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INVARIANT MANIFOLDS AROUND SOLITON MANIFOLDS
FOR THE NONLINEAR KLEIN-GORDON EQUATION

K. NAKANISHI AND W. SCHLAG

Abstract. We construct center-stable and center-unstable manifolds, as well
as stable and unstable manifolds, for the nonlinear Klein-Gordon equation with
a focusing energy sub-critical nonlinearity, associated with a family of solitary
waves which is generated from any radial stationary solution by the action of
all Lorentz transforms and spatial translations. The construction is based on the
graph transform (or Hadamard) approach, which requires less spectral information
on the linearized operator, and less decay of the nonlinearity, than the Lyapunov-
Perron method employed previously in this context. The only assumption on the
stationary solution is that the kernel of the linearized operator is spanned by its
spatial derivatives, which is known to hold for the ground states. The main novelty
of this paper lies with the fact that the graph transform method is carried out in
the presence of modulation parameters corresponding to the symmetries.

Contents

1. Introduction 2
2. Preliminaries 7
2.1. Equation and spectrum 7
2.2. Mobile distance 10
3. Construction of manifolds for a localized equation 12
3.1. Localization of the equation 12
3.2. Smallness of nonlinearity 14
3.3. Evolution of graphs, center-stable case 17
3.4. Contraction of graphs, center-stable case 19
3.5. Evolution of graphs, unstable case 21
3.6. Contraction of graphs, unstable case 22
4. The unstable manifold 24
5. Trapping property of the center-stable manifold 24
5.1. Restriction by the orthogonality 24
5.2. Solutions on the center-stable manifold with the orthogonality 25
5.3. Lorentz extension of the center-stable manifold 27
5.4. Solutions off the center-stable manifold 28
6. Regularity of the center-stable manifold 29

2010 Mathematics Subject Classification. 35L70, 35Q55.
Key words and phrases. nonlinear wave equation, nonlinear Klein-Gordon equation, stationary

solution, soliton, stable manifold, center-stable manifold.
The second author was supported in part by the National Science Foundation, DMS-0617854

as well as by a Guggenheim fellowship.
1

http://arxiv.org/abs/1102.5583v1


2 K. NAKANISHI AND W. SCHLAG

Appendix A. Table of Notation 36
References 37

1. Introduction

Consider the focusing nonlinear Klein-Gordon equation (NLKG) on R
d

ü−∆u+ u = f(u), u(t, x) : R1+d → R (1.1)

where f : R → R is a given nonlinearity. A typical example is the focusing power
nonlinearity

f(u) = |u|p−1u, 3 ≤ p+ 1 <

{
2d
d−2

(d ≥ 3),

∞ (d ≤ 2).
(1.2)

The lower bound can in principle be reduced to p > 1, but we assume p ≥ 2 to avoid
technical and non-essential complications in the nonlinear estimates.

The equation preserves the total energy and momentum

E(u) :=

∫

Rd

[ |u̇|2 + |∇u|2 + |u|2
2

− f (−1)(u)
]
dx, P (u) :=

∫

Rd

u̇∇u dx, (1.3)

where f (−1) : R → R is the primitive f (−1)(a) =
∫ a
0
f(b) db. These quantities are

well-defined in the energy space

~u(t) := (u(t), u̇(t)) ∈ H := H1(Rd)× L2(Rd). (1.4)

Throughout the paper, we do not distinguish vertical and horizontal vectors in H,
unless it may lead to any confusion.

We will consider NLKG in the energy space H, regarding it as a Hamiltonian
system. Our goal is to construct a local center-stable manifold of the family of
traveling waves generated by the Lorentz transforms and spatial translations acting
on a stationary solution. For brevity, we call the latter manifold of traveling waves
the soliton manifold. There are two major approaches used in the construction of
center-stable manifolds: the Hadamard method and the Lyapunov-Perron method.
The former uses the evolution backward and locally in time to find a flow-invariant
graph of the unstable modes in terms of the other components (the Hadamard
approach also goes by the name of graph transform or invariant cones method). The
latter uses the evolution forward and globally in time to find an initial adjustment
of the unstable modes so that they remain small forever.

Bates and Jones [1] developed the Hadamard method in the general setting of
an ODE of the form ẋ = Ax + f(x) where A is an (unbounded) operator on some
Banach space X which generates a continuous semi-group, the nonlinearity f is
locally Lipschitz on X , satisfies f(0) = 0, and admits arbitrarily small Lipschitz
constants near the equilibrium x = 0. The spectrum of A is divided in the stable
part with eigenvalues in the left-half plane, the unstable part which lies in the right-
half plane, and the center part which lies on the imaginary axis. Assumptions are
made on the dimensions of the corresponding spectral subspaces of X , and the



INVARIANT MANIFOLDS FOR SOLITONS OF NLKG 3

associated flows (if the spaces are infinite-dimensional) so as to represent two main
scenarios: the dissipative case (D) on the one hand, and the conservative case (C)
on the other hand. For (D) one demands that only the stable subspace be infinite-
dimensional and that the associated semigroup is exponentially stable. For (C)
only the center subspace is infinite dimensional, which is precisely what occurs in
Hamiltonian problems.

Bates and Jones then verified that the abstract center-stable manifold which they
constructed in [1] applies to stationary solutions of NLKG under the radial symmetry
restriction, for the power nonlinearity (1.2) with p < d

d−2
, d ≥ 3, where the upper

bound on p was required to ensure that the nonlinearity is locally Lipschitz H1 → L2.
They also showed that if the linearized operator has no nonzero radial functions in
its kernel, then

(1) Every solution starting on the center-stable manifold stays there forever in
positive times, remaining in a small neighborhood of the stationary solution.

(2) Every solution starting in that small neighborhood, but off the manifold,
must exit the neighborhood in finite positive time.

The kernel condition holds for the ground state (the positive stationary solution),
by work of Weinstein [14].

Gesztesy, Jones, Latushkin, and Stanislavova [8] demonstrated that the Bates–
Jones theory applies to the nonlinear Schrödinger equation (NLS) with a spatially
localized nonlinearity. Notice that the radial restriction for NLKG prohibits both
the spatial translations and the Lorentz transforms, and so the soliton manifold is
reduced to a fixed stationary solution. Similarly, the localized nonlinearity of [8]
destroys the scaling, translation, and Galilean invariance, so that the soliton can
change only with respect to the phase parameter. Indeed, as we will explain below,
moving solitons represent a serious obstacle to the Bates–Jones approach.

On the other hand, the second author [13] developed the Lyapunov-Perron (LP)
method for the ground state of the cubic NLS in R

3, without imposing any symmetry
assumptions, but in a weighted Hs-space (or an unweighted L1-based space). In this
approach, the soliton is allowed to move. Recently, Beceanu [3] extended the latter

work to the critical space Ḣ1/2 which is bigger than the energy space. Finally,
and partly based on a novel approach to linear dispersive estimates developed by
Beceanu [2], the authors proved in [12] that the LP approach can be carried out for
NLKG in the energy space without any symmetry restrictions.

However, an essential difficulty in applying the LP method to a nonlinear disper-
sive equation (without dissipation) is that it requires global dispersive estimates,
which in turn necessitates fine spectral information, such as the absence of threshold
resonances and of so-called spurious1 eigenvalues; alternatively, in the presence of
such spurious eigenvalues one might hope to invoke the Fermi golden rule. Those
conditions are in general very hard to check, even for the ground state (apart from
the one-dimensional case [9] where purely analytical arguments are available), al-
though there has been some recent progress in this direction [6, 7, 10, 5].

1This refers to eigenvalues which do not result from symmetries of the equation.
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While the LP method requires stronger ingredients, it also leads to more detailed
conclusions. More specifically, one obtains that solutions starting on the center-
stable manifold scatter to the soliton manifold in forward time. In other words,
the distinction between the LP approach and the Hadamard approach is roughly
tantamount to the distinction between asymptotic and orbital stability of solitary
waves.

In this paper, we employ the Hadamard method in the nonradial setting. Our
main challenge is to extend the result by Bates and Jones to the family of traveling
waves, rather than stationary ones. We therefore have to investigate the dynamics
along the soliton manifold as well, which is usually called the modulational analysis
in the stability problem of solitons. In our setting, the soliton manifold has 2d
dimensions corresponding to the relativistic momentum and position vectors in R

d.
Those parameters can be fixed by means of a Lorentz transform which reduces

the total momentum to zero, and by using a coordinate moving with the soliton.
In doing so, we encounter a derivative loss due to the translation, i.e., a transport
term, in the modulated equation for the difference of two solutions, which disables
the contraction argument for the graphs in the energy norm. This difficulty is not an
artifact of the coordinate choice, but a natural consequence of the two facts that the
solitons are translated by the flow, while the translation is not Lipschitz continuous
in any Sobolev space. The same problem occurs for any other continuous group
action involving a coordinate change, such as scaling or rotation.

We overcome this difficulty by introducing a nonlinear quasi-distance in the energy
space, for which the spatial translation becomes Lipschitz continuous, while the
topology remains the same. Using the contraction mapping principle with this
distance for the continuous spectral part, we are able to carry out the Hadamard
method in the presence of modulational parameters.

A more technical issue concerns allowing nonlinearities all the way up to the
H1 critical power, i.e., for p < (d + 2)/(d − 2), while Bates and Jones assumed
p < d/(d − 2). This is easily resolved by using the Strichartz estimate for the free
Klein-Gordon equation, and by relaxing some flow-invariance conditions by constant
multiples.

Since the description of dynamics around the manifolds ((1)-(2) above) is also
extended to the current setting, we can easily observe that the maximal backward
evolution of the center-stable manifold is identical, in a small neighborhood, to the
forward trapping set T+: the collection of initial data for which the solution (of the
original NLKG) stays in the small neighborhood for large times.

In the special case where the soliton manifold is generated from the ground state,
we can combine the above result with the one-pass theorem in [12] as well as the
openness and connectedness of the forward scattering set S+ and the forward blow-
up set B+, thereby concluding that T+ separates locally and globally all the solutions
with energy at most slightly above the ground state energy into S+ and B+. There-
fore, the conclusion of [12] is extended to the range

d ∈ N, 1 +
4

d
< p < 1 +

4

d− 2
, p ≥ 2, (1.5)
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except for the following scattering statement on T+: all solutions in T+ scatter to
the soliton manifold as t→ ∞. This statement was proved in [12] for d = p = 3 by
means of the LP method using the following gap property of the linearized operator
L+:

(0, 1) ∩ σ(L+) = ∅, and there is no threshold eigenvalue or resonance

This is proved (at least for the radial case) in [5]. Note that the numerical analysis
of [6] suggests that the absence of threshold resonances and spurious eigenvalues
fails for some powers in (1 + 4/3, 3) for d = 3, where the LP method without any
hypothesis (typically the Fermi golden rule) is not so far available. Also note that
the lower bound 1+4/d is required by the proof of the one-pass theorem, but not by
the Hadamard construction in this paper, while the Lyapunov-Perron method also
needs it in order to work in the energy space.

To state the main result, we clarify the assumptions on the nonlinearity f and on
the stationary solution:

f ∈ C2(R;R), 0 = f(0) = f ′(0),

∀a ∈ R, |f ′′(a)| .





1 + |a|p−2 (d ≥ 3, 2 ≤ ∃p < d+2
d−2

)

1 + |a|p−2 (d = 2, 2 ≤ ∃p <∞)

arbitrary (d = 1).

(1.6)

To have C1 manifolds, we assume a bit more regularity: for some p > 2 in the above
range,

|f ′′(a1)− f ′′(a2)| . (|a1 − a2|p−2 + |a1 − a2|)[1 + |a1|p−3 + |a2|p−3]. (1.7)

These assumptions are satisfied for example by

f(u) =
∑

k:finite

λk|u|pk−1u, λk ≥ 0, (1.8)

provided that all pk > 2 are in the range (1.6).
Let Q ∈ H1(Rd) be a stationary solution of NLKG, i.e., a weak solution of the

elliptic PDE

−∆Q +Q = f(Q). (1.9)

Standard arguments imply that Q ∈ H2 with exponential decay as |x| → ∞.
For existence, see the classical work by Berestycki, Lions [4]. The action of the
Lorentz transforms and the spatial translations generate the traveling wave family
parametrized by the relativistic momentum ~p ∈ R

d and position ~q ∈ R
d:

Q(~p, ~q) := Q(x− ~q + ~p(〈~p〉 − 1)|~p|−2~p · (x− ~q)), (1.10)

so that each traveling wave can be written in the form

u(t) = Q(~p, ~q(t)),
d

dt
~q(t) =

~p(t)

〈~p(t)〉 . (1.11)

For brevity, the spatial translate is denoted also as

Qc(x) := Q(x− c). (1.12)
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The vector form is denoted by

~Q := (Q, 0), ~Q(p, q) := (Q(p, q),− ~p

〈~p〉 · ∇Q(p, q)), (1.13)

and the soliton manifold of Q is defined as

S (Q) := { ~Q(~p, ~q)}~p,~q∈Rd ⊂ H, (1.14)

which is a C1 manifold of dimension 2d. The linearized operator at Q

L+ := D2 − f ′(Q) = −∆+ 1− f ′(Q), D :=
√
1−∆ (1.15)

is self-adjoint on L2 with a finite number of eigenvalues and continuous spectrum
σc(L+) = σac(L+) = [1,∞). The translation invariance of NLKG implies that
L+∇Q = 0. The only assumption on Q in this paper is

L−1
+ (0) = span{∇Q}. (1.16)

This is a well-known property of the ground states. To be more precise, by an
argument of Weinstein [14], it holds for the ground state Q provided no radial
function lies in the kernel of L+. The latter holds for any subcritical monomial
nonlinearity (as well as others), see Lemma 2.3 in [11], for example. Moreover,
(1.16) seems to be a natural assumption for any other radial static solution. For
non-radial static solutions, we have to include angular derivatives as well, but we
do not consider such solutions in this paper. Although we will not explicitly use the
radial symmetry of Q, the reader may assume it without losing anything throughout
the paper.

Theorem 1.1. Let d ∈ N and assume that f satisfies (1.6). Let Q be a static
solution (1.9) and assume that its linearized operator L+ satisfies (1.16). Then
there is a Lipschitz manifold Mcs in H containing the soliton manifold S (Q), with
the following properties:

(1) The codimension of Mcs in H equals the total dimension of the eigenspaces
of L+ corresponding to negative eigenvalues, which we denote by K.

(2) Mcs is invariant under the forward evolution of NLKG (1.1).
(3) Mcs is invariant under spatial translations.
(4) For every Lorentz transform and every (~p, ~q), there is a small neighborhood

of ~Q(~p, ~q) such that the Lorentz transform of any forward global solution
starting from Mcs within this neighborhood remains on Mcs for all t > 0.

(5) Mcs is normal at ~Q to the vector (−kρ, ρ) for any ρ ∈ H1 solving L+ρ =
−k2ρ for some k > 0. In other words,

〈u2|ρ〉 = −k〈u1 −Q|ρ〉+ o(‖u1 −Q‖H1 + ‖u2‖L2). (1.17)

(6) For any neighborhood O of S (Q), there is a smaller neighborhood O′, such
that every solution starting from O′∩Mcs remains in O∩Mcs for all t > 0.

(7) There is a neighborhood O of S (Q) such that every solution starting from
O \Mcs exits O in finite positive time.

(8) If in addition f satisfies (1.7), then Mcs is C
1,α, where α = min(1, p− 2).
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The corresponding statement for a center-unstable manifold follows simply by the
time inversion, so we omit it. However, in the proof we will actually consider the
center-unstable manifold, for which the forward evolution is used as a contraction
mapping in the Hadamard method. The center manifold is obtained by intersecting
the center-stable with the center-unstable manifold. It is of codimension 2K and is
bi-invariant.

Properties (6), (7) characterize Mcs as the set of solutions which stay close to
S (Q) for all t ≥ 0. Since the Lyapunov-Perron method looks for such solutions from
the beginning, it will yield a subset of Mcs, and indeed the same manifold (locally),
provided that the codimension is the same. An advantage of the Lyapunov-Perron
method is that it implies the scattering to the soliton manifold for the solutions
on Mcs (cf. [12]). It will be interesting to see what happens when some spectral
condition breaks down, e.g., if there is a threshold resonance.

We also obtain a stable and unstable manifold theorem. Recall the definition of
K from the previous theorem.

Theorem 1.2. Under the assumptions of the previous theorem, there exist Lipschitz
manifolds Mu and Ms of dimensions K + d with the following properties:

(1) Ms is invariant under the forward evolution of the NLKG (1.1).
(2) Ms is invariant under spatial translations.

(3) every solution starting on Ms converges exponentially to ~Q(·−c(t)) as t→ ∞
where ċ(t) → 0 exponentially as t→ ∞.

(4) there exists δ > 0 small such that Ms is a Lipschitz graph over Bδ(0)× R
d,

with Bδ(0) being a δ-ball in the eigenspace corresponding to the negative
eigenvalues, and the R

d-component deriving from spatial translations.
(5) Mu is obtained from Ms by reversing time.

2. Preliminaries

Here we fix some notation. For any two elements v0, v1 in a normed space V , the
ordered pair and their difference are denoted by

v⊲ := (v0, v1) ∈ V 2, ‖v⊲‖V = ‖v0‖V + ‖v1‖V , ⊳v⊲ := v1 − v0, (2.1)

respectively. More generally, for any map M : V ×W × · · · and elements vj ∈ V ,
wj ∈ W ,. . . , the mapped pair is denoted by

M(v⊲, w⊲, . . . ) := (M(v0, w0, . . . ),M(v1, w1, . . . )). (2.2)

For any R ∈ R and δ > 0, the minimum is denoted by

(R ∧ δ) := min(R, δ). (2.3)

As usual, a . b, a & b, and a ≃ b involve implicit multiplicative constants.

2.1. Equation and spectrum. The energy space H = H1×L2 ⊂ (L2)2 is endowed
with the usual inner product

〈ϕ, ψ〉H :=

∫

Rd

[
∇ϕ1 · ∇ψ1 + ϕ1ψ1 + ϕ2ψ2

]
dx (2.4)
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and the L2 duality coupling

〈ϕ|ψ〉 :=
∫

Rd

[
ϕ1(x)ψ1(x) + ϕ2(x)ψ2(x)

]
dx, (2.5)

as well as the symplectic form

ω(ϕ, ψ) := 〈Jϕ|ψ〉 =
∫

Rd

[
ϕ2(x)ψ1(x)− ϕ1(x)ψ2(x)

]
dx, (2.6)

where J is the skew-symmetric matrix

J :=

(
0 1
−1 0

)
, J2 = −

(
1 0
0 1

)
. (2.7)

Let L be the self-adjoint operator on L2 with domain H2 × L2

L :=

(
L+ 0
0 1

)
=

(
−∆+ 1− f ′(Q) 0

0 1

)
. (2.8)

Its free version is denoted by

D :=

(
D2 0
0 1

)
=

(
−∆+ 1 0

0 1

)
. (2.9)

Then the linearized equation around ~Q = (Q, 0) is

vt = JLv. (2.10)

The spectrum of JL is given in terms of that of L+:

σ(JL) = ±
√

−σ(L+)

Since f ′(Q) is bounded and exponentially decreasing, there are 0 < k ≤ 1 < k and
a finite set K ⊂ [k, k] such that

σ(L+) \ [k2,∞) = {0} ∪ {−k2 | k ∈ K}. (2.11)

With slight abuse of notation, we let K count the multiplicity of each negative
eigenvalue −k2 as well. For each k ∈ K, let ρk ∈ S(Rd) be an eigenfunction
satisfying

L+ρk = −k2ρk, ‖ρk‖2 = 1. (2.12)

The (generalized) eigenfunctions of JL are

JLgk± = ±kgk±, JL∇ ~Q = 0, JLJ∇ ~Q = −∇ ~Q, gk± :=

(
1
±k

)
ρk√
2k
, (2.13)

which satisfy

ω(∂α ~Q, J∂β ~Q) = Hα,β(Q) := 〈∂αQ|∂βQ〉, ω(gk+, gk−) = 1. (2.14)



INVARIANT MANIFOLDS FOR SOLITONS OF NLKG 9

The corresponding symplectic (spectral) decomposition takes the form

v =
∑

±,k∈K

λk±gk± + µ · ∇ ~Q+ ν · J∇ ~Q+ γ,

λk± := P±kv := ω(v,±gk∓),
µ := Pµv := H(Q)−1ω(v, J∇ ~Q), ν := Pνv := H(Q)−1ω(v,−∇ ~Q),

γ := Pγv := v −
∑

±,k

λ±kgk± − µ · ∇ ~Q− ν · J∇ ~Q.

(2.15)

We will use the following projections as well:

v± := P±v :=
∑

k∈K

λk±gk±, vd := Pdv := v − Pγv,

v0 := P0v := ∇ ~Q · µ+ J∇ ~Q · ν, v≥0 := P≥0v := v − v−,

vγ+ := Pγ+v := γ + v+, v0± := P0±v := v0 + v±,

(2.16)

and the corresponding subspaces H± := P±(H). Fixing a small number

0 < κ≪ k, (2.17)

we define the energy norm on H to be

‖v‖2E :=
∑

k∈K

|λk|2 + |ν|2 + κ2|µ|2 + 〈Lγ|γ〉 ≃ ‖v‖2H, (2.18)

where the final equivalence follows from the orthogonality of γ1:

0 = 〈γ1|∇Q〉 = 〈γ1|ρk〉 ∀ k, (2.19)

together with (1.16), since 〈Lγ|γ〉 = 〈L+γ1|γ1〉+ ‖γ2‖22.
Let ~u ∈ C(I;H) be a solution (1.1), then v = (v1, v2) := ~u(x+ c)− ~Q solves

vt = JLv + ċ · (∇ ~Q +∇v) + ~N(v), ~N(v) = (0, N(v)), (2.20)

where N : H → H−1 carries the superlinear part

N(v) := f(Q+ v1)− f(Q)− f ′(Q)v1 = o(v1). (2.21)

We remark that v2 6= v̇1 unless ċ = 0.
The conserved momentum can be rewritten as

P (u) := ω(~u,∇~u)/2 = ω(v,∇ ~Q) + ω(v,∇v)/2. (2.22)

By means of a Lorentz transform, we can reduce the dynamics near the soliton
manifold S (Q) to the invariant subspace

H0 := {~u ∈ H | P (u) = 0}. (2.23)

Furthermore, we can restrict v to the subspace

H⊥ := {v ∈ H | ω(v,∇ ~Q) + ω(v,∇v)/2 = 0, ω(v, J∇ ~Q) = 0}, (2.24)

by choosing ċ so that

0 = ∂tω(v, J∇ ~Q) = (H(Q)− 〈∇2Q|v1〉)ċ+ ω(v,∇ ~Q). (2.25)
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Hence the evolution for small v on H⊥ is given by

vt = JLv + A(v) · ∇( ~Q + v) + ~N(v),

A(v) := (H(Q)− 〈∇2Q|v1〉)−1ω(v,∇v)/2.
(2.26)

This is a first-order autonomous equation in H with the superlinear term

M(v) := A(v) · ∇( ~Q+ v) + ~N(v). (2.27)

In order to implement the Hadamard method, we need to localize the nonlinear
part M(v) near 0 so that it becomes a small Lipschitz term globally in the energy
space H. It seems extremely hard to do this keeping the above orthogonal structure,
since the acceleration or the modulation term is naturally unbounded, unless the
linearized operator is modified depending on the distance of v from 0. Therefore we
will not enforce the orthogonality conditions, but instead solve a localized version
of the above autonomous equation in the whole energy space H. After constructing
a center-unstable manifold by the Hadamard method for the localized equation, we
will restrict that manifold to the subspace H⊥ in a small neighborhood of 0 to obtain
a center-unstable manifold for the true equation.

In the case of the unstable manifold, the exponential decay of v as t → −∞
ensures that the manifold for the localized equation around 0 falls into H⊥, so that
we can automatically get the manifold of the true equation.

2.2. Mobile distance. The most serious obstacle to carrying out the graph trans-
form method in the nonradial setting results from the contraction step in the con-
struction of the invariant graphs, where the presence of the unbounded translation
term causes problems. To remedy this, we introduce the mobile distance on H.
Heuristically speaking, the standard Lp or Sobolev-type norm is too tight for “hor-
izontal motion” ϕ 7→ ϕ(· + x0) compared with “vertical motion” ϕ 7→ λϕ. The
mobile distance makes translation just as easy as amplification, without changing
the topology.

Definition 2.1. For any continuous increasing function φ : [0,∞) → [0,∞) satisfying

(1) φ(a) ≥ a.
(2) a ≤ 2b =⇒ φ(b) ≤ 4φ(a),

the mobile distance mφ : H×H → [0,∞) is defined by

mφ(v
0, v1)2 := inf

q∈Rd, j=0,1
‖v1−j − vj(· − q)‖2E + |q|2φ(‖vj‖E)2. (2.28)

Obviously, the infimum in (2.28) is attained at some q ∈ R
d. mφ is not really a

distance, but a quasi-distance on H. More precisely, we have

Proposition 2.2. mφ in (2.28) is a complete quasi-distance on H, satisfying

(1) mφ(v
0, v1) ≥ 0 where the equality holds iff v0 = v1.

(2) mφ(v
1, v0) = mφ(v

0, v1).
(3) mφ(v

0, v1) ≤ Cd [mφ(v
0, v2) +mφ(v

2, v1)] for some absolute constant Cd > 0.
(4) If mφ(v

m, vn) → 0 (n,m→ ∞) then vn converges in H.
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Moreover, it satisfies with some absolute constant C > 0,

|‖v0‖H − ‖v1‖H|+ ‖D−1(v0 − v1)‖H ≤ Cmφ(v
0, v1) ≤ C2‖v0 − v1‖H, (2.29)

where D :=
√
1−∆. These constants, C and Cd, do not depend on the choice of φ.

Hence mφ defines the same topology as H, differing only in terms of uniformity.
For example, for any ϕ ∈ H we have

lim
n→∞

mφ(ϕe
inx1 ,−ϕeinx1) = O(1), (2.30)

since −ϕeinx1 = ϕein(x1+π/n), whereas ‖ϕeinx1 − (−ϕeinx1)‖H = O(n) unless ϕ = 0.

Proof of Proposition 2.2. (1) and (2) are obvious. For the left-most term of (2.29),
and with τqv := v(· − q),

|‖v0‖H − ‖v1‖H| ≤ inf
q
min(‖v0 − τqv

1‖H, ‖v1 − τqv
0‖H)

. mφ(v
0, v1),

(2.31)

for the second term,

‖D−1(v0 − v1)‖H ≤ ‖D−1(v0 − τqv
1)‖H + ‖D−1(τqv

1 − v1)‖H
. ‖v0 − τqv

1‖H + |q|‖∇D−1v1‖H
. ‖v0 − τqv

1‖E + |q|φ(‖v1‖E),
(2.32)

while the right bound in (2.29) is obvious by choosing q = 0. Next we prove the
quasi-triangle inequality. For any v0, v1, v2 ∈ H, there are q1, q2 ∈ R

d such that

mφ(v
0, vj) ≃ ‖v0 − τqjv

j‖H + |qj|φ(min(‖v0‖H, ‖vj‖H)), (j = 1, 2), (2.33)

since the H and E norms are equivalent and the H norm is translation invariant.
If ‖v0‖H ≪ min(‖v1‖H, ‖v2‖H) then mφ(v

0, vj) ≃ ‖vj‖H and so the quasi-triangle
inequality is obvious. Otherwise,

mφ(v
1, v2) . ‖v1 − v2(· − q2 + q1)‖H + |q1 − q2|φ(min(‖v1‖H, ‖v2‖H))

. ‖v1(· − q1)− v2(· − q2)‖H +
∑

j=1,2

|qj|φ(min(‖v0‖H, ‖vj‖H))

. mφ(v
0, v1) +mφ(v

0, v2).

(2.34)

To prove the completeness, let vn be Cauchy in mφ. Then so is D−1vn in H by
(2.29). Hence, vn converges to some v ∈ DH. (2.29) implies that ‖vn‖H converges.
We may assume that this limit is positive, since otherwise the convergence to 0 is
obvious. Since vn is bounded in H, it converges weakly to v in H. Passing to a
subsequence, we may find qn ∈ R

d such that

‖τqnvn − vn+1‖H + |qn| < 2−n. (2.35)

Let cn =
∑

k≥n qn, then cn → 0 and

‖vn(· − cn)− vn+1(· − cn+1)‖H < 2−n, (2.36)

which implies τcnv
n → v strongly in H, whence also vn → v strongly in H. �
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We apply the mobile distance only to the continuous spectrum part because, on
the one hand, the discrete spectral part is finite dimensional and smooth, and on
the other hand, the linearized energy is conserved only on the continuous spectrum.
Choose positive constants δ, C0, C1, C2 such that

0 < C2δ ≪ 1 ≪ C0 ≪ C1 ≪ C2. (2.37)

The required smallness of C2δ, 1/C0, C0/C1 and C1/C2 is implicit in the following
arguments, but only in terms of d, f , Q and κ. Henceforth, we shall regard those Cj
as being fixed constants and ignore the dependence on them unless it is important,
while we regard δ as a small parameter (with the smallness depending on C2),
keeping track of its impact on the estimates.

The quasi-distance m̃δ : H×H → [0,∞) is defined by

m̃δ(v
0, v1)2 := ‖Pd(v0 − v1)‖2E +mφδ(Pγv

0, Pγv
1)2, (2.38)

where φδ(a) := φ(a/δ) with a fixed φ ∈ C∞(R) satisfying

φ(a) =

{
1 (a ≤ C2)

a (a ≥ 2C2)
, 0 ≤ φ′ ≤ 1. (2.39)

We will localize the equation for v within distance O(δ) from 0, such that the
evolution outside of it becomes purely linearized. We have chosen φδ such that the
“fare” is purely proportional to the translation distance within the nonlinear region,
but there is an additional fee for “excessive weight” over O(δ). It is easy to see that
m̃δ has the same properties as mφ in Proposition 2.2.

3. Construction of manifolds for a localized equation

In this section we construct a global center-unstable manifold for a equation of
v with localized nonlinearity around 0 ∈ H. The manifold obeys the original flow
only on the subset H⊥ in a small neighborhood.

3.1. Localization of the equation. Let χ ∈ C∞
0 (R) be a non-negative symmetric

decreasing function satisfying χ(t) = 1 for |t| ≤ 1 and χ(t) = 0 for |t| ≥ 2. Let

χδ(v) := χ(‖v‖2H/δ2). (3.1)

We will construct a center-unstable manifold near 0 for the equation of v with the
nonlinearity localized within O(δ) distance from 0

vt = JLv +Mδ(v), Mδ(v) := χδ(v)[A(v) · ∇( ~Q + v) + ~N(v)]. (3.2)

Hence each component in the spectral decomposition solves

∂tλk± = ±kλk± + P±kMδ(v),

∂tµ = −ν + PµMδ(v), ∂tν = PνMδ(v),

∂tγ = JLγ + PγMδ(v).

(3.3)
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Lemma 3.1. The equation (3.2) is globally wellposed in H, and for any solution v,

sup
|t|≤1

‖v(t)‖E . ‖v(0)‖E,

sup
|t|≤1

‖vd(t)− eJLtvd(0)‖E . (‖v(0)‖E ∧ δ)2,

sup
|t|≤1

|‖γ(t)‖2E − ‖γ(0)‖2E| . (‖v(0)‖E ∧ δ)3.
(3.4)

Proof. Let v be a local solution around t = 0, and let w(t, x) = v(t, x− c), where c
is the solution of

ċ = χδ(v)A(v), c(0) = 0. (3.5)

Let τc be the translation operator

τcϕ(x) = ϕ(x− c), (3.6)

then the equation for (w, c) is given by

ẇ = JDw + F (w, c), ċ = B(w, c), (3.7)

with the nonlinear terms F and B, defined by

B(w, c) := χδ(w)Ac(w), F (w, c) :=

(
B(w, c) · ∇Qc

f ′(Qc)w1 + χδ(w)Nc(w)

)
, (3.8)

where Ac, Nc are translates of A,N :

Ac(w) := A(τ ∗cw) = (H(Q)− 〈∇Qc|w1〉)−1ω(w,∇w)/2,
Nc(w) := τcN(τ ∗cw) = f(Qc + w1)− f(Qc)− f ′(Qc)w1.

(3.9)

Choosing some appropriate Strichartz norm, for example

‖w‖Str :=
{
‖w‖L∞

t Hx
+ ‖w1‖Lp

tL
2p
x

(d ≥ 3),

‖w‖L∞

t Hx
(d ≤ 2),

(3.10)

with p = d+2
d−2

, we have by the Strichartz estimate for the free Klein-Gordon equation

‖w1‖Str(0,T ) . ‖w(0)‖H + ‖F‖L1
tH(0,T ), ‖c‖L∞(0,T ) . |c(0)|+ T‖B‖L∞(0,T ), (3.11)

where the nonlinear terms are estimated by Hölder

F (0, c) = 0, B(0, c) = 0,

|⊳B(w⊲, c⊲)| . [|⊳c⊲|(‖w⊲‖H ∧ δ)2 + (‖⊳w⊲‖H ∧ δ)](‖w⊲‖H ∧ δ),
‖⊳F (w⊲, c⊲)‖L1

tH(0,T ) . T [‖⊳c⊲‖L∞‖w⊲‖Str + ‖⊳w⊲‖Str]
+ [‖⊳c⊲‖L∞ + ‖⊳w⊲‖Str](‖w⊲‖Str ∧ δ),

(3.12)

on the time interval 0 < t < T ≪ 1. Hence if δ, T > 0 are small enough, we obtain a
local solution of (w, c) on (0, T ) in H×R

d by the standard iteration. By Gronwall,
it is extended to any finite time intervals. In particular,

‖w1‖Str(−1,1) . ‖w(0)‖H, |c|L∞(−1,1) . |c(0)|+ (‖w(0)‖H ∧ δ)2, (3.13)
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and moreover, if ‖w(0)‖H ≫ δ then ‖w(t)‖H ≫ δ for |t| ≤ 1 and so, c(t) = 0
and F = (0, f ′(Q)w1). Hence we obtain by the usual iteration and continuation
argument,

‖⊳w⊲‖Str(−1,1) . ‖⊳w⊲(0)‖H,
‖⊳c⊲‖L∞(−1,1) . (‖⊳w⊲(0)‖H ∧ δ)(‖w⊲(0)‖H ∧ δ),
‖⊳F (w⊲, c⊲)‖L1

tHx(−1,1) . ‖⊳w⊲(0)‖H.
(3.14)

Next we prove the second and third estimates in (3.4). Since they are now obvious
for ‖v(0)‖H ≥ C0δ, we may assume that ‖v(0)‖H ≤ C0δ. For the vd part, we have
by the energy inequality

‖vd − eJLtvd(0)‖L∞

t E(0,T ) ≤ ‖D−2Mδ(v)‖L1
tHx(0,T ) . ‖v‖2Str(0,T ) . ‖v(0)‖2H. (3.15)

For the γ part, we have

∂t〈Lγ|γ〉 = χδ(v)[A(v)〈f(Q)γ1|∇γ1〉+ A(v)〈L∇vd|γ〉+ 〈N(v)|γ2〉], (3.16)

and so

[‖γ‖2E]T0 . ‖(A(v)f ′(Q)γ1, A(v)D
2vd, N(v))‖L1

tL
2
x(0,T )

‖γ‖L∞

t H(0,T )

. ‖v(0)‖3H
(3.17)

and we are done. �

Denote the nonlinear propagator for equation (3.2) on H by

U(t) : H → H, U(t)v(0) = v(t). (3.18)

3.2. Smallness of nonlinearity. The following estimate on the nonlinear term by
the mobile distance will be the basis of all the succeeding arguments.

Lemma 3.2. For any two solutions vj(t) = U(t)vj(0) ∈ C(R;H) of (3.2), we have

sup
|t|≤1

m̃δv
⊲(t) . m̃δv

⊲(0),

sup
|t|≤1

‖Pd[⊳v⊲(t)− eJLt⊳v⊲(0)]‖E +
∣∣[m̃δPγv

⊲]t0
∣∣ . δm̃δv

⊲(0),
(3.19)

where the implicit constants are determined by d, f , Q and κ.

Proof. Without loss of generality, we may assume that for some q(t) ∈ R
d

m̃δv
⊲(t)2 = ‖Pd⊳v⊲(t)‖2E + ‖γ0(t)− τq(t)γ

1(t)‖2E + |q(t)|2φδ(‖γ1(t)‖E)2 (3.20)

for |t| ≤ 1. Decompose each solution by

vj =
∑

±,k∈K

λjk±gk± + µj · ∇ ~Q + νj · J∇ ~Q+ γj . (3.21)

(I) Case ‖v⊲(0)‖2 ≤ C1δ: The previous lemma implies that ‖v⊲(t)‖2 ≪ C2δ, and
so φδ(‖γj(t)‖E) = 1, for |t| ≤ 1 and j = 0, 1. The discrete components solve

∂t⊳λ
⊲
k± = ±k⊳λ⊲k± + P±k⊳Mδ(v

⊲),

∂t⊳µ
⊲ = −⊳ν⊲ + Pµ⊳Mδ(v

⊲), ∂t⊳ν
⊲ = Pν⊳Mδ(v

⊲),
(3.22)
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where the nonlinear term is bounded by

‖⊳Mδ(v
⊲)‖H−2 . δm̃δv

⊲, (3.23)

which is proved as follows: (2.29) and the translation invariance of ω(v,∇v) imply

|⊳χ⊲δ(v)| . |⊳‖v⊲‖2|/δ . m̃δv
⊲/δ,

|⊳A(v⊲)| . δ[‖D−1⊳v⊲‖H + ‖γ0 − τqγ
1‖H] . δm̃δv

⊲,

‖⊳∇v⊲‖H−2 . ‖D−1⊳v⊲‖H . m̃δv
⊲.

(3.24)

The nonlinear part is estimated by using Sobolev

‖⊳N(v⊲)‖H−2 . ‖N(v0)− τqN(v1)‖L̺ +

∫ 1

0

‖∂θτθqN(v1)‖H−1
̺
dθ

. δ‖v01 − τqv
1
1‖H1 + |q|‖v11‖2H1 . δm̃δv

⊲,

(3.25)

where ̺ := min(2, 1 + 1/p) for d ≥ 2 and ̺ := 1 for d = 1. Thus we obtain (3.23).
Therefore, we have for |t| ≤ 1,

‖⊳v⊲d(t)− eJLt⊳v⊲d(0)‖E .
∣∣∣
∫ t

0

δm̃δv
⊲(s)ds

∣∣∣. (3.26)

The linearized solution enjoys the obvious bound

‖eJLt⊳v⊲d(0)‖E . ekt‖⊳v⊲d(0)‖E. (3.27)

For the difference in the γ component, we need the mobile distance. Let

τ j := τcj , ζj := τ jγj, Qj := τ jQ = Q(· − cj), (3.28)

for j = 0, 1, where cj(t) ∈ R
d are the solutions of

ċj = χδ(v
j)A(vj), c0(0) = 0, c1(0) = q(0), (3.29)

where q has been chosen in (3.20). Then we have

ζ̇j = JLjζj + ċj · (P j
γ∇P j

d ζ
j − P j

d∇ζj) + P j
γ (0,M

j), (3.30)

where Lj, P j
d and P j

γ are linear operators, and M j is the nonlinear part, defined by

Lj := τ jL(τ j)∗, P j
⋆ := τ jP⋆(τ

j)∗, M j := χδ(v
j)Ncj(z

j), (3.31)

and zj := τ jvjd + ζj. Hence the difference satisfies

⊳ζ̇⊲ = JL0⊳ζ⊲ + P 0
γ (0, ⊳M

⊲) +R, ‖R‖H . δ[m̃δv
⊲ + |⊳c⊲|+ ‖⊳ζ⊲‖2], (3.32)

using (3.24) as well as ‖vj‖H . δ. The Strichartz estimate for the free Klein-Gordon
equation yields (regarding J(L0 − D)⊳ζ⊲ as a perturbation, which can be done by
partitioning the time-interval)

‖⊳ζ⊲‖Str(0,1) . ‖⊳ζ⊲(0)‖2 + ‖⊳M⊲‖L1
tL

2
x(0,1)

+ ‖R‖L∞

t Hx(0,1), (3.33)

where the nonlinear part is estimated by applying Hölder to the second order Taylor
expansion of f :

f(Qj + zj1)− f(Qj)− f ′(Qj)zj1 =

∫ 1

0

∫ 1

0

[f ′′(Qj + αθzj1)θ(z
j
1)

2] dαdθ, (3.34)
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and

⊳[f(Q⊲ + z⊲1)− f(Q⊲)− f ′(Q⊲)z⊲1 ]

=

∫ 1

0

∫ 1

0

[f ′′(Qα + θzα1 )⊳(Q
⊲ + θz⊲1) + f ′′(Q0 + αθz01)θz

0
1⊳z

⊲
1] dαdθ,

(3.35)

where Qα := (1− α)Q0 + αQ1 and zα := (1− α)z0 + αz1. Thus we get

‖⊳M ⊲‖L1
tL

2
x(0,1)

. (1 + ‖z⊲‖Str(0,1))p−2‖z⊲‖Str(0,1)[‖⊳c⊲‖L∞

t (0,1) + ‖⊳z⊲‖Str(0,1)]. (3.36)

On the other hand, we have

‖⊳z⊲‖Str(0,1) . ‖⊳c⊲‖L∞(0,1) + ‖⊳v⊲d‖L∞H(0,1) + ‖⊳ζ⊲‖Str(0,1),
m̃δv

⊲ . ‖⊳v⊲d‖H + ‖⊳ζ⊲‖H + |⊳c⊲|. (3.37)

Combining these estimates with (3.33)–(3.36), (3.26) and (3.27), we obtain

sup
0≤t≤1

m̃δv
⊲ . ‖⊳c⊲‖C1

t (0,1)
+ ‖⊳ζ⊲‖Str(0,1) + ‖⊳v⊲d‖Str(0,1) . m̃δv

⊲(0). (3.38)

For the sharper estimate on the γ part, we use

(m̃δγ
⊲)2 ≤ ‖(τ 0)∗⊳ζ⊲‖2E + |⊳c⊲|2,

‖(τ 0)∗⊳ζ⊲‖2E = 〈L0⊳ζ⊲|P 0
γ ⊳ζ

⊲〉+ ‖Pdγ1(x+ ⊳c⊲)‖2E ,
(3.39)

with equality at t = 0. For the distance term, we have from (3.37) and (3.38)

|⊳c⊲(t)| ≤ |⊳c⊲(0)|+ Cδm̃δv
⊲(0). (3.40)

For the translated part, we have

|〈L0⊳ζ⊲|P 0
γ ⊳ζ

⊲〉 − 〈L0⊳ζ⊲|⊳ζ⊲〉| . ‖⊳P ⊲
dζ

1‖22 . |⊳c⊲|2δ2,
‖Pdγ1(x+ ⊳c⊲)‖22 . |⊳c⊲|2δ2,

(3.41)

and

∂t〈L0⊳ζ⊲|⊳ζ⊲〉 = −〈f ′(Qc0)ċ
0 · ∇Qc0⊳ζ

⊲|⊳ζ⊲〉+ 2〈L0⊳ζ⊲|P 0
γ ⊳M

⊲ +R〉. (3.42)

Hence for |t| ≤ 1, using (3.38) and (3.36) as well,
∣∣[〈L0⊳ζ⊲|P 0

γ ⊳ζ
⊲〉]t0

∣∣
. |⊳c⊲|2δ2 + δ2‖⊳ζ⊲‖2L∞

t H + ‖⊳ζ⊲‖L∞

t H‖P 0
γ ⊳M

⊲ +R‖L1
tH

. δ2(m̃δv
⊲(0))2.

(3.43)

Plugging this and (3.40) into (3.39), we obtain the desired upper estimate on the γ
part. For the lower estimate one reverses time, completing the proof in the case (I).

(II) Case minj ‖vj(0)‖2 ≥ C0δ: The previous lemma implies that ‖vj(t)‖H &
C0δ ≫ δ, and so, for |t| ≤ 1 and j = 0, 1,

vj(t) = eJLtvj(0), ‖γj(t)‖E = ‖γj(0)‖E, ‖Pd⊳v⊲(t)‖E . ‖Pd⊳v⊲(0)‖E. (3.44)

To estimate the γ part, let ζ(t) := γ0(t)− γ1(t, x− q(0)). Then

ζ̇ − JLζ = (0, [f ′(Q)− f ′(Qq(0))]τq(0)γ
1
1), (3.45)

where the right-hand side is bounded in H by

|q(0)|‖γ1(0)‖H . δm̃δv
⊲(0), (3.46)
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where we used that a . δφδ(a). Hence using the energy inequality for L, we get
∣∣[〈Lζ |ζ〉]t0

∣∣ . δm̃δv
⊲(0)‖ζ‖L∞

t Hx
,

‖Pdζ(t)‖E = ‖Pdτq(0)γ1‖E . |q(0)|‖γ1(0)‖H . δm̃δv
⊲(0),

(3.47)

and so

(m̃δγ
⊲(t))2 ≤ ‖ζ(t)‖2E + |q(0)|2φδ(‖γ1(0)‖E)2

≤ (m̃δγ
⊲(0))2 + Cδ2(m̃δv

⊲(0))2.
(3.48)

This completes the proof in the case (II).
(III) Case ‖v0(0)‖H > C1δ ≫ C0δ > ‖v1(0)‖H: The previous lemma implies

that ‖v0(t)‖H & C1δ ≫ C0δ & ‖v1(t)‖H for |t| ≤ 1, and so by (2.29),

m̃δv
⊲(t) ≃ ‖v0(t)‖H ≃ ‖v0(0)‖H ≃ m̃δv

⊲(0) & δ. (3.49)

For the difference from the linearized solution, (3.15) yields the desired estimate.
The estimate on the increment of the γ part is similar to the case (I), but now
ζ0 = γ0 evolves linearly, which means that the nonlinear terms in ⊳ζ⊲ depends only
on ζ1. Hence (3.36) is replaced with

‖⊳M⊲‖L1
tL

2
x
= ‖M1‖L1

tL
2
x
. ‖v1‖2Str . δ2. (3.50)

Noting that δ . m̃δ(v
0(0), v1(0)), the rest of the argument goes through as in case (I)

above.
(IV) Case ‖v0(0)‖ < C0δ ≪ C1δ < ‖v1(0)‖H: Although this is symmetric

with the previous case, we have to check the mobile distance part, since there we
introduced asymmetry with (3.20). The difference appears in (3.39):

(m̃δv
⊲)2 ≤ ‖(τ 0)∗⊳ζ⊲‖2E + |⊳c⊲|2φδ(‖γ1‖E)2. (3.51)

However this is admissible, because

[|⊳c⊲|φδ(‖γ1‖E)]t0 . δ2φδ(‖v1(0)‖E) ≃ δm̃δv
⊲(0), (3.52)

and the remaining argument is the same as in the previous case. �

3.3. Evolution of graphs, center-stable case. Now we consider the graphs of
v≥0 7→ v− satisfying a Lipschitz condition. It is convenient to extend them to the
whole H. Our class of graphs for the contraction argument is given by

Gℓ,δ := {G : H → P−H | G = G ◦ P≥0, G(0) = 0, ‖⊳G(v⊲)‖E ≤ ℓm̃δv
⊲} (3.53)

for small ℓ > 0, and the graph of G ∈ Gℓ,δ is denoted by

⌈G⌋ := {ϕ ∈ H | P−ϕ = G(ϕ)}. (3.54)

A center-unstable manifold will be found as the unique invariant graph, by the
contraction mapping principle in Gℓ,δ.

For p > d/(d − 2), the Sobolev inequality does not imply that v̇ is bounded in
L2
x, and consequently we can not prove strict invariance of Gℓ,δ for t > 0, but the

“almost invariance” given below is sufficient for the contraction argument.
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Lemma 3.3. There exists CL ≥ 1 such that if ℓ, δ > 0 satisfy

kℓ2 + δ ≪ k, δ ≪ ℓk, (3.55)

then for any two solutions vj(t) = U(t)vj(0) (j = 0, 1) satisfying

‖⊳v⊲−(0)‖E ≤ ℓm̃δv
⊲(0), (3.56)

one has

‖⊳v⊲−(t)‖E ≤
{
CLℓm̃δv

⊲(t) (|t| ≤ 1),

ℓm̃δv
⊲(t) (1/2 ≤ t ≤ 1).

(3.57)

Proof. The linearized solutions of the discrete modes are estimated by

min(e±kt, e±kt)‖P±ϕ‖E ≤ ‖P±e
JLtϕ‖E ≤ max(e±kt, e±kt)‖P±ϕ‖E,

e−κ|t|‖P0ϕ‖E ≤ ‖P0e
JLtϕ‖E ≤ eκ|t|‖P0ϕ‖E.

(3.58)

The previous lemma implies that

‖⊳v⊲−(t)‖E ≤ ‖⊳eJLtv⊲−(0)‖E + Cδm̃δv
⊲(0)

≤ [max(e−kt, e−kt)ℓ+ Cδ]m̃δv
⊲(0),

(3.59)

and also,

m̃δv
⊲(t)2 ≥ ‖eJLt⊳v⊲d(0)‖2E + m̃δγ

⊲(0)2 − Cδ2m̃δv
⊲(0)2. (3.60)

Plugging (3.58) into the last estimate, we obtain

m̃δv
⊲(t)2 ≥

{
[e−2κt(1− ℓ2) + e−2ktℓ2 − Cδ2]m̃δv

⊲(0)2 (0 ≤ t ≤ 1),

[e−2k|t| − Cδ2]m̃δv
⊲(0)2 (|t| ≤ 1).

(3.61)

Combining it with (3.59) yields for |t| ≤ 1,

‖⊳v⊲−(t)‖E ≤ (ekℓ+ Cδ)(ek + Cδ)m̃δv
⊲(t) ≤ 2ℓe2km̃δv

⊲(t), (3.62)

provided that δ ≪ ℓ≪ 1. For 1/2 ≤ t ≤ 1, we obtain

‖⊳v⊲−(t)‖E ≤ (e−k/2ℓ+ Cδ)(e−2κ(1− ℓ2) + e−2kℓ2 − Cδ2)−1/2
m̃δv

⊲

≤ (1− k/3 + Cδ/ℓ)ℓ[1 + C(δ + κ+ ℓ2k)]m̃δv
⊲ ≤ ℓm̃δv

⊲,
(3.63)

under the condition (3.55) and κ≪ k ≤ 1. �

As an immediate consequence of the above lemma together with a mapping degree
argument, we obtain the following result.

Lemma 3.4. Under the condition (3.55), U(t) for |t| ≤ 1 defines a map U(t) :
Gℓ,δ → GCLℓ,δ uniquely by the relation U(t)⌈G⌋ = ⌈U(t)G⌋. Moreover, if 1/2 ≤ t ≤ 1,
then U(t) maps Gℓ,δ into itself.
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Proof. The previous lemma yields for any ϕ0, ϕ1 ∈ U(t)⌈G⌋,
‖⊳ϕ⊲−‖E . ℓm̃δϕ

⊲. (3.64)

Since ℓ≪ 1, it implies ‖⊳ϕ⊲−‖E ≪ m̃δϕ
⊲
≥0. Then the conditions U(t)⌈G⌋ ⊂ ⌈U(t)G⌋

and U(t)G ◦ P≥0 = U(t)G define U(t)G uniquely and consistently on the set

P≥0U(t)⌈G⌋ + P−H. (3.65)

The proof is complete once the above is shown to be H, for which we use the degree
argument. Suppose for contradiction that there exists ψ ∈ P≥0H \ P≥0U(t)⌈G⌋. In
other words, for any a ∈ P−H,

U(−t)(a + ψ) 6∈ ⌈G⌋. (3.66)

Let m(a) := P−U(−t)(a+ψ)−G(U(−t)(a+ψ)), then m is a continuous map from
P−H to itself, such that 0 6∈ m(P−H). On the other hand, if |a| ≫ δ, then

m(a) = e−JLta−G(e−JLtψ). (3.67)

Define Φ : RK → P−H, Ψ : RK \ {0} → SK−1 and m̃ : (0,∞)× SK−1 → SK−1 by

Φ(X) =
∑

k∈K

Xkgk−, Ψ(X) =
X

|X| , m̃(R, θ) = Ψ ◦ Φ−1 ◦m ◦ Φ(Rθ). (3.68)

Then m̃ is continuous, but the degree of m̃(R, ·) is 0 for small R > 0 and 1 for
large R, which is a contradiction. Hence U(t)G is well-defined as a map on H which
is right-invariant for P≥0. The Lipschitz bounds are immediate from the previous
lemma. �

3.4. Contraction of graphs, center-stable case. We introduce the following
norm in G :=

⋃
ℓ>0 Gℓ,δ

‖G‖G := sup
ψ∈H

‖G(ψ)‖E
‖ψ‖E

. (3.69)

It is easy to see that the set G is independent of δ > 0. For any G ∈ Gℓ,δ and any
ψ ∈ H, we have ‖G(ψ)‖E ≤ ℓm̃δ(ψ, 0) ≤ ℓ‖ψ‖E, and so

‖G‖G ≤ ℓ. (3.70)

G is a Banach space with this norm, where each Gℓ,δ is a bounded closed set. The
contraction argument is completed by

Lemma 3.5. In addition to (3.55), let

δ ≪ k2. (3.71)

Then the map U(t) is a contraction on Gℓ,δ for all t ≥ 1/2.

Proof. Let T ∈ [1/2, 1]. For any Gj ∈ Gℓ,δ for j = 0, 1 and any ψ ∈ H, let

vj(t) := U(t− T )[P≥0ψ + (U(T )Gj)ψ]. (3.72)

Since P≥0v
0(T ) = P≥0v

1(T ), we have

m̃δv
⊲(T ) = ‖⊳v⊲−(T )‖E. (3.73)
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Applying Lemma 3.2 from t = T , we get for 0 ≤ t ≤ T ,

‖⊳v⊲d(t)− eJL(t−T )⊳v⊲−(T )‖E + m̃δγ
⊲(t) . δ‖⊳v⊲−(T )‖E. (3.74)

Hence using the same estimate on the linearized solution as in (3.58)

‖⊳v⊲−(0)‖E ≥ ‖e−JLT⊳v⊲−(T )‖E − Cδ‖⊳v⊲−(T )‖E ≥ (ekT − Cδ)‖⊳v⊲−(T )‖E,
m̃δv

⊲
≥0(0) . δ‖⊳v⊲−(T )‖E.

(3.75)

On the other hand, since vj−(0) = Gj(vj(0)) and Gj ∈ Gℓ,δ,
‖⊳v⊲−(0)‖E ≤ ‖⊳G⊲(v0(0))‖E + ‖⊳G1(v⊲(0))‖E

≤ ‖⊳G⊲‖G‖v0≥0(0)‖E + ℓm̃δv
⊲
≥0(0).

(3.76)

(3.4) as well as (3.58) yields

‖v0≥0(0)‖2E ≤ (e2κT + Cδ)‖ψ‖2E. (3.77)

Inserting this and the second inequality of (3.75) into (3.76), we obtain

‖⊳v⊲−(0)‖E ≤ (eκT + C
√
δ)‖⊳G⊲‖G‖ψ‖E + ℓδ‖⊳v⊲−(T )‖E. (3.78)

Combining this and (3.75), we conclude that

‖⊳v⊲−(T )‖E ≤ (1− Cδℓ)−1(ekT − Cδ)−1(eκT + C
√
δ)‖⊳G⊲‖G‖ψ‖E

≤ e−(k−κ)T (1 + C
√
δ)‖⊳G⊲‖G‖ψ‖E.

(3.79)

(3.71) and κ≪ k imply that there exists Λ < 1, determined by k, κ, δ, ℓ such that

‖⊳v⊲−(T )‖E
‖ψ‖E

≤ Λ‖⊳G⊲‖G . (3.80)

Taking the supremum over all ψ ∈ H yields

‖⊳U(T )G⊲‖G ≤ Λ‖⊳G⊲‖G , (3.81)

as desired. The case T > 1 is now obvious by iteration. �

Thus we obtain

Theorem 3.6. Suppose that ℓ, δ > 0 satisfy (3.55) and (3.71). Then there exists a
unique G∗ ∈ Gℓ,δ such that U(t)G∗ = G∗ for all t ≥ 0. The uniqueness holds for any
fixed t > 0.

Proof. For any T ≥ 1/2, the above lemma implies that there is a unique fixed point
of U(T ) in Gℓ,δ. Since the equation is invariant for time translation, it implies that
U(t)G ∈ GCLℓ,δ is also a fixed point for all 0 ≤ t ≤ 1. Then the uniqueness of the
fixed point implies that U(t)G = G for all 0 ≤ t ≤ 1, and so for all t ≥ 0. If
U(t)H = H for some t > 0 and some H ∈ Gℓ,δ, then by iteration U(T )H = H for
some T ≥ 1/2, and so H = G. �
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Since U(t) is invertible, U(t)⌈G∗⌋ = ⌈G∗⌋ for all t ∈ R.
The conditions (3.55) and (3.71) are satisfied for ℓ = O(δ) as δ → +0, which implies
that

⌈G∗⌋ ∋ ϕ, ‖ϕ‖H ≤ δ =⇒ |ω(ϕ, gk+)| . δ2, (3.82)

in other words, ⌈G∗⌋ is normal at 0 to (−k, 1)ρk for each k ∈ K.
Notice that the above construction did not really use the special property of the

generalized null space of the linearized operator. However, the constructed manifold
makes sense for the original equation only on the subset H⊥, for which we need the
property that the generalized null space is exactly generated by the symmetries of
the equation.

3.5. Evolution of graphs, unstable case. We now carry out an analogous proce-
dure for the finite-dimensional unstable manifold. Thus, we now consider the graphs
of v+ 7→ v≤0 satisfying a Lipschitz condition

G+
ℓ,δ := {G : H → P≤0H | G = G ◦ P+, G(0) = 0, m̃δG(v

⊲) ≤ ℓ‖⊳v⊲+‖E} (3.83)

for small ℓ > 0, and the graph of G ∈ G+
ℓ,δ is denoted by

⌈G⌋ := {ϕ ∈ H | P≤0ϕ = G(ϕ)}. (3.84)

The unstable manifold will be found as the unique invariant graph, by the contrac-
tion mapping principle in G+

ℓ,δ. We formulate the analogue of Lemma 3.3 in this
case.

Lemma 3.7. There exists CL ≥ 1 such that if ℓ, δ > 0 satisfy (3.55), then for any
two solutions vj(t) = U(t)vj(0) (j = 0, 1) satisfying

m̃δv
⊲
≤0(0) ≤ ℓ‖⊳v⊲+(0)‖E , (3.85)

one has

m̃δv
⊲
≤0(t) ≤

{
CLℓ‖⊳v⊲+(t)‖E (|t| ≤ 1),

ℓ‖⊳v⊲+(t)‖E (1/2 ≤ t ≤ 1).
(3.86)

Proof. We again have (3.58) for the linearized solutions of the discrete modes. In
particular,

‖⊳v⊲+(t)‖E ≥ min(ekt, ekt)‖⊳v⊲+(0)‖E − Cδm̃δv
⊲(0) (3.87)

By Lemma 3.2, for t ≥ 0,

m̃δv
⊲
≤0(t)

2 ≤ ‖⊳eJLtv⊲0−(0)‖2E + m̃δγ
⊲(0)2 + Cδ2m̃δv

⊲(0)2

≤ (e2κtℓ2 + Cδ2(1 + ℓ2) + ℓ2)‖⊳v⊲+(0)‖2E
(3.88)

and one now concludes by combining these estimates, cf. Lemma 3.3. �

One now has the following analogue of Lemma 3.4.

Lemma 3.8. Under the condition (3.55), U(t) for |t| ≤ 1 defines a map U(t) :
G+
ℓ,δ → G+

CLℓ,δ
uniquely by the relation U(t)⌈G⌋ = ⌈U(t)G⌋. Moreover, if t ≥ 1

2
, then

U(t) maps G+
ℓ,δ into itself.
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Proof. The mapping properties for |t| ≤ 1 and 1
2
≤ t ≤ 1 are an immediate con-

sequence of the previous lemma. The extension to t ≥ 1
2
then follows by itera-

tion. As in the case of the center-stable version, the main issue is to show that
P+U(t)⌈G⌋ = P+H = H+ for all |t| ≤ 1. Thus take ψ0 ∈ H+ and denote the R-ball
in H+ by B+

R . Lemma 3.2 implies that if 0 < ℓ≪ 1 then

‖P+U(t)(ψ +G(ψ))‖H & R ∀ |t| ≤ 1, ∀ψ ∈ ∂B+
R

for any G ∈ G+
ℓ,δ, and with absolute implicit constants. This shows that, with

Φ(ψ) = ψ +G(ψ),

deg(P+U(t)Φ, B
+
R , ψ0) = 1 ∀ |t| ≤ 1

provided R is sufficiently large, and we are done. �

3.6. Contraction of graphs, unstable case. Let G+ :=
⋃
ℓ>0 G+

ℓ,δ. As before, the

set G+ is independent of δ > 0. We introduce the following quasi-distance d+ in G+:
for any G1, G2 ∈ G+ let

d+(G
1, G2) := sup

ψ∈H

m̃δG
⊲(ψ)

‖ψ‖E
. (3.89)

It is clear that this expression is finite, and that it satisfies a triangle inequality with
the same multiplicative loss as in Proposition 2.2:

d+(G
1, G3) ≤ Cd(d+(G

1, G2) + d+(G
2, G3)). (3.90)

Moreover, G+ is a complete quasi-distance space, in which G+
ℓ,δ is closed. Recall that

the Banach fixed point theorem is valid in complete quasi-distance spaces:

Lemma 3.9. Let X be a complete quasi-distance space, and let A : X → X be a
contraction. Then there is a unique fixed point x∗ ∈ X of A, which is obtained by
x∗ = limn→∞An(x) for any x ∈ X.

Proof. Let C ≥ 1 be the constant in the quasi-triangle inequality in X , let Λ ∈ (0, 1)
be the Lipschitz constant of A, and fix m ∈ N so that ΛmC < 1. Take any x0 ∈ X
and let xn = Anm(x0) for each n ∈ N. Then

d(xn+1, xn) = d(Am(xn), A
m(xn−1)) ≤ Λmd(xn, xn−1) ≤ · · · ≤ Λmnd(x1, x0) (3.91)

Hence for any k > j ≥ 1, by repeated use of the quasi-triangle inequality,

d(xk, xj) ≤ Cd(xk, xj+1) + Cd(xj+1, xj) ≤ · · · ≤
k∑

l=j+1

C l−jd(xl, xl−1)

≤
k∑

l=j+1

(CΛm)l−jΛmjd(x1, x0) ≤
Λmj

1− CΛm
d(x1, x0).

(3.92)

Hence xn → ∃x∞ ∈ X , and by the continuity of A, Am(x∞) = x∞. Then

d(A(x∞), x∞) = d(Am+1(x∞), Am(x∞)) ≤ Λmd(A(x∞), x∞), (3.93)

which implies that A(x∞) = x∞. The uniqueness follows in the well-known way. �
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The following is an analogue of Lemma 3.5, but here the evolution time has to be
long enough to absorb the quasi-triangle factor Cd in using the “chain-rule” in G+.

Lemma 3.10. There are δ0 > 0 and T > 0 such that if δ ≤ δ0 and (3.55) is satisfied,
then the map U(t) is a contraction on G+

ℓ,δ for all t ≥ T .

Proof. Let G1, G2 ∈ G+
ℓ,δ, T > 0, ψ ∈ H+, and

vj(t) := U(t− T )[ψ + (U(T )Gj)ψ], (j = 0, 1). (3.94)

Iterating Lemmas 3.1 and 3.2 from t = T down to t = 0, we obtain

‖v⊲(t)‖E ≤ CeCT‖ψ‖E, m̃δv
⊲(t) ≤ CeCT m̃δv

⊲(T ) = CeCT m̃δv
⊲
≤0(T ), (3.95)

for 0 ≤ t ≤ T with some constant C ≥ 1 (determined by d, Q, f and κ). Hence if

δ ≪ e−2CT/C2, (3.96)

then by iteration of those lemmas again, we deduce that

‖v0+(0)‖E . e−kT/2‖ψ‖E,
m̃δv

⊲
≤0(0) ≥ e−2κT

m̃δv
⊲
≤0(T ), ‖⊳v⊲+(0)‖E .

√
δm̃δv

⊲
≤0(T ).

(3.97)

Since vj≤0(0) = Gj(vj(0)) and Gj ∈ G+
ℓ,δ,

m̃δv
⊲
≤0(0) ≤ Cd[m̃δG

⊲(v0(0)) + m̃δG
1(v⊲(0))]

≤ Cd[d+(G
⊲)‖v0+(0)‖E + ℓ‖⊳v⊲+(0)‖E].

(3.98)

Plugging (3.97) into the above, we obtain

m̃δv
⊲
≤0(T ) ≤ e2κTCd[d+(G

⊲)Ce−kT/2‖ψ‖E + ℓ
√
δm̃δv

⊲
≤0(T )]. (3.99)

Choosing T so large while keeping (3.96), we can ensure that

m̃δ(U(T )G⊲)ψ = m̃δv
⊲
≤0(T ) ≤ Λ‖ψ‖E, (3.100)

for some constant Λ ∈ (0, 1) determined by d, f, Q, κ, T and δ. Obviously, this
remains to be true even if we replace T with any T ′ ∈ [T, 2T ], taking δ even smaller
if necessary. Hence iterating U(t) allows one to draw the same conclusion for all
t ≥ T . �

By the same arguments as in Theorem 3.6 one now concludes the following.

Theorem 3.11. Suppose that ℓ, δ > 0 satisfy the assumptions of the previous lemma.
Then there exists a unique G+

∗ ∈ G+
ℓ,δ such that U(t)G+

∗ = G+
∗ for all t ≥ 0. The

uniqueness holds for any fixed t > 0. Moreover, if v(0) ∈ ⌈G+
∗ ⌋, then ‖U(t)v(0)‖H →

0 exponentially as t→ −∞; in fact, for any ε > 0,

e−(k−ε)t‖U(t)v(0)‖H → 0 t→ −∞ (3.101)

Proof. The estimate (3.101) follows from the previous proof. In fact, (3.97) implies

‖v(t)‖E . e
k

2
t‖v(0)‖E (t→ ∞), (3.102)

where v(t) := U(t)v(0), but we could take the exponent arbitrarily close to k by
choosing δ even smaller. Since v(t) comes into any δ ball as t→ −∞, we may apply
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such decay estimates for t sufficiently close to −∞, thereby deducing (3.101) for all
ε > 0. �

4. The unstable manifold

We now describe the unstable manifold in the original u-formulation of the equa-
tion, see (1.1). Let G+

∗ be as in Theorem 3.11. For any v(0) ∈ ⌈G+
ℓ,δ⌋ with

‖v(0)‖H < δ, define v(t) = U(t)v(0),

u(t) = ( ~Q+ v)(t, · − c(t)), c(0) = c0, ċ(t) = A(v(t)) (4.1)

where c0 ∈ R
d is a fixed vector. By construction, u solves (1.1), and by (3.101) one

has ċ(t) → 0 and c(t) → c(−∞) exponentially fast as t→ −∞. In particular, u has

vanishing momentum: P (u) = 0. Then by design (cf. (2.24)–(2.26)), ω(v, J∇ ~Q) is
constant, and since it converges to zero as t → −∞, must vanish. To summarize,
we have obtained the following characterization of the unstable manifold.

Corollary 4.1. The unstable manifold Mu is the set of all ~u(0) with u defined in
terms of G+

∗ by means of (4.1). Mu is invariant in backward time, and all solutions

starting in Mu converge to a trajectory of the form ~Q(· − c(t)) exponentially fast as
t→ −∞, with ċ(t) → 0 as t→ −∞ exponentially fast. Mu is a Lipschitz manifold
of dimension K + d.

The dimension count is a result of the fact that ⌈G+
∗ ⌋ is of dimension K, and the

translations (see c0 in (4.1)) add another d dimensions.

5. Trapping property of the center-stable manifold

5.1. Restriction by the orthogonality. For any Banach space X , denote the ball
around 0 of radius R > 0 by

BR(X) := {ϕ ∈ X | ‖ϕ‖ < R}. (5.1)

Lemma 5.1. If ℓ ≤ 1, and δ > 0 is small enough (depending only on d, f, Q), then

for any G ∈ Gℓ,δ, there is a unique map G̃ : Pγ+Bδ(H) → P0−H such that

⌈G̃⌋ : = {ψ + G̃(ψ) | ψ ∈ Pγ+Bδ(H)}
= {ϕ ∈ ⌈G⌋ ∩ H⊥ | Pγ+ϕ ∈ Pγ+Bδ(H), |Pνϕ| < δ}.

(5.2)

Moreover, G̃ is Lipschitz continuous in the mobile distance m̃δ.

Proof. For any ψ ∈ H and ν ∈ R
d, put

ψ̃(ν) := ψ + ν · J∇ ~Q, ϕ̃(ν) := ψ̃(ν) +G(ψ̃(ν)). (5.3)

It suffices to show that for any ψ ∈ Pγ+Bδ(H), there is a unique fixed point ν ∈
Bδ(R

d) for the map

ν 7→ N (ν) := H(Q)−1ω(ϕ̃(ν),∇ϕ̃(ν))/2. (5.4)

For any νj ∈ Bδ(R
d) (j = 0, 1), we have

⊳ϕ̃(ν⊲) = ⊳ν⊲ · J∇ ~Q+ ⊳G(ψ + ν⊲ · J∇ ~Q). (5.5)
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Hence using ‖ψ‖H < δ and G ∈ Gℓ,δ as well, we deduce that

|N (ν)| . ‖ϕ̃(ν)‖2H . δ2, |⊳ω(ϕ̃(ν⊲),∇ϕ̃(ν⊲))| . δ|⊳ν⊲|. (5.6)

Therefore N : Bδ(R
d) → Bδ(R

d) is a contraction for small δ, ℓ > 0, and so has a
unique fixed point ν = N (ν) ∈ Bδ(R

d). Since N is Lipschitz for ψ in the mobile

distance, so is the fixed point ν(ψ), as well as G̃. �

Hence ⌈G⌋ ∩ H⊥ is a Lipschitz manifold in the mobile distance around 0 with
codimension K + 2d = dimP0−H.

5.2. Solutions on the center-stable manifold with the orthogonality. Let
G = G∗ ∈ Gℓ,δ be the map for the center-unstable manifold of the localized equation

given by Theorem 3.6, and let G̃ = G̃∗ be the map for its orthogonal restriction
given by the above lemma. The invariance of ⌈G⌋ means that for any v(0) ∈ ⌈G⌋,
v(t) := U(t)v(0) stays on ⌈G⌋ for all t ∈ R. Let c(t) be the solution of

c(0) = 0, ċ(t) = A(v(t)), (5.7)

and u(t) = ( ~Q+ v)(t, x− c(t)). If v(0) ∈ Bδ(H), then u solves the original equation

(1.1) as long as v(t) ∈ Bδ(H). Meanwhile, the momentum P (u) = ω(v,∇ ~Q) +

ω(v,∇v)/2 is preserved, and so is ω(v, J∇ ~Q), because of ċ = A(v). Hence if v(0) ∈
H⊥ ∩ Bδ(H), then v(t) remains there as long as v(t) ∈ Bδ(H).

To see that the solution stays in the neighborhood for t < 0, expand the conserved
energy by u = ( ~Q+ v)(x− c)

E(u)− J(Q) = −
∑

k∈K

kλk+λk− +
1

2
〈Lγ|γ〉 − C(v), (5.8)

where the nonlinear energy C is defined by

C(v) := f(Q+ v1)− f(Q)− 〈f ′(Q)|v1〉 −
1

2
〈f ′′(Q)v1|v1〉 = o(‖v‖2H). (5.9)

Suppose that for some t0 < 0

‖v(0)‖H = ε≪ δ, max
t0≤t≤0

‖v(t)‖H < δ, ‖v(t0)‖H ≫
√
ℓδ + ε(≪ δ). (5.10)

Then |E(u)− J(Q)| ≃ ε2. Since v(t) ∈ ⌈G⌋ and G ∈ Gℓ,δ, (5.8) implies that

〈Lγ|γ〉 .
∑

k

k|λk+λk−|+ E(u)− J(Q) . ℓδ2 + ε2 ≪ δ2, (5.11)

for t0 ≤ t ≤ 0, which together with v(t) ∈ H⊥ implies
∑

k

|λk+(t0)|2 ≃ ‖v(t0)‖2H. (5.12)

Now consider the nonlinear energy functional

E(v) : = E(u)− J(Q) +
∑

k∈K

k

2
(λk+ + λk−)

2

=
∑

k∈K

k

2
(λ2k+ + λ2k−) +

1

2
〈Lγ|γ〉 − C(v).

(5.13)
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Since v(t) ∈ H⊥, we have E(v) ≃ ‖v‖2H, and moreover, the equation of λk±, see (3.3)
together with conservation of E(u) yields

d

dt
E(v) =

∑

k

k2(λ2k+ − λ2k−) + o(‖v‖2H|λk±|), (5.14)

and so

d

dt
E(v(t0)) &

∑

k

k2λ2k+ ≃ E(v(t0)). (5.15)

Therefore E(v(t)) cannot increase beyond O(ℓδ2 + ε2) as t < 0 decreases.

In conclusion, for any v(0) ∈ ⌈G̃∗⌋ such that ‖v(0)‖H ≪ δ, the solution v(t) =

U(t)v(0) remains on ⌈G̃∗⌋, ‖v(t)‖H ≪ δ for all t < 0 and u(t) = ( ~Q + v)(x − c)
with ċ = A(v) solves the original equation (1.1) for all t < 0. Thus we obtain a
center-unstable manifold of the original equation with zero total momentum.

More precisely, fix 0 < δ′ ≪ δ and let

Mcu,0 := {( ~Q + U(t)ϕ)(x− c) | ϕ ∈ ⌈G̃∗⌋, ‖ϕ‖H < δ′, t < 0, c ∈ R
d}, (5.16)

then for any initial data u(0) = ( ~Q + U(t)ϕ)(x − c) ∈ Mcu,0, the solution u(t) of

(1.1) is on Mcu,0 for all t ≤ 0 and P (u(t)) = 0. Moreover, U(t)ϕ ∈ ⌈G̃∗⌋ and
‖U(t)ϕ‖H . δ′ for all t ≤ 0. The nonlinear projection

P⊥ : H0 ∋ u 7→ v ∈ H⊥; u = ( ~Q+ v)(x− c) (5.17)

is uniquely defined in a neighborhood of the translation family of stationary solutions

S0(Q) := { ~Q(x− q)}q∈Rd ⊂ H0, (5.18)

by solving the equation

0 = ω(v, J∇ ~Q) = ω(u(x+ c), J∇ ~Q) = ω(u, J∇ ~Q(x− c)). (5.19)

Indeed it can be solved locally by the implicit function theorem, since if u = ~Q(x−
c0) + ψ, ‖ψ‖H . δ then

∇cω(u, J∇ ~Q(x− c)) = −ω( ~Q(x− c0) + ψ, J∇2 ~Q(x− c))

= H(Q) +O(|c− c0|+ δ).
(5.20)

Since the mapping u 7→ c thereby defined is smooth, the map u 7→ (v, c) is (locally)
bi-Lipschitz in the mobile distance from H0 to H⊥ ⊕ R

d. Since Mcu,0 is mapped

onto a 0-neighborhood of ⌈G̃∗⌋ ⊕ R
d, the codimension of Mcu,0 in H0 is equal to

that of ⌈G̃∗⌋ in H⊥, which is K.
Thus we have obtained a center-unstable manifold Mcu,0 of S0(Q) in H0 with

codimension K. Its time inversion

Mcu,0 =: Mcs,0 ⊂ H0 (5.21)

is a center-stable manifold of S0(Q).
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5.3. Lorentz extension of the center-stable manifold. Using the Lorentz trans-
form

u(t, x) 7→ up := u(〈p〉t + p · x, x+ p(〈p〉 − 1)|p|−2p · x+ tp) (p ∈ R
d), (5.22)

we can further extend Mcs,0 to a manifoldMcs of codimension K, around the soliton
manifold S (Q). Indeed, (1.1) is invariant for any Lorentz transform, while the total
energy and momentum are transformed

E(up) = E(u)〈p〉+ P (u) · p, P (up) = P (u)〈p〉+ E(u)p. (5.23)

E2 − |P |2 is invariant, which is positive around S (Q). Hence there is a unique
p ∈ R

d for each solution u near the traveling waves, such that P (up) = 0 and

E(up) =
√
E(u)2 − |P (u)|2.

However, one needs to be more careful because the Lorentz transform mixes space-
time and a solution from Mcs,0 may not be global in the negative time. Indeed,
from [11, 12] we know that “half” of the solutions on Mcs,0 (namely, as given by the

separating surface Mcu,0) blow up in negative time, at least when ~Q is the ground
state and f(u) = |u|p+1, p > 1 + 4/d.

The local wellposedness implies that for any T > 0 there is δ > 0 such that for
any initial data within distance δ from S0(Q), the solution extends at least for times
|t| < T . The exponential decay of Q implies that for any δ > 0 there is R > 0 such
that for any such initial data, the free energy in the exterior region |x − q| > R is
less than O(δ2) for some q ∈ R

d. The local wellposedness, the conservation of the
energy and the Sobolev inequality implies that every solution with small initial free
energy is global, keeping the same size of free energy for all time. Hence the finite
speed of propagation of the free Klein-Gordon equation implies that for small δ > 0,
every solution with free energy O(δ2) in |x − q| > R at t = 0 is extended to the
whole exterior cone |x − q| > R + |t| with the same size of the free energy on any
time slice of it.

Thus in conclusion, there is R > 0 and δ(T ) > 0 for any T > 0 such that every
solution starting on Mcs,0 and within distance δ from S0(Q) is extended to the
space-time region

{(t, x) ∈ R
1+d | t > −T or |x− q| > R + |t|}, (5.24)

for some q ∈ R
d. For any Lorentz transform L, there is T > 0 such that the image

of the above region under L contains {(t, x) | t ≥ 0}. In other words, the image of
any solution on Mcs,0 close to S0(Q) is extended to a forward global solution. The
invariance of the solution set of Mcs,0 for the space and backward time translations
is also inherited by the image, because such a translation of the Lorentz transform
is the Lorentz transform of another translation. It is also easy to see that these
solution remains close to the corresponding traveling wave.

However, it seems difficult to make the above argument uniform with respect to
the Lorentz transform: the larger the momentum p, the smaller the neighborhood of
S0(Q) needs to be chosen. This is why the resulting manifold is not strictly Lorentz
invariant, but only within a neighborhood of S (Q) depending on the Lorentz trans-
form (but the neighborhood can be chosen uniformly for p in compact sets).
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Thus we obtain a center-stable manifold Mcs of the soliton manifold S (Q). Mcs

can be identified with the set of forward global solutions starting from it, where each
solution is characterized uniquely by the total momentum and its Lorentz transform
with 0-momentum starting from Mcs,0. In this way2, we can define a bi-Lipschitz
map from a neighborhood of S (Q) in H to a neighborhood of S0(Q) ⊕ R

d in
H0⊕R

d. Since it maps Mcs onto the intersection of Mcs,0⊕R
d with a neighborhood

of S0(Q)⊕ R
d, the codimension of Mcs in H is also K.

5.4. Solutions off the center-stable manifold. It remains to describe the dy-
namics off the manifold, or more specifically, the repulsive property of the center-
unstable manifold in negative time. For this we need some sort of opposite to Lemma
3.3:

Lemma 5.2. If ℓ, δ > 0 satisfy

δ ≪ ℓk, (5.25)

then for any two solutions vj = U(t)vj(0) (j = 0, 1) satisfying

max(‖⊳v⊲0+(0)‖E, m̃δγ
⊲(0)) ≤ ℓ‖⊳v⊲−(0)‖E, (5.26)

one has

max(‖⊳v⊲0+(t)‖E, m̃δγ
⊲(t)) ≤

{
2ℓ‖⊳v⊲−(t)‖E (−1/2 < t ≤ 0),

ℓ‖⊳v⊲−(t)‖E (−1 ≤ t ≤ −1/2),
(5.27)

and

‖⊳v⊲−(t)‖E ≥
{

1
2
e−kt/2‖⊳v⊲−(0)‖E (−1/2 < t ≤ 0),

e−kt/2‖⊳v⊲−(0)‖E (−1 ≤ t ≤ −1/2).
(5.28)

Proof. Let m̃(0) := ‖⊳v⊲−(0)‖E ≃ m̃δv
⊲(0). Lemma 3.2 implies that

‖⊳v⊲0+(t)‖E ≤ (e−κtℓ + Cδ)m̃(0), ‖⊳v⊲−(t)‖E ≥ (e−kt − Cδ)m̃(0),

m̃δγ
⊲(t) ≤ (ℓ+ Cδ)m̃(0),

(5.29)

for −1 ≤ t ≤ 0. Hence

max(‖⊳v⊲0+(t)‖E, m̃δγ
⊲(t)) ≤ (e−κtℓ+ Cδ)(e−kt − Cδ)−1‖⊳v⊲−(t)‖E

≤ e(k−κ)t(ℓ+ Cδ)‖⊳v⊲−(t)‖E ,
(5.30)

and the conclusion follows from (5.25) as well as κ≪ k. �

Let v0(0) ∈ Bδ(H) ∩ H⊥ \ ⌈G̃∗⌋, and
ψ := Pγ+v

0(0), v1(0) := ψ + G̃∗(ψ). (5.31)

Then we have

⊳v⊲γ+(0) = 0, ‖⊳v⊲0(0)‖2E . ‖⊳v⊲(0)‖2E ≃ ‖⊳v⊲−(0)‖2E . δ2. (5.32)

2The general solution close to S (Q) may well blow up in both time directions, but the smaller
neighborhood yields the bigger lower bound on the existence time, which is sufficient for the
construction of this bi-Lipschitz map.
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Hence we can repeatedly apply the above lemma to deduce that

‖⊳v⊲−(t)‖E ≥ 1

2
e−kt/2‖⊳v⊲−(0)‖E (5.33)

for all t < 0. In particular,

‖v0−(t)‖E ≥ ‖⊳v⊲−(t)‖E − ‖v1−(t)‖E ≫ δ (5.34)

for sufficiently large −t.
In short, any solution starting from H⊥ ∩ Bδ(H) \ ⌈G̃∗⌋ moves out of the neigh-

borhood Bδ(H) for large −t. Of course, this is meaningful for the original equation
only until the (backward) exiting time, but it implies that any trapped solution in

H⊥ within distance δ must be on the manifold ⌈G̃∗⌋ for large −t.
Combining this with the result in the previous section, we conclude that the local

center-unstable manifold Mcu,0 is characterized as the collection of solutions with
0-momentum which stay close to S0(Q) for all −t ≥ 0. By symmetry, Mcs,0 is the
collection of solutions with 0-momentum which stay close to S0(Q) for all t ≥ 0.

Let M̃cu,0 be the maximal forward evolution of Mcu,0, and let M̃cs,0 be the

maximal backward evolution of Mcs,0. Then M̃cs,0 is the collection of solutions that
stay close to S0(Q) for large t, namely the initial data set for which the solution will

be trapped by S0(Q). We have the same characterization for M̃cu,0 for t → −∞.
By the Lorentz transform, we can extend them to solutions with nonzero momentum
which are trapped by S (Q) with the same momentum.

6. Regularity of the center-stable manifold

The above construction implies only Lipschitz continuity of the manifold. For the
differential structure of ⌈G∗⌋, we also have to take account of the spatial translation.
In the following, we assume that f satisfies (1.7) and α := max(1, p− 2).

Definition 6.1. Let Y be a Banach space. We say that a function G : H → Y is
mobile-differentiable at ϕ ∈ H, if there is a bounded linear M : H × R

d → Y such
that

lim
ε→0

‖G(ϕ(ε))− [G(ϕ0) + εM(ψ, q)]‖/ε = 0, (6.1)

where ϕ(ε) := (ϕ + εψ)(x + εq), for any (ψ, q) ∈ H × R
d. It is obvious that M is

unique. We call DG(ϕ) :=M the mobile derivative of G at ϕ.

Let G′(ϕ) be the usual derivative in the Frechét sense. Then we have

DG(ϕ)(ψ, q) = G′(ϕ)(ψ +∇ϕ · q), (6.2)

provided that G is differentiable in the DH topology, but in general, it makes sense
only in the subspace q = 0. Hence the mobile-differentiability is stronger than the
differentiability in H, and weaker than that in DH.

If G ∈ Gℓ,δ and mobile-differentiable, then

‖G(ϕ(ε))−G(ϕ0)‖H . ℓmφ(ϕ(ε), ϕ
0) . ℓε[‖ψ‖H + |q|φδ(‖ϕ‖H)], (6.3)
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which implies

‖DG(ϕ)(ψ, q)‖H . ℓ[‖ψ‖H + |q|φδ(‖ϕ‖H)]. (6.4)

Moreover, we have

G((ϕ+ εψ + o(ε))(x+ εq + o(ε)) = G(ϕ(ε)) + o(ε)

= G(ϕ) + εDG(ϕ)(ψ, q) + o(ε).
(6.5)

We are going to prove that G∗ : H → P−H is “mobile-C1,α”, by showing the
flow-invariance of the following set of such graphs.

Definition 6.2. For each δ, ℓ,Λ > 0, and α ∈ (0, 1], we define Gα,Λℓ,δ as the set of all
G ∈ Gℓ,δ that are mobile differentiable at every ϕ ∈ H, satisfying

‖DG(ϕ0)(ψ, q)− DG(ϕ1)(τ ∗b ψ, q)‖E
≤ Λ

[
‖ϕ0 − τbϕ

1‖E + |b|φδ(‖ϕ1‖E)
]α,1 [‖ψ‖E + |q|φδ(‖ϕ1‖E)

]
,

(6.6)

for all ϕ0, ϕ1, ψ ∈ H and q, b ∈ R
d, where

xα,1 := |x|α + |x|. (6.7)

We will prove that Gα,Λℓ,δ is invariant by the flow, provided that δ, ℓ are small and
Λ is large. First we investigate the backward evolution of the mobile derivative.
Assuming the smallness of ℓ, δ > 0 as in (3.55) and (3.71), for any G ∈ Gℓ,δ and

t > 0, define Gt : H → P−H and Ĝt : H → H by

Gt := U(t)G, Ĝt(ϕ) := ϕ≥0 +Gt(ϕ). (6.8)

Let ψ ∈ H, q, b ∈ R
d, and t0 ∈ [0, 1]. For small ε ∈ R, let

v(ε)(t) := U(t− t0)Ĝt0(ϕ(ε)), w(ε)(t, x) = v(ε)(t, x− c(ε)), (6.9)

where (w, c) = (w(ε), c(ε)) is the solution of (3.7) with the initial data

w(ε)(t0) = (ϕ+ εψ)(x− b), c(ε)(t0) = b+ εq. (6.10)

Since the nonlinear term (F,B)(w, c) in (3.7) is C1 from Str×L∞
t to L1

tH×L∞
t , with

a small factor on a short time interval (0, T ), it is straightforward by the iteration
argument that (w, c) is differentiable in Str× L∞

t at ε = 0, with the derivative

(z, g) := lim
ε→0

(w(ε), c(ε))− (w(0), c(0))

ε
,

‖z‖Str(0,1) + ‖g‖L∞(0,1) . ‖z(t0)‖H + |g(t0)|.
(6.11)

Let η := z(t, x+ c(0)(t)) and F̂ = F − (0, f ′(Qc(0))w1). Then

η̇ = JLη + (0, g · ∇f ′(Q)v1) +B(w, c) · ∇η + τ ∗c ∂(w,c)F̂ (w, c) · (z, g),
η(t0) = P≥0(ψ + q · ∇ϕ)− q · ∇Ĝt0(ϕ) + DGt0(ϕ)(ψ, q), g(t0) = q,

(6.12)

where the subscript (0) is omitted. Mobile-differentiating the identities

P−v(ε)(t0) = Gt0(ϕ(ε)), P−v(ε)(t) = Gt(v(ε)(t0)) (6.13)
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yields

P−[η(t0) + q · ∇Ĝt0(ϕ)] = DGt0(ϕ)(ψ, q),

P−[η(t) + g(t) · ∇v(t)] = DGt(v(t))(η(t), g(t)).
(6.14)

Since G(ϕ) = G(P≥0ϕ) and

P≥0ϕ(ε) = P≥0[(ϕ≥0 + εψ≥0)(x+ εq) + εq · ∇ϕ−] + o(ε), (6.15)

we have

DG(ϕ)(ψ, q) = DG(ϕ≥0)(ψ≥0 + q · P≥0∇ϕ−, q). (6.16)

Lemma 6.3. Let ℓ, δ,Λ > 0 satisfy (3.55), (3.71) and

Λ ≫ ℓ/δ. (6.17)

Then for any G ∈ Gα,Λℓ,δ and any t0 ∈ [1/2, 1], U(t)G ∈ Gα,Λℓ,δ .

Proof. First of all, (6.4) is enough to have (6.6) in the case where

ℓ/Λ ≪ ‖ϕ0 − τbϕ
1‖E + |b|φδ(ϕ1). (6.18)

Hence we may assume

mφϕ
⊲ ≤ ‖ϕ0 − τbϕ

1‖E + |b|φδ(ϕ1) . ℓ/Λ ≪ δ. (6.19)

Therefore we have either ‖ϕ0‖H ≃ ‖ϕ1‖ ≫ δ or ‖ϕ0‖H + ‖ϕ1‖H . δ.
Next we investigate evolution of the difference of mobile-derivatives. For any

ϕ0, ϕ1, ψ ∈ H and q, b ∈ R
d, let

v0(ε)(t0) := Ĝt0(τ
∗
εq(ϕ

0 + εψ)), v1(ε)(t0) := Ĝt0(τ
∗
εq(ϕ

1 + ετ ∗b ψ)),

vj(ε)(t) := U(t− t0)v
j
(ε)(t0), wj(ε)(t) := τcj

(ε)
(t)v

j
(ε)(t),

(6.20)

for j = 0, 1, where cj(ε) is the solution of

ċj(ε) = B(wj(ε), c
j
(ε)), c0(ε)(t0) = εq, c1(ε)(t0) = b+ εq. (6.21)

Let (zj , gj) be the derivative at ε = 0 of (wj(ε), c
j
(ε)):

zj = lim
ε→0

wj(ε) − wj(0)
ε

, gj = lim
ε→0

cj(ε) − cj(0)
ε

. (6.22)

Henceforth the subscript (0) will be omitted. The initial values are

w0(t0) = Ĝt0(ϕ
0), c0(t0) = 0, w1(t0) = τbĜt0(ϕ

1), c1(t0) = b,

z0(t0) = P≥0ψ + q · Ǧt0(ϕ
0) + DGt0(ϕ

0)(ψ, q), g0(t0) = q,

z1(t0) = P b
≥0ψ + τb[q · Ǧt0(ϕ

1) + DGt0(ϕ
1)(τ ∗b ψ, q)], g1(t0) = q,

(6.23)

where P b
∗ := τbP∗τ

∗
b , and Ǧt : H → Hd is defined by

Ǧt(ϕ) = ∇P−ϕ− P−∇ϕ−∇Gt(ϕ). (6.24)
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Let ηj(t, x) = zj(t, x+ cj(t)), then we have

P−[η
0(t0) + q · ∇Ĝt0(ϕ

0)] = DGt0(ϕ
0)(ψ, q),

P−[η
1(t0) + q · ∇Ĝt0(ϕ

1)] = DGt0(ϕ
1)(τ ∗b ψ, q),

P−[η
j(t) + gj(t) · ∇vj(t)] = DGt(v

j(t))(ηj(t), gj(t)).

(6.25)

Thus we obtain

DGt0(ϕ
0)(ψ, q)− DGt0(ϕ

1)(τ ∗b ψ, q) = ⊳[η⊲−(t0) + q · P−∇Ĝt0(ϕ
⊲)]

= eJLt0⊳DG0(v
⊲(0))(η⊲(0), g⊲(0))− eJLt0⊳g⊲(0) · P−∇v⊲(0)

+ ⊳[η⊲−(t0)− eJLt0η⊲−(0)] + q · ⊳P−∇Ĝt0(ϕ
⊲).

(6.26)

The first term on the right of (6.26) can be rewritten by using (6.16)

⊳DG0(v
⊲)(η⊲, g⊲) = ⊳DG0(v

0
≥0)(η

0
≥0 +Rv0, g0)

− ⊳DG0(v
1
≥0)(η

1
≥0 +Rv1, g0) + DG0(v

1)(η1, ⊳g⊲),
(6.27)

where all functions are evaluated at t = 0, and the operator R is defined by

R := g0 · P≥0∇P−. (6.28)

We say that a component in (6.26) is negligible if its norm in E is much smaller
than the right-hand side of (6.6). So is the last term in (6.26), since Λ ≫ 1 and

‖⊳P−∇Ĝt0(ϕ
⊲)‖E . ‖D−1⊳Ĝt0(ϕ

⊲)‖H . m̃δϕ
⊲ . ‖ϕ0 − τbϕ

1‖E . (6.29)

In order to estimate the other terms, we prepare rough bounds on the unknowns.
Lemma 3.1 together with G ∈ Gℓ,δ implies that

‖vj‖Str(0,1) . ‖ϕj‖E , ‖vj≥0(0)‖E ≤ (1 + Cκ+ Cδ)‖v≥0(t0)‖E
≤ (1 + Cκ+ Cδ + Cℓ)‖ϕj≥0‖E.

(6.30)

The estimates in (3.12) together with G ∈ Gℓ,δ imply

‖⊳w⊲‖Str(0,1) + ‖⊳c⊲‖L∞(0,1) . ‖⊳w⊲(t0)‖H + |⊳c⊲(t0)|
. ‖ϕ0

≥0 − τbϕ
1
≥0‖E + |b|ℓ‖ϕ1‖E + ℓ(m̃δϕ

⊲
≥0 + |b|φδ(‖ϕ1‖E)) + |b|

. ‖ϕ0 − τbϕ
1‖E + |b|φδ(‖ϕ1‖E).

(6.31)

The equation for each (zj , gj) is given as follows.

ġ = B′, ż = F ′,

χ′
δ := 2δ−2χ′(‖w‖2H/δ2)〈w, z〉H, I := (H(Q)− 〈∇2Qc|w1〉)−1,

B′ := χ′
δI
ω(w,∇w)

2
+ I(〈∇Qc|z1〉 − g〈∇2Qc|w1〉)B + χδIω(z,∇w),

F ′ :=

(
B′ · ∇Qc + g · ∇2Qc · B

f ′(Qc)z1 − g · ∇f ′(Qc)w1 +N ′

)
,

N ′ := χ′
δNc + χδ[(f

′(Qc + w1)− f ′(Qc))(z1 − g · ∇Qc) + g · ∇f ′(Qc)w1],

(6.32)
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where the superscript j and the dependence on (w, c) are omitted. Using the esti-
mate ‖w‖Str(−1,1) . ‖w(t0)‖H, we obtain in the same way as for (3.12),

|χ′
δ| . ‖z‖H/δ, |B| . δ2, |B′| . δ‖z‖H + |g|(‖w(0)‖H ∧ δ)3,

‖F ′‖L1H(−1,1) . [T + (‖w(t0)‖H ∧ δ)][‖z‖Str + ‖g‖L∞] + T‖w(t0)‖H‖g‖L∞.
(6.33)

In the case ‖ϕ0‖H ≃ ‖ϕ1‖H ≫ δ, we have gj ≡ q, and so by the Strichartz estimate,

‖zj‖Str . ‖zj(t0)‖H + |q|‖wj(t0)‖H. (6.34)

In the other case ‖ϕ⊲‖H . δ,

‖zj‖Str + ‖gj‖L∞ . ‖zj(t0)‖H + |gj(t0)|. (6.35)

In both cases, (6.4) implies

‖zj‖Str(0,1) + ‖gj‖L∞(0,1)

. ‖ψ‖H + |q|ℓ‖ϕj‖H + ℓ[‖ψ‖H + |q|φδ(‖ϕj‖E)] + |q|

. ‖ψ‖E + |q|φδ(‖ϕj‖E).
(6.36)

For the difference estimate, we consider the two cases separately. If ‖ϕ0‖H ≃
‖ϕ1‖H ≫ δ, then gj ≡ q and

⊳ż = JD⊳z + (0, ⊳f ′(Qc⊲)z
⊲
1 − q · ∇f ′(Q)⊳w⊲1 − q · ⊳∇f ′(Qc⊲)w

1
1), (6.37)

and so

‖⊳z⊲‖Str(0,1) . ‖⊳z⊲(t0)‖+ |b|‖z⊲‖Str + |q|‖⊳w⊲‖Str + |b|α|q|‖w⊲‖Str, (6.38)

where the last term comes from the last one of (6.37). Inserting (6.31) and (6.36),
we obtain

‖⊳(z⊲, g⊲)‖Str×L∞(0,1)

. [‖ϕ0 − τbϕ
1‖E + |b|φδ(‖ϕ1‖E)]α,1[‖ψ‖+ |q|φδ(‖ϕ1‖E)].

(6.39)

In the nonlinear case ‖ϕ⊲‖H . δ, we have

|⊳χ′
δ| . δ−2(‖⊳w⊲‖H‖z⊲‖H + ‖w⊲‖H‖⊳z⊲‖H),

|⊳B′| . ‖⊳(w⊲, c⊲)‖H×Rd‖(z⊲, g⊲)‖H×Rd + ‖w⊲‖H‖⊳(z⊲, g⊲)‖H×Rd,

‖⊳F ′‖L1H . T [‖⊳z⊲‖Str + δ‖⊳c⊲‖αL∞‖g‖L∞ ] + ‖w⊲‖Str‖⊳(z⊲, g⊲)‖Str×L∞

+ ‖⊳(w⊲, c⊲)‖Str×L∞‖(z⊲, g⊲)‖Str×L∞ ,

(6.40)

where the term with α power comes from the same term as in the linear case, i.e.,
(1− χδ)q · ⊳∇f ′(Qc⊲)w

1
1. Hence

‖⊳(z⊲, g⊲)‖Str×L∞(0,1) . ‖⊳z⊲(t0)‖H + [‖⊳w⊲‖Str + ‖⊳c⊲‖α,1L∞ ]‖(z⊲, g⊲)‖Str×L∞ , (6.41)

which, together with (6.31) and (6.36), leads to the same bound (6.39) as in the
linear case.
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For the penultimate term in (6.26), we obtain from the equation of ηj (6.12) in
the same way as above,

‖⊳P−[η
⊲(t0)− eJLt0η⊲(0)]‖E

. ‖⊳g⊲‖L∞

t
‖v⊲‖Str + ‖g⊲‖L∞

t
‖m̃δv

⊲‖L∞

t

+ δ‖⊳(z⊲, g⊲)‖Str×L∞

t
+ ‖⊳(w⊲, c⊲)‖Str×L∞

t
‖(z⊲, g⊲)‖Str×L∞

t
,

(6.42)

where we do not get the term with α-power, since the potential term is frozen in
the η equation. Using (6.30)–(6.36) and Lemma 3.2, we can easily observe that the
above is negligible because Λ ≫ 1. Here again we have used that either ‖ϕ⊲‖H . δ
or gj ≡ q, which will be tacitly utilized in the following, too. Hence the second term
on the right of (6.26) is also negligible by (6.30) and (6.39).

For the remaining and leading term of (6.26), we have

‖eJLt0⊳DG0(v
⊲)(η⊲, g⊲)‖E

≤ e−kt0Λ[‖v0≥0 − τ⊳c⊲v
1
≥0‖E + |⊳c⊲|φδ(‖v1≥0‖E)]α,1

× [‖η0≥0 +Rv0‖E + |g0|φδ(‖v1≥0‖E)]
+ Cℓ|⊳g⊲|φδ(‖v1≥0‖E) + Cℓ‖τ ∗⊳c⊲ [η0≥0 +Rv0]− [η1≥0 +Rv1]‖E,

(6.43)

where t = 0. The penultimate term in (6.43) is negligible thanks to ℓ ≪ Λ, (6.30)
and (6.39). The last term in (6.43) is dominated by

‖τ ∗⊳c⊲η0 − η1‖H + ‖[P−, τ
∗
⊳c⊲ ]η

0‖H + |⊳c⊲|‖Rv0‖H + ‖⊳Rv⊲‖H
. ‖⊳z⊲‖H + |⊳c⊲|‖z0‖H + |⊳c⊲||g0|‖v0‖H + |g0|m̃δv

⊲.
(6.44)

Hence it is also negligible by using the estimates (6.30)–(6.39) and ℓ≪ Λ.
It remains to deal with the leading term of (6.43), for which we need more precise

estimates, employing the time decay of e−kt0 . First we consider the linearized case
‖ϕ0‖H ≃ ‖ϕ1‖H ≫ δ, using the equations

vj(0) = e−JLt0Ĝt0(ϕ
j), c0(t) = 0, c1(t) = b,

η̇j = JLηj + (0, q · ∇f ′(Q)vj1), gj(t) = q.
(6.45)

The first component on the right of (6.43) is estimated by

‖v0≥0 − τ⊳c⊲v
1
≥0‖E

≤ ‖e−JLt0P≥0(ϕ
0 − τbϕ

1)‖E + ‖e−JLt0[P−, τb]ϕ
1‖E + ‖[e−JLt0, τb]ϕ1

≥0‖E
≤ eκ‖ϕ0 − τbϕ

1‖E + C|b|‖ϕ1‖E ,
(6.46)

and the third component by

‖η0≥0 +Rv0‖E ≤ ‖e−JLt0η0≥0(t0)‖E + C|q|‖ϕ0‖E ≤ eκ‖ψ‖E + C|q|‖ϕ0‖E. (6.47)

Since kt0 ≫ κ and φδ(‖ϕj‖E) ≫ ‖ϕj‖E, we see that the leading term of (6.43) is
smaller than

1

2
Λ
[
‖ϕ0 − τbϕ

1‖E + |b|φδ(‖ϕ1‖E)
] [

‖ψ‖E + |q|φδ(‖ϕ1‖E)
]
. (6.48)

Hence the other terms, which have been shown to be negligible, are absorbed into
the remaining half of (6.6). Thus the linearized case ‖ϕ⊲‖ ≫ δ is done.
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It remains to consider the nonlinear case ‖ϕ⊲‖ . δ. Let

ξ := v0 − τ⊳c⊲v
1 = τ ∗c0⊳w

⊲, (6.49)

then we have

v0≥0 − τ⊳c⊲v
1
≥0 = ξ≥0 + [P−, τ⊳c⊲ ]v

1,

ξ̇ = JLξ +B(w0, c0) · ∇ξ + τ ∗c0 [(0, ⊳f
′(Qc⊲)w

1
1) + ⊳F̂ (w⊲, c⊲)].

(6.50)

The commutator term is negligible thanks to (6.30), (6.31) and ‖ϕ1‖H . δ. For the
discrete spectral part of ξ≥0, we have

‖P0+[ξ − e−JLt0ξ(t0)]‖E . δ‖⊳(w⊲, c⊲)‖Str×L∞

t (0,1),

‖e−JLt0ξ0+(t0)‖E ≤ eκ‖P0+ξ(t0)‖E,
(6.51)

and for the continuous spectral part,

∂t〈Lξ|Pγξ〉/2 = B(w0, c0)[〈f ′(Q)ξ1|∇ξ1〉 − 〈Lξ|Pd∇ξ〉]
+ 〈Lξ|Pγτ ∗c0 [(0, ⊳f ′(Qc⊲)w

1
1) + ⊳F̂ (w⊲, c⊲)]〉

. δ2‖ξ‖2E + ‖ξ‖Eδ‖⊳(w⊲, c⊲)‖Str×L∞

t (0,1).

(6.52)

Thus we deduce

‖ξ≥0(0)‖E ≤ eκ‖ξ≥0(t0)‖E + C
√
δ‖⊳(w⊲, c⊲)‖Str×L∞

t (0,1)

≤ (1 + Cκ+ C
√
δ)[‖ϕ0 − τbϕ

1‖E + |b|φδ(‖ϕ1‖E)].
(6.53)

Similarly for the η0 component, (6.12) implies

‖η0(t0)‖E ≤ ‖ψ‖E + C|q|‖ϕ0‖E + Cℓ(‖ψ‖E + |q|),
‖P0+[η

0(0)− e−JLt0η0(t0)]‖E . δ‖(z0, g0)‖Str×L∞

t
,

∂t〈Lη0|Pγη0〉/2 = B(w0, c0)[〈∇f ′(Q)η01|∇η0〉 − 〈Lη0|Pd∇η0〉]
+ 〈LPγη0|(0, g0 · ∇f ′(Q)v01) + τ ∗c0 [∂(w,c)F̂ (w

0, c0) · (z0, g0)]〉,

(6.54)

and so, using (6.36) we obtain

‖η0≥0(0)‖E ≤ (1 + Cκ + C
√
δ + Cℓ)‖ψ‖E + C|q|(δ + ℓ). (6.55)

Also using (6.30)–(6.36), we have

‖Rv0‖E . |g0|‖v0‖E . δ(‖ψ‖E + |q|),
φδ(‖v1≥0‖E) ≤ (1 + Cκ+ Cδ + Cℓ)φδ(‖ϕ1‖E),
|⊳c⊲(0)| ≤ |b|+ C‖⊳B(w⊲, c⊲)‖L∞

t
≤ |b|+ Cδ[‖ϕ0 − τbϕ

1‖E + |b|],
|g0| ≤ |q|+ C‖Bw(w

0, c0)z0 +Bc(w
0, c0)g0‖L∞

t
≤ |q|+ Cδ[‖ψ‖E + |q|]

(6.56)

Putting (6.53), (6.55) and the above estimates together, and using κ+
√
δ+ℓ≪ k,

we see that the leading term in (6.43) is bounded by

1

2
Λ
[
‖ϕ0 − τbϕ

1‖E + |b|φδ(‖ϕ1‖E)
]α,1 [‖ψ‖E + |q|φδ(‖ϕ1‖E)

]
, (6.57)

so the remaining half can absorb the negligible terms, concluding the proof in the
nonlinear case ‖ϕ⊲‖E . δ. �
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Mobile-differentiability of the fixed point G∗ ∈ Gℓ,δ now follows from the closedness
of GΛ

ℓ,δ for pointwise convergence.

Lemma 6.4. Under the assumption of the above lemma, let Gn ∈ Gα,Λℓ,δ be a sequence

of maps such that Gn(ϕ) → G(ϕ) as n→ ∞ for all ϕ ∈ H. Then G ∈ Gα,Λℓ,δ .

Proof. Since Gn ∈ Gℓ,δ, (6.4) implies that DGn(ϕ) for each ϕ ∈ H is bounded in
(H × R

d)∗. Hence after extracting a subsequence, we have weak convergence of
DGn(ϕ) in (H × R

d)∗ for ϕ in a dense countable subset A ⊂ H. To extend the
convergence to all ϕ ∈ H, take a sequence ϕn converging to ϕ in H. Then for any
ψ ∈ H and q ∈ R

d, we have

‖DGk(ϕn)(ψ, q)− DGk(ϕm)(ψ, q)‖E
≤ Λ‖ϕn − ϕm‖α,1[‖ψ‖E + |q|φδ(‖ϕn‖E)] → 0,

(6.58)

as n,m→ ∞, uniformly for all k ∈ N. Hence we have the convergence

lim
k→∞

DGk(ϕ) = lim
k→∞

lim
n→∞

DGk(ϕn) = lim
n→∞

lim
k→∞

DGk(ϕn) (6.59)

weakly in (H×R
d)∗. To see the mobile differentiability of G, we use the mean value

theorem. For any ϕ, ψ ∈ H, q ∈ R
d, k ∈ N and ε ∈ R small, there is θ ∈ [0, 1] such

that

Gk(ϕ(ε))−Gk(ϕ) = εDGk(ϕ
θε)(ψ, q). (6.60)

Since Gk ∈ Gα,Λℓ,δ , we have

‖DGk(ϕ
θε)(ψ, q)− DGk(ϕ)(ψ, q)‖H

. Λ‖ϕθε − ϕ‖α,1H [‖ψ‖H + |q|φδ(‖ϕ‖E)] → 0
(6.61)

as ε→ 0, uniformly for all k ∈ N. Hence the limit G(ϕ) is mobile differentiable and

DG(ϕ)(ψ, q) = lim
k→∞

DGk(ϕ)(ψ, q), (6.62)

which implies G ∈ Gα,Λℓ,δ . �

Therefore the fixed point G∗ belongs to Gα,Λℓ,δ and so in particular C1,α in the H
topology. Then it is easy to see that G̃∗ is also C1,α, so are Mcu,0 and Mcu.

Appendix A. Table of Notation

©⊲, ⊳©⊲ ordered pair and difference (2.1)
(©∧ δ) minimum (2.3)
©α,1 sum of two powers (6.7)
BR(©) a ball in the Banach space (5.1)
D,J,D basic operators (1.15), (2.7), (2.9)
f , d, p nonlinearity, dimension and power (1.6), (1.7)

N(v), ~N (v), Nc(w), C(v) higher order nonlinearity around Q (2.20),(2.21), (3.9), (5.9)
A(v), Ac(w) transport terms (2.26), (3.9)
χδ(v) localizer around 0 in H (3.1)
M(v),Mδ(v) nonlinearity for v (2.27), (3.2)
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B(w, c), F (w, c) nonlinearity for (c,w) (3.8)
U(t), U(t) localized flow in H and on graphs (3.18), Lemma 3.4
E(u), P (u) energy and momentum (1.3), (2.22)
H,H0,H⊥ energy space and its subsets (1.4), (2.23), (2.24)
‖ · ‖E , κ energy norm and the parameter (2.18), (2.17)
〈·|·〉, 〈·, ·〉H, ω(·, ·) bilinear forms on H (2.4), (2.5), (2.6)
‖ · ‖Str Strichartz norm (3.10)
Q,Qc, Q(p, q), the static solution, its transforms, (1.9), (1.12), (1.10)
~Q, ~Q(p, q),S (Q),S0(Q) vector forms, and the families (1.13), (1.14), (5.18)
H(Q) = Hαβ(Q) kinetic energy matrix of Q (2.14)
L+,L linearized operators at Q (1.15),(2.8)

k,K, k, k eigenvalues and their bounds (2.11),
ρk, gk± eigenfunctions of L+,L (2.12),(2.13)
λk±, µ, ν, γ, v±, vd, . . . , spectral components of v (2.15), (2.16)
P±, P0, Pd, Pµ, Pγ , . . . , the corresponding operators (2.15), (2.16)
mφ, m̃δ, φδ mobile distances and the cut-off (2.28), (2.38), (2.39)
τc, τ

j translation operators (3.6), (3.28)

Gℓ,δ,G, Gα,Λℓ,δ sets of Lipschitz maps (3.53), (3.69), Definition 6.2

⌈G⌋ the graph in H (3.54)
G∗ the invariant map Theorem 3.6

G̃ projection to H⊥ Lemma 5.1
DG mobile derivative Definition 6.1
ϕ(ε) translating variation in H Definition 6.1

Ĝt complemented graphs (6.8)
R spectral error of the g-translation (6.28)
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