.8)

and A is couniformly monotone at u € ranA if A~! is uniformly monotone at u. The parallel sum of
Aand B: H — 2" is

AOB=(A"1'+BH L (1.9)



The infimal convolution of two functions g and ¢ from H to |—oo, +o¢] is

g0Ll: H — [—o0,+00] : T+ ylg; (9(y) + l(z —y)). (1.10)

We denote by I'g(H) the class of lower semicontinuous convex functions f: H — |—oo, +0o0| such
that dom f = {z € H | f(z) < 400} # @. Let f € I'y(H). The conjugate of f is To(H) > f*: u —
sup,ey ((x | u) — f(z)), and f is uniformly convex at € dom f if there exists an increasing function
¢: [0,+00[ — [0, +00c] that vanishes only at 0 such that

(Vy € dom f)(Va €]0,1)  flaz+(1-a)y)+a(l —a)é(z —yl) < af(z)+ (1 -a)f(y). (1.11)

For every z € H, f + ||z — -||?/2 possesses a unique minimizer, which is denoted by prox,z. We have
prox; = Joy, where Of: H—2":x{ueH|(WWeH) (y—|u)+ f(x) < fly)} (1.12)

is the subdifferential of f. Let C' be a convex subset of 7. The indicator function of C' is denoted
by (¢ and the distance function to C' by d¢. The relative interior [respectively, the strong relative
interior] of C, i.e., the set of points € C such that the cone generated by —z + C is a vector
subspace [respectively, closed vector subspace] of H, by riC [respectively, sriC]. See [8], [46] for
background on convex analysis and monotone operators.

2 General algorithm

We start with three preliminary results. The first one is an error-tolerant version of a forward-
backward-forward splitting algorithm originally proposed by Tseng [43], Theorem 3.4(b)].

Lemma 2.1 [13| Theorem 2.5(i)-(ii)] Let /C be a real Hilbert space, let P: K — 2% be maximally
monotone, and let Q: IC — IC be monotone and x-Lipschitzian for some x € |0,+oco[. Suppose that
zer (P + Q) # @. Let (ap)nen, (bp)nen, and (e,)nen be absolutely summable sequences in IC, let
wo € IC, let £ €]0,1/(x + 1)[, let (vn)nen be a sequence in [e, (1 — ¢)/x], and set

Forn=20,1,...
Sp = Wy — Wm(Qw, + ay)
P, = Jy. P Sn+ by 2.1)

q, = DPn — ’Yn(Qpn + cn)
Wnp41 = Wy — Sy, + qn

Then Y, oy |lwn — py|* < +oc and there exists w € zer (P + Q) such that w, — w and p, — .

Lemma 2.2 [8, Proposition 23.15(ii) and 23.18] Let H be a real Hilbert space, let A: H — 27
be a maximally monotone operator; let v € ]0,+o00|, and let z and r be in H. Then J, ;. s-1)z =

x—y(r+ JW_1A(7_1:U —7)).

Lemma 2.3 [13, Proposition 2.8] Let # and G be two real Hilbert spaces, let E: H — 2% and
F: G — 29 be maximally monotone, let L € B (H,G), let z € H, andletr € G. Set K =H © G,

) . _ -1
{M.IC—>2 : (x,v) = (—2 + Exz) x (r + F~'v) (2.2)

S: K- K: (x,v) —» (L*v,—Lx),



and

{qs: {zeH|zcBx+ L"(F(Lz—7))} (2.3)

D={veg|-re ~L(E"Y(z — L*v)) + F_lv}.
Then zer (M + S) is a closed convex subset of P x D, and P # T < zer(M + S) #A T & D # 2.

The following theorem contains our algorithm for solving Problem[I.1]and states its main asymp-
totic properties. In this primal-dual splitting algorithm, each single-valued operators is used explic-
itly, while each set-valued operators is activated via its resolvent. Approximations in the evaluations
of the operators are tolerated and modeled by absolutely summable error sequences. The algorithm
consists of three main loops, each of which can be implemented on a parallel architecture.

Theorem 2.4 Consider the setting of Problem[I.1] For every i € {1,...,m}, let (a1,in)nen, (D1,in)nen,
and (c1,in)nen be absolutely summable sequences in H; and, for every k € {1,..., K}, let (a2 kn)nen,
(b2,k,n)nen, and (ca k.n)nen be absolutely summable sequences in Gi. Let x19 € Hi, ..., Tmo € Hm,
01,0 €G1, ..., Vo € Gk, let e €10,1/(8 + 1), let (7, )nen be a sequence in [e, (1 — ¢) /3], and set

Forn=20,1,...
Fori=1,...,m
K

SLin = Tin — Tn <Czl‘zn + 2 k1 Lok + al,z‘,n)
L Plyin = J’ynAi( 1,i,n + ani) + bl,i,n
Fork=1,...,K

—1 m
S2kn = Vkn — Tn (Dk Vkmn — Zi:l Lkiwi,n + a2,k,n>

. (2.4)
P2.kn = S2kn — Tn (Tk: + J’Yngk (’Yn S2.kn — Tk) + b2,k,n)
—1 m
92,k;n = P2,k;n — Tn <Dk P2.kn — Zi:1 Lkipl,i,n + CQ,k,n)
L Vkn+1 = Vkn — S2kn + q2,k,n
Fori=1,...,m
K

qLin = Plin — Tn (Cipl,z‘,n + > ket LiiP2,kn + CLz’m)

| ZTin+1l = Tin — Slin T qlin-

Then the following hold.

@ (Vie{l,....,m}) > enllZin _pl,i,nHZ < +o00.
() (ke {1, K}) S n 10kn — D2inl? < +00.

(iii) There exist a solution (T1,...,Ty) to and a solution (v7,...,vx) to (L3) such that the
following hold.
(@) (Vie{l,...,m}) z — S 1, Lo € A + CiT.
(b) (Vke{l,...,K}) S, Ly — i € By ' + Dy "oy,
© (Vie{l,....m})zip, — 7T; and p1;n — T
(d (Vke{l,....,K}) vy, — U and pajpn — .

(e) Suppose that, for some j € {1,...,m}, A; or C; is uniformly monotone at T;. Then x;, —
Tj and py,jn = Tj.



(f) Suppose that, for some | € {1,...,K}, B; or D; is couniformly monotone at v;. Then
Vin — U and P2in — .

Proof. Let us introduce the Hilbert direct sums

H=Hi1® - DHpn, G6=G1P - ®Gx, and K=HDG, (2.5)

and let us denote by = (x;)1<i<m and v = (vi)1<k<x generic elements in ‘H and G, respectively.
We also define

m
A:H = 2M: 2 X Ay ( K
i=1 B:g—>29:'vr—> X Brug
C.:H—-H:z— (Cixi)lgigm k[:(l
E=A+C and D:G —29: v X Dyuy (2.6)
m k=1
L:H—G x— (ZLM> F=BOD
i=1 1<k<K ( )
r=(r .
Z:(Zi)lgigm k)1<k<K

It follows from [8], Proposition 20.22 and 20.23, Corollaries 20.25 and 24.4(i)] that A, B, C, D, E,

and F' are maximally monotone. Moreover, L € B (H,G), L*: G - H: v — (Zszl L7 vk)1<i<m,
and

K

(VzeH) |Lz|>=>)

k=1

2
<Az 2.7

m
> Ly
i=1
Next, we set

M: K — 2% (x,v) = (-2 + Ex) x (r + Flv)

P:K— 2% (z,v)— (—z+ Axz) x (r + B"'v)

Q:K—-K: (x,v) — (C;c + L*v,D v — Lsc) (2.8)
R: K — K: (z,v) = (Cz, D" 'v)

S:K— K: (x,v) — (L*v,—Lx).

Note that
zer(P+Q) = {(z,v) e HodG |2—L've Az+Cz and Lz —r < B 'v+D 'v}. (2.9)

Furthermore, in view of [8, Propositions 20.22 and 20.23], P is maximally monotone, and
Lemma [2.2] and [8|, Proposition 23.16] yield

(¥1 €10, +oo])(Vx € H)(W0 € G)  Jyp(a,0) = (Foa, (o1 +721), s Fy g (s + ¥2m),
v — 7(7“1 +J,-1p, (v oy — 7’1)), ce UK — v(rK + Jy-1B, (v ok — ’I“K))). (2.10)

On the other hand, since C and D! are monotone and Lipschitzian with, respectively, constants
W = maXj<i<mpi and v = max;<k<kVk, R is monotone and Lipschitzian with constant max{u, v}.
In addition, it follows from [13, Proposition 2.7(ii)] and (2.7) that S € B (K, K) is a skew (hence
monotone) operator with ||S|| = ||L|| < v/\. Altogether, since Q = R+ S, we derive from (L) that

P is maximally monotone and @ is monotone and [-Lipschitzian. (2.1D)

6



Let us call 8 and ®© the sets of solutions to (1.2]) and (1.3), respectively. It follows from (2.6) that

P={vxcH|zcEx+L'(F(Lz—7))} 2.12)

D={veg|-re-L(E(z- L))+ F v} '
Hence, since P # & by assumption, we deduce from Lemma [2.3] that

g+zer(M+8S)=zer(P+Q)CPxD. (2.13)

Thus, to solve Problem [1.]] it is enough to find a zero of P + Q. For every n € N, let us set

Wy = ('Il,na sy Tmn,Vin, - - - 7UK,n)

Sn = (51,1,ns -+ SL,mms 52,1ns - - -+ » 52,K,n) (2.149)

Py = (PLLns - Plimgns P2, 1m0 - - - > P2,K,n)

qn = (@110 Qmns G210 - - - > 42,K,n)
and

a, = (al,l,na < AImon, A2, 105 - - - 7a2,K,n)

bn = (bl,l,rw s 7b1,m,na _’an2,17n7 e _anZ,K,n) (215)

Cp = (Cl,l,n, e Clmn, C2,1n - - - aCQ,K,n)-

Then, using (2.6), (2.8), and (2.10Q), we see that (2.4) reduces to (2.I). Moreover, our assumptions
and (2.5) imply that (a,)nen, (bn)nen, and (e, )ren are absolutely summable sequences in /C. Hence,
it follows from (2.I1), (ZI3), and Lemma 2Tl that > [[w, — p,||* < +oco and that there exists
w € zer (P + Q) such that w,, — w and p,, — w. Upon setting w = (71,...,%Tm,01,--.,VK) and

appealing to (2.5) and (2.9), we thus obtain assertions and [(i) (@)HGiD) (d)]
[(i1) (e)} Let us introduce the variables

K
s wn — Lin — In Cl in L*Z n
(Vie{l,...,m})(¥neN) {°Hn=" 7( i +;; kv’“) (2.16)

Plin = Joya;(81im + Yn2i)

and

m

~ 1 Z

S2kn = Vkn — Tn (Dk Vign — Lkﬂ%,n)
=1

(Vk e {1,...,K})(Vn € N) 2.17)
D2,k = S2.kn — Vn <7”k +J-1p, (Yo Y82, m — Tk))-
It follows from (2.4) that
(V’L € {1, .. ,m})(Vn € N) HSLZ'JL — gl,i,n” = 7n||a17l-7n\| < ﬁ_lual,i,nn- (2.18)

Hence, by virtue of the nonexpansiveness of the resolvents [8, Proposition 23.7], we have

(Vie{1,....,m})(¥n € N) |Iprin — Prinll = Ty, 4; (5160 + Ynzi) + 010 — Ty A; (BLim + Y 2i) |l
< Is13,n = S1imll + [101imll

< B lazinll + lbrinll (2.19)

7



In turn, since, for every i € {1,...,m}, (a1,in)nen and (b1,;n)nen are absolutely summable, we get
Vie{l,...,m}) S1in—51in—0 and pi;,—Pp1in— 0. (2.20)
Likewise, we derive from (2.4) and (2.17) that
(Vke{l,...,K}) sopn—Sokn—0 and popn—Ppagn — 0. (2.21)

On the other hand, we deduce from [(iii) (a)] that

(Vie{l,..., m})Bu; € H;) w; € AT; and z; =u; + iL,’;ZW + Ci7, (2.22)
k=1
and from [(iii) (D)] that
(Vke{1,...,K}) v—keBk<Zm:LMm—,~—rk—D,;1@>. (2.23)
i=1
In addition, yields
(Vie{l,...,mp(¥neN) = p“’" ZLmvk n— Ciltin + 2 € AiP1im, (2.24)

while (2.17) yields
(Vke{l,...,K})(¥n €N) Popn € B%@ + 3 Liiwin — 6 — D,;lvk,,L). (2.25)
n i=1

Now, let us set

K
1 - - _ .
(VneN) 6, = Z <E + yk> |k — D2kl IP2en — Tkl and (Vie {1,...,m})

k=1
) K
Qin = ||P1in — Tinl| (gHﬁl,i,n — Tl + pillzin — 7l + 1; | Lkl v, — U_k”> (2.26)
It follows from [(D)} [ (0)] (i) ()] 2.20), and (2.21) that
0, >0 and (Vie{l,...,m}) o, —0. (2.27)

Using the Cauchy-Schwarz inequality, the Lipschitz-continuity and the monotonicity of the operators
(Ci)1<i<m, 2.22), (2.24), and the monotonicity of the operators (A;)1<i<m, We obtain

Ukn>

Vie{l,...,m})(VneN) o+ <l“zn —




> [Prim — il (e’l\lﬁl,z,n | + | Crim — Ci) + <ﬁ .

<xzn_

R

= |IP1in — Timll (671Hp1,z‘,n — Ti|| + |Cizin — Cimill) + <271,z‘,n -T;

_ K
~ — | Tim — Plyin
P <p1,z‘,n —-T; | ————+ E Li;
Yn
~ | X4, pl,z,n
= <P1,z‘,n -7 E Lok, — Ciz;,
+ (Tin — T | Cz‘l“z‘,n - Ci56i>
x P K
~ — iwn — Plin *
= <P1,z‘,n -7 — E Ly n — Cizy,
Tn 1
+ (i — Ti | Cixipn — CiT)
_ K
~ — Tin — Plyin
> Plin—T; | | ——— —
Tn 1
> 0.

K
*
> L
k=1

K

k=1 >

Z invkm — Cixi,n + ZZ> — ul>

K
2 Li
k=1

(% ) )

(5 1) )

(T — Uk,n)> + (Prin — Tim | CiT — Cixip)

(2.28)
(2.29)

(2.30)

On the other hand, since the operators (D,;l)KK k are Lipschitzian and monotone, and since the
operators (By)1<k<x are monotone, we deduce from (2.26), (2.23), and (2.25) that

(Vie{l....,K})(Vn € N) 5n+§:<xi7n—x_l

< Vi — 52,k,n
Tn

~ m
Vkn—DP2,k,n —1
— + Z Lki$i,n —TE _Dk Vk,n
Tn i=1

~ m

Vim — P2,In + Z Ll T

I ibi,n
Tn i=1

e~
D; "7 | paan —

-1
- =D, /Ul7n>

)

1~
Dl P2,in —

7~

Tn i=1

We consider two cases.

m
+ Dy P — Dy opn + Z Lii(xip — T5)
=1

_<m

~ m
Uim — D2,in -1
EE— Z Llixi,n - = Dl Uin | —

K
S L (Fokn - w>>

k=1

‘ ﬁZ,k,n - W>

m
) - <Z Lkiiﬂ_i—?“k—Dklﬁ> ‘ 52,k,n—ﬁ>
i1

Z Lz —r — Dllv_z>

=1

m
(ZLlﬁC_i —r = Dl_lv_l>
i=1

(2.31)

ﬁZ,l,n - U_l>

(2.32)

ﬁQ,l,n - U_l>

(2.33)
(2.34)



e If A; is uniformly monotone at 7;, then, in view of (2.29), (2.22), (2.24), and (1.8), there
exists an increasing function ¢4, : [0, +-00[ — [0, +o0] that vanishes only at 0 such that

(VneN) aj,+ <$j,n -y

K
S Liy (08— k) ) > 6, (1P — 1) (2.35)
k=1
Combining (2.34), (2.30), and (2.35) yields
(VneN) Gn+) aint+> <xm ~ T
i—1 i—1

It follows from (2.27), (i)} [(ii1) (¢)] (2.21)), and [8, Lemma 2.41(iii)] that da; (191,50 —Z5) — 0
and, in turn, that p; j , — T;. In view of [(D]and (2.20), we get p1 ;,, — 7; and z;,, — T;.

K
S Li(Fokn - k>> > o, (rim—T]). (2.36)
k=1

e If C; is uniformly monotone at 7;, then we derive from (2.34), (2.28), and (2.30) that there
exists an increasing function ¢c; : [0, +oo[ — [0, +oo] that vanishes only at 0 such that

m m K
(neEN) 6+ aint >, <mn — % | > Lii(Pokm — Uk,n)>
=1 =1 k=1

> ¢c; ([l — 7). (2.37)

This implies that ¢¢; (||, — T;||) — 0 and hence that z;,, — T;. Finally, [@)] yields p1 j,, — T;.

(ii1) (D))} We consider two cases.

e If B, is couniformly monotone at 7;, then (2.33), (2.23), and (2.25) imply that there exists an
increasing function ¢5-1: [0, +-00[ — [0, 4-00] that vanishes only at 0 such that
1

K
S Lo w>>
k=1

~ m m

Uin— P2, _ _ 1\ |~ _

= <<7n ~ = + ZLlixi,n_rl - Dl 1Ul,n> - (Z Llimi—rl - Dl 1?}1) ‘p2,l,n_vl>
" i=1 i=1

> ¢p-1 (P20 = Til])- (2.38)

Combining this with (2.30) yields

(V’I’L S N) 5n+i ai,n‘i’i <$i,n —T;
i=1 i=1

Hence, using (2.27), [0} [ ()}, (221D, and [8, Lemma 2.41(iii)], we get ¢ -1 (||D2,1,,—7i]|) —
1
0 and, in turn, py;,, — v;. Using to (2.2I) and [(iD)] we conclude that ps; ,, — v; and v, — 7;.

(VneN) 6, + Z <$m -
i=1

K
> Lisan = ) ) > Sy (ain 71l 239
k=1

e If D; is couniformly monotone at v;, then it follows from (2.32) and (2.34) that there exists an
increasing function ¢ Dt [0, +00] — [0, +00] that vanishes only at 0 such that

K
Z Lii(P2,kn — W)> > (D Poyn — Dy 00 | P — 00)
k=1

(VneN) G+ <mn —- T
i=1

> ¢D;1(H52,l,n —). (2.40)
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Thus, (2.30) yields

(\V/TL S N) 6n+§: ai,n"’i <xi,n —T;
i=1 i=1

and we conclude as above.

K
S Lo - k>> > b1 (i —7il), 241
k=1

a0

Remark 2.5 When m = 1, Theorem [2.4] specializes to [19, Theorem 3.1]. Our proof of Theo-
rem hinges on a self-contained application of Lemmas[2.3]and [2.1] in the primal-dual
product space IC of (2.5). Alternatively, these results could be obtained as an application of [[19]
Theorem 3.1] using the product space H of (2.5) as a primal space. This strategy, however, would
not allow us to recover the strong convergence results of Theorem [2.4[(iii) (¢)]

Remark 2.6 It follows from the Cauchy-Schwarz inequality that, for every (z;)1<i<m € Dirq Hi,

i=1
K

D || 2 L

k=1 i=1

2 K m 2 K m m
< (Xhmadliod) <X (i) (X lel?) (2.42)
k=1 \i=1 k=1 \i=1 i=1
Hence, in general, one can use \ = Zle oty Lk ||* in (IID. However, as will be seen in subse-

I
quent sections, this bound can be improved when the operator L of (2.6) has a special structure.

In the remainder the paper, we highlight a few instantiations of Theorem [2.4] that illustrate the
variety of problems to which it can be applied and which are not explicitly solvable via existing
techniques.

3 Inclusions involving general parallel sums

The first special case of Problem [I.1] we feature is an extension of a univariate inclusion problem
investigated in [[19], which involves parallel sums with monotone operators admitting Lipschitzian
inverses. In the following formulation, we lift this restriction.

Problem 3.1 Let # be a real Hilbert space, let K1, Ko, and K be integers such that 0 < K; < K <
K >1,letz € H,let A: H — 2’ be maximally monotone, and let C: H — H be monotone and
p-Lipschitzian for some p € [0, +oco[. For every integer k € {1,..., K}, let G be a real Hilbert space,
let r, € Gy, let By: G — 29 and Si: G, — 29 be maximally monotone, and let L;, € B (H,Gr);
moreover, if K1 +1 < k < Ks, Sg: Gr — Gy is Bx-Lipschitzian for some 5, € [0,+oco[, and, if
Ko+1<k<K, Sk_l: Gr — Gy, is Bi-Lipschitzian for some fj € [0, +ool. It is assumed that

K

B =max{u, Br,41,-- -, Br } + 1+Z\|Lk\|2 >0, (3.1
k=1

and that the inclusion

K
find Z € H suchthat z € AT+ Li((ByOSk) (LT — 1)) + CT (3.2)
k=1

11



possesses at least one solution. Solve (3.2) together with the dual problem

find 77 € Gy, ..., Ug € Gk such that
K

(Vke{l,....,K}) —rpe—Ly <(A +0)7! (z -3 L;*v—l)> + B, 't + S 7. (3.3)
=1

Proposition 3.2 Consider the setting of Problem B.1l Let (a1,1.n)nen, (b1,1,n)nen, and (c1,1,n)nen be
absolutely summable sequences in H. For every integer k € {1,..., K}, let (a2 k n)nen, (b2,kn)nen, and
(€2,k,n)nen be absolutely summable sequences in Gy; moreover, if 1 < k < K1, let (b1 g41,n)nen be an
absolutely summable sequence in Gy, and, if K1 + 1 < k < K, let (a1 k+1,n)neNy and (¢1 5x+1,n)nen be
absolutely summable sequences in Gi. Let xg € H, y10 € G1, .-+, Yks0 € Gk V10 € G1, ..., and
VK, € Gk, let e €]0,1/(8 + 1), let (yn)nen be a sequence in [e, (1 —€)/f], and set

Forn=20,1,...

S1,1,n = Tn — In (an + 25:1 szk,n + al,l,n)

Pian = Jyaa(S1,00 +2) + 0110

Ile #O,fOrk‘:l,...,Kl

S1,k+1,n = Ykn T InVkn

PLik+1,n = JynSpS1k+1,n + 01 k41,0

S2.kn = Vkn — Tn (ykn — Lyz, + a2,k,n)

P2.kn = S2kn — Tn (Tk: + nyngk (71;132,k,n - Tk) + b2,k,n)

q2,km = P2,k;n — Tn (pl,k—l—l,n - Lkpl,l,n + CQ,k,n)

L Y+l = Vkn — S2,kn T 42,kn

Ile #KQ,fOTkJ:Kl—Fl,...,KQ

S1,k+1,m = Ykn — In (Skyk,n — Vkn + al,k-{—l,n)

P1k+1,n = S1k+1,n

S2.kn = Vkn — Tn (ykn — Lyz, + a2,k,n)

P2.kn = S2kn — Tn (Tk: + nyngk (71;132,k,n - Tk) + b2,k,n)

42,km = P2,k;n — Tn (pl,k—l—l,n - Lkpl,l,n + CQ,k,n)

L Vkn+l = Vkn — S2,kn T 42,kn

IfKQ#K,fOTkZKQ—Fl,...,K

52 kn = Uk — %(S,;lvk,n — Lipxy + agp )

P2.kn = S2km — Tn (Tk: + nyngk (71;132,k,n - Tk) + b2,k,n)

q2,km = P2,kn — Tn (S];IPZ,k,n - Lkpl,l,n + CQ,k,n)

L Y+l = Vkn — S2,kn T 42,kn

q1,1n =P11n — Tn (Cpl,l,n + Zszl Lipagn + C1,1,n)

Tpt+l = Tn — S1,1n T 41,10

IfK1 #O,fOrk‘:l,...,Kl

{ 1,k+1,n = PLk+1,n + YnD2,kn
Y+l = Ykn — SLk+1,n T dLk+1,n

Ile #Kg,fork::K1+1,...,K2

{ Tt 1,0 = PLi+1n — Y (SkPLk+1n — P2k + ClLk+1,n)
Y+l = Ykn — SLk+1,n T 41 k+1,n-

(3.4)

Then the following hold for some solution T to (3.2)) and some solution (71, ...,vf) to (3.3).

(D) 2, — T and (Vk€{1,...,K}) vin — Tp.
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(ii) Suppose that A or C'is uniformly monotone at Z. Then x,, — T.

(iii) Suppose that, for somel € {1,..., K}, B is couniformly monotone at v;. Then v;,, — Ty.

(iv) Suppose that Ko # K and that, for somel € {Ky+1,...,K}, S; is couniformly monotone at 7.
Then vy ,, — .

Proof. We assume that Ky # 0 and consider the auxiliary problem

find zeH, ;1 €61, ...

Ko

k=1

, UK, € Gk, such that
K

2 €AT+Y Li(BoLaZ —Te—mh)) + >, Li((BeOSk) (LT — 7)) + CT

k=Ko+1

0 e Slm_ Bl(Llf—m— 7“1)

0 € Sk, UK, — Bi, (LK, T — UK, — TK)

(3.5)

together with the dual problem (3.3) (if Ky = 0, (3.5) should be replaced by (3.2) and the resulting
simplifications in the proof are straightforward). Let us show that solving the primal-dual problem

(3.5)/(3.3) is a special case of Problem [I.T]with

(’Hk-i-lzgk
if 1<k<Ky;
m=Koy+1 AkJrl: Sk 1 1
7_[1:7_[ ) 1fK1+1§/€<K2
A=A Ot 0, if 1<k<Ky;
C,=C (Vk € {1,...,K>}) LT Sk, i K+ 1<k < Ky
p=a o, i 1<k <Ky
e M\ B i K+ 1< k< K
21 = 7, [ —
Tp+1 = Yk
\Zk+1:07
and
Dy — {0}y=1, if 1<k < Ky;
Sk, if Ko+1<k<K
0, if 1<k< Ky,
1% =
(Vke{l,...,K}) LT 8 i K+ 1<k <K

\

Ly = Ly,

—Id if i=k+1:
(Vie{2,...,Ko+1}) Lki:{ | +1;

0, otherwise.

(3.6)

3.7)

First, we note that, in this setting, (I.2) reduces to (3.5), and (I.3) to (3.3). Now define H and

G as in 2.5), let © € H, let (yr)1<k<k, € @5:21 Gk, set (zi)1<icm = (x,y1,--.,YK,) € H, set
,0) € G, and set A = 1+ ZkKjl |Lx||?. Then, using the Cauchy-Schwarz

Yy = (y17"'7yK2707---
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inequality in R?,

m

> Lyiw;

i=1

2
2
= [(Lax)rerers = ylI? < (Il + 1 (Zr2)1cnsrll)

K
k=1

2

Ko Ka m
<yl + 4| D ILel? izl | < <1 +) HLkHQ> (Il + l=)?) = A [lal®. (3.8)
k=1 k=1 =1

Thus (LI is a special case of specializes to (3.I). On the other hand, by assumption, ([3.2) has a
solution, say x. Therefore, there exist v; € Gy, ..., vk, € Gk, such that

Ko K

S Am‘—i—Zszk—F Z LZ((BkDSk)(ka—Tk)) + Cx
k=1 k=Ka+1

(Vk S {1,...,K2}) VL € (BkDSk)(ka—Tk).

(3.9

Therefore, in view of (1.9), there exist y; € Gy, ..., Yk, € Gk, such that

KQ K
z € Aw—kZszk—i— Z LZ((BkDSk)(Lkm—rk)) +Cz
k=1 k=Ky+1
(Vke{l,...,K2}) wyr€ Sk_lvk and Lyr —y,—1; € Bk—%k’

(3.10)

which implies that

Ko K

z€Az+Y Lyvp+ Y Li((BxOSk)(Lgx — 1p)) + Ca
k=1 k=Ko+1

(Vke{l,...,Ka}) v, € Sgyr and wvg € Br(Lgx — yi — 7k),

(3.11)

and therefore that

K> K

2 € Ax + Z Ly (Be(Lyx — yp — 7)) + Z Ly ((BrOSk)(Lyz — 1)) + Cx
k=1 k=Kot 1

(Vke{l,...,K2}) 0 € Spyr — Be(Lrz — yp — 1)

(3.12)

This shows that (3.5]) possesses a solution. Next, upon defining

Lk4+1,n = Yk,n;

a1 pr1n =0, if 1<k <Ky
birt1n =0, if K1 +1<k<Ky;
cii+in =0, if 1<k <Ky,

we see that (2.4) specializes to ([3.4). Hence, in view of (3.6)—-(3.7) and Theorem [2.4[(ii1) (a)H(Gii) (d)]
there exist a solution (7,771, ..., Jx,) to (3.5) and a solution (71, ...,7x) to (3.3) such that

(VneN) z,=2, and (Vke{l,...,K>}) (3.13)

2p — % and (VEe{l,....K}) vpn — T, (3.14)
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with

K

Z—ZL’,;v_keAEJFCE, (Vk e {1,...,Ks}) {
k=1

Ly — 7 — 11, € By 0%
Uk, € SkUk,
and (Vk e {Kx+1,...,K}) LT —r € B, ' + S}, '7%.  (3.15)

Since the strong convergence claims are immediate consequences of Theorem [2.4[(iii) (e)]
it remains to show that 7 solves (3 -. We derive from (3.15) that, for every k € {1,..., K>},
L,T—v,—71 € Bk’lﬁ and g € S,;lﬁ, and, forevery k € {Ko+1,...,K}, LyT—7r) € B,;lv_k+S,;1v_k.
Altogether,

(Vke{l,...,K}) LyZ—rp€ (B '+ S o (3.16)

and, therefore,

K K K
ST Liwm e > Li((Bit + S T kT — ) = Y Li((Br O Sk) (LT — ). (3.17)
— — k=1

Thus, since (3.13) also asserts that z — Zszl Livi, € AT + C7, we conclude that 7 solves (3.2). 0

Remark 3.3 Problem[3.1]encompasses more general scenarios than that of [19], which corresponds
to the case when K; = Ky = 0, i.e., when all the operators (D,;l)KKK are restricted to be Lips-
chitzian. This extension has been made possible by reformulating the original primal problem (3.2)),
which involves only one variable, as the extended primal problem (3.5), in which we added K,
auxiliary variables. We also note that Algorithm (3.4) uses all the single-valued operators present in
Problem 3.1} including (Sk) x,+1<k<ix, and (S, ') x,+1<k<K, through explicit steps.

4 Relaxation of inconsistent common zero problems

A common problem in nonlinear analysis is to find a common zero of maximally monotone operators
A and (By)1<k<k acting on a real Hilbert space # [16} 22} 32], i.e.,

K
find 7 € H suchthat 0 € Az (1] Byz. (4.1)
k=1

In many situations, this problem may be inconsistent (see [[18] and the references therein) and it
must be approximated. We study the following relaxation of (4.1)), together with its dual problem.

Problem 4.1 Let H be a real Hilbert space, let K be a strictly positive integer, let A: H — 2% be
maximally monotone, and, for every k € {1,...,K}, let S;: H — 2% be a maximally monotone
operator such that S,;l is at most single-valued and strictly monotone, with S,;lO = {0}. Itis
assumed that the inclusion

K
find 7 € H such that 0 € AT + Z (BxOSk)T (4.2)
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possesses at least one solution. Solve (4.2) together with the dual problem

find uy € H, ..., uxg € H such that

(Vke{1,...,K}) 0¢€ —A—1< — Zm> + By Yug + S 'ug. (4.3)
=1

First, we justify the fact that (4.2)) is indeed a relaxation of (4.1)).

Proposition 4.2 In the setting of Problem. 1} set Z = (zer A)N ﬂle zer By, and suppose that Z # @.
Then the set of solutions to the primal problem is Z.

Proof. It is clear that every point in Z solves (4.2). Conversely, let = be a solution to (4.2) and let
z € Z. We first note that the operators (By [ Sk)1<k<i are at most single-valued. Indeed, let k €
{1,...,K} and let (y,p) and (y, ¢) be in gra(Bj, 0 .S;). Then we must show that p = q. We have p =
(BxOSp)y <y e B,;lp%—S,;lp & y—S,;lp € Bk’lp. Likewise, y—SI;Iq € B,;lq and, by monotonicity
of By, ~(p—q| S, 'p—5.") = (p—q|(y—S;'p) — (y—S;'q)) > 0. Consequently, by strict
monotonicity of Sk_l, <p —q| Sk_lp — Sk_lq> = 0 and p = ¢q. Hence, since x solves (4.2), there exists
(Pk)o<k<x € HET! such that

K
> pe=0 po€Azx, and (Vke({l,...,K}) pp=(BpOdSp). (4.4)

Therefore, we have
po € Az, 0€ Az, and (Vke{l,...,K}) pye€ Bp(z— Skflpk) and 0 € Byz, (4.5)
and, by monotonicity of the operators A and (By)1<k<k

(x—2z|po) >0 and (Vke{l,...,K}) <x—Sglpk—z|pk>>0. (4.6)

Hence, since Z?:o pr. = 0, it follows from the monotonicity of the operators (Skjl)lgkg K that

K
> k=015, pr — 5;'0)
k=1

=
:Z<5E—Z|Pk > (S o | ow)

=0 k=1

K
= (x — z | po) +Z<w kpk—zfpk>
k=1
> 0. 4.7)

=

Thus, S5, {pr — 0] S; 'pr, — S;,'0) = 0 and, therefore,

(Vke{1,....,K}) (pr—0]S; 'pp—S;'0)=0. (4.8)
The strict monotonicity of the operators (S, D) 1<k<rk implies that for every k € {1,...,K} pp = 0,
ie, € B 'py+ S 'pr = B0+ 5,10 = B0, Inturn, pp = — Y5 pr = 0, i.e, z € A0,

Altogether, x € Z. 0
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Remark 4.3 Suppose that in Problem [4.1] we set, for every k € {1,..., K}, Sk = wk’lld where v, €
10,400, i.e., By O Sk = "By, is the Yosida approximation of By, of index ;. [8, Proposition 23.6(ii)].
Then (4.2) reduces to the setting investigated in [17, Section 6.3], namely

K
find 7 € H suchthat 0 € AT+ Y "By, (4.9)
k=1

which itself covers the frameworks of [[10, (18, [35, [37] and the references therein. In this case,
Proposition [4.2] specializes to [[17, Proposition 6.10]. Now let us further specialize to the case when
H=RN,A=0, and

(VkEe{1,...,K}) span {uy}, if (z|ug) = px; Where |lug| =1  (4.10)
Bi:x— .
a, if <£C | uk> 7& Pk pr € R.

Then amounts to solving the system of linear equalities
find 7 € RY such that (Vk € {1,...,K}) (T |ug) = pr, (4.11)

whereas (4.2) amounts to solving the least-squares problem
o . . 2
minimize T | ug) — . 4.12)
I > e | u) — il

The idea of relaxing (4.11) to (4.12)) is due to Legendre [31]] and Gauss [26].

To solve Problem [4.1], we use Proposition [3.2]to derive the following algorithm.

Proposition 4.4 Consider the setting of Problem Let (bi,1,n)nen and, for every k € {1,..., K},
(01 k+1,n)nen and (ba k.n)nen be absolutely summable sequences in H. Let xo € H, (Yr0)i<k<i € HE,

(vk0)1<k<x € HE, and e €]0,1/(vVK +1+1)[, let (vn)nen be a sequencein [e, (1 —¢)/v/K + 1], and
set

Forn=20,1,...
K
Piin = J'ynA (xn — Tn Zkzl vk,n) + bl,l,n
Fork=1,...,K
Plk+1n = Jyn S, Ykn + YnVkn) + 01 k+1.n
82 kn = Vkn — 'Yn(yk,n - xn)
P2,kn = S2km — In (J“/ElBk (777152,&71) + b2,k,n)
Vkn+l = Vkn — 82kn T P2,kn — In (pl,k—l—l,n - pl,l,n)
K
Tn+1 = Pl,1n + n Zkzl(vk,n - p2,k,n)
Fork=1,...,K
| L Yen+1 = PlLEk+1,n + ’Yn(pQ,k,n - Uk,n)

(4.13)

Then the following hold for some solution T to (4.2) and some solution (v7,...,vx) to (4.3).

D z, = Tand (Vk € {1,...,K}) vg,, — Tp.

(ii) Suppose that A is uniformly monotone at z. Then x,, — 7.
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(iii) Suppose that, for somel € {1,..., K}, By is couniformly monotone at v;. Then v;,, — .

Proof. Problem [4.1] is a special case of Problem 3. I]with K1 = Ko = K, 2 =0,C =0, u = 0,
B =+vK+1,and (Vk € {1,...,K}) Gy = H, L, = 1d, and r;, = 0. In this context, can be
reduced to (4.13), and the claims therefore follow from Proposition 00

Remark 4.5 For brevity, we have presented an algorithm for solving Problem in its general
form. However, if some of the operators (Sk)1<k<xi Or their inverses are Lipschitzian, we can apply
Proposition 3.2l with K7 # K and/or Ky # K to obtain a more efficient algorithm in which each
Lipschitzian operator is used through an explicit step, rather than through its resolvent.

5 Multivariate structured convex minimization problems

We derive from Theorem [2.4] a primal-dual minimization algorithm for multivariate convex mini-
mization problems involving infimal convolutions and composite functions.

Problem 5.1 Let m and K be strictly positive integers, let (#;)1<i<m and (Gi)i1<r<x be real Hilbert
spaces, let (j;)i<icm € [0,400[™, and let (vp)i<icx € ]0,+oo[. For every i € {1,...,m}
and k£ € {1,...,K}, let h;: H; — R be convex and differentiable and such that Vh; is p;-
Lipschitzian, let fz € To(H,), let gi, € To(Gr), let £ € T'o(Gx) be 1/vy-strongly convex, let z; € H,,

let r, € Gi, and let Ly; € B(H;,Gx). Set p = max{ max p;, max yk} + VA > 0, where

1<i<m 1<k<K

A€ [Supym 4 2<1 Zle [ S Lyii||?, +o0 [, and assume that

(Vl S {1, e ,m}) z2i € ran(@fz + ZL]CZ agk D&Ek <Z Lk] —T’k> + Vh; ) (5.1)

7=1

Solve the primal problem

T1€EHL, ., Tm EHm

K m
minimize Z fz xz + Z gk ka)<z Lkixi — T’k> + Z (hz(acz) — <$Z | Zi>), (5.2)
k=1 =1 ]

together with the dual problem

m K
g, 52010053 thon) S0 i lr) 69

Remark 5.2 Problem [5.1] extends significantly the multivariate minimization framework of [3} [12].
There, (h;)i<i<m Were the zero function, ({;)i<x<x Were the function ti0y> and (gr)i1<k<r were
differentiable everywhere with a Lipschitzian gradient. Finally, no dual problem was considered.
Proposition 5.3 Consider the setting of Problem 5.1l Suppose that (5.2)) has a solution, and set

“ Vie {l,...,m}) z; € dom f;

= (Z Lyix; — yk> ' (vi et 2 f . (5.4)

prt 1<k<k | |(VEe{l,...,K}) yx € dom g, + dom {,

Then (5.0) is satisfied in each of the following cases.
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(1) (r)1<k<i € sHiE.
(i) E — (rr)1<k<rk is a closed vector subspace.

(iii) Foreveryi € {1,...,m}, f;isreal-valued and, forevery k € {1,..., K}, the operator (P7", H; —
Gt (wj)1<j<m = D50y Lijx; is surjective.

(iv) Forevery k € {1,..., K}, g or ly is real-valued.

V) (Hi)1<i<m and (Gi)1<k<k are finite-dimensional, and (Vi € {1,...,m})(3z; € ridom f;)(Vk €
{1,...,K}) > Lyjz; — ry, € ridom gy, + ridom 4.

Proof. Define H and G as in (2.5), and L, z, and r as in (2.6). Set

f:H = ]—o00,4+00]: @Y ", file;) and h:H —->R:xw— > " hi(x), .5)
g: G —]—00,+00] : y = S gilyr) and £: G —]—o00,+00] 1 y = Sy C(yk). '
Then (5.4) and [8, Proposition 12.6(ii)] yield
E={Lzx—y|x<cdomfandyc domg -+ dom#}
= L(dom f) — (domg + dom¢) (5.6)
= L(dom(f+h—(-|z))) —dom (gO¢). (5.7)
[k Since the functions ({x)1<k<i are strongly convex, so is £. Hence, dom£* = G [8|

Propositions 11.16 and 14.15] and therefore [[8, Propositions 15.7(iv) and 24.27] imply that
0g00¢ = 9(g0L) and gL € T'y(G). On the other hand, (5.7) yields 0 € sri(L(dom (f + h —
(-] 2))) —dom (gO£)(- — 7)). Thus, we derive from [8, Theorem 16.37(i)] that
Of + L* 0 (0g008;) o (L-—1)+Vh—2=0(f+h— (| 2)) + L 0d(g0&) o (L-—r)
=9(f+h—{|2)+(@g0€o(L-—7)).  (58)
Since (5.2) has a solution and is equivalent to minimizing f +h — (- | 2) + (g0#£) o (L - —r) over H,

Fermat’s rule [8, Theorem 16.2] implies that 0 € rand(f + h — (- | z) + (g0#€) o (L - —r)). Hence
(5.8) yields z € ran(0f + L* o (0g00%y) o (L - —r) + Vh) and we conclude that (5.) is satisfied.

(M@} [8, Proposition 6.19(i)].

We have L(dom f) = L(H) = G. Hence, (5.6) yields £ = G.

We have dom g + dom £ = G. Hence, yields £ = G.

(M@ Since dim G < +oo, sri E = ri E. On the other hand, by and [8], Corollary 6.15],

ri E =ri (L(dom f) — domg — dom#£) = L(ridom f) — ridom g — ridom £. (5.9

Thus, r € stiE < (3x € ridom f = X ridom f;) Le—r € ridom g+ridom £ = Xszl(ri dom g;+
ridom /). O

Proposition 5.4 Consider the setting of Problem [5.1l For every i € {1,...,m}, let (ai1,in)nen

(b1,in)nen, and (¢1,in)nen be absolutely summable sequences in H; and, for every k € {1,...,K},
let (a2 i n)nen, (b2 kn)nen, and (cakn)nen be absolutely summable sequences in Gy. Furthermore, let
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21,0 € Hi, ooy Tmo € Hms, V10 € G1, ..., VK0 € Gk, let e €10,1/(8 + 1), let (yn)nen be a sequence
in [, (1 —€)/B], and set

Forn=0,1,...

Fori=1,...,m

S1im = Tim — Yo (Vhi(@in) + Sy LUk n + a1,in)
| Plin = prox., r(S1in+Yn2i) + biin
Fork=1,...,K

$2.6m = Vkn — (VO (Vkn) = Yoimy Lriin + agkn) (5.10)

D2k = S2.kn — Tn (Tk + Pprox -1, (%7182,19,n — 1) + bQ,k,n)
42,km = P2,k;n — Tn (VEZ(pZ,k,n) - Z?ll Lkipl,i,n + CQ,k,n)

| Vk,n+1 = Vk,n — S2,kn + q2,k,n
Fort=1,...,m

K
QLin = PLim — Yo (Vhi(P1in) + Y ket LiiP2em + Clin)
L | Tin+l = Tin — Slin T Qlin-

Then the following hold.

@ (Vie{l,...,m}) S, en 1Tin—prinl?<+o0, and (ke {1,..., K}) X, cx [0km—posnl? < +oc.

(ii) There exist a solution (Z1,...,Ty,) to (5.2) and a solution (v7,...,7x) to (5.3) such that the
following hold.

(@) (Vie{l,...,m}) zi, — T and z — Y. r, L0% € Ofi(T) + Vhi(Ti)-
() (Vke{l,...,K}) v — U5 and S| LT — ri € 995 () + VI (TF).

(c) Suppose that, for some j € {1,...,m}, f; or h; is uniformly convex at T;. Then z;, — T;.
(d) Suppose that, for some l € {1,...,K}, g; or {; is uniformly convex at T;. Then v;,, — .
Proof. Set

{(Vz‘e{l,...,m}) Ai=0f; and Cy=Vh; (5.11)

(V/{?E{l,...,K}) Bkzagk and Dj = 0/4.

It follows from [§8, Proposition 17.10] that the operators (C;)i<i<,» are monotone, and from [8|
Theorem 20.40] that the operators (4;)1<i<m, (Bk)1<k<m, and (Dy)1<k<x are maximally monotone.
Moreover, for every k € {1,..., K}, we derive from [8, Corollary 13.33 and Theorem 18.15] that
¢; is Fréchet differentiable on G, and V/} is v,-Lipschitzian, and from [8, Corollary 16.24 and
Proposition 17.26(i)] that D,;l = (04;)7! = oty = {V«;}. On the other hand, (5.I) implies that
possesses a solution, and implies that is a special case of (2.4). We also recall
that the uniform convexity of a function ¢ € I'g(#) at x € dom d¢p implies the uniform monotonicity
of Oy at x [46, Section 3.4]. Altogether, the claims will follow at once from Theorem provided
we show that, in the setting of (5.1I) and (5.11)), (1.2) becomes (5.2) and becomes (5.3). To
this end, let us first observe that since, for every k € {1,..., K}, dom ¢} = Gy, [8], Proposition 24.27]
yields

(Vk‘ S {1, e ,K}) Bi,ODy, = 0g,, 004, = 8(gk|]€k), (5.12)
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while [8] Corollaries 16.24 and 16.38(iii)] yield
(Vk e {1,...,K}) B.'+D;'=0g; +{Ve}=0(g; +10}). (5.13)
Likewise, using [8, Theorem 15.3], we obtain
Vie{l,...,m}) (A4+C)~" = (0fi+Vh) "t = (0(fi+hi)) " = 0(fi+hi)* = 0(ff OhY). (5.14)

Now let us define H and G as in (2.5), L, z, and r as in (2.6), and f, h, g, and £ as in (5.5). We
derive from (5.11), (5.12), [8, Corollary 16.38(iii), Propositions 16.5(ii), 16.8, and 17.26(i)], and
Fermat’s rule [8, Theorem 16.2] that, for every = (x;)1<i<m € H,

x solves (L.2) & (Vi € {1,...,m}) 0€dfi(x;)+ ZLM< gkmfk)<Zijg;j —Tk>>
j=1
—|—Vhl(acz)—zl
< 0€0f(x)+ L*(0(g0€)(Le — 7)) + V(h — (- | 2))(x)
=0e0(f+(g0)o (L —r) +h—(|2))()
& x solves (5.2). (5.15)

Next, let v = (vi)1<k<x € G. Then we derive from (5.13), (5.14), and the same subdifferential
calculus rules as above that

K
v solves (1.3) & (Vk € {1,...,K OG—ZLm< (fFOhn; < ZLEU[>>
=1
+ 0(g + 0+ (- | re)) (vr)
@OE—L(Q(f*Dh*)(z—L* )) ( —i—f* + (| >)( )
=0ed((f OR)o(z— L") +g"+£ +(|7)) ()
& v solves (5.3), (5.16)

which completes the proof. [

Remark 5.5 Proposition [5.4] provides a framework that captures and suggests extensions of multi-
variate and/or infimal convolution variational formulations found in areas such as partial differential
equations [4], machine learning [6], and image recovery [14, (15} [38].

6 Univariate structured convex minimization problems

Minimization problems involving a single primal variable can be obtained by setting m = 1 in Prob-
lem 5.1l However, this approach imposes that infimal convolutions be performed exclusively with
strongly convex functions. We use a different strategy relying on Proposition [3.2] which leads to a
formulation allowing for infimal convolutions with general lower semicontinuous convex functions.

Problem 6.1 Let # be a real Hilbert space, let K;, Ko, and K be integers such that 0 < K; <
Ky < K >1,letz € H,let f € I'y(H), and let h: H — R be convex and differentiable and such
that Vh is u-Lipschitzian for some p € [0, +oc[. For every integer k € {1,..., K}, let G, be a real
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Hilbert space, let r, € Gy, let gr € T'0(Gk), let v € T'o(Gk), and let L, € B (H,Gx); moreover,
if K1 +1 < k < Ky, ¢ is differentiable on G, and such that Vi, is f-Lipschitzian for some
Br € [0,4oc[, and, if Ko + 1 < k < K, @i is 1/P-strongly convex for some §; € ]0,+o0[. Set

B =max{u, Bx,+1.---,Pr } + \/1 + 3K |ILy||?, and assume that

K
z € ran((?f + ZL}Z o (0gr J0py) o (Lk . —rk) + Vh) (6.1)
k=1
and
(Vk e {1,...,K3}) 0 € sri(domg; — dom ¢}). (6.2)

Solve the primal problem

K
Oer)(Lrx — h — 6.3
mlrmue%me f(z)+ ; gr O vr)(Lgz — 1) + h(x) — (2] 2), (6.3)

together with the dual problem

K m
minimize  (f*0Oh") (z — Z L}ka> + Z (95 (vi) + @k (vi) + (vg | Tx)). (6.4)
k=1

v1€G1,..., VK EGK 1
Remark 6.2 It follows from (6.2)) and [8, Propositions 11.16, 14.15, 15.7(i), and 24.27] that

(Vke{l,...,K}) gxOpy €To(Gy) and 0JgrO0pk = 0(gx k). (6.5)

Hence, using the same type of arguments as in the proof of Proposition [5.3] we can deduce similar
conditions for (6.I) to hold, e.g., that (6.3) have a solution and that (ry)i<k<k lie in the strong
relative interior of {(Lyz — yi)1<k<k | * € dom f and (Vk € {1,...,K}) yx € dom g + dom ¢y, }.

Proposition 6.3 Consider the setting of Problem Let (a1,1,n)nens (b1,1,n)nen, and (¢1,1.n)nen be
absolutely summable sequences in H. For every integer k € {1,..., K}, let (a2 n)nen, (b2,kn)nen, and
(€2,k,n)nen be absolutely summable sequences in Gy; moreover, if 1 < k < Ki, let (b k+1,n)nen be an
absolutely summable sequence in Gy, and, if K1 + 1 < k < K, let (a1 k+1,n)neny and (¢1 jx+1,n)nen be
absolutely summable sequences in Gi. Let xg € H, y10 € G1, .-+, Yks0 € Gk V10 € G1, ..., and
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VK, € Gk, let e €]0,1/(8 + 1), let (yn)nen be a sequence in [e, (1 — €)//], and set

Forn=0,1,...

S1,1,n = Tn — Vn (Vh(l“n) + Zszl Livkn + alvl,n)

P1in = ProX, ((s11n +vn2) +b11n

IfK1#0, fork=1,...,K;

S1,k+1,n = Ykn + TInVkn

P1k+1,n = PrOX, o S1k+1,n + b1 k+1n

$2.kn = Vkn — Tn (ykn — Lyz, + a2,k,n)

P2.kn = S2.kn — Tn (Tk + prox, -1, (VElsz,k,n — 1)+ b2,k,n)

q2,km = P2,k;n — Tn (pl k+1n — Lkpl,l,n + CQ,k,n)

Vkn+1l = Vkn — 52,k + Q2,kn

Ile#Kg,fork: K1—|—1 K

51 k10 = Ykn — Tn (Vs%(yk,n) Vkn + Q1 et 1,n)

P1k+1,n = S1k+1,n

$2.kn = Vkn — Tn (ykn — Lyz, + a2,k,n)

P2,kn = S2km — Tn (Tk: + proxf\/glgk (71;132,k,n - 7ﬂk:) + b2,k,n)

q2,km = P2,k;n — Tn (pl k+1n — Lkpl,l,n + CQ,k,n)

Vkn+1 = Vkn — 52,k + Q2,kn

IfKQ#KfOT‘]C K2—|—1 K

82k = Vkn — %(V%(vk,n) Lyan + agen)

P2.kn = S2.kn — Tn (Tk + prox, -1, (VElsz,k,n — 1)+ b2,k,n)

@.km = P2k — In (VO (D2km) — Lep11n + C2kn)

| Y+l = Vkn — S2,kn T 42,kn

Q10 =P — M (Vh(prim) + Zszl Lipojn + C11n)

Tpt+l = Tn — S1,1n T 41,10

IfK1 #O,fOrk‘Zl,...,Kl

{ q1,k+1,n = PLk+1,n + YnD2,kn
Y+l = Ykn — SLk+1,n T 4L k+1,n

Ile #Kg,fork:[(l—l-l,...,[(g

{ Tt 1,0 = PLit1n — Yo (VOrP1k410) = P2en + C1k+1n)
Y+l = Ykn — SLk+1,n T 41 k+1,n-

Then the following hold for some solution T to (6.3) and some solution (v7,...,Ux

(D) 2, — T and (Vk€{1,...,K}) vin — Tp.

(i) Suppose that f or h is uniformly convex at T. Then x,, — T.

(iii) Suppose that, for somel € {1,..., K}, g} is uniformly convex at v;. Then v;,, — 7.

(6.6)

(iv) Suppose that K, # K and that, for somel € {Ky+1,..., K}, o] is uniformly convex at 7. Then

Vi — Ul

Proof. Using (6.5) and the same arguments as in the proof of Proposition [5.4] we first identify

Problem[6.1]as a special case of Problem B.Ilwith A = df, C = Vh, and (Vk € {1,...,
and Sy = dyy. Using (1.12]), we then deduce the results from Proposition 3.2l 00

= Ogi

We conclude this section with an application to the approximation of inconsistent convex feasi-

bility problems where, for the sake of brevity, we discuss only the primal problem.
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Example 6.4 In Problem[6.1] set K1 = Ko = K,2=0,h =0, f =0, and, forevery k € {1,..., K}
rr = 0 and g, = vc,, where C}, is a nonempty closed convex subset of G;, with projection operator
Py. In addition, suppose that

(Vke{l,...,K}) Argmingy = {0}, ¢x(0) =0, and 0 € sri(dom;, — domyy). (6.7)

It follows from [8] Proposition 15.7(i)] that the infimal convolutions (.c, O¢k)i<k<k are exact.
Hence, (6.3) becomes

minimize min ¢y (Lgx — 6.8
nim Zykeck% KT = Yk), (6.8)

and it is assumed to have at least one solution. We can interpret as a relaxation of the (possibly
inconsistent) convex feasibility problem

find T € H suchthat (Vk € {1,...,K}) Lz € Cy. (6.9)

Indeed, it follows from (6.7) that, if (6.9) is consistent, then its solutions coincide with those of
(6.8). Furthermore, in view of (I.12), Algorithm (6.6)) can be written as

Forn=0,1,...
PLin = Tn — Yn( Zszl Livgn +a1,1,n)
Fork=1,...,K
S1,k+1,n = Yk,n + YnVkn
P1k+1,n = PIOX, o S1k+1,n + 01 k+1n
S2kn = Vkn — Tn (yk,n - kan + a2,k,n)
P2.kn = S2km — In (Pk(’Yr:lSQ,k,n) + bZ,k,n)
@k = D2den — Yo (D110 — LeP1,1n + C2ken)
| Vkn+1 = Vkn — S2,kn T 42,50
a0 = DP1am — Tl Zle Lipojn + c11n)
Tntl =Tn —DP11n +q11m
Fork=1,...,K
{ q1,k+1,n = PLk+1,n + YnD2,kn

Ykn+1 = Ykn — SLk+1n T 9L k+1,n-

(6.10)

By Proposition [6.3(D} (x,)nen converges weakly to a solution to if inf,cnv, > 0 and
SUp,enTn < (1+ Zk=1 HLkHz)fl/Q. Now suppose that, for every k € {1,..., K}, G, = H, Ly = 1d,
or = tioy if k =1, and ¢}, = wy| - ||?, where wy, € ]0, 400, if k # 1. Then (6.9) reduces to the feasi-
bility problem of finding 7 € ﬂle C and reduces to the constrained least-squares relaxation
studied in [18], namely, mi{r:égize Zf:z wkdzck ().

References

[1] F. Acker and M. A. Prestel, Convergence d’un schéma de minimisation alternée, Ann. Fac. Sci. Toulouse
V. Sér. Math., vol. 2, pp. 1-9, 1980.

[2] H. Attouch, J. Bolte, P. Redont, and A. Soubeyran, Alternating proximal algorithms for weakly coupled
convex minimization problems. Applications to dynamical games and PDE’s, J. Convex Anal., vol. 15,
pp. 485-506, 2008.

24



[3]

[4]

[5]

(6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

H. Attouch, L. M. Bricefio-Arias, and P. L. Combettes, A parallel splitting method for coupled monotone
inclusions, SIAM J. Control Optim., vol. 48, pp. 3246-3270, 2010.

H. Attouch, A. Cabot, P. Frankel, and J. Peypouquet, Alternating proximal algorithms for linearly con-
strained variational inequalities: application to domain decomposition for PDE’s, Nonlinear Anal., vol.
74, pp. 7455-7473, 2011.

H. Attouch, P. Redont, and A. Soubeyran, A new class of alternating proximal minimization algorithms
with costs-to-move, SIAM J. Optim., vol. 18, pp. 1061-1081, 2007.

F. Bach, R. Jenatton, J. Mairal, and G. Obozinski, Optimization with sparsity-inducing penalties, Found.
Trends Machine Learning, vol. 4, pp. 1-106, 2012.

A. B. Bakusinskii and B. T. Polyak, The solution of variational inequalities, Soviet Math. — Doklady, vol.
15, pp. 1705-1710, 1974.

H. H. Bauschke and P. L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces.
Springer, New York, 2011.

H. H. Bauschke, P. L. Combettes, and D. R. Luke, Finding best approximation pairs relative to two closed
convex sets in Hilbert spaces, J. Approx. Theory, vol. 127, pp. 178-192, 2004.

H. H. Bauschke, P. L. Combettes, and S. Reich, The asymptotic behavior of the composition of two
resolvents, Nonlinear Anal., vol. 60, pp. 283-301, 2005.

H. Brézis and M. Sibony, Méthodes d’approximation et d’itération pour les opérateurs monotones, Arch.
Ration. Mech. Anal., vol. 28, pp. 59-82, 1967/1968.

L. M. Bricefio-Arias and P. L. Combettes, Convex variational formulation with smooth coupling for
multicomponent signal decomposition and recovery, Numer. Math. Theory Methods Appl., vol. 2, pp.
485-508, 2009.

L. M. Bricefio-Arias and P. L. Combettes, A monotone+skew splitting model for composite monotone
inclusions in duality, SIAM J. Optim., vol. 21, pp. 1230-1250, 2011.

L. M. Bricefio-Arias, P. L. Combettes, J.-C. Pesquet, and N. Pustelnik, Proximal algorithms for multicom-
ponent image recovery problems, J. Math. Imaging Vision, vol. 41, pp. 3-22, 2011.

J.-F. Cai, B. Dong, S. Osher, and Z. Shen, Image restoration: Total variation, wavelet frames, and
beyond, J. Amer. Math. Soc., vol. 25, pp. 1033-1089, 2012.

P. L. Combettes, Construction d’'un point fixe commun a une famille de contractions fermes, C. R. Acad.
Sci. Paris Sér. I Math., vol. 320, pp. 1385-1390, 1995.

P. L. Combettes, Solving monotone inclusions via compositions of nonexpansive averaged operators,
Optimization, vol. 53, pp. 475-504, 2004.

P. L. Combettes and P. Bondon, Hard-constrained inconsistent signal feasibility problems, IEEE Trans.
Signal Process., vol. 47, pp. 2460-2468, 1999.

P. L. Combettes and J.-C. Pesquet, Primal-dual splitting algorithm for solving inclusions with mixtures
of composite, Lipschitzian, and parallel-sum type monotone operators, Set-Valued Var. Anal., vol. 20, pp.
307-330, 2012.

P. L. Combettes and V. R. Wajs, Signal recovery by proximal forward-backward splitting, Multiscale
Model. Simul., vol. 4, pp. 1168-1200, 2005.

J. Douglas, Jr. and H. H. Rachford, Jr., On the numerical solution of heat conduction problems in two
or three space variables, Trans. Amer. Math. Soc., vol. 82, pp. 421-439, 1956.

J. M. Dye and S. Reich, Unrestricted iterations of nonexpansive mappings in Hilbert space, Nonlinear
Anal., vol. 18, pp. 199-207, 1992.

J. Eckstein and D. P. Bertsekas, On the Douglas-Rachford splitting method and the proximal point
algorithm for maximal monotone operators, Math. Program., vol. 55, pp. 293-318, 1992.

25



[24]

[25]

[26]
[27]

[28]

[29]

[30]

[31]
[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]
[41]

[42]

[43]

[44]
[45]

[46]

F. Facchinei and J.-S. Pang, Finite-Dimensional Variational Inequalities and Complementarity Problems.
Springer-Verlag, New York, 2003.

P. Frankel, Alternating proximal algorithm with costs-to-move, dual description and application to
PDE’s, Discrete Contin. Dyn. Syst. Ser. S, vol. 5, pp. 545-557, 2012.

C. F. Gauss, Theoria Motus Corporum Coelestium. Perthes and Besser, Hamburg, 1809.

J. Gilles, Noisy image decomposition: a new structure, texture and noise model based on local adaptiv-
ity, J. Math. Imaging Vision, vol. 28, pp. 285-295, 2007.

R. Glowinski and P. Le Tallec, Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Me-
chanics. SIAM, Philadelphia, 1989.

M. Goldburg and R. J. Marks II, Signal synthesis in the presence of an inconsistent set of constraints,
IEEE Trans. Circuits Syst., vol. 32, pp. 647-663, 1985.

G. M. Korpelevich, The extragradient method for finding saddle points and other problems, Matecon,
vol. 12, pp. 747-756, 1976.

A. M. Legendre, Nouvelles Méthodes pour la Détermination de I’Orbite des Cométes. Courcier, Paris, 1805.

N. Lehdili and B. Lemaire, The barycentric proximal method, Comm. Appl. Nonlinear Anal., vol. 6, pp.
29-47, 1999.

E. S. Levitin and B. T. Polyak, Constrained minimization methods, U.S.S.R. Comput. Math. Math. Phys.,
vol. 6, pp. 1-50, 1966.

P. L. Lions and B. Mercier, Splitting algorithms for the sum of two nonlinear operators, SIAM J. Numer.
Anal., vol. 16, pp. 964-979, 1979.

P. Mahey and D. T. Pham, Partial regularization of the sum of two maximal monotone operators, RAIRO
Modél. Math. Anal. Numér., vol. 27, pp. 375-392, 1993.

B. Mercier, Topics in Finite Element Solution of Elliptic Problems (Lectures on Mathematics, no. 63). Tata
Institute of Fundamental Research, Bombay, 1979.

B. Mercier, Inéquations Variationnelles de la Mécanique (Publications Mathématiques d’Orsay, no. 80.01).
Université de Paris-XI, Orsay, France, 1980.

S. Setzer, G. Steidl, and T. Teuber, Infimal convolution regularizations with discrete ¢;-type functionals,
Commun. Math. Sci., vol. 9, pp. 797-827, 2011.

M. Sibony, Méthodes itératives pour les équations et inéquations aux dérivées partielles non linéaires
de type monotone, Calcolo, vol. 7, pp. 65-183, 1970.

J. E. Spingarn, Partial inverse of a monotone operator, Appl. Math. Optim., vol. 10, pp. 247-265, 1983.

J.-L. Starck, M. Elad, and D. L. Donoho, Image decomposition via the combination of sparse represen-
tations and a variational approach, IEEE Trans. Image Process., vol. 14, pp. 1570-1582, 2005.

P. Tseng, Applications of a splitting algorithm to decomposition in convex programming and variational
inequalities, SIAM J. Control Optim., vol. 29, pp. 119-138, 1991.

P. Tseng, A modified forward-backward splitting method for maximal monotone mappings, SIAM J.
Control Optim., vol. 38, pp. 431-446, 2000.

R. S. Varga, Matrix Iterative Analysis, 2nd edition. Springer-Verlag, New York, 2000.

B. C. Vii, A splitting algorithm for dual monotone inclusions involving cocoercive operators, Adv. Com-
put. Math., to appear. http://www.springerlink.com/content/m177247u22644173/

C. Zalinescu, Convex Analysis in General Vector Spaces, World Scientific, River Edge, NJ, 2002.

26


http://www.springerlink.com/content/m177247u22644173/

	1 Introduction
	2 General algorithm
	3 Inclusions involving general parallel sums
	4 Relaxation of inconsistent common zero problems
	5 Multivariate structured convex minimization problems
	6 Univariate structured convex minimization problems

