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Abstract

A general primal-dual splitting algorithm for solving systems of structured coupled monotone

inclusions in Hilbert spaces is introduced and its asymptotic behavior is analyzed. Each inclusion
in the primal system features compositions with linear operators, parallel sums, and Lipschitzian

operators. All the operators involved in this structured model are used separately in the proposed

algorithm, most steps of which can be executed in parallel. This provides a flexible solution
method applicable to a variety of problems beyond the reach of the state-of-the-art. Several

applications are discussed to illustrate this point.
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1 Introduction

Traditional monotone operator splitting techniques [8, 17, 23, 24, 28, 34, 36, 40, 42, 43] have their

roots in matrix decomposition methods in numerical analysis [21, 44] and in nonlinear methods for

solving optimization and variational inequality problems [7, 11, 30, 33, 39]. These methods are

designed to solve inclusions of the type 0 ∈ B1x+ B2x, where B1 and B2 are maximally monotone

operators acting on a Hilbert space H. Extensions to sums of the type 0 ∈ ∑K
k=1Bkx are typically

handled via reformulations in product spaces [8, 40]. In recent years, new splitting algorithms have

emerged for problems involving more complex models featuring compositions with linear opera-

tors [13] and parallel sums [19, 45] (see (1.9)). These algorithms rely on reformulations of the

inclusions as two-operator problems in a primal-dual space, in which the splitting is performed via

an existing method. This construct makes it possible to activate separately each of the operators

∗Contact author: P. L. Combettes, plc@math.jussieu.fr, phone: +33 1 4427 6319, fax: +33 1 4427 7200.

1

http://arxiv.org/abs/1212.6631v2


present in the model, and it leads to flexible algorithms implementable on parallel architectures.

In the present paper, we pursue this strategy towards more sophisticated models involving systems

of structured coupled inclusions in duality. The primal-dual problem under consideration is the

following.

Problem 1.1 Let m and K be strictly positive integers, let (Hi)16i6m and (Gk)16k6K be real Hilbert

spaces, let (µi)16i6m ∈ [0,+∞[m, and let (νk)16i6K ∈ [0,+∞[K . For every i ∈ {1, . . . ,m} and k ∈
{1, . . . ,K}, let Ci : Hi → Hi be monotone and µi-Lipschitzian, let Ai : Hi → 2Hi and Bk : Gk → 2Gk

be maximally monotone, let Dk : Gk → 2Gk be maximally monotone and such that D−1
k : Gk → Gk is

νk-Lipschitzian, let zi ∈ Hi, let rk ∈ Gk, and let Lki ∈ B (Hi,Gk). It is assumed that

β = max
{

max
16i6m

µi, max
16k6K

νk

}
+
√
λ > 0, where λ ∈

[
sup

∑m
i=1

‖xi‖261

K∑

k=1

∥∥∥∥
m∑

i=1

Lkixi

∥∥∥∥
2

,+∞
[
, (1.1)

and that the system of coupled inclusions

find x1 ∈ H1, . . . , xm ∈ Hm such that




z1 ∈ A1x1 +
K∑

k=1

L∗
k1

(
(Bk �Dk)

( m∑

i=1

Lkixi − rk

))
+ C1x1

...

zm ∈ Amxm +

K∑

k=1

L∗
km

(
(Bk �Dk)

( m∑

i=1

Lkixi − rk

))
+ Cmxm

(1.2)

possesses at least one solution. Solve (1.2) together with the dual problem

find v1 ∈ G1, . . . , vK ∈ GK such that




−r1 ∈ −
m∑

i=1

L1i

(
Ai + Ci

)−1
(
zi −

K∑

k=1

L∗
kivk

)
+B−1

1 v1 +D−1
1 v1

...

−rK ∈ −
m∑

i=1

LKi

(
Ai + Ci

)−1
(
zi −

K∑

k=1

L∗
kivk

)
+B−1

K vK +D−1
K vK .

(1.3)

The primal system (1.2) captures a broad class of problems in nonlinear analysis in which m vari-

ables x1, . . . , xm interact. The ith inclusion in (1.2) features two operators Ai and Ci which model

some abstract utility of the variable xi, while the operator (Bk)16k6K , (Dk)16k6K , and (Lki)16i6m
16k6K

model the interaction between xi and the remaining variables. One of the simplest realizations of

(1.2) is the problem considered in [10], namely

find x1 ∈ H, x2 ∈ H such that

{
0 ∈ A1x1 + x1 − x2

0 ∈ A2x2 − x1 + x2,
(1.4)

where (H, ‖ · ‖) is a real Hilbert space, and where A1 and A2 are maximally monotone operators

acting on H. In particular, if A1 = ∂f1 and A2 = ∂f2 are the subdifferentials of proper lower

semicontinuous convex functions f1 and f2 from H to ]−∞,+∞], (1.4) becomes

minimize
x1∈H, x2∈H

f1(x1) + f2(x2) +
1

2
‖x1 − x2‖2. (1.5)
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This formulation arises in areas such as optimization [1], the cognitive sciences [5], image recov-

ery [20], signal synthesis [29], best approximation [9], and mechanics [37]. In [3], we consid-

ered the extension of (1.5) which amounts to setting in Problem 1.1, for every i ∈ {1, . . . ,m} and

k ∈ {1, . . . ,K}, Ai = ∂fi, Ci = 0, and Bk = ∇gk, where fi : H → ]−∞,+∞] is a proper lower

semicontinuous convex function and gk : Gk → R is convex and differentiable with a Lipschitzian

gradient. This leads to the minimization problem

minimize
x1∈H1,..., xm∈Hm

m∑

i=1

fi(xi) +
K∑

k=1

gk

( m∑

i=1

Lkixi

)
, (1.6)

which has numerous applications in signal processing, machine learning, image recovery, partial

differential equations, and game theory; see [2, 6, 12, 14, 25, 27, 41] and the references therein.

In the case when m = 1 in Problem 1.1, and under certain restrictions on the operators involved,

primal-dual algorithms have been proposed recently in [13, 19, 45]. On the other hand, a primal

algorithm was proposed in [3] for solving systems of inclusions of type (1.2) in which the operators

(Ci)16i6m and (D−1
k )16k6K are zero, and the coupling operators (Bk)16k6K are restricted to be

single-valued and to satisfy jointly a cocoercivity property.

The goal of the present paper is to develop a flexible algorithm to solve Problem 1.1 without

the restrictions imposed by current methods. In particular, no additional hypotheses will be placed

neither on the coupling operators (Bk)16k6K and (Dk)16k6K, nor on the number m of variables.

In the proposed parallel splitting algorithm, the structure of the problem is fully exploited to the

extent that the operators are all used individually, either explicitly if they are single-valued, or by

means of their resolvent if they are set-valued. The main algorithm is introduced and analyzed in

Section 2. The remaining sections are devoted to applications to problems which are not explicitly

solvable via existing techniques. Thus, in Section 3, we discuss applications to univariate inclusion

problems featuring general parallel sums, in the sense that the operators (Dk)16k6K need not have

Lipschitzian inverses. In Section 4, we apply this framework to the regularization of inconsistent

common zero problems. Finally, Sections 5 and 6 address, respectively, applications to multivariate

and univariate structured convex minimization problems.

Notation. We denote the scalar product of a Hilbert space by 〈· | ·〉 and the associated norm by

‖ · ‖. The symbols ⇀ and → denote, respectively, weak and strong convergence, and Id denotes the

identity operator. Let H and G be real Hilbert spaces and let 2H be the power set of H. The space

of bounded linear operators from H to G is denoted by B (H,G). Let A : H → 2H. We denote by

ranA =
{
u ∈ H

∣∣ (∃x ∈ H) u ∈ Ax
}

the range A, by domA =
{
x ∈ H

∣∣ Ax 6= ∅
}

the domain of A,

by zerA =
{
x ∈ H

∣∣ 0 ∈ Ax
}

the set of zeros of A, by graA =
{
(x, u) ∈ H ×H

∣∣ u ∈ Ax
}

the graph

of A, and by A−1 the inverse of A, i.e., the operator with graph
{
(u, x) ∈ H ×H

∣∣ u ∈ Ax
}

. The

resolvent of A is JA = (Id +A)−1. Moreover, A is declared monotone if

(∀(x, u) ∈ graA)(∀(y, v) ∈ graA) 〈x− y | u− v〉 > 0, (1.7)

and maximally monotone if there exists no monotone operator B : H → 2H such that graA ⊂
graB 6= graA. In this case, JA is a nonexpansive operator defined everywhere on H. Furthermore,

A is uniformly monotone at x ∈ domA if there exists an increasing function φ : [0,+∞[ → [0,+∞]
that vanishes only at 0 such that

(∀u ∈ Ax)(∀(y, v) ∈ graA) 〈x− y | u− v〉 > φ(‖x− y‖), (1.8)

and A is couniformly monotone at u ∈ ranA if A−1 is uniformly monotone at u. The parallel sum of

A and B : H → 2H is

A�B = (A−1 +B−1)−1. (1.9)

3



The infimal convolution of two functions g and ℓ from H to ]−∞,+∞] is

g� ℓ : H → [−∞,+∞] : x 7→ inf
y∈H

(
g(y) + ℓ(x− y)

)
. (1.10)

We denote by Γ0(H) the class of lower semicontinuous convex functions f : H → ]−∞,+∞] such

that dom f =
{
x ∈ H

∣∣ f(x) < +∞
}
6= ∅. Let f ∈ Γ0(H). The conjugate of f is Γ0(H) ∋ f∗ : u 7→

supx∈H(〈x | u〉− f(x)), and f is uniformly convex at x ∈ dom f if there exists an increasing function

φ : [0,+∞[ → [0,+∞] that vanishes only at 0 such that

(∀y ∈ dom f)(∀α ∈ ]0, 1[) f(αx+(1−α)y)+α(1−α)φ(‖x− y‖) 6 αf(x)+ (1−α)f(y). (1.11)

For every x ∈ H, f + ‖x− ·‖2/2 possesses a unique minimizer, which is denoted by proxfx. We have

proxf = J∂f , where ∂f : H → 2H : x 7→
{
u ∈ H

∣∣ (∀y ∈ H) 〈y − x | u〉+ f(x) 6 f(y)
}

(1.12)

is the subdifferential of f . Let C be a convex subset of H. The indicator function of C is denoted

by ιC and the distance function to C by dC . The relative interior [respectively, the strong relative

interior] of C, i.e., the set of points x ∈ C such that the cone generated by −x + C is a vector

subspace [respectively, closed vector subspace] of H, by riC [respectively, sriC]. See [8, 46] for

background on convex analysis and monotone operators.

2 General algorithm

We start with three preliminary results. The first one is an error-tolerant version of a forward-

backward-forward splitting algorithm originally proposed by Tseng [43, Theorem 3.4(b)].

Lemma 2.1 [13, Theorem 2.5(i)–(ii)] Let K be a real Hilbert space, let P : K → 2K be maximally

monotone, and let Q : K → K be monotone and χ-Lipschitzian for some χ ∈ ]0,+∞[. Suppose that

zer (P + Q) 6= ∅. Let (an)n∈N, (bn)n∈N, and (cn)n∈N be absolutely summable sequences in K, let

w0 ∈ K, let ε ∈ ]0, 1/(χ + 1)[, let (γn)n∈N be a sequence in [ε, (1 − ε)/χ], and set

For n = 0, 1, . . .

sn = wn − γn(Qwn + an)
pn = JγnP sn + bn
qn = pn − γn(Qpn + cn)
wn+1 = wn − sn + qn.

(2.1)

Then
∑

n∈N ‖wn − pn‖2 < +∞ and there exists w ∈ zer (P +Q) such that wn ⇀ w and pn ⇀ w.

Lemma 2.2 [8, Proposition 23.15(ii) and 23.18] Let H be a real Hilbert space, let A : H → 2H

be a maximally monotone operator, let γ ∈ ]0,+∞[, and let x and r be in H. Then Jγ(r+A−1)x =
x− γ(r + Jγ−1A(γ

−1x− r)).

Lemma 2.3 [13, Proposition 2.8] Let H and G be two real Hilbert spaces, let E : H → 2H and

F : G → 2G be maximally monotone, let L ∈ B (H,G), let z ∈ H, and let r ∈ G. Set K = H⊕ G,

{
M : K → 2K : (x,v) 7→ (−z +Ex)× (r + F−1v)

S : K → K : (x,v) 7→ (L∗v,−Lx),
(2.2)
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and
{
P =

{
x ∈ H

∣∣ z ∈ Ex+L∗(F (Lx− r))
}

D =
{
v ∈ G

∣∣ −r ∈ −L(E−1(z −L∗v)) + F−1v
}
.

(2.3)

Then zer (M + S) is a closed convex subset of P×D, and P 6= ∅ ⇔ zer (M + S) 6= ∅ ⇔ D 6= ∅.

The following theorem contains our algorithm for solving Problem 1.1 and states its main asymp-

totic properties. In this primal-dual splitting algorithm, each single-valued operators is used explic-

itly, while each set-valued operators is activated via its resolvent. Approximations in the evaluations

of the operators are tolerated and modeled by absolutely summable error sequences. The algorithm

consists of three main loops, each of which can be implemented on a parallel architecture.

Theorem 2.4 Consider the setting of Problem 1.1. For every i ∈ {1, . . . ,m}, let (a1,i,n)n∈N, (b1,i,n)n∈N,

and (c1,i,n)n∈N be absolutely summable sequences in Hi and, for every k ∈ {1, . . . ,K}, let (a2,k,n)n∈N,

(b2,k,n)n∈N, and (c2,k,n)n∈N be absolutely summable sequences in Gk. Let x1,0 ∈ H1, . . . , xm,0 ∈ Hm,

v1,0 ∈ G1, . . . , vK,0 ∈ GK , let ε ∈ ]0, 1/(β + 1)[, let (γn)n∈N be a sequence in [ε, (1 − ε)/β], and set

For n = 0, 1, . . .

For i = 1, . . . ,m⌊
s1,i,n = xi,n − γn

(
Cixi,n +

∑K
k=1 L

∗
kivk,n + a1,i,n

)

p1,i,n = JγnAi
(s1,i,n + γnzi) + b1,i,n

For k = 1, . . . ,K

s2,k,n = vk,n − γn

(
D−1

k vk,n −
∑m

i=1 Lkixi,n + a2,k,n

)

p2,k,n = s2,k,n − γn
(
rk + Jγ−1

n Bk
(γ−1

n s2,k,n − rk) + b2,k,n
)

q2,k,n = p2,k,n − γn

(
D−1

k p2,k,n −∑m
i=1 Lkip1,i,n + c2,k,n

)

vk,n+1 = vk,n − s2,k,n + q2,k,n
For i = 1, . . . ,m⌊

q1,i,n = p1,i,n − γn

(
Cip1,i,n +

∑K
k=1 L

∗
kip2,k,n + c1,i,n

)

xi,n+1 = xi,n − s1,i,n + q1,i,n.

(2.4)

Then the following hold.

(i) (∀i ∈ {1, . . . ,m}) ∑n∈N ‖xi,n − p1,i,n‖2 < +∞.

(ii) (∀k ∈ {1, . . . ,K}) ∑n∈N ‖vk,n − p2,k,n‖2 < +∞.

(iii) There exist a solution (x1, . . . , xm) to (1.2) and a solution (v1, . . . , vK) to (1.3) such that the

following hold.

(a) (∀i ∈ {1, . . . ,m}) zi −
∑K

k=1 L
∗
kivk ∈ Aixi + Cixi.

(b) (∀k ∈ {1, . . . ,K}) ∑m
i=1 Lkixi − rk ∈ B−1

k vk +D−1
k vk.

(c) (∀i ∈ {1, . . . ,m}) xi,n ⇀ xi and p1,i,n ⇀ xi.

(d) (∀k ∈ {1, . . . ,K}) vk,n ⇀ vk and p2,k,n ⇀ vk.

(e) Suppose that, for some j ∈ {1, . . . ,m}, Aj or Cj is uniformly monotone at xj . Then xj,n →
xj and p1,j,n → xj.
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(f) Suppose that, for some l ∈ {1, . . . ,K}, Bl or Dl is couniformly monotone at vl. Then

vl,n → vl and p2,l,n → vl.

Proof. Let us introduce the Hilbert direct sums

H = H1 ⊕ · · · ⊕ Hm, G = G1 ⊕ · · · ⊕ GK , and K = H⊕ G, (2.5)

and let us denote by x = (xi)16i6m and v = (vk)16k6K generic elements in H and G, respectively.

We also define




A : H → 2H : x 7→
m×
i=1

Aixi

C : H → H : x 7→ (Cixi)16i6m

E = A+C

L : H → G : x 7→
( m∑

i=1

Lkixi

)

16k6K

z = (zi)16i6m

and





B : G → 2G : v 7→
K×
k=1

Bkvk

D : G → 2G : v 7→
K×
k=1

Dkvk

F = B�D

r = (rk)16k6K.

(2.6)

It follows from [8, Proposition 20.22 and 20.23, Corollaries 20.25 and 24.4(i)] that A, B, C, D, E,

and F are maximally monotone. Moreover, L ∈ B (H,G), L∗ : G → H : v 7→ (
∑K

k=1 L
∗
kivk)16i6m,

and

(∀x ∈ H) ‖Lx‖2 =
K∑

k=1

∥∥∥∥
m∑

i=1

Lkixi

∥∥∥∥
2

6 λ‖x‖2. (2.7)

Next, we set





M : K → 2K : (x,v) 7→ (−z +Ex)× (r + F−1v)

P : K → 2K : (x,v) 7→ (−z +Ax)× (r +B−1v)

Q : K → K : (x,v) 7→
(
Cx+L∗v,D−1v −Lx

)

R : K → K : (x,v) 7→ (Cx,D−1v)

S : K → K : (x,v) 7→ (L∗v,−Lx).

(2.8)

Note that

zer (P +Q) =
{
(x,v) ∈ H⊕ G

∣∣ z −L∗v ∈ Ax+Cx and Lx− r ∈ B−1v +D−1v
}
. (2.9)

Furthermore, in view of [8, Propositions 20.22 and 20.23], P is maximally monotone, and

Lemma 2.2 and [8, Proposition 23.16] yield

(∀γ ∈ ]0,+∞[)(∀x ∈ H)(∀v ∈ G) JγP (x,v) =
(
JγA1

(x1 + γz1), . . . , JγAm(xm + γzm),

v1 − γ
(
r1 + Jγ−1B1

(γ−1v1 − r1)
)
, . . . , vK − γ

(
rK + Jγ−1BK

(γ−1vK − rK)
))

. (2.10)

On the other hand, since C and D−1 are monotone and Lipschitzian with, respectively, constants

µ = max16i6mµi and ν = max16k6Kνk, R is monotone and Lipschitzian with constant max{µ, ν}.

In addition, it follows from [13, Proposition 2.7(ii)] and (2.7) that S ∈ B (K,K) is a skew (hence

monotone) operator with ‖S‖ = ‖L‖ 6
√
λ. Altogether, since Q = R+S, we derive from (1.1) that

P is maximally monotone and Q is monotone and β-Lipschitzian. (2.11)
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Let us call P and D the sets of solutions to (1.2) and (1.3), respectively. It follows from (2.6) that

{
P =

{
x ∈ H

∣∣ z ∈ Ex+L∗(F (Lx− r))
}

D =
{
v ∈ G

∣∣ −r ∈ −L(E−1(z −L∗v)) + F−1v
}
.

(2.12)

Hence, since P 6= ∅ by assumption, we deduce from Lemma 2.3 that

∅ 6= zer (M + S) = zer (P +Q) ⊂ P×D. (2.13)

Thus, to solve Problem 1.1, it is enough to find a zero of P +Q. For every n ∈ N, let us set





wn = (x1,n, . . . , xm,n, v1,n, . . . , vK,n)

sn = (s1,1,n, . . . , s1,m,n, s2,1,n, . . . , s2,K,n)

pn = (p1,1,n, . . . , p1,m,n, p2,1,n, . . . , p2,K,n)

qn = (q1,1,n, . . . , q1,m,n, q2,1,n, . . . , q2,K,n)

(2.14)

and




an = (a1,1,n, . . . , a1,m,n, a2,1,n, . . . , a2,K,n)

bn = (b1,1,n, . . . , b1,m,n,−γnb2,1,n, . . . ,−γnb2,K,n)

cn = (c1,1,n, . . . , c1,m,n, c2,1,n, . . . , c2,K,n).

(2.15)

Then, using (2.6), (2.8), and (2.10), we see that (2.4) reduces to (2.1). Moreover, our assumptions

and (2.5) imply that (an)n∈N, (bn)n∈N, and (cn)n∈N are absolutely summable sequences in K. Hence,

it follows from (2.11), (2.13), and Lemma 2.1 that
∑

n∈N ‖wn − pn‖2 < +∞ and that there exists

w ∈ zer (P +Q) such that wn ⇀ w and pn ⇀ w. Upon setting w = (x1, . . . , xm, v1, . . . , vK) and

appealing to (2.5) and (2.9), we thus obtain assertions (i), (ii), and (iii)(a)–(iii)(d).

(iii)(e): Let us introduce the variables

(∀i ∈ {1, . . . ,m})(∀n ∈ N)





s̃1,i,n = xi,n − γn

(
Cixi,n +

K∑

k=1

L∗
kivk,n

)

p̃1,i,n = JγnAi
(s̃1,i,n + γnzi)

(2.16)

and

(∀k ∈ {1, . . . ,K})(∀n ∈ N)





s̃2,k,n = vk,n − γn

(
D−1

k vk,n −
m∑

i=1

Lkixi,n

)

p̃2,k,n = s̃2,k,n − γn

(
rk + Jγ−1

n Bk
(γ−1

n s̃2,k,n − rk)
)
.

(2.17)

It follows from (2.4) that

(∀i ∈ {1, . . . ,m})(∀n ∈ N) ‖s1,i,n − s̃1,i,n‖ = γn‖a1,i,n‖ 6 β−1‖a1,i,n‖. (2.18)

Hence, by virtue of the nonexpansiveness of the resolvents [8, Proposition 23.7], we have

(∀i ∈ {1, . . . ,m})(∀n ∈ N) ‖p1,i,n − p̃1,i,n‖ = ‖JγnAi
(s1,i,n + γnzi) + b1,i,n−JγnAi

(s̃1,i,n + γnzi)‖
6 ‖s1,i,n − s̃1,i,n‖+ ‖b1,i,n‖
6 β−1‖a1,i,n‖+ ‖b1,i,n‖. (2.19)
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In turn, since, for every i ∈ {1, . . . ,m}, (a1,i,n)n∈N and (b1,i,n)n∈N are absolutely summable, we get

(∀i ∈ {1, . . . ,m}) s1,i,n − s̃1,i,n → 0 and p1,i,n − p̃1,i,n → 0. (2.20)

Likewise, we derive from (2.4) and (2.17) that

(∀k ∈ {1, . . . ,K}) s2,k,n − s̃2,k,n → 0 and p2,k,n − p̃2,k,n → 0. (2.21)

On the other hand, we deduce from (iii)(a) that

(∀i ∈ {1, . . . ,m})(∃ui ∈ Hi) ui ∈ Aixi and zi = ui +
K∑

k=1

L∗
kivk + Cixi, (2.22)

and from (iii)(b) that

(∀k ∈ {1, . . . ,K}) vk ∈ Bk

( m∑

i=1

Lkixi − rk −D−1
k vk

)
. (2.23)

In addition, (2.16) yields

(∀i ∈ {1, . . . ,m})(∀n ∈ N)
xi,n − p̃1,i,n

γn
−

K∑

k=1

L∗
kivk,n − Cixi,n + zi ∈ Aip̃1,i,n, (2.24)

while (2.17) yields

(∀k ∈ {1, . . . ,K})(∀n ∈ N) p̃2,k,n ∈ Bk

(
vk,n − p̃2,k,n

γn
+

m∑

i=1

Lkixi,n − rk −D−1
k vk,n

)
. (2.25)

Now, let us set

(∀n ∈ N) δn =

K∑

k=1

(
1

ε
+ νk

)
‖vk,n − p̃2,k,n‖ ‖p̃2,k,n − vk‖ and (∀i ∈ {1, . . . ,m})

αi,n = ‖p̃1,i,n − xi,n‖
(
1

ε
‖p̃1,i,n − xi‖+ µi‖xi,n − xi‖+

K∑

k=1

‖Lki‖ ‖vk,n − vk‖
)
. (2.26)

It follows from (i), (ii), (iii)(c), (iii)(d), (2.20), and (2.21) that

δn → 0 and (∀i ∈ {1, . . . ,m}) αi,n → 0. (2.27)

Using the Cauchy-Schwarz inequality, the Lipschitz-continuity and the monotonicity of the operators

(Ci)16i6m, (2.22), (2.24), and the monotonicity of the operators (Ai)16i6m, we obtain

(∀i ∈ {1, . . . ,m})(∀n ∈ N) αi,n +

〈
xi,n − xi

∣∣∣∣
K∑

k=1

L∗
ki(vk − vk,n)

〉
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> ‖p̃1,i,n − xi,n‖
(
ε−1‖p̃1,i,n − xi‖+ ‖Cixi,n − Cixi‖

)
+

〈
p̃1,i,n − xi,n

∣∣∣∣
K∑

k=1

L∗
ki(vk − vk,n)

〉

+

〈
xi,n − xi

∣∣∣∣
K∑

k=1

L∗
ki(vk − vk,n)

〉

= ‖p̃1,i,n − xi,n‖
(
ε−1‖p̃1,i,n − xi‖+ ‖Cixi,n − Cixi‖

)
+

〈
p̃1,i,n − xi

∣∣∣∣
K∑

k=1

L∗
ki(vk − vk,n)

〉

>

〈
p̃1,i,n − xi

∣∣∣∣
xi,n − p̃1,i,n

γn
+

K∑

k=1

L∗
ki(vk − vk,n)

〉
+ 〈p̃1,i,n − xi,n | Cixi − Cixi,n〉

=

〈
p̃1,i,n − xi

∣∣∣∣
xi,n − p̃1,i,n

γn
−

K∑

k=1

L∗
kivk,n −Cixi,n +

K∑

k=1

L∗
kivk + Cixi

〉

+ 〈xi,n − xi | Cixi,n − Cixi〉

=

〈
p̃1,i,n − xi

∣∣∣∣
xi,n − p̃1,i,n

γn
−

K∑

k=1

L∗
kivk,n −Cixi,n + zi − ui

〉

+ 〈xi,n − xi | Cixi,n − Cixi〉 (2.28)

>

〈
p̃1,i,n − xi

∣∣∣∣
(
xi,n − p̃1,i,n

γn
−

K∑

k=1

L∗
kivk,n − Cixi,n + zi

)
− ui

〉
(2.29)

> 0. (2.30)

On the other hand, since the operators (D−1
k )16k6K are Lipschitzian and monotone, and since the

operators (Bk)16k6K are monotone, we deduce from (2.26), (2.23), and (2.25) that

(∀l ∈ {1. . . . ,K})(∀n ∈ N) δn +
m∑

i=1

〈
xi,n − xi

∣∣∣∣
K∑

k=1

L∗
ki(p̃2,k,n − vk)

〉

>

K∑

k=1

〈
vk,n − p̃2,k,n

γn
+D−1

k p̃2,k,n −D−1
k vk,n +

m∑

i=1

Lki(xi,n − xi)

∣∣∣∣ p̃2,k,n − vk

〉

=

K∑

k=1

〈(
vk,n−p̃2,k,n

γn
+

m∑

i=1

Lkixi,n−rk−D−1
k vk,n

)
−
( m∑

i=1

Lkixi−rk−D−1
k vk

) ∣∣∣∣ p̃2,k,n−vk

〉

+

K∑

k=1

〈
D−1

k p̃2,k,n −D−1
k vk | p̃2,k,n − vk

〉
(2.31)

>

〈(
vl,n − p̃2,l,n

γn
+

m∑

i=1

Llixi,n − rl −D−1
l vl,n

)
−
( m∑

i=1

Llixi − rl −D−1
l vl

) ∣∣∣∣ p̃2,l,n − vl

〉

+
〈
D−1

l p̃2,l,n −D−1
l vl | p̃2,l,n − vl

〉
(2.32)

>

〈(
vl,n − p̃2,l,n

γn
+

m∑

i=1

Llixi,n − rl −D−1
l vl,n

)
−
( m∑

i=1

Llixi − rl −D−1
l vl

) ∣∣∣∣ p̃2,l,n − vl

〉

(2.33)

> 0. (2.34)

We consider two cases.
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• If Aj is uniformly monotone at xj , then, in view of (2.29), (2.22), (2.24), and (1.8), there

exists an increasing function φAj
: [0,+∞[ → [0,+∞] that vanishes only at 0 such that

(∀n ∈ N) αj,n +

〈
xj,n − xj

∣∣∣∣
K∑

k=1

L∗
kj(vk − vk,n)

〉
> φAj

(‖p̃1,j,n − xj‖). (2.35)

Combining (2.34), (2.30), and (2.35) yields

(∀n ∈ N) δn+

m∑

i=1

αi,n+

m∑

i=1

〈
xi,n − xi

∣∣∣∣
K∑

k=1

L∗
ki(p̃2,k,n − vk,n)

〉
> φAj

(‖p̃1,j,n−xj‖). (2.36)

It follows from (2.27), (ii), (iii)(c), (2.21), and [8, Lemma 2.41(iii)] that φAj
(‖p̃1,j,n−xj‖) → 0

and, in turn, that p̃1,j,n → xj . In view of (i) and (2.20), we get p1,j,n → xj and xj,n → xj.

• If Cj is uniformly monotone at xj , then we derive from (2.34), (2.28), and (2.30) that there

exists an increasing function φCj
: [0,+∞[ → [0,+∞] that vanishes only at 0 such that

(∀n ∈ N) δn +
m∑

i=1

αi,n +
m∑

i=1

〈
xi,n − xi

∣∣∣∣
K∑

k=1

L∗
ki(p̃2,k,n − vk,n)

〉

> φCj
(‖xj,n − xj‖). (2.37)

This implies that φCj
(‖xj,n − xj‖) → 0 and hence that xj,n → xj . Finally, (i) yields p1,j,n → xj.

(iii)(f): We consider two cases.

• If Bl is couniformly monotone at vl, then (2.33), (2.23), and (2.25) imply that there exists an

increasing function φB−1

l
: [0,+∞[ → [0,+∞] that vanishes only at 0 such that

(∀n ∈ N) δn +

m∑

i=1

〈
xi,n − xi

∣∣∣∣
K∑

k=1

L∗
ki(p̃2,k,n − vk)

〉

>

〈(
vl,n−p̃2,l,n

γn
+

m∑

i=1

Llixi,n−rl −D−1
l vl,n

)
−

( m∑

i=1

Llixi−rl −D−1
l vl

) ∣∣∣∣ p̃2,l,n−vl

〉

> φB−1

l
(‖p̃2,l,n − vl‖). (2.38)

Combining this with (2.30) yields

(∀n ∈ N) δn+
m∑

i=1

αi,n+
m∑

i=1

〈
xi,n − xi

∣∣∣∣
K∑

k=1

L∗
ki(p̃2,k,n − vk,n)

〉
> φB−1

l
(‖p̃2,l,n−vl‖). (2.39)

Hence, using (2.27), (ii), (iii)(c), (2.21), and [8, Lemma 2.41(iii)], we get φB−1

l
(‖p̃2,l,n−vl‖) →

0 and, in turn, p̃2,l,n → vl. Using to (2.21) and (ii), we conclude that p2,l,n → vl and vl,n → vl.

• If Dl is couniformly monotone at vl, then it follows from (2.32) and (2.34) that there exists an

increasing function φD−1

l
: [0,+∞[ → [0,+∞] that vanishes only at 0 such that

(∀n ∈ N) δn +

m∑

i=1

〈
xi,n − xi

∣∣∣∣
K∑

k=1

L∗
ki(p̃2,k,n − vk)

〉
>

〈
D−1

l p̃2,l,n −D−1
l vl | p̃2,l,n − vl

〉

> φD−1

l
(‖p̃2,l,n − vl‖). (2.40)
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Thus, (2.30) yields

(∀n ∈ N) δn+

m∑

i=1

αi,n+

m∑

i=1

〈
xi,n − xi

∣∣∣∣
K∑

k=1

L∗
ki(p̃2,k,n − vk,n)

〉
> φD−1

l
(‖p̃2,l,n−vl‖), (2.41)

and we conclude as above.

Remark 2.5 When m = 1, Theorem 2.4 specializes to [19, Theorem 3.1]. Our proof of Theo-

rem 2.4(i)–(iii)(d) hinges on a self-contained application of Lemmas 2.3 and 2.1 in the primal-dual

product space K of (2.5). Alternatively, these results could be obtained as an application of [19,

Theorem 3.1] using the product space H of (2.5) as a primal space. This strategy, however, would

not allow us to recover the strong convergence results of Theorem 2.4(iii)(e).

Remark 2.6 It follows from the Cauchy-Schwarz inequality that, for every (xi)16i6m ∈ ⊕m
i=1 Hi,

K∑

k=1

∥∥∥∥
m∑

i=1

Lkixi

∥∥∥∥
2

6

K∑

k=1

( m∑

i=1

‖Lki‖ ‖xi‖
)2

6

K∑

k=1

( m∑

i=1

‖Lki‖2
)( m∑

i=1

‖xi‖2
)
. (2.42)

Hence, in general, one can use λ =
∑K

k=1

∑m
i=1 ‖Lki‖2 in (1.1). However, as will be seen in subse-

quent sections, this bound can be improved when the operator L of (2.6) has a special structure.

In the remainder the paper, we highlight a few instantiations of Theorem 2.4 that illustrate the

variety of problems to which it can be applied and which are not explicitly solvable via existing

techniques.

3 Inclusions involving general parallel sums

The first special case of Problem 1.1 we feature is an extension of a univariate inclusion problem

investigated in [19], which involves parallel sums with monotone operators admitting Lipschitzian

inverses. In the following formulation, we lift this restriction.

Problem 3.1 Let H be a real Hilbert space, let K1, K2, and K be integers such that 0 6 K1 6 K2 6

K > 1, let z ∈ H, let A : H → 2H be maximally monotone, and let C : H → H be monotone and

µ-Lipschitzian for some µ ∈ [0,+∞[. For every integer k ∈ {1, . . . ,K}, let Gk be a real Hilbert space,

let rk ∈ Gk, let Bk : Gk → 2Gk and Sk : Gk → 2Gk be maximally monotone, and let Lk ∈ B (H,Gk);
moreover, if K1 + 1 6 k 6 K2, Sk : Gk → Gk is βk-Lipschitzian for some βk ∈ [0,+∞[, and, if

K2 + 1 6 k 6 K, S−1
k : Gk → Gk is βk-Lipschitzian for some βk ∈ [0,+∞[. It is assumed that

β = max
{
µ, βK1+1, . . . , βK

}
+

√√√√1 +

K∑

k=1

‖Lk‖2 > 0, (3.1)

and that the inclusion

find x ∈ H such that z ∈ Ax+

K∑

k=1

L∗
k

(
(Bk �Sk)(Lkx− rk)

)
+ Cx (3.2)
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possesses at least one solution. Solve (3.2) together with the dual problem

find v1 ∈ G1, . . . , vK ∈ GK such that

(∀k ∈ {1, . . . ,K}) − rk ∈ −Lk

(
(A+ C)−1

(
z −

K∑

l=1

L∗
l vl

))
+B−1

k vk + S−1
k vk. (3.3)

Proposition 3.2 Consider the setting of Problem 3.1. Let (a1,1,n)n∈N, (b1,1,n)n∈N, and (c1,1,n)n∈N be

absolutely summable sequences in H. For every integer k ∈ {1, . . . ,K}, let (a2,k,n)n∈N, (b2,k,n)n∈N, and

(c2,k,n)n∈N be absolutely summable sequences in Gk; moreover, if 1 6 k 6 K1, let (b1,k+1,n)n∈N be an

absolutely summable sequence in Gk, and, if K1 + 1 6 k 6 K2 , let (a1,k+1,n)n∈N and (c1,k+1,n)n∈N be

absolutely summable sequences in Gk. Let x0 ∈ H, y1,0 ∈ G1, . . . , yK2,0 ∈ GK2
, v1,0 ∈ G1, . . . , and

vK,0 ∈ GK , let ε ∈ ]0, 1/(β + 1)[, let (γn)n∈N be a sequence in [ε, (1 − ε)/β], and set

For n = 0, 1, . . .

s1,1,n = xn − γn
(
Cxn +

∑K
k=1 L

∗
kvk,n + a1,1,n

)

p1,1,n = JγnA(s1,1,n + γnz) + b1,1,n
If K1 6= 0, for k = 1, . . . ,K1

s1,k+1,n = yk,n + γnvk,n
p1,k+1,n = JγnSk

s1,k+1,n + b1,k+1,n

s2,k,n = vk,n − γn
(
yk,n − Lkxn + a2,k,n

)

p2,k,n = s2,k,n − γn
(
rk + Jγ−1

n Bk
(γ−1

n s2,k,n − rk) + b2,k,n
)

q2,k,n = p2,k,n − γn
(
p1,k+1,n − Lkp1,1,n + c2,k,n

)

vk,n+1 = vk,n − s2,k,n + q2,k,n
If K1 6= K2, for k = K1 + 1, . . . ,K2

s1,k+1,n = yk,n − γn
(
Skyk,n − vk,n + a1,k+1,n

)

p1,k+1,n = s1,k+1,n

s2,k,n = vk,n − γn
(
yk,n − Lkxn + a2,k,n

)

p2,k,n = s2,k,n − γn
(
rk + Jγ−1

n Bk
(γ−1

n s2,k,n − rk) + b2,k,n
)

q2,k,n = p2,k,n − γn
(
p1,k+1,n − Lkp1,1,n + c2,k,n

)

vk,n+1 = vk,n − s2,k,n + q2,k,n
If K2 6= K, for k = K2 + 1, . . . ,K

s2,k,n = vk,n − γn
(
S−1
k vk,n − Lkxn + a2,k,n

)

p2,k,n = s2,k,n − γn
(
rk + Jγ−1

n Bk
(γ−1

n s2,k,n − rk) + b2,k,n
)

q2,k,n = p2,k,n − γn
(
S−1
k p2,k,n − Lkp1,1,n + c2,k,n

)

vk,n+1 = vk,n − s2,k,n + q2,k,n
q1,1,n = p1,1,n − γn

(
Cp1,1,n +

∑K
k=1 L

∗
kp2,k,n + c1,1,n

)

xn+1 = xn − s1,1,n + q1,1,n
If K1 6= 0, for k = 1, . . . ,K1⌊

q1,k+1,n = p1,k+1,n + γnp2,k,n
yk,n+1 = yk,n − s1,k+1,n + q1,k+1,n

If K1 6= K2, for k = K1 + 1, . . . ,K2⌊
q1,k+1,n = p1,k+1,n − γn

(
Skp1,k+1,n − p2,k,n + c1,k+1,n

)

yk,n+1 = yk,n − s1,k+1,n + q1,k+1,n.

(3.4)

Then the following hold for some solution x to (3.2) and some solution (v1, . . . , vK) to (3.3).

(i) xn ⇀ x and (∀k ∈ {1, . . . ,K}) vk,n ⇀ vk.

12



(ii) Suppose that A or C is uniformly monotone at x. Then xn → x.

(iii) Suppose that, for some l ∈ {1, . . . ,K}, Bl is couniformly monotone at vl. Then vl,n → vl.

(iv) Suppose that K2 6= K and that, for some l ∈ {K2 + 1, . . . ,K}, Sl is couniformly monotone at vl.
Then vl,n → vl.

Proof. We assume that K2 6= 0 and consider the auxiliary problem

find x ∈ H, y1 ∈ G1, . . . , yK2
∈ GK2

such that




z ∈ Ax+

K2∑

k=1

L∗
k

(
Bk(Lkx− yk − rk)

)
+

K∑

k=K2+1

L∗
k

(
(Bk �Sk)(Lkx− rk)

)
+ Cx

0 ∈ S1y1 −B1(L1x− y1 − r1)
...

0 ∈ SK2
yK2

−BK2
(LK2

x− yK2
− rK2

)

(3.5)

together with the dual problem (3.3) (if K2 = 0, (3.5) should be replaced by (3.2) and the resulting

simplifications in the proof are straightforward). Let us show that solving the primal-dual problem

(3.5)/(3.3) is a special case of Problem 1.1 with





m = K2 + 1

H1 = H
A1 = A

C1 = C

µ1 = µ

x1 = x

z1 = z,

(∀k ∈ {1, . . . ,K2})





Hk+1 = Gk

Ak+1 =

{
Sk, if 1 6 k 6 K1;

0, if K1 + 1 6 k 6 K2

Ck+1 =

{
0, if 1 6 k 6 K1;

Sk, if K1 + 1 6 k 6 K2

µk+1 =

{
0, if 1 6 k 6 K1;

βk, if K1 + 1 6 k 6 K2

xk+1 = yk

zk+1 = 0,

(3.6)

and

(∀k ∈ {1, . . . ,K})





Dk =

{
{0}−1, if 1 6 k 6 K2;

Sk, if K2 + 1 6 k 6 K

νk+1 =

{
0, if 1 6 k 6 K2;

βk, if K2 + 1 6 k 6 K

Lk1 = Lk

(∀i ∈ {2, . . . ,K2 + 1}) Lki =

{
−Id , if i = k + 1;

0, otherwise.

(3.7)

First, we note that, in this setting, (1.2) reduces to (3.5), and (1.3) to (3.3). Now define H and

G as in (2.5), let x ∈ H, let (yk)16k6K2
∈

⊕K2

k=1 Gk, set (xi)16i6m = (x, y1, . . . , yK2
) ∈ H, set

y = (y1, . . . , yK2
, 0, . . . , 0) ∈ G, and set λ = 1 +

∑K2

k=1 ‖Lk‖2. Then, using the Cauchy-Schwarz
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inequality in R
2,

K∑

k=1

∥∥∥∥
m∑

i=1

Lkixi

∥∥∥∥
2

= ‖(Lkx)16k6K2
− y‖2 6

(
‖y‖+ ‖(Lkx)16k6K2

‖
)2

6


‖y‖+

√√√√
K2∑

k=1

‖Lk‖2 ‖x‖




2

6

(
1 +

K2∑

k=1

‖Lk‖2
)(

‖y‖2 + ‖x‖2
)
= λ

m∑

i=1

‖xi‖2. (3.8)

Thus (1.1) is a special case of specializes to (3.1). On the other hand, by assumption, (3.2) has a

solution, say x. Therefore, there exist v1 ∈ G1, . . . , vK2
∈ GK2

such that





z ∈ Ax+

K2∑

k=1

L∗
kvk +

K∑

k=K2+1

L∗
k

(
(Bk �Sk)(Lkx− rk)

)
+ Cx

(∀k ∈ {1, . . . ,K2}) vk ∈ (Bk �Sk)(Lkx− rk).

(3.9)

Therefore, in view of (1.9), there exist y1 ∈ G1, . . . , yK2
∈ GK2

such that





z ∈ Ax+

K2∑

k=1

L∗
kvk +

K∑

k=K2+1

L∗
k

(
(Bk �Sk)(Lkx− rk)

)
+ Cx

(∀k ∈ {1, . . . ,K2}) yk ∈ S−1
k vk and Lkx− yk − rk ∈ B−1

k vk,

(3.10)

which implies that





z ∈ Ax+

K2∑

k=1

L∗
kvk +

K∑

k=K2+1

L∗
k

(
(Bk �Sk)(Lkx− rk)

)
+ Cx

(∀k ∈ {1, . . . ,K2}) vk ∈ Skyk and vk ∈ Bk(Lkx− yk − rk),

(3.11)

and therefore that




z ∈ Ax+

K2∑

k=1

L∗
k

(
Bk(Lkx− yk − rk)

)
+

K∑

k=K2+1

L∗
k

(
(Bk �Sk)(Lkx− rk)

)
+ Cx

(∀k ∈ {1, . . . ,K2}) 0 ∈ Skyk −Bk(Lkx− yk − rk).

(3.12)

This shows that (3.5) possesses a solution. Next, upon defining

(∀n ∈ N) x1,n = xn and (∀k ∈ {1, . . . ,K2})





xk+1,n = yk,n;

a1,k+1,n = 0, if 1 6 k 6 K1;

b1,k+1,n = 0, if K1 + 1 6 k 6 K2;

c1,k+1,n = 0, if 1 6 k 6 K1,

(3.13)

we see that (2.4) specializes to (3.4). Hence, in view of (3.6)–(3.7) and Theorem 2.4(iii)(a)–(iii)(d),

there exist a solution (x, y1, . . . , yK2
) to (3.5) and a solution (v1, . . . , vK) to (3.3) such that

xn ⇀ x and (∀k ∈ {1, . . . ,K}) vk,n ⇀ vk, (3.14)
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with

z −
K∑

k=1

L∗
kvk ∈ Ax+ Cx, (∀k ∈ {1, . . . ,K2})

{
Lkx− yk − rk ∈ B−1

k vk

vk ∈ Skyk,

and (∀k ∈ {K2 + 1, . . . ,K}) Lkx− rk ∈ B−1
k vk + S−1

k vk. (3.15)

Since the strong convergence claims (ii)–(iv) are immediate consequences of Theorem 2.4(iii)(e)–

(iii)(f), it remains to show that x solves (3.2). We derive from (3.15) that, for every k ∈ {1, . . . ,K2},

Lkx−yk−rk ∈ B−1
k vk and yk ∈ S−1

k vk, and, for every k ∈ {K2+1, . . . ,K}, Lkx−rk ∈ B−1
k vk+S−1

k vk.

Altogether,

(∀k ∈ {1, . . . ,K}) Lkx− rk ∈
(
B−1

k + S−1
k

)
vk (3.16)

and, therefore,

K∑

k=1

L∗
kvk ∈

K∑

k=1

L∗
k

((
B−1

k + S−1
k

)−1
(Lkx− rk)

)
=

K∑

k=1

L∗
k

(
(Bk �Sk)(Lkx− rk)

)
. (3.17)

Thus, since (3.15) also asserts that z −∑K
k=1 L

∗
kvk ∈ Ax+ Cx, we conclude that x solves (3.2).

Remark 3.3 Problem 3.1 encompasses more general scenarios than that of [19], which corresponds

to the case when K1 = K2 = 0, i.e., when all the operators (D−1
k )16k6K are restricted to be Lips-

chitzian. This extension has been made possible by reformulating the original primal problem (3.2),

which involves only one variable, as the extended primal problem (3.5), in which we added K2

auxiliary variables. We also note that Algorithm (3.4) uses all the single-valued operators present in

Problem 3.1, including (Sk)K1+16k6K2
and (S−1

k )K2+16k6K , through explicit steps.

4 Relaxation of inconsistent common zero problems

A common problem in nonlinear analysis is to find a common zero of maximally monotone operators

A and (Bk)16k6K acting on a real Hilbert space H [16, 22, 32], i.e.,

find x ∈ H such that 0 ∈ Ax ∩
K⋂

k=1

Bkx. (4.1)

In many situations, this problem may be inconsistent (see [18] and the references therein) and it

must be approximated. We study the following relaxation of (4.1), together with its dual problem.

Problem 4.1 Let H be a real Hilbert space, let K be a strictly positive integer, let A : H → 2H be

maximally monotone, and, for every k ∈ {1, . . . ,K}, let Sk : H → 2H be a maximally monotone

operator such that S−1
k is at most single-valued and strictly monotone, with S−1

k 0 = {0}. It is

assumed that the inclusion

find x ∈ H such that 0 ∈ Ax+

K∑

k=1

(Bk �Sk)x (4.2)
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possesses at least one solution. Solve (4.2) together with the dual problem

find u1 ∈ H, . . . , uK ∈ H such that

(∀k ∈ {1, . . . ,K}) 0 ∈ −A−1

(
−

K∑

l=1

ul

)
+ B−1

k uk + S−1
k uk. (4.3)

First, we justify the fact that (4.2) is indeed a relaxation of (4.1).

Proposition 4.2 In the setting of Problem 4.1, set Z = (zerA)∩⋂K
k=1 zerBk and suppose that Z 6= ∅.

Then the set of solutions to the primal problem (4.2) is Z.

Proof. It is clear that every point in Z solves (4.2). Conversely, let x be a solution to (4.2) and let

z ∈ Z. We first note that the operators (Bk �Sk)16k6K are at most single-valued. Indeed, let k ∈
{1, . . . ,K} and let (y, p) and (y, q) be in gra(Bk �Sk). Then we must show that p = q. We have p =
(Bk �Sk)y ⇔ y ∈ B−1

k p+S−1
k p⇔ y−S−1

k p ∈ B−1
k p. Likewise, y−S−1

k q ∈ B−1
k q and, by monotonicity

of Bk, −
〈
p− q | S−1

k p− S−1
k q

〉
=

〈
p− q | (y − S−1

k p)− (y − S−1
k q)

〉
> 0. Consequently, by strict

monotonicity of S−1
k ,

〈
p− q | S−1

k p− S−1
k q

〉
= 0 and p = q. Hence, since x solves (4.2), there exists

(pk)06k6K ∈ HK+1 such that

K∑

k=0

pk = 0, p0 ∈ Ax, and (∀k ∈ {1, . . . ,K}) pk = (Bk �Sk)x. (4.4)

Therefore, we have

p0 ∈ Ax, 0 ∈ Az, and (∀k ∈ {1, . . . ,K}) pk ∈ Bk

(
x− S−1

k pk
)

and 0 ∈ Bkz, (4.5)

and, by monotonicity of the operators A and (Bk)16k6K ,

〈x− z | p0〉 > 0 and (∀k ∈ {1, . . . ,K})
〈
x− S−1

k pk − z | pk
〉
> 0. (4.6)

Hence, since
∑K

k=0 pk = 0, it follows from the monotonicity of the operators (S−1
k )16k6K that

0 > −
K∑

k=1

〈
pk − 0 | S−1

k pk − S−1
k 0

〉

=

K∑

k=0

〈x− z | pk〉 −
K∑

k=1

〈
S−1
k pk | pk

〉

= 〈x− z | p0〉+
K∑

k=1

〈
x− S−1

k pk − z | pk
〉

> 0. (4.7)

Thus,
∑K

k=1

〈
pk − 0 | S−1

k pk − S−1
k 0

〉
= 0 and, therefore,

(∀k ∈ {1, . . . ,K})
〈
pk − 0 | S−1

k pk − S−1
k 0

〉
= 0. (4.8)

The strict monotonicity of the operators (S−1
k )16k6K implies that for every k ∈ {1, . . . ,K} pk = 0,

i.e., x ∈ B−1
k pk + S−1

k pk = B−1
k 0 + S−1

k 0 = B−1
k 0. In turn, p0 = −

∑K
k=1 pk = 0, i.e., x ∈ A−10.

Altogether, x ∈ Z.
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Remark 4.3 Suppose that in Problem 4.1 we set, for every k ∈ {1, . . . ,K}, Sk = γ−1
k Id where γk ∈

]0,+∞[, i.e., Bk �Sk = γkBk is the Yosida approximation of Bk of index γk [8, Proposition 23.6(ii)].

Then (4.2) reduces to the setting investigated in [17, Section 6.3], namely

find x ∈ H such that 0 ∈ Ax+
K∑

k=1

γkBkx, (4.9)

which itself covers the frameworks of [10, 18, 35, 37] and the references therein. In this case,

Proposition 4.2 specializes to [17, Proposition 6.10]. Now let us further specialize to the case when

H = R
N , A = 0, and

(∀k ∈ {1, . . . ,K})





γk = 1

Bk : x 7→
{

span {uk}, if 〈x | uk〉 = ρk;

∅, if 〈x | uk〉 6= ρk,

where





uk ∈ R
N

‖uk‖ = 1

ρk ∈ R.

(4.10)

Then (4.1) amounts to solving the system of linear equalities

find x ∈ R
N such that (∀k ∈ {1, . . . ,K}) 〈x | uk〉 = ρk, (4.11)

whereas (4.2) amounts to solving the least-squares problem

minimize
x∈RN

m∑

k=1

|〈x | uk〉 − ρk|2. (4.12)

The idea of relaxing (4.11) to (4.12) is due to Legendre [31] and Gauss [26].

To solve Problem 4.1, we use Proposition 3.2 to derive the following algorithm.

Proposition 4.4 Consider the setting of Problem 4.1. Let (b1,1,n)n∈N and, for every k ∈ {1, . . . ,K},

(b1,k+1,n)n∈N and (b2,k,n)n∈N be absolutely summable sequences in H. Let x0 ∈ H, (yk,0)16k6K ∈ HK ,

(vk,0)16k6K ∈ HK , and ε ∈ ]0, 1/(
√
K + 1+1)[ , let (γn)n∈N be a sequence in [ε, (1− ε)/

√
K + 1], and

set

For n = 0, 1, . . .

p1,1,n = JγnA
(
xn − γn

∑K
k=1 vk,n

)
+ b1,1,n

For k = 1, . . . ,K

p1,k+1,n = JγnSk
(yk,n + γnvk,n) + b1,k+1,n

s2,k,n = vk,n − γn(yk,n − xn)
p2,k,n = s2,k,n − γn

(
Jγ−1

n Bk
(γ−1

n s2,k,n) + b2,k,n
)

vk,n+1 = vk,n − s2,k,n + p2,k,n − γn
(
p1,k+1,n − p1,1,n

)

xn+1 = p1,1,n + γn
∑K

k=1(vk,n − p2,k,n)
For k = 1, . . . ,K⌊
yk,n+1 = p1,k+1,n + γn(p2,k,n − vk,n)

(4.13)

Then the following hold for some solution x to (4.2) and some solution (v1, . . . , vK) to (4.3).

(i) xn ⇀ x and (∀k ∈ {1, . . . ,K}) vk,n ⇀ vk.

(ii) Suppose that A is uniformly monotone at x. Then xn → x.
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(iii) Suppose that, for some l ∈ {1, . . . ,K}, Bl is couniformly monotone at vl. Then vl,n → vl.

Proof. Problem 4.1 is a special case of Problem 3.1 with K1 = K2 = K, z = 0, C = 0, µ = 0,

β =
√
K + 1, and (∀k ∈ {1, . . . ,K}) Gk = H, Lk = Id , and rk = 0. In this context, (3.4) can be

reduced to (4.13), and the claims therefore follow from Proposition 3.2.

Remark 4.5 For brevity, we have presented an algorithm for solving Problem 4.1 in its general

form. However, if some of the operators (Sk)16k6K or their inverses are Lipschitzian, we can apply

Proposition 3.2 with K1 6= K and/or K2 6= K to obtain a more efficient algorithm in which each

Lipschitzian operator is used through an explicit step, rather than through its resolvent.

5 Multivariate structured convex minimization problems

We derive from Theorem 2.4 a primal-dual minimization algorithm for multivariate convex mini-

mization problems involving infimal convolutions and composite functions.

Problem 5.1 Let m and K be strictly positive integers, let (Hi)16i6m and (Gk)16k6K be real Hilbert

spaces, let (µi)16i6m ∈ [0,+∞[m, and let (νk)16i6K ∈ ]0,+∞[K . For every i ∈ {1, . . . ,m}
and k ∈ {1, . . . ,K}, let hi : Hi → R be convex and differentiable and such that ∇hi is µi-

Lipschitzian, let fi ∈ Γ0(Hi), let gk ∈ Γ0(Gk), let ℓk ∈ Γ0(Gk) be 1/νk-strongly convex, let zi ∈ Hi,

let rk ∈ Gk, and let Lki ∈ B (Hi,Gk). Set β = max
{

max
16i6m

µi, max
16k6K

νk

}
+

√
λ > 0, where

λ ∈
[
sup∑m

i=1
‖xi‖261

∑K
k=1 ‖

∑m
i=1 Lkixi‖2,+∞

[
, and assume that

(∀i ∈ {1, . . . ,m}) zi ∈ ran

(
∂fi +

K∑

k=1

L∗
ki ◦ (∂gk �∂ℓk) ◦

( m∑

j=1

Lkj · −rk

)
+∇hi

)
. (5.1)

Solve the primal problem

minimize
x1∈H1,..., xm∈Hm

m∑

i=1

fi(xi) +
K∑

k=1

(gk � ℓk)

( m∑

i=1

Lkixi − rk

)
+

m∑

i=1

(
hi(xi)− 〈xi | zi〉

)
, (5.2)

together with the dual problem

minimize
v1∈G1,..., vK∈GK

m∑

i=1

(
f∗
i �h∗i )

(
zi −

K∑

k=1

L∗
kivk

)
+

K∑

k=1

(
g∗k(vk) + ℓ∗k(vk) + 〈vk | rk〉

)
. (5.3)

Remark 5.2 Problem 5.1 extends significantly the multivariate minimization framework of [3, 12].

There, (hi)16i6m were the zero function, (ℓk)16k6K were the function ι{0}, and (gk)16k6K were

differentiable everywhere with a Lipschitzian gradient. Finally, no dual problem was considered.

Proposition 5.3 Consider the setting of Problem 5.1. Suppose that (5.2) has a solution, and set

E =

{( m∑

i=1

Lkixi − yk

)

16k6K

∣∣∣∣

{
(∀i ∈ {1, . . . ,m}) xi ∈ dom fi

(∀k ∈ {1, . . . ,K}) yk ∈ dom gk + dom ℓk

}
. (5.4)

Then (5.1) is satisfied in each of the following cases.
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(i) (rk)16k6K ∈ sriE.

(ii) E − (rk)16k6K is a closed vector subspace.

(iii) For every i ∈ {1, . . . ,m}, fi is real-valued and, for every k ∈ {1, . . . ,K}, the operator
⊕m

j=1Hj →
Gk : (xj)16j6m 7→ ∑m

j=1 Lkjxj is surjective.

(iv) For every k ∈ {1, . . . ,K}, gk or ℓk is real-valued.

(v) (Hi)16i6m and (Gk)16k6K are finite-dimensional, and (∀i ∈ {1, . . . ,m})(∃xi ∈ ri dom fi)(∀k ∈
{1, . . . ,K}) ∑m

i=1 Lkixi − rk ∈ ri dom gk + ri dom ℓk.

Proof. Define H and G as in (2.5), and L, z, and r as in (2.6). Set

{
f : H → ]−∞,+∞] : x 7→ ∑m

i=1 fi(xi) and h : H → R : x 7→ ∑m
i=1 hi(xi),

g : G → ]−∞,+∞] : y 7→ ∑K
k=1 gk(yk) and ℓ : G → ]−∞,+∞] : y 7→ ∑K

k=1 ℓk(yk).
(5.5)

Then (5.4) and [8, Proposition 12.6(ii)] yield

E =
{
Lx− y

∣∣ x ∈ domf and y ∈ dom g + dom ℓ
}

= L
(
domf

)
−

(
dom g + dom ℓ

)
(5.6)

= L
(
dom (f + h− 〈· | z〉)

)
− dom

(
g� ℓ

)
. (5.7)

(i): Since the functions (ℓk)16k6K are strongly convex, so is ℓ. Hence, dom ℓ∗ = G [8,

Propositions 11.16 and 14.15] and therefore [8, Propositions 15.7(iv) and 24.27] imply that

∂g� ∂ℓ = ∂(g� ℓ) and g� ℓ ∈ Γ0(G). On the other hand, (5.7) yields 0 ∈ sri (L(dom (f + h −
〈· | z〉))− dom (g� ℓ)(· − r)). Thus, we derive from [8, Theorem 16.37(i)] that

∂f +L∗ ◦ (∂g� ∂ℓk) ◦ (L · −r) +∇h− z = ∂
(
f + h− 〈· | z〉

)
+L∗ ◦ ∂(g� ℓ) ◦ (L · −r)

= ∂
(
f + h− 〈· | z〉+ (g� ℓ) ◦ (L · −r)

)
. (5.8)

Since (5.2) has a solution and is equivalent to minimizing f +h− 〈· | z〉+(g� ℓ) ◦ (L · −r) over H,

Fermat’s rule [8, Theorem 16.2] implies that 0 ∈ ran ∂(f + h − 〈· | z〉 + (g� ℓ) ◦ (L · −r)). Hence

(5.8) yields z ∈ ran(∂f +L∗ ◦ (∂g� ∂ℓk) ◦ (L · −r) +∇h) and we conclude that (5.1) is satisfied.

(ii)⇒(i): [8, Proposition 6.19(i)].

(iii)⇒(i): We have L(dom f) = L(H) = G. Hence, (5.6) yields E = G.

(iv)⇒(i): We have dom g + dom ℓ = G. Hence, (5.6) yields E = G.

(v)⇒(i): Since dimG < +∞, sriE = riE. On the other hand, by (5.6) and [8, Corollary 6.15],

riE = ri
(
L
(
domf

)
− dom g − dom ℓ

)
= L

(
ri dom f

)
− ri dom g − ri dom ℓ. (5.9)

Thus, r ∈ sriE ⇔ (∃x ∈ ri domf =×m
i=1ri dom fi) Lx−r ∈ ri dom g+ri dom ℓ =×K

k=1(ri dom gk+
ri dom ℓk).

Proposition 5.4 Consider the setting of Problem 5.1. For every i ∈ {1, . . . ,m}, let (a1,i,n)n∈N,

(b1,i,n)n∈N, and (c1,i,n)n∈N be absolutely summable sequences in Hi and, for every k ∈ {1, . . . ,K},

let (a2,k,n)n∈N, (b2,k,n)n∈N, and (c2,k,n)n∈N be absolutely summable sequences in Gk. Furthermore, let
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x1,0 ∈ H1, . . . , xm,0 ∈ Hm, v1,0 ∈ G1, . . . , vK,0 ∈ GK , let ε ∈ ]0, 1/(β + 1)[, let (γn)n∈N be a sequence

in [ε, (1 − ε)/β], and set

For n = 0, 1, . . .

For i = 1, . . . ,m⌊
s1,i,n = xi,n − γn

(
∇hi(xi,n) +

∑K
k=1 L

∗
kivk,n + a1,i,n

)

p1,i,n = proxγnfi(s1,i,n + γnzi) + b1,i,n

For k = 1, . . . ,K

s2,k,n = vk,n − γn
(
∇ℓ∗k(vk,n)−

∑m
i=1 Lkixi,n + a2,k,n

)

p2,k,n = s2,k,n − γn
(
rk + proxγ−1

n gk
(γ−1

n s2,k,n − rk) + b2,k,n
)

q2,k,n = p2,k,n − γn
(
∇ℓ∗k(p2,k,n)−

∑m
i=1 Lkip1,i,n + c2,k,n

)

vk,n+1 = vk,n − s2,k,n + q2,k,n
For i = 1, . . . ,m⌊

q1,i,n = p1,i,n − γn
(
∇hi(p1,i,n) +

∑K
k=1 L

∗
kip2,k,n + c1,i,n

)

xi,n+1 = xi,n − s1,i,n + q1,i,n.

(5.10)

Then the following hold.

(i) (∀i∈{1, . . . ,m})∑n∈N ‖xi,n−p1,i,n‖2<+∞, and (∀k∈ {1, . . . ,K})∑n∈N ‖vk,n−p2,k,n‖2<+∞.

(ii) There exist a solution (x1, . . . , xm) to (5.2) and a solution (v1, . . . , vK) to (5.3) such that the

following hold.

(a) (∀i ∈ {1, . . . ,m}) xi,n ⇀ xi and zi −
∑K

k=1 L
∗
kivk ∈ ∂fi(xi) +∇hi(xi).

(b) (∀k ∈ {1, . . . ,K}) vk,n ⇀ vk and
∑m

i=1 Lkixi − rk ∈ ∂g∗k(vk) +∇ℓ∗k(vk).

(c) Suppose that, for some j ∈ {1, . . . ,m}, fj or hj is uniformly convex at xj. Then xj,n → xj .

(d) Suppose that, for some l ∈ {1, . . . ,K}, g∗l or ℓ∗l is uniformly convex at vl. Then vl,n → vl.

Proof. Set

{
(∀i ∈ {1, . . . ,m}) Ai = ∂fi and Ci = ∇hi

(∀k ∈ {1, . . . ,K}) Bk = ∂gk and Dk = ∂ℓk.
(5.11)

It follows from [8, Proposition 17.10] that the operators (Ci)16i6m are monotone, and from [8,

Theorem 20.40] that the operators (Ai)16i6m, (Bk)16k6m, and (Dk)16k6K are maximally monotone.

Moreover, for every k ∈ {1, . . . ,K}, we derive from [8, Corollary 13.33 and Theorem 18.15] that

ℓ∗k is Fréchet differentiable on Gk and ∇ℓ∗k is νk-Lipschitzian, and from [8, Corollary 16.24 and

Proposition 17.26(i)] that D−1
k = (∂ℓk)

−1 = ∂ℓ∗k = {∇ℓ∗k}. On the other hand, (5.1) implies that

(1.2) possesses a solution, and (1.12) implies that (5.10) is a special case of (2.4). We also recall

that the uniform convexity of a function ϕ ∈ Γ0(H) at x ∈ dom ∂ϕ implies the uniform monotonicity

of ∂ϕ at x [46, Section 3.4]. Altogether, the claims will follow at once from Theorem 2.4 provided

we show that, in the setting of (5.1) and (5.11), (1.2) becomes (5.2) and (1.3) becomes (5.3). To

this end, let us first observe that since, for every k ∈ {1, . . . ,K}, dom ℓ∗k = Gk, [8, Proposition 24.27]

yields

(∀k ∈ {1, . . . ,K}) Bk �Dk = ∂gk � ∂ℓk = ∂(gk � ℓk), (5.12)
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while [8, Corollaries 16.24 and 16.38(iii)] yield

(∀k ∈ {1, . . . ,K}) B−1
k +D−1

k = ∂g∗k + {∇ℓ∗k} = ∂
(
g∗k + ℓ∗k

)
. (5.13)

Likewise, using [8, Theorem 15.3], we obtain

(∀i ∈ {1, . . . ,m}) (Ai+Ci)
−1 = (∂fi+∇hi)

−1 =
(
∂(fi+hi)

)−1
= ∂(fi+hi)

∗ = ∂(f∗
i �h∗i ). (5.14)

Now let us define H and G as in (2.5), L, z, and r as in (2.6), and f , h, g, and ℓ as in (5.5). We

derive from (5.11), (5.12), [8, Corollary 16.38(iii), Propositions 16.5(ii), 16.8, and 17.26(i)], and

Fermat’s rule [8, Theorem 16.2] that, for every x = (xi)16i6m ∈ H,

x solves (1.2) ⇔ (∀i ∈ {1, . . . ,m}) 0 ∈ ∂fi(xi) +

K∑

k=1

L∗
ki

(
∂(gk � ℓk)

( m∑

j=1

Lkjxj − rk

))

+∇hi(xi)− zi

⇔ 0 ∈ ∂f(x) +L∗
(
∂(g� ℓ)(Lx− r)

)
+∇(h− 〈· | z〉)(x)

⇒ 0 ∈ ∂
(
f + (g� ℓ) ◦

(
L · −r)

)
+ h− 〈· | z〉

)
(x)

⇔ x solves (5.2). (5.15)

Next, let v = (vk)16k6K ∈ G. Then we derive from (5.13), (5.14), and the same subdifferential

calculus rules as above that

v solves (1.3) ⇔ (∀k ∈ {1, . . . ,K}) 0 ∈ −
m∑

i=1

Lki

(
∂(f∗

i �h∗i )

(
zi −

K∑

l=1

L∗
livl

))

+ ∂
(
g∗k + ℓ∗k + 〈· | rk〉

)
(vk)

⇔ 0 ∈ −L
(
∂(f∗

�h∗)(z −L∗v)
)
+ ∂

(
g∗ + ℓ∗ + 〈· | r〉

)
(v)

⇒ 0 ∈ ∂
(
(f∗

�h∗) ◦ (z −L∗·) + g∗ + ℓ∗ + 〈· | r〉
)
(v)

⇔ v solves (5.3), (5.16)

which completes the proof.

Remark 5.5 Proposition 5.4 provides a framework that captures and suggests extensions of multi-

variate and/or infimal convolution variational formulations found in areas such as partial differential

equations [4], machine learning [6], and image recovery [14, 15, 38].

6 Univariate structured convex minimization problems

Minimization problems involving a single primal variable can be obtained by setting m = 1 in Prob-

lem 5.1. However, this approach imposes that infimal convolutions be performed exclusively with

strongly convex functions. We use a different strategy relying on Proposition 3.2, which leads to a

formulation allowing for infimal convolutions with general lower semicontinuous convex functions.

Problem 6.1 Let H be a real Hilbert space, let K1, K2, and K be integers such that 0 6 K1 6

K2 6 K > 1, let z ∈ H, let f ∈ Γ0(H), and let h : H → R be convex and differentiable and such

that ∇h is µ-Lipschitzian for some µ ∈ [0,+∞[. For every integer k ∈ {1, . . . ,K}, let Gk be a real

21



Hilbert space, let rk ∈ Gk, let gk ∈ Γ0(Gk), let ϕk ∈ Γ0(Gk), and let Lk ∈ B (H,Gk); moreover,

if K1 + 1 6 k 6 K2, ϕk is differentiable on Gk and such that ∇ϕk is βk-Lipschitzian for some

βk ∈ [0,+∞[, and, if K2 + 1 6 k 6 K, ϕk is 1/βk-strongly convex for some βk ∈ ]0,+∞[. Set

β = max
{
µ, βK1+1, . . . , βK

}
+

√
1 +

∑K
k=1 ‖Lk‖2, and assume that

z ∈ ran
(
∂f +

K∑

k=1

L∗
k ◦ (∂gk �∂ϕk) ◦

(
Lk · −rk

)
+∇h

)
(6.1)

and

(∀k ∈ {1, . . . ,K2}) 0 ∈ sri (dom g∗k − domϕ∗
k). (6.2)

Solve the primal problem

minimize
x∈H

f(x) +

K∑

k=1

(gk �ϕk)(Lkx− rk) + h(x) − 〈x | z〉, (6.3)

together with the dual problem

minimize
v1∈G1,...,vK∈GK

(
f∗

�h∗
)(

z −
K∑

k=1

L∗
kvk

)
+

m∑

k=1

(
g∗k(vk) + ϕ∗

k(vk) + 〈vk | rk〉
)
. (6.4)

Remark 6.2 It follows from (6.2) and [8, Propositions 11.16, 14.15, 15.7(i), and 24.27] that

(∀k ∈ {1, . . . ,K}) gk �ϕk ∈ Γ0(Gk) and ∂gk � ∂ϕk = ∂(gk �ϕk). (6.5)

Hence, using the same type of arguments as in the proof of Proposition 5.3, we can deduce similar

conditions for (6.1) to hold, e.g., that (6.3) have a solution and that (rk)16k6K lie in the strong

relative interior of
{
(Lkx− yk)16k6K

∣∣ x ∈ dom f and (∀k ∈ {1, . . . ,K}) yk ∈ dom gk + domϕk

}
.

Proposition 6.3 Consider the setting of Problem 6.1. Let (a1,1,n)n∈N, (b1,1,n)n∈N, and (c1,1,n)n∈N be

absolutely summable sequences in H. For every integer k ∈ {1, . . . ,K}, let (a2,k,n)n∈N, (b2,k,n)n∈N, and

(c2,k,n)n∈N be absolutely summable sequences in Gk; moreover, if 1 6 k 6 K1, let (b1,k+1,n)n∈N be an

absolutely summable sequence in Gk, and, if K1 + 1 6 k 6 K2 , let (a1,k+1,n)n∈N and (c1,k+1,n)n∈N be

absolutely summable sequences in Gk. Let x0 ∈ H, y1,0 ∈ G1, . . . , yK2,0 ∈ GK2
, v1,0 ∈ G1, . . . , and
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vK,0 ∈ GK , let ε ∈ ]0, 1/(β + 1)[, let (γn)n∈N be a sequence in [ε, (1 − ε)/β], and set

For n = 0, 1, . . .

s1,1,n = xn − γn
(
∇h(xn) +

∑K
k=1 L

∗
kvk,n + a1,1,n

)

p1,1,n = proxγnf (s1,1,n + γnz) + b1,1,n
If K1 6= 0, for k = 1, . . . ,K1

s1,k+1,n = yk,n + γnvk,n
p1,k+1,n = proxγnϕk

s1,k+1,n + b1,k+1,n

s2,k,n = vk,n − γn
(
yk,n − Lkxn + a2,k,n

)

p2,k,n = s2,k,n − γn
(
rk + proxγ−1

n gk
(γ−1

n s2,k,n − rk) + b2,k,n
)

q2,k,n = p2,k,n − γn
(
p1,k+1,n − Lkp1,1,n + c2,k,n

)

vk,n+1 = vk,n − s2,k,n + q2,k,n
If K1 6= K2, for k = K1 + 1, . . . ,K2

s1,k+1,n = yk,n − γn
(
∇ϕk(yk,n)− vk,n + a1,k+1,n

)

p1,k+1,n = s1,k+1,n

s2,k,n = vk,n − γn
(
yk,n − Lkxn + a2,k,n

)

p2,k,n = s2,k,n − γn
(
rk + proxγ−1

n gk
(γ−1

n s2,k,n − rk) + b2,k,n
)

q2,k,n = p2,k,n − γn
(
p1,k+1,n − Lkp1,1,n + c2,k,n

)

vk,n+1 = vk,n − s2,k,n + q2,k,n
If K2 6= K, for k = K2 + 1, . . . ,K

s2,k,n = vk,n − γn
(
∇ϕ∗

k(vk,n)− Lkxn + a2,k,n
)

p2,k,n = s2,k,n − γn
(
rk + proxγ−1

n gk
(γ−1

n s2,k,n − rk) + b2,k,n
)

q2,k,n = p2,k,n − γn
(
∇ϕ∗

k(p2,k,n)− Lkp1,1,n + c2,k,n
)

vk,n+1 = vk,n − s2,k,n + q2,k,n
q1,1,n = p1,1,n − γn

(
∇h(p1,1,n) +

∑K
k=1L

∗
kp2,k,n + c1,1,n

)

xn+1 = xn − s1,1,n + q1,1,n
If K1 6= 0, for k = 1, . . . ,K1⌊

q1,k+1,n = p1,k+1,n + γnp2,k,n
yk,n+1 = yk,n − s1,k+1,n + q1,k+1,n

If K1 6= K2, for k = K1 + 1, . . . ,K2⌊
q1,k+1,n = p1,k+1,n − γn

(
∇ϕk(p1,k+1,n)− p2,k,n + c1,k+1,n

)

yk,n+1 = yk,n − s1,k+1,n + q1,k+1,n.

(6.6)

Then the following hold for some solution x to (6.3) and some solution (v1, . . . , vK) to (6.4).

(i) xn ⇀ x and (∀k ∈ {1, . . . ,K}) vk,n ⇀ vk.

(ii) Suppose that f or h is uniformly convex at x. Then xn → x.

(iii) Suppose that, for some l ∈ {1, . . . ,K}, g∗l is uniformly convex at vl. Then vl,n → vl.

(iv) Suppose that K2 6= K and that, for some l ∈ {K2 +1, . . . ,K}, ϕ∗
l is uniformly convex at vl. Then

vl,n → vl.

Proof. Using (6.5) and the same arguments as in the proof of Proposition 5.4, we first identify

Problem 6.1 as a special case of Problem 3.1 with A = ∂f , C = ∇h, and (∀k ∈ {1, . . . ,K}) Bk = ∂gk
and Sk = ∂ϕk. Using (1.12), we then deduce the results from Proposition 3.2.

We conclude this section with an application to the approximation of inconsistent convex feasi-

bility problems where, for the sake of brevity, we discuss only the primal problem.
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Example 6.4 In Problem 6.1, set K1 = K2 = K, z = 0, h = 0, f = 0, and, for every k ∈ {1, . . . ,K}
rk = 0 and gk = ιCk

, where Ck is a nonempty closed convex subset of Gk with projection operator

Pk. In addition, suppose that

(∀k ∈ {1, . . . ,K}) Argminϕk = {0}, ϕk(0) = 0, and 0 ∈ sri (dom ι∗Ck
− domϕ∗

k). (6.7)

It follows from [8, Proposition 15.7(i)] that the infimal convolutions (ιCk
�ϕk)16k6K are exact.

Hence, (6.3) becomes

minimize
x∈H

K∑

k=1

min
yk∈Ck

ϕk(Lkx− yk), (6.8)

and it is assumed to have at least one solution. We can interpret (6.8) as a relaxation of the (possibly

inconsistent) convex feasibility problem

find x ∈ H such that (∀k ∈ {1, . . . ,K}) Lkx ∈ Ck. (6.9)

Indeed, it follows from (6.7) that, if (6.9) is consistent, then its solutions coincide with those of

(6.8). Furthermore, in view of (1.12), Algorithm (6.6) can be written as

For n = 0, 1, . . .

p1,1,n = xn − γn
(∑K

k=1 L
∗
kvk,n + a1,1,n

)

For k = 1, . . . ,K

s1,k+1,n = yk,n + γnvk,n
p1,k+1,n = proxγnϕk

s1,k+1,n + b1,k+1,n

s2,k,n = vk,n − γn
(
yk,n − Lkxn + a2,k,n

)

p2,k,n = s2,k,n − γn
(
Pk(γ

−1
n s2,k,n) + b2,k,n

)

q2,k,n = p2,k,n − γn
(
p1,k+1,n − Lkp1,1,n + c2,k,n

)

vk,n+1 = vk,n − s2,k,n + q2,k,n
q1,1,n = p1,1,n − γn

(∑K
k=1 L

∗
kp2,k,n + c1,1,n

)

xn+1 = xn − p1,1,n + q1,1,n
For k = 1, . . . ,K⌊

q1,k+1,n = p1,k+1,n + γnp2,k,n
yk,n+1 = yk,n − s1,k+1,n + q1,k+1,n.

(6.10)

By Proposition 6.3(i), (xn)n∈N converges weakly to a solution to (6.8) if infn∈N γn > 0 and

supn∈N γn <
(
1 +

∑K
k=1 ‖Lk‖2

)−1/2
. Now suppose that, for every k ∈ {1, . . . ,K}, Gk = H, Lk = Id ,

ϕk = ι{0} if k = 1, and ϕk = ωk‖ · ‖2, where ωk ∈ ]0,+∞[, if k 6= 1. Then (6.9) reduces to the feasi-

bility problem of finding x ∈
⋂K

k=1Ck and (6.8) reduces to the constrained least-squares relaxation

studied in [18], namely, minimize
x∈C1

∑K
k=2 ωkd

2
Ck

(x).
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[7] A. B. Bakušinskĭı and B. T. Polyak, The solution of variational inequalities, Soviet Math. – Doklady, vol.

15, pp. 1705–1710, 1974.

[8] H. H. Bauschke and P. L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces.

Springer, New York, 2011.

[9] H. H. Bauschke, P. L. Combettes, and D. R. Luke, Finding best approximation pairs relative to two closed

convex sets in Hilbert spaces, J. Approx. Theory, vol. 127, pp. 178–192, 2004.

[10] H. H. Bauschke, P. L. Combettes, and S. Reich, The asymptotic behavior of the composition of two
resolvents, Nonlinear Anal., vol. 60, pp. 283–301, 2005.
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