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SEARCH GAMES WITH MULTIPLE HIDDEN OBJECTS∗

THOMAS LIDBETTER†

Abstract. We consider a class of zero-sum search games in which a Searcher seeks to minimize
the expected time to find several objects hidden by a Hider. We begin by analyzing a game in which
the Searcher wishes to find k balls hidden among n > k boxes. There is a known cost of searching
each box, and the Searcher seeks to minimize the total expected cost of finding all the objects in
the worst case. We show that it is optimal for the Searcher to begin by searching a k-subset H of
boxes with probability ν(H), which is proportional to the product of the search costs of the boxes
in H. The Searcher should then search the n− k remaining boxes in a random order. A worst-case
Hider distribution is the distribution ν. We distinguish between the case of a smart Searcher who
can change his search plan as he goes along and a normal Searcher who has to set out his plan from
the beginning. We show that a smart Searcher has no advantage. We then show how the game
can be formulated in terms of a more general network search game, and we give upper and lower
bounds for the value of the game on an arbitrary network. For 2-arc connected networks (networks
that cannot be disconnected by the removal of fewer than two arcs), we solve the game for a smart
Searcher and give an upper bound on the value for a normal Searcher. This bound is tight if the
network is a circle.

Key words. search game, network, discrete optimization
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1. Introduction. The first problem we consider is that of a Searcher who wishes
to find a number of objects (or balls) hidden among a set of discrete locations (or
boxes), each of which has a designated search cost. The Searcher looks in the boxes
one by one, paying the search costs associated with the boxes he looks in, until he has
found all the balls. He wishes to minimize the total search cost of finding the balls in
the worst case, so we view the problem as a zero-sum game between the Searcher and
a malevolent Hider who wishes to maximize the total search cost. This is a natural
problem to consider and one which we face on an everyday basis. For example, before
leaving the house in the morning we may wish to locate certain essential items such
as wallet, phone, and keys. There is a set of discrete locations around the house
where these objects may be hidden, each of which takes a particular amount of time
to search, and we wish to minimize the total time it takes to find all the items. The
problem provides a simple model for other practical search scenarios, such as a search
for a number of corrupted files which may be distributed among several folders, or a
search for bombs hidden in several locations. The problem is also relevant to studies
such as [23], which have examined how scatter hoarders like squirrels search for food
they have previously cached over a number of sites.

In section 2.1, after we have formally defined the problem, we will see that if
both parties are allowed to use randomized strategies it is optimal for the Searcher
to begin his search with a subset of k boxes chosen with probability proportional to
the product of their search costs and then search the remaining boxes in a random
order. It is optimal for the Hider to choose a subset of k boxes with probability
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SEARCH GAMES WITH MULTIPLE HIDDEN OBJECTS 3057

Fig. 1.1. Two networks.

proportional to the product of their search costs. In section 2.2 we then distinguish
between two versions of the game, the first of which restricts the Searcher to setting
out his search plan from the start, and the second of which allows him to change his
plan during the search, based on information gathered. We call the second type of
Searcher a smart Searcher to distinguish from the first type, which we call a normal
Searcher. The idea of a smart Searcher was introduced in [6] in the context of scatter
hoarders. A smart Searcher is clearly at an advantage over a normal Searcher, and
this formulation perhaps provides a more realistic model of an intelligent Searcher.
However, we will show that in this game a smart Searcher cannot do any better than
a normal Searcher against a Hider who is playing optimally.

In section 3 we consider a continuous time version of the game described above.
The Hider places k objects in some search space and the Searcher chooses a continuous
time search strategy in this space to minimize the expected time taken to find all
the objects. In particular we will take as our search space a network with given
arc lengths, and the type of search we shall consider is known as expanding search,
recently introduced in [8]. We define an expanding search of a network Q with root
O as a sequence of unit speed paths, the first of which starts at O and the remainder
of which each start from a point already reached by some previous path. The part of
Q that has been searched by time t is then a subset of Q that increases, or expands
with t.

To illustrate the principle of expanding search, consider the two networks depicted
in Figure 1.1. The numbers denote the lengths of the arcs and the nodes are labeled
with capital letters. An example of an expanding search on the network on the left
is the sequence of paths OD, DA, DB, and OC. We will consider the expanding
search game with k hidden objects on a network, in which the Searcher chooses an
expanding search and the Hider chooses k points on the network. The payoff, which
the Searcher wishes to minimize and the Hider to maximize, is the time taken until
all the objects have been found. For the expanding search described above, if k = 2
and the Hider chooses the nodes A and B, the payoff is 1 + 2 + 3 = 6.

As we explain in section 3.1, a search for objects in boxes, outlined at the begin-
ning of this section, is equivalent to an expanding search for objects hidden on the
terminal nodes of a star network. By a star network we mean a collection of arcs all
meeting at a single point, O. The network on the right of Figure 1.1 is a star network,
and an expanding search for objects hidden on the network among the nodes X , Y ,
and Z is equivalent to a search for objects hidden in three boxes with costs 2, 1, and 3.
This means the box-searching game examined in section 2 can be generalized in terms
of an expanding search for multiple objects hidden on a network. In section 3.1 we
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3058 THOMAS LIDBETTER

go on to discuss the game on the more general tree network and show that in general,
a smart Searcher has an advantage over a normal Searcher. In section 3.2 we give
some bounds on the expected search time in the expanding search game for multiple
objects on general networks, and in section 3.3 we turn our attention to the game
played on 2-arc connected networks. A 2-arc connected network is a network that
cannot be disconnected by the removal of fewer than two arcs. We give the solution
of the game for a smart Searcher and an upper bound for the value of the game for a
normal Searcher, showing that although this bound is not tight in general, it is if the
network is a circle.

The expanding search game on a network is a specific example of a more general
class of search games on networks. Interest in search games was sparked by Isaacs’
book on differential games [19], and accounts of the main problems and results in
the field can be found in [11], [7], [16], and [15]. Expanding search is a variation
on the classic form of a zero-sum search game on a network, in which a Hider picks
a point on the network and a Searcher picks a time-minimizing unit speed path on
the network, beginning from a designated root. The first examples of this game were
solved in [13], with further results in [14]. More recently, variations on this game have
been proposed, for instance in [3], where the network is supposed to have asymmetric
travel times.

The box-searching game solved in section 2 is an original problem. The problem
of searching for a single object hidden according to a known distribution in boxes
with search costs where there is an overlook probability associated with each box is a
known problem solved by Blackwell (reported in [20]). An alternative solution to the
problem is presented in [17] using Gittins’ well-known index for multiarmed bandit
processes. A study of the zero-sum game version of the problem can be found in [12]
and [27]. In [22], the game is extended so that the boxes each have allocated search
costs. Interest in searching in boxes also extends to the field of economics, for example
in [31], where a Searcher faces a problem of when to stop searching a set of boxes
with fixed search costs, and rewards are assigned according to a known probability
distribution.

To date there has been little study in search theory of problems involving multiple
hidden objects. Alpern et al. [4] introduced a game in which a Searcher with limited
digging resources seeks several objects buried in a choice of locations. An extension
of Blackwell’s problem in which a Searcher looks for one of many hidden objects is
examined in [10] and [28]. In [21], two Searchers compete to find different objects
before the other. Press [24] considers a search problem in which a Searcher samples
with replacement to find “rare malfeasors” hidden according to a known distribu-
tion amongst a population. This could be viewed as a search for balls distributed
among several boxes according to a known distribution. In [5], a search game is con-
sidered in which a Hider distributes a continuous amount of wealth among discrete
locations.

The related problem of multiple Searchers trying to locate an object has been
studied in [25], [26], and [29]. In these studies, two Searchers coordinate to find a
single Hider. In [30] two agents aim to minimize the time to find each other in a set
of discrete locations. This problem lies in the field of rendezvous search, a category of
problems first posed informally in [1] and later developed in work such as [2] and [9].

2. Search for k balls in n boxes. A Searcher wishes to find k balls hidden
in a set B = {1, . . . , n} of n boxes. He can search them in any order but incurs a
known cost ci when he searches box i. If the balls are hidden (uniformly) randomly,
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then clearly the best search strategy is to search the boxes in order of increasing cost.
We wish to find the randomized search strategy which minimizes the expected total
cost, in the worst case. For any pure Searcher strategy—that is, any ordering (or
permutation) of the boxes B—the worst case occurs when the last (nth) box searched
contains a ball. So any pure search strategy is a pure minimax strategy with total
cost equal to the sum of the search costs Σn

i=1ci, which we denote by C0.
We are naturally led to consider mixed search strategies and to seek a distri-

bution over orderings of B which minimizes the expected total cost in the worst
case. This problem is equivalent to finding optimal strategies in the zero-sum game
Γ = Γ(n, k; c1, . . . , cn) against nature, where a malevolant Hider (nature) chooses a
k-subset H of B, the Searcher chooses an ordering (i1, . . . , in) of B, and the payoff
(to the maximizing Hider) is the total cost

C = C(i1, . . . , in;H) = ci1 + ci2 + · · ·+ cij

if the last ball is found in the jth box to be searched. This is a finite game and has a
value which we denote by V = V (n, k; c1, . . . , cn).

2.1. Optimal strategies. A Hider mixed strategy is a probability distribution
over the set H = B(k) of k-subsets (that is, subsets of size k) H ⊂ B. The optimal
Hider distribution ν = νB,k turns out to be the distribution which assigns to each
H ∈ H a probability proportional to π(H) := Πi∈Hci, the product of the costs of
searching the k boxes in H . That is,

ν(H) =
π(H)∑
A∈Hπ(A)

.

The distribution is related to a Hider distribution on trees determined recursively by
Gal [13]. The main result of this section is the following.

Theorem 2.1. The Searcher strategy which minimizes the expected total search
cost to find k balls among n boxes in the worst case is to first search a k-subset of boxes
in any order, chosen according to the distribution ν, and then to search the remaining
n − k boxes in a (uniformly) random order. The order of searching the first k boxes
does not affect the payoff. A worst case Hider distribution is the distribution ν.

To prove this theorem, we will first show that the Hider strategy ν ensures the
same expected search cost C against any strategy of the Searcher. This puts a lower
bound on the value of the game. We then restrict the Searcher to a subset of his
strategy set and show that even with this restriction he has a mixed strategy that
ensures the same expected search cost C against any Hider strategy. This puts an
upper bound on the value which when combined with the lower bound provides the
desired result.

We begin by defining a quantity Sj(H) for all subsets H ⊂ B and for all j =
1, . . . , |H |. Sj(H) is calculated by taking each j-subset A of H , multiplying together
the search costs of the boxes in A, and summing these products.

Definition 2.2. For H ⊂ B and j = 1, . . . , |H |, let Sj(H) =
∑

A∈H(j) π(A).
We write simply Sj for Sj(B).

Note that this allows us to notate the Hider strategy ν more concisely: for
k-subsets H , we can write ν(H) = π(H)/Sk. We will show that ν makes the Searcher
indifferent between all his pure strategies, ensuring the same expected cost for any
ordering of the boxes. Following standard notation, we write [j] for the set {1, . . . , j}
so that B = [n].
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3060 THOMAS LIDBETTER

Lemma 2.3. For any ordering (i1, . . . , in) of the boxes, the expected total search
cost if the balls are hidden according to ν is

(2.1) C = C(i1, . . . , in; ν) = C0 − Sk+1

Sk
.

Proof. By a relabeling argument we can assume that the Searcher chooses the
ordering 1, 2, . . . , n. We calculate the expected cost of boxes not searched and subtract
this from the total cost of the boxes, C0. All the boxes 1, . . . , k will certainly be
searched, and for i ≥ k+1, the probability box i is not searched is the probability all
k balls are in [i− 1], which is

Sk ([i− 1])

Sk
.

Thus the expected cost of boxes not searched is

1

Sk

n∑
i=k+1

ciSk ([i− 1]) .

This sum is clearly equal to Sk+1, so the expression above is Sk+1/Sk, and subtracting
this from C0 gives (2.1).

We will see that the Hider strategy ν set out at the beginning of the section
is optimal and that the value of the game is given by (2.1). To this end, we now
define a restricted game Γ′ = Γ

′
(n, k; c1, . . . , cn) in which the Searcher’s strategy set

is reduced, and we will show that in Γ′ the Searcher can attain expected search time
C0 − Sk+1/Sk against any Hider strategy.

Definition 2.4. Let Γ′ be the same as Γ except that after searching the first k
boxes the Searcher must search the remaining boxes in a (uniformly) random order.
Let V ′ = V ′(n, k; c1, . . . , cn) be the value of this game. We must have V ′ ≥ V .

This reduces the number of pure strategies for the normal Searcher to
(
n
k

)
, since

a pure strategy can now be specified by some A ∈ B(k) which corresponds to the first
k boxes of his search. Hence the Hider and the Searcher have the same strategy set,
H = B(k). We now show that Γ′ is a symmetric game in the sense that its payoff
matrix is symmetric.

Lemma 2.5. Let H,A ∈ H be strategies in Γ′ for the Hider and Searcher, respec-
tively. Then C(A,H) = C(H,A).

Proof. C(A,H) is the expected cost of a search that begins with A and searches
the rest of the boxes in a random order until all the balls in H are found. In such a
search all the boxes in A ∪H must be searched before the balls have all been found,
since the Searcher begins by searching all the boxes in A and cannot stop until he has
searched all the boxes in H . As for the remaining boxes not in A ∪H , these are each
searched with the same probability q after all the boxes in A have been searched. Note
that the value of q depends on only two things. The first is the number j = |A−H | of
remaining balls to be found after the boxes in A have been searched, and the second
is the number m = n− k of remaining unsearched boxes at this point. Hence

C(A,H) =
∑

i∈A∪H

ci + q
∑

i/∈A∪H

ci.

Notice that |A−H | = |H −A|, and so j, m, and q are unchanged if the set A and H
are interchanged. Thus C(A,H) = C(H,A).
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The solution of the game Γ′ follows immediately from this lemma, using the well-
known result below about finite zero-sum games with symmetric payoff matrices.

Lemma 2.6. For a two-player, zero-sum game between Players I and II with n×n
symmetric payoff matrix M , if x∗ = (x∗

1, . . . , x
∗
n)

T is a mixed strategy for Player I that
makes Player II indifferent between all his strategies, then the strategy pair (x∗, x∗)
forms an equilibrium.

Proof. Since x∗ makes Player II indifferent, there is some number U such that
U = (x∗)T My for all strategies y of Player II. Equivalently,

UT = U =
(
(x∗)T My

)T
= yTMT

(
(x∗)T

)T
= yTMx∗, since M is symmetric.

Since this holds for all y, Player II can make Player I indifferent between all his
strategies by playing x∗. Hence if both players play x∗ each player is playing a best
response to the other, and this is an equilibrium.

Corollary 2.7. The value of Γ′ is V
′
= C0 − Sk+1

Sk
. The strategy ν is optimal

for both the Hider and the Searcher.

Proof. If the Hider uses the strategy ν, by Lemma 2.3, the Searcher will be
indifferent and the expected cost will be C0− Sk

Sk+1
. By Lemma 2.5 Γ′ is symmetric, so

by Lemma 2.6 if the Searcher also uses the mixed strategy ν, this forms an equilibrium
and the value of the game is V

′
= C(ν, ν) = C0 − Sk+1

Sk
.

Theorem 2.1 follows by combining our results.

Proof of Theorem 2.1. By Lemma 2.3, the Hider can ensure an expected search
cost of no less than C0 − Sk+1

Sk
by using ν, so V ≥ C0 − Sk+1

Sk
. By Corollary 2.7, the

Searcher can ensure an expected search cost of no more than C0 − Sk+1

Sk
by using the

strategy ν, so V ≤ V
′
= C0 − Sk+1

Sk
. Hence we must have equality, and ν is optimal

for both players.

Note that the value of the game must be increasing in k since the Searcher’s
optimal strategy for the game Γ(n, k+1; c1, . . . , cn) will find k hidden balls with total
search cost no greater than V (n, k + 1; c1, . . . , cn). Therefore we must have

C0 − Sk+1

Sk
≥ C0 − Sk

Sk−1
so that

S2
k ≥ Sk−1Sk+1 and

logSk ≥ logSk−1 + logSk+1

2
.

It follows that S1, S2, . . . is a logarithmically concave sequence. We can also see
this in another way using the concept of logarithmically concave polynomials (that
is, polynomials whose sequence of coefficients is logarithmically concave). It is well
known that the product of logarithmically concave polynomials is logarithmically
concave [18]. That is, if A(x) = a0+a1x+a2x

2+ · · · and B(x) = b0+b1x+b2x
2+ · · ·

are logarithmically concave so that they satisfy ak ≥ ak+1ak−1 and bk ≥ bk+1bk−1

for all k ≥ 1, then C(x) = A(x)B(x) is logarithmically concave. Let S(x) be the
polynomial whose coefficients are the Sk, so
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3062 THOMAS LIDBETTER

S(x) = 1 + S1x+ S2x
2 + · · ·+ Snx

n.

Then we can factorize S(x) as

S(x) =

n∏
j=1

(1 + cjx) ,

and since the polynomial
(
1 + cjx+ 0x2 + 0x3 + · · · ) is logarithmically concave for

each j, S(x) is the product of logarithmically concave polynomicals and must be
logarithmically concave itself.

2.2. Smart and normal strategies. So far we have assumed that the Searcher
must set out his search plan at the start of the search, but we now consider a variation
of the game where the Searcher is permitted to adapt his plan during the search using
information gathered. We call such a Searcher smart, as opposed to a normal Searcher,
who is required to set out his search plan from the start. In the case of a single hidden
ball it is clear that a smart Searcher cannot do any better than a normal Searcher. In
Alpern et al. [6] the authors showed that for their model of scatter hoarding behavior
it was advantageous for a Searcher to be smart. However, we find the contrary here,
that a smart Searcher has no advantage over a normal Searcher.

We denote the box-searching game with a smart Searcher by Γ̃ = Γ̃(n, k; c1, . . . , cn)
and let the value of the game be Ṽ = Ṽ (n, k; c1, . . . , cn). Clearly the value of this
game is no greater than the value of the equivalent game with a normal Searcher, since
a smart Searcher can always use a normal strategy. We combine this observation with
Theorem 2.1 to give the lemma below.

Lemma 2.8. Ṽ = Ṽ (n, k; c1, . . . , cn) satisfies Ṽ ≤ C0 − Sk+1

Sk
.

To show that a smart Searcher cannot do better, we will need a technical lemma
about the function Sk, which is a straightforward calculation. For any set H ⊂ B
write Si

j = Sj(B − i).
Lemma 2.9. For any i = 1, . . . , n,

Sk = ciS
i
k−1 + Si

k.

Proof. We split the sum Sk =
∑

A∈B(k) π(A) into the sum over subsets A which
include i and those that do not. Accordingly,

Sk =
∑

A∈(B−i)(k)

π(A) +
∑

A∈(B−i)(k−1)

cjπ(A)

= ciS
i
k−1 + Si

k.

We use this lemma to give an inductive proof that a smart Searcher strategy
cannot do any better than a normal Searcher strategy against ν. The idea of the
proof is that the information gathered during a search is of no use to the Searcher
because ν has the property that at all points of a search, the remaining balls to be
found will be hidden according to the optimal Hider distribution on the unsearched
boxes. We formalize this in the next lemma.

Lemma 2.10. Suppose the k balls are hidden according to the optimal Hider
distribution ν for the game Γ(n, k; c1, . . . , cn), and let i ∈ B. Let ν′ = νB−i,k−1 be the
optimal Hider distribution for k−1 balls hidden in the boxes B− i and let ν′′ = νB−i,k

be the optimal Hider distribution for k balls in the boxes B− i. Then given that there
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is a ball in box i, the remaining k − 1 balls are hidden in B − i according to ν′; given
that there is no ball in box i, the k balls are hidden in B − i according to ν′′.

Proof. The probability α that there is a ball in box i is given by α =
ciS

i
k−1

Sk
.

Hence, conditional on there being a ball in box i, the probability the remaining k− 1

balls are hidden in some (k − 1)-set H ∈ (B − i)(k) is

ν(H ∪ i)
ciSi

k−1

Sk

=

π(H)ci
Sk

ciSi
k−1

Sk

=
π(H)

Si
k−1

= ν′(H).

Similarly, the probability there is no ball in box i is 1−α = 1− ciS
i
k−1

Sk
=

Sk−ciS
i
k−1

Sk
=

Si
k

Sk
(by Lemma 2.9). Hence, conditional on there not being a ball in box i, the

probability the remaining k balls are hidden in some k-set H ⊂ B − i is

ν(H)
Si
k

Sk

=

π(H)
Sk

Si
k

Sk

=
π(H)

Si
k

= ν′′(H).

From this property of ν it follows that a smart Searcher cannot guarantee a total
search cost any smaller than a normal Searcher.

Theorem 2.11. The value of Γ̃ is Ṽ = C = C0− Sk+1

Sk
. The strategy ν is optimal

for both the Hider and the Searcher.
Proof. We prove by induction on n that if the balls are hidden according to

ν, then the expected search cost of any smart search is C. This is clearly true for
n = 2, since every smart search is a normal search. Assume it is true for n − 1,
and suppose without loss of generality that a smart Searcher begins by searching
box 1. Subsequent to searching this box, regardless of whether he finds an object,
Lemma 2.10 implies that the remaining objects will be hidden optimally. Hence, by
the induction hypothesis and Lemma 2.3 the expected search cost of all smart searches
of the remaining boxes is the same, including the search which opens the boxes in the
order 2, 3, . . . , n. So the total expected search cost is the same as that of the normal
search 1, 2, . . . , n, which by Lemma 2.3 is C, completing the induction. It follows that
Ṽ ≥ C, and combining this with Lemma 2.8 completes the proof.

We can also consider variations of the game in which the Hider is smart, so that
every time the Searcher opens a box, he can rearrange the remaining balls that have
not been found. This gives rise to two more games, one in which the Searcher is also
smart and one in which he is normal. The value of these games is clearly greater than
the values of the corresponding games in which the Hider is normal, which we have
seen are both equal to C = C0 − Sk+1

Sk
.

In the case where only the Hider is smart, the value is strictly greater than C
in general, though the game is nontrivial to analyze and there are no examples for
which the value is greater than C when n ≤ 3. We present here an example for
n = 4. Suppose the boxes (1, 2, 3, 4) have search costs (1, 10, 50, 50) and there are
two balls. We give a Hider strategy that ensures expected search cost greater than
C for any normal Searcher strategy. The Hider starts by hiding the balls according
to the optimal normal strategy ν. If the Searcher opens box 1 first and finds a ball,
the Hider puts the remaining ball in box 2. If not, he hides the two remaining balls
in boxes 3 and 4 with probability 197/245 and otherwise hides them equiprobably in
boxes 2 and 3 or boxes 2 and 4. If the Searcher starts with box 2 and finds a ball,
the Hider puts the remaining ball in box 1 with probability 361/10201 and otherwise
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hides them equiprobably in box 3 or 4. If not, he puts the other two balls in boxes
3 and 4. If the Searcher starts with box 3 or 4 and finds a ball, the Hider puts the
remaining ball in boxes 1 or 2 with respective probabilities 361/18605 and 9122/55815
and otherwise puts it in the other box of cost 50. If not, he puts the two balls in box
2 and the remaining box of cost 50. We leave it as an exercise to the reader to check
that against any normal Searcher strategy the expected cost is greater than C.

If both the Hider and the Searcher are smart, then it turns out the value is C. To
prove this, it is sufficient to give a strategy for a smart Searcher that makes the Hider
indifferent between all his strategies, since we already know by Theorem 2.11 that the
Hider strategy ν ensures an expected search cost of C against any smart search. To
define a smart search we simply need to specify the probability pi that the Searcher
begins with some box i = 1, . . . , n for given n and k. Let

pi =

(
Si
k

Si
k−1

− Si
k+1

Si
k

)⎛⎝ n∑
j=1

Sj
k

Sj
k−1

− Sj
k+1

Sj
k

⎞
⎠

−1

.

Since Si
k is a logarithmically concave sequence,

(
Si
k/S

i
k−1 − Si

k+1/S
i
k

)
is non-negative,

so pi is certainly a probability. We then prove by induction on n that when the
Searcher uses p, the expected search cost of boxes not searched is the same whatever
strategy the Hider uses, so that it must be equal to Sk+1/Sk. The base case n = 2
is easily verified. Assuming the induction hypothesis is true for n − 1, the expected
search cost against the Hider strategy H is

(2.2)
∑
i∈H

pi
Si
k

Si
k−1

−
∑
i/∈H

pi
Si
k+1

Si
k

.

It is sufficient to show that expected search cost is the same against any two Hider
strategies H and H ′ that differ only in that H contains i and H ′ contains j. The
difference in the quantity (2.2) for two such Hider strategies is

pi

(
Si
k

Si
k−1

− Si
k+1

Si
k

)
− pj

(
Sj
k

Sj
k−1

− Sj
k+1

Sj
k

)
,

which is 0, by our choice of p. Summing this up, we have the following.
Theorem 2.12. The value of the game with a smart Searcher and smart Hider

is C. The strategy ν is optimal for the Hider and the strategy p given above is optimal
for the Searcher.

3. Expanding search for k objects on a network. We can reformulate the
games analyzed in section 2 in terms of an expanding search game. Recall from the
introduction that an expanding search of a network Q with root O is a sequence of
unit speed paths, the first of which starts at O and the remainder of which each start
from a point already reached by some previous path.

In this section we begin by describing how searching in boxes can be thought
of as a special case of expanding a search on a network, and we define precisely the
expanding search game for multiple objects on a network. We then go on to examine
this game, focusing particularly on 2-arc connected networks in section 3.3.

3.1. Box search as expanding search on a network. Consider the star
network Qn consisting of n arcs a1, . . . , an which meet at the root O, as depicted in
Figure 3.1.
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Fig. 3.1. The network Qn.

For given costs c1, . . . , cn, let arc ai have length ci. We can now define a search
game Λ(Qn, k) in which a normal Searcher chooses an expanding search starting at
O and the Hider chooses k points on Qn. An expanding search on Qn is essentially
an ordering of the arcs a1, . . . , an. We define the payoff of the game as the first time
all the points chosen by the Hider have been reached by the search. It is optimal for
the Hider to choose k distinct leaf nodes (that is, the tips of the arcs), and so it is
easy to see that Λ(Qn, k) is equivalent to the box-searching game Γ(n, k; c1, . . . , cn),
which we have solved in section 2. Of course, for any network Q with root O we
can define in the natural way an associated expanding search game, Λ(Q, k) with k
hidden objects, where a Hider chooses k points on Q and a normal Searcher chooses
an expanding search of Q starting at O. We denote the value of the game (if it exists)
by V = V (Q, k).

For k = 1 the solution of the game Λ(Q, k) can be found in [8] for general tree
networks Q, and a formula is given for the value. This formula is V = (μ + D)/2,
where μ is the total length of the network and D is an average of the distances of
the root to the leaf notes, weighted with respect to the optimal Hider distribution on
the leaf nodes. For a star, μ = C0 and D =

∑ ci
C0

ci =
1
C0

∑
c2i . Our formula from

Theorem 2.1 gives

V = C0 − S2

S1

= C0 −
∑

i<j cicj

C0

=
C0

2
+

C2
0 − 2

∑
i<j cicj

2C0

=
C0

2
+

∑
c2i

2C0

=
1

2
(C0 +D).

This shows that the two formulas are equivalent for k = 1. The optimal Hider strategy
given in [8] is also the same, but the optimal Searcher strategy is different. It mixes
between 2n−1 pure strategies, whereas our optimal strategy mixes between all n! pure
strategies.

For the game Λ(Q, k) played on general trees Q, it is clear that it is optimal for
the Hider to place the objects at distinct (if possible) leaf nodes of the tree. A Searcher
pure strategy is a sequence of arcs of the tree, the base of each of which touches one of
the arcs already searched. Λ can therefore be reduced to a finite game and must have
a value. In a small number of special cases, the solution of the game on a tree can
be deduced from the solution of the game on a star. For example, consider the tree
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Fig. 3.2. Two tree networks.

Fig. 3.3. The network Q.

depicted on the left of Figure 3.2. For the game with two hidden objects, it is clear
that the arc a must be traversed by the Searcher before he finds all the hidden objects,
since there must be an object at the leaf node of arc b or c. Hence this network has
the same value as the network depicted on the right of Figure 3.2, since the Searcher
may as well begin by traversing the arc a. The solution of the game on the network
on the right follows easily from the solution of the game on a star network.

This principle can be extended to more general trees but does not produce strong
results. If a tree is binary (each branch node has two outward arcs), then the solution
of the search game for k Hiders can be deduced from the solution on a star only if
there are no more than k + 1 leaf nodes.

We investigate the solution of the game for k = 2 on a particular tree Q, depicted
in Figure 3.3, with leaf nodes A,B,C,D. All arcs have unit length. Up to symmetry,
the Hider has only two pure strategies: hide on the same side (choose nodes AB or
CD) or hide on different sides (choose nodes AC, AD, BC, or BD). Similarly, the
Searcher has only two pure strategies up to symmetry: start with two nodes on the
same side or start with two nodes on different sides. Hence the game can be reduced
to a 2 × 2 matrix game in which the Hider chooses between the strategies same and
diff and the Searcher chooses between SAME and DIFF, the interpretation being that
if, say, the Hider chooses same, he randomizes between AB and AC. This gives the
following representation of the game in strategic form:

Hider/Searcher SAME DIFF
same 4.5 5.5
diff 5.5 5.25
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Solving this gives a value of V = 5.3 with both players’ unique optimal strategies
given by the probability vector (1/5, 4/5). Note that in general the game played on a
tree does not have a symmetric payoff matrix.

As before, we can also define the related game Λ̃(Q, k) on a network Q with root
O, in which the Hider chooses k points on the network and a smart Searcher chooses
an expanding search of Q starting at O, so that at any point during the search the
Searcher is permitted to change his search plan. We denote the value of this game
(if it exists) by Ṽ = Ṽ (Q, k), which can be no greater than V . If Q is a tree, both a
smart and a normal Searcher have a finite strategy set, so V (Q, k) and Ṽ (Q, k) both
certainly exist.

Theorems 2.1 and 2.11 show that if Q is a star network, then V (Q, k) = Ṽ (Q, k).
We now show that this may not be true for general trees Q. Consider the smart
search game Λ̃(Q, 2) played on the tree Q in Figure 3.3 with k = 2, and suppose a
smart Searcher uses the following strategy. He searches the nodes in the order ACDB
if there is an object at A, and otherwise he searches them in the order ABCD. If
the Hider uses the strategy (1/5, 4/5) which is uniquely optimal in the game Λ(Q, k),
then the Searcher will find an object at A with probability 1/2. If he does find an
object here, then with probability 4/5 he finds the remaining object at one of the
nodes on the other side after total expected time 4.5; with probability 1/5 he finds
the remaining object only after searching the whole network at time 6. So if he finds
an object at A the expected search time is 4/5(4.5) + 1/5(6) = 4.8. Similarly, if he
doesn’t find an object at A, then with probability 4/5 he finds an object at B and the
remaining object after expected time 5.5; with probability 1/5 he finds both objects
on the other side after time 6. So if he doesn’t find an object at A the expected
search time is 4/5(5.5) + 1/5(6) = 5.6. So on average the expected search time is
1/2(4.8) + 1/2(5.6) = 5.2 < V (Q, 2).

We have showed that against the Hider strategy (1/5, 4/5) there is a smart search
that guarantees expected search time strictly less than V (Q, 2). If the Hider follows
any other strategy, then this must be suboptimal in the normal search game Λ(Q, 2),
so there is a normal search (and hence a smart search) which guarantees expected
time strictly less than V (Q, 2). Hence by the minimax theorem for zero-sum games,
the value Ṽ (Q, 2) of the smart search game Λ̃(Q, 2) satisfies Ṽ (Q, 2) < V (Q, 2).

It can be shown that up to symmetry a smart Searcher has six pure strategies in
the game Λ̃(Q, 2), and the value is Ṽ = 5.25. The optimal Hider strategy is (1/4, 3/4)
and the optimal Searcher strategy can be described as follows. Pick a node at random
to start with. If there is no object here, then search the other node on the same side
and the remaining two in a random order. If there is an object here, with probability
1/2 search the other node on the same side and the remaining two in a random
order, and with probability 1/2 search the two nodes on the other side first then the
remaining node.

3.2. Some strategies for arbitrary networks. For the games Λ(Q, k) and
Λ̃(Q, k) played on a general network the Hider may no longer have a finite set of
dominating strategies as he does on a tree, so that Λ and Λ̃ are infinite games. In this
case it is not immediately obvious they have a value. In this section we give upper
and lower bounds for the values of the games, if they exist, on an arbitrary network.

We first introduce some notation to describe an expanding search of a network Q
with root O and total length μ. For a given expanding search (that is a sequence of
unit speed paths starting from O, each of which starts from a point already reached),
let P (t) (t ≥ 0) denote the unique point in Q reached by the search at time t. We
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must have P (0) = O and P ([0, t]) must be a connected set of measure at most t for
all t ≥ 0. For an expanding search P and a set H of k points in Q, we denote the
time taken for P to find all k points in H by T (P,H).

The set of expanding searches is a subset of a larger class of search strategies,
which in [7] are called generalized search strategies. These can be defined in an ar-
bitrary search space Q, which may not be a network but could be any subset of
Euclidean space. The Lebesque measure of a measurable subset X ⊂ Q is denoted by
μ(X) with the total measure of Q denoted by μ = μ(Q).

Definition 3.1. A generalized search strategy in a search space Q is defined by
the sets S(t) ⊂ Q that have been “discovered” by time t. The sets S(t) are required to
satisfy the following conditions:

S(t) ⊂ S(t′) for t < t′ and μ(S(t)) ≤ t for all t ≥ 0.

In particular, an expanding search P (t) of a network is a generalized search strat-
egy S, where S(t) = P ([0, t]), satisfying the additional condition that S(t) is connected
for all t. We can also define a generalized smart search strategy as a generalized search
strategy which the Searcher is permitted to adapt at any point during the search.

For an arbitrary search space Q we define a Hider strategy as a set of k points
H1, . . . , Hk in Q. We define below a mixed Hider strategy uk which we call the
k-uniform strategy. This is the strategy that places each of the k objects on Q inde-
pendently and completely randomly.

Definition 3.2. The k-uniform strategy uk on a search space Q is a set of ran-
domly chosen points h1, . . . , hk in Q, each of which is independently chosen uniformly,
so that for any measurable set X ⊂ Q, the probability hi is in X is μ(X)/μ.

Hiding according to the k-uniform strategy allows the Hider to put the following
upper bound on the expected search time of any generalized smart search strategy.
This generalizes an analagous result for a single Hider first noted in [19], later used
in [13], and stated in more generality in [7].

Theorem 3.3. If the Hider chooses his hiding points according to the k-uniform
strategy uk, then he ensures an expected search time of at least (1−1/(k+1))μ against
any generalized smart search strategy.

Proof. Since the k objects are independently hidden, the times at which they
are found by any generalized smart search strategy are independent. Hence a smart
Searcher has no advantage over a normal Searcher, so we need only consider general-
ized search strategies that are not smart. For any such strategy S(t), the probability

that the time T it takes to find all k objects is less than some t ≥ 0 is (μ(S(t))/μ)
k
,

by definition of uk. But by definition of a generalized search strategy, μ(S(t)) ≤ t for
all t ≥ 0, so

P (T < t) ≤ min

[(
t

μ

)k

, 1

]
.

Hence the expected search time E(T ) is given by

E(T ) =

∫ ∞

0

P (T ≥ t)dt ≤
∫ ∞

0

max

[
1−

(
t

μ

)k

, 0

]
dt

=

∫ μ

0

(
1−

(
t

μ

)k
)
dt =

(
1− 1

k + 1

)
μ.D
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Fig. 3.4.

Theorem 3.3 gives a lower bound on the value (if it exists) of the expanding search
game for k objects on any network with a smart Searcher. We will now give an upper
bound by defining a smart search strategy for the game Λ̃(Q, k) on any network Q.

We first introduce the notion of a reversible expanding search. Suppose P (t) is
an expanding search of a network Q for which τ is the first time that all the points
of Q have been searched. We can define a function P−1(t), 0 ≤ t ≤ τ such that
P−1(t) = P (τ − t). By a reversible expanding search we mean an expanding search P
for which P−1 is also an expanding search. Note that not all expanding searches are
reversible, for instance, those that don’t end at the root. A necessary condition for
P to be reversible is that for all t, Q − P ([0, t]) is connected and contains O. Every
network has a reversible expanding search of minimum length (that is, for which τ is
minimal).

Definition 3.4. A reversible expanding search that visits all the points of Q and
has minimal length will be called a minimal reversible expanding search (MRES). We
denote its length by μ̄ = μ̄(Q), which must be at least μ.

It may be the case that a network’s MRES doubles back on itself, as in the network
in Figure 3.4, in which all the arcs, a, b, c, and d have unit length. An example of an
MRES on this network can be described as follows: take the path along arc a from O
to A, then the path along b from O to A, then the path from A to B and back again,
then the path from A to O along c. Here the arc d is necessarily traversed twice, so
that the length μ̄ of the MRES is 5.

We use the concept of the MRES to define a mixed strategy for a smart Searcher,
called the smart k-uniform MRES.

Definition 3.5. Let P be an MRES on a network Q, and for each j = 0, 1, . . . , k
let Pj be the smart search that follows P until j objects have been found, then follows
P−1 until the remaining k − j objects have been found. The smart k-uniform MRES
P∗ is defined as an equiprobable choice of the Pj.

Following P∗ gives an upper bound on the expected search time, as we now show.

Theorem 3.6. If a smart Searcher follows a smart k-uniform MRES P∗, he
ensures an expected search time of no more than

(
1− 1

k+1

)
μ̄ against any Hider strategy

H in the game Λ̃(Q, k).

Proof. Suppose the MRES P finds the k objects at times t1, t2, . . . , tk, where
t1 ≤ t2 ≤ · · · ≤ tk, and let t0 = 0 and tk+1 = μ̄. Then for j = 0, 1, . . . , k, the
expanding search Pj finds j objects after time tj , and after further time μ̄− tj+1 will
have found all the remaining objects. (In fact the remaining objects may be found by
an earlier point in time.) So the total time taken for Pj to find all the objects is no
greater than tj + (μ̄ − tj+1). Since P∗ is an equiprobable choice of the Pj , the total
expected search time T (P∗, H) satisfies
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T (P∗, H) ≤ 1

k + 1

k∑
j=0

tj + (μ̄− tj+1)

=
1

k + 1

(
(k + 1)μ̄−

k∑
j=0

(tj+1 − tj)

)

=
1

k + 1
((k + 1)μ̄− μ̄)

=

(
1− 1

k + 1

)
μ̄.

For the network in Figure 3.4, for k = 3, we have (1−1/(k+1))μ̄ = 5(3/4) = 3.75
and (1 − 1/(k + 1))μ = 4(3/4) = 3, so Theorems 3.3 and 3.6 imply that the value
of the smart search game for three objects on this network (if it exists) is between 3
and 3.75.

We can also define a mixed strategy for a normal Searcher on any network, giving
us an upper bound for the expected search time in the normal game.

Definition 3.7. Let P be an MRES on a network Q, and let Ij be the portion
of this MRES that is traversed during the time interval

[
j−1
k μ̄, j

k μ̄
)
, j = 1, . . . , k.

There is an expanding search for which Ij is the last part of Q to be searched, and
it is searched in the backward direction, namely, the search which starts by following
P until time j−1

k μ̄ and then follows P−1 for the remaining time. Similarly there
is a search for which Ij is the last part of Q to be searched, and in the forward
direction, which starts by following P−1 until time

(
1− j

k

)
μ̄ and then follows P for

the remaining time. The normal k-uniform MRES P ∗ is defined as the search strategy
which makes an equiprobable choice between all 2k expanding searches so described.

Theorem 3.8. If a normal Searcher follows a normal k-uniform MRES P ∗, he
ensures an expected search time of no more than

(
1− 1

2k

)
μ̄.

Proof. First note that if the MRES P doubles back on itself for any part of Q,
then we can simply add some more nodes and arcs to Q to create a new network
which has the same μ̄ but in which the MRES never doubles back. To do this, we
simply add a new arc whenever P starts to retrace some part of Q that has already
been searched. It is clear that this is a disadvantage to the Searcher, so it will only
increase the expected search time. Without loss of generality we can restrict the proof
to Q for which the MRES traverses each arc of Q only once, so that μ̄ = μ.

By rescaling we can assume μ̄ = 1 so each Ij has length 1/k. Supposing that Ij
is the last part of Q to be searched by P ∗, it is equally likely to be searched in the
forward direction (by P ) as it is in the reverse direction (by P−1). It follows that
if Ij contains just one object, then the expected search time will be 1 − (1/2) (1/k).
If Ij contains no objects, then by the time Ij is searched all the objects will have
been found and the search time is no more than 1 − 1/k. If Ij contains more than
one object, then the search time may be as great as 1. However, as the number of Ij
containing two or more objects must be no greater than the number of Ij containing
no objects, the expected search time is bounded by the average of 1 − 1/k and 1,
which is 1− (1/2) (1/k).

For the network in Figure 3.4, for k = 3, we have μ̄(1− 1/(2k)) = 5(5/6) ≈ 4.167,
so Theorems 3.3 and 3.6 imply that the value of the normal search game for three
objects on this network (if it exists) is between 3 and 4.167.

When k = 1, the two lower bounds given in Theorems 3.6 and 3.8 are both equal
to μ̄/2. This bound for the expanding search game with one hidden object can be
found in [8], and our results therefore both generalize this bound.
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3.3. Search for k objects on a 2-arc connected network. In this section,
we examine when the two bounds given in Theorems 3.3 and 3.6 are equal, that is,
when μ(Q) = μ̄(Q). For this equality to hold, we must be able to find an MRES on
Q which doesn’t double back on itself. We will see that this is possible precisely for
2-arc connected networks, so that the value Ṽ (Q, k) of the smart search game played
on such networks is μ(1− 1/(k+ 1)). Recall that a network is 2-arc connected if and
only if it cannot be disconnected by the removal of fewer than two arcs. We also show
that the bounds given by Theorems 3.3 and 3.8 are equal if Q is a circle.

Suppose a rooted network Q has an MRES P with length μ̄ = μ. Then for any
given arc a, let t be the first time P has searched the whole of a. By definition of an
expanding search, P ([0, t]) is connected and contains O, and so is P ([0, t])− a. Since
P is reversible and minimal, P−1([0, μ− t)) = Q−P ([0, t]) is connected and contains
O, and by the minimality of P , Q − P ([0, t]) is disjoint from a. Hence the union
(P ([0, t])− a)∪ (Q−P ([0, t])) = Q− a is connected, and so Q is 2-arc connected. We
have shown that a network is 2-arc connected if it has an MRES of length μ. In fact,
in [8], the authors show that the reverse implication also holds, so that we have the
following theorem.

Theorem 3.9. A network with total measure μ is 2-arc connected if and only if
it has an MRES of length μ.

We can now give the solution of the smart search game Λ̃(Q, k) for 2-arc connected
networks.

Theorem 3.10. If Q is 2-arc connected, then the value of the smart search game
Λ̃(Q, k) is Ṽ (Q, k) = μ(1− 1

k+1 ). The k-uniform strategy uk is optimal for the Hider,

and the smart k-uniform MRES P̄ is optimal for the Searcher.

Proof. If the Hider follows uk, then by Theorem 3.3 he ensures an expected
search time of at least μ(1 − 1

k+1 ), so Ṽ ≥ μ(1 − 1
k+1 ). If the Searcher follows P̄ ,

then by Theorem 3.6 he ensures an expected search time of at most μ̄(1 − 1
k+1 ), so

Ṽ ≤ μ̄(1− 1
k+1 ). SinceQ is 2-arc connected, μ = μ̄, by Theorem 3.9, so Ṽ ≤ μ(1− 1

k+1 ),
and we must have equality.

For a normal Searcher, Theorems 3.8 and 3.9 imply that if Q is 2-arc connected,
the value of the game is no more than μ(1− 1/(2k)). We sum this up in the theorem
below.

Theorem 3.11. If Q is 2-arc connected, the value of the normal search game
satisfies V (Q, k) ≤ μ(1 − 1

2k ).

This bound is tight in the case that Q is a circle, as we now show. We denote the
circle C by the interval [0, μ], identifying the points 0 and μ, which is the root.

Theorem 3.12. The value normal search game Λ(C, k) is V (C, k) = μ(1− 1
2k ).

The normal k-uniform MRES P ∗ is optimal for the Searcher. It is optimal for the
Hider to follow the strategy h in which he picks some x uniformly from the interval
[0, μ/k) and hides the objects at the points {x, x+μ/k, x+2μ/k, . . . , x+(k−1)μ/k}.

Proof. By Theorem 3.11, V (C, k) ≤ μ(1 − 1
2k ) since C is 2-arc connected, so it

remains to be shown that the Hider’s strategy h ensures an expected search time no
greater than μ(1− 1

2k ). For any normal Searcher strategy S, k− 1 of the objects will
be found be S by time μ(1− 1/k), and the whole of C will have been searched except
for an interval I = [a, a+ μ/k), for some a ≤ μ(1− 1/k). The remaining object that
has not been found is located uniformly on I, so any search will find it in additional
time μ

2k . The total search time is therefore μ(1− 1
k )+

μ
2k = μ(1− 1

2k ). This completes
the proof.
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Fig. 3.5. The three-arc network.

The bound in Theorem 3.8 is not tight for general 2-arc connected networks, as
demonstrated by the 3-arc network Q depicted in Figure 3.5, which consists of three
arcs of length 1.

Consider the expanding search game Λ(Q, 2) with two hiders played on Q with
a normal Searcher. Theorem 3.11 gives the bound V (Q, 2) ≤ 3(1 − 1/4) = 9/4.
However, the Searcher can improve on this bound. Consider the Searcher strategy
where he picks two arcs at random and uses his optimal strategy for the circle with
k = 2 on this subnetwork, then uses his strategy for k = 1 on the remaining arc,
which can now be regarded as a circle.

Suppose the Hider places his two objects on different arcs. If the Searcher chooses
these arcs first (probability 1/3), then by Theorem 3.12, the expected capture time
will be 2(1− 1/4) = 3/2. If he chooses a different pair of arcs first (probability 2/3),
then again, by Theorem 3.12, the expected capture time will be 2+ 1(1− 1/2) = 5/2.
So the overall expected capture time is 1/3 · 3/2 + 2/3 · 5/2 = 13/6.

Now suppose the Hider places both objects on the same arc. If one of the first
two arcs the Searcher chooses is this one (probability 2/3), the expected capture is
2(1 − 1/4) = 3/2. If the Searcher chooses the two other arcs first (probability 1/3),
then the expected capture time is no greater than 3. So the overall expected capture
time is no greater than 2/3 · 3/2 + 1/3 · 3 = 2 < 13/6. So V (Q, 2) ≤ 13/6 < 9/4.

It can be shown that V (Q, 2) = 13/6, as the Hider can ensure expected capture
time at least 13/6 by picking two arcs at random and using his optimal strategy for the
circle with k = 2 on this subnetwork. A detailed proof is omitted, but it is sufficient
to show that the Searcher has a best response to this Hider strategy which begins by
searching only two of the arcs. If the Searcher uses a strategy of this type, then given
that he finds the final object before time 2, the expected capture time is 3/2; given
that he finds the final object after time 2, the expected capture time is 5/2. Hence
the overall expected capture time is precisely 1/3 · 3/2 + 2/3 · 5/2 = 13/6.

4. Conclusion. We have defined and solved a natural search problem in which
a Searcher wishes to find several balls hidden in boxes with designated search costs.
We have shown how the problem can be viewed as a particular case of an extension of
the expanding search game for a single object on a network recently introduced in [8].
We have shown that a smart Searcher has no advantage in this game over a normal
Searcher but may in the general expanding search game for multiple objects on a
network. We have given bounds for the value of this game on an arbitrary network,
and we have solved the game for a smart Searcher on a 2-arc connected network and
for a normal Searcher on a circle.

The exclusion of overlook probabilities in this model of a box search provides a
new class of discrete search problems which are distinct from the type first considered
in Matula [20]. The elementary nature of the problem means that it has the potential
to be applied to many areas of science.
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There are several simple extensions to the games presented here which merit fur-
ther study. For example, the Searcher may wish to minimize the search cost incurred
in finding some j < k of the objects, or he may have a fixed budget, under which
he wishes to maximize the number of objects he can find. Alternatively, one might
consider a variation of the problem in which a continuous quantity like oil is hidden
on a network or in discrete locations.
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