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EXISTENCE OF WEAK SOLUTIONS FOR A CLASS OF

SEMILINEAR STOCHASTIC WAVE EQUATIONS

CARLO MARINELLI AND LLUÍS QUER-SARDANYONS

Abstract. We prove existence of weak solutions (in the probabilistic sense) for a
general class of stochastic semilinear wave equations on bounded domains of Rd driven
by a possibly discontinuous square integrable martingale.

1. Introduction

The purpose of this paper is to prove existence of weak solutions, in the probabilistic
sense, for a class of semilinear stochastic wave equations of the type

∂2u

∂t2
(t, x)−∆u(t, x) + β(u(t, x)) = η̇(t, x) (1)

on a bounded space-time domain [0, T ]×D ⊂ R
1+d, complemented with suitable bound-

ary conditions. Here β denotes a maximal monotone graph in R × R and η̇ stands for
the time derivative of a stochastic integral with respect to a Hilbert space-valued (pos-
sibly discontinuous) martingale which may depend on u. Of course (1) is only a formal
expression, whose corresponding rigorous stochastic evolution equation, as well as the
definition of solution, will be given below.

Existence of solutions for stochastic PDEs such as (1) cannot be obtained (to the
best of our knowledge) simply as an application of some general technique. In par-
ticular, on the one hand (1) cannot be cast in the variational setting of Pardoux [31]
and Krylov-Rozovskii [19], as the equation is not of monotone type, in spite of β being
monotone. On the other hand, since the nonlinear term β does not satisfty any (even
local) Lipschitz condition, the semigroup approach does not seem to be applicable di-
rectly either. However, major efforts have been devoted, especially in recent years, to
obtain existence, uniqueness, and regularity results for classes of stochastic PDEs that
do not fall into any standard framework (see e.g. [2]), and our work is a contribution
in this direction. In the particular case of stochastic wave equations of the form (1),
some well-posedness results in the mild sense have been obtained assuming that β has
sufficiently slow polynomial growth and that η is a stochastic integral with respect to a
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Wiener process – see e.g. [7, 27, 29]. Moreover, Ondreját [30] has recently proved that
for any β continuous and polynomially growing, and η a stochastic integral with respect
to a spatially homogeneous Wiener process with finite spectral measure, (1) admits a
(suitably defined) global weak solution. More precisely, he proves the existence of a
solution to an infinite dimensional martingale problem associated to (1).

Let us also recall that there exist in the literature several well-posedness results for
stochastic wave equations with Lipschitz continuous drift, among which [16, 33, 34, 35],
where the semigroup approach is used, and [6, 8, 9, 10, 11, 28], that adopt the random
field approach (à la Walsh [41]).

Our approach, whose origins can be traced back to [40, §1.6] (cf. also [18, Section 2.6]
and [32]), is entirely different and relies instead on Skorohod’s representation theorem
and weak convergence results for stochastic integrals with respect to general martingales.
This route allows us to avoid going through the martingale problem for an equation
with discontinuous noise, which is already quite involved in finite dimensions (see e.g.
[13, 23]). Roughly speaking, our proof proceeds as follows: we obtain a priori estimates
for solutions of regularized equations (i.e. with smoother β) which imply tightness in an
appropriate topology. We can thus construct a sequence of processes converging almost
surely on a different probability space. The final step consists in showing that the limit
process is a weak solution of the equation of interest, in a sense made precise below.
A key ingredient in this step is played by a convergence result in [4] (see Theorem 10
below). Let us also mention that unfortunately we cannot prove well-posedness, but
only existence of a solution. Nonetheless, this is consistent with the deterministic case
(i.e. with η ≡ 0), for which, under the present generality of β, no well-posedness results
are known, even though existence of global weak solutions is known in some cases (see
e.g. [4, 39]).

The paper is organized as follows: in Section 2 we introduce notation, recall some
basic preliminaries needed throughout the paper, define the concept of solution to (1),
and state the main result of the paper (Theorem 3). Section 3 contains a few auxiliary
results on mild solutions of stochastic evolution equations with Lipschitz nonlinearities
that are needed in the proof of the main result and that might be of independent interest.
Finally, Section 4 is devoted to the proof of the main result.

2. Main result

2.1. Notation and preliminaries. Let D ⊂ R
d be a bounded domain with smooth

boundary ∂D and T a fixed positive real number. We shall use standard notation
for spaces of integrable functions and Sobolev spaces on D. In particular, H1

0 (D) will
denote the closure of C∞

c (D) in the topology of H1(D). When no confusion may arise,
we shall suppress the indication of the domain D, so that L2 and H1

0 stand for L2(D)
and H1

0 (D), respectively. We shall denote the Laplace operator on D with Dirichlet
boundary conditions by ∆.

Let β be a maximal monotone graph in R × R such that dom(β) = R and 0 ∈ β(0).
Recall that a graph β is called monotone if, for any x1, x2 ∈ R, b1 ∈ β(x1), b2 ∈ β(x2),
one has (b1 − b2)(x1 − x2) ≥ 0, and a monotone graph β is maximal if it is not properly
contained in any other monotone graph. Let us recall that, if f0 : R → R is an increasing
function, the graph f : x 7→ [f0(x−), f0(x+)] ∩ R is a monotone graph in R × R. As a
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matter of fact, all maximal monotone graphs in R × R are constructed in this manner
(cf. [5, Exemple 2.3.1]). We shall also assume, without loss of generality (see e.g. [1,
p. 71]), that β = ∂j for a continuous convex function j : R → R, j(x) ≥ 0 for all x ∈ R.
Here ∂ stands for the subdifferential in the sense of convex analysis, i.e.

∂j(x) :=
{

y ∈ R : j(z) − j(x) ≥ y(z − x) ∀z ∈ R
}

.

If j is differentiable at x, then ∂j(x) reduces to a single point and coincides with f ′(x).
For all notions of convex analysis and the theory of monotone operators used in the
paper we refer to [1, 5].

For any real Hilbert spaces E and F , let us denote the space of linear bounded
operators from E to F by L(E → F ), and its subspace of Hilbert-Schmidt operators from
E to F by L2(E → F ). Given a symmetric nonnegative nuclear operator R ∈ L(E → E),

we shall use the notation LR
2 (E → F ) := L2(R

1/2E → F ), and |B|R := |BR1/2|L2(E→F ).
Given a (fixed) real separable Hilbert space H, let M be a H-valued square integrable

martingale defined on a complete filtered probability space (Ω,F , {Ft}t∈[0,T ],P), satis-
fying the “usual” conditions. Let QM denote the martingale covariance of M , i.e. the
(unique) predictable process with values in L+

1 (H), the space of symmetric nonnegative

nuclear operators on H, such that 〈〈M〉〉(t) =
∫ t
0 QM (s)d〈M〉(s), where 〈M〉 and 〈〈M〉〉

stand for the Meyer process and the operator angle bracket of M , respectively. Here
and in the following we use standard notation and terminology for infinite dimensional
stochastic calculus, for which we refer to [25] (see also [36]). Unless otherwise stated, we
shall always assume that there exists Q ∈ L+

1 (H) such that

〈〈M〉〉(t) − 〈〈M〉〉(s) ≤ (t− s)Q

for all 0 ≤ s ≤ t ≤ T . Recall that, if X is a further Hilbert space, then any predictable

process Φ : [0, T ] → LQ
2 (H → X) is integrable with respect to M , and it holds

E

∣

∣

∣

∫ T

0
Φ(s) dM(s)

∣

∣

∣

2

X
= E

∫ T

0
|Φ(s)|2QM

d〈M〉(s) ≤ E

∫ t

0
|Φ(s)|2Q ds. (2)

Note that any martingale Lévy process (in particular, a Wiener process) with nuclear
covariance operator satisfies the hypotheses imposed on M .

The space of E-valued random variables with finite p-th moment will be denoted by
L
p(E), without explicit mention of the underlying probability space if no confusion may

arise. Finally, the set of càdlàg functions defined on [0, T ] and taking values in E (here
E can be any Polish space) will be denoted by D([0, T ] → E).

We shall write a . b to mean that there exists a constant N > 0 such that a ≤ Nb.

2.2. Main result. Let us begin specifying the definition of solution for (1), which must
be interpreted as the system of equations

{

du(t) = v(t) dt,
dv(t) −∆u(t) dt+ β(u(t)) dt = G0(u(t−)) dM(t),

(3)

with initial conditions (u(0), v(0)) = (u0, v0) ∈ L
2(H1

0 × L2), so that, on a formal level,

η(t, ·) =
∫ t

0
G0(u(s−)) dM(s).
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We shall assume throughout the paper that G0 : L2 → LQ
2 (H → L2) is Lipschitz

continuous.

Definition 1. A weak solution of equation (3) consists of a stochastic basis B̄ :=
(Ω̄, F̄ , F̄, P̄), F̄ := {F̄t}t≤T , an H-valued F̄-martingale M̄ , and an F̄-adapted càdlàg
process ū : [0, T ] → L2, both defined on B̄, such that the following conditions are satis-
fied:

(i) M̄ has the same law of M in D([0, T ] → L2);
(ii) there exists g ∈ L1(Ω̄× [0, T ]×D) such that g(ω̄, t, x) ∈ β(ū(ω̄, t, x)) for P̄⊗Leb-

a.a. (ω̄, t, x) and

ū(t) +

∫ t

0

1√
−∆

sin
(

(t− s)
√
−∆

)

g(s) ds = cos
(

t
√
−∆

)

u0 +
1√
−∆

sin
(

t
√
−∆

)

v0

+

∫ t

0

1√
−∆

sin
(

(t− s)
√
−∆

)

G0(ū(s−)) dM̄ (s) (4)

P̄-a.s. for all t ≤ T .

Remark 2. Equation (4) is motivated by the classical Duhamel’s representation of solu-
tions to the linear non-homogeneous wave equation (see e.g. [39, §4.1]). For the right
functional spaces in which the integrals have to be understood we refer to the proof of
Theorem 3 below.

Our main result is the following theorem, which establishes existence of a weak solution
for (3).

Theorem 3. Assume that u0 ∈ L
2(H1

0 ), v0 ∈ L
2(L2) and E|j(u0)|L1 < ∞. Then

equation (3) admits a weak solution.

3. Auxiliary results

We collect in this section some auxiliary results on regularization and a priori estimates
for mild solutions of stochastic evolution equations (with Lipschitz nonlinearities) which
will be used in the next section. These results are not tied in any ways to the specific
wave equation introduced above.

In addition to the notation already introduced, throughout this section we shall fix a
real separable Hilbert space X and a linear maximal monotone operator A : dom(A) ⊂
X → X, and we shall set, for the sake of compactness of notation, LQ

2 := LQ
2 (H → X).

The norm and the scalar product in X will be denoted by | · | and 〈·, ·〉, respectively.
There will be no risk of confusion with the notation used in the other sections.

The following simple result can be proved essentially as [37, Lemma 2.4.1], thus we
omit its proof (cf. also [36, p. 114]).

Lemma 4. Let Φ : [0, T ] → LQ
2 be a predictable process such that

E

∫ T

0
|Φ(s)|2Q ds < ∞, (5)
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and B : X → X a bounded linear operator. Then

B

∫ t

0
Φ(s) dM(s) =

∫ t

0
BΦ(s) dM(s)

P-a.s. for all t ∈ [0, T ].

As an immediate consequence we also have the following corollary, which exploits the
well-known fact that −A and its associated semigroup and resolvent commute.

Corollary 5. Let Φ be as in Lemma 4 and set Φ(ε) := (I + εA)−1Φ, ε > 0. Then

A

∫ t

0
e−(t−s)AΦ(ε)(s) dM(s) =

∫ t

0
Ae−(t−s)AΦ(ε)(s) dM(s) (6)

P-a.s. for all t ∈ [0, T ].

In order to obtain a priori estimates for mild solutions we shall approximate by strong
solutions. The next lemma is a tool for the proposition to follow. Since we have not
been able to find the proofs of these results in the literature, we will include them for
the reader’s convenience and the sake of completeness.

Lemma 6. For ε > 0, let Y (ε) be the unique mild solution of the equation

dY (ε)(t) +AY (ε)(t) dt+ f(t) dt = Φ(ε)(t) dM(t), Y (ε)(0) = Y0, (7)

where Y0 ∈ dom(A), f ∈ L1([0, T ] → dom(A)) P-a.s., and Φ, Φ(ε) are as in Corollary 5.

Then Y (ε) is a strong solution of (7).

Proof. As a first step, we shall assume that f and Y0 are identically zero, so that

Y (ε)(t) =

∫ t

0
e−(t−s)AΦ(ε)(s) dM(s)

= (I + εA)−1

∫ t

0
e−(t−s)AΦ(s) dM(s) ∀t ∈ [0, T ]. (8)

We want to prove that one has

Y (ε)(t) = −
∫ t

0
AY (ε)(s) ds +

∫ t

0
Φ(ε)(s) dM(s) ∀t ∈ [0, T ]. (9)

On the one hand, it is clear that the stochastic integral on the right-hand side of (9) is
well-defined. On the other hand, since Y (ε)(s) ∈ dom(A) P-a.s. for all s ∈ [0, t], applying
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a stochastic Fubini’s theorem (e.g. as formulated in [22]) and Corollary 5, we have
∫ t

0
AY (ε)(s)ds =

∫ t

0

(

A

∫ s

0
e−(s−r)AΦ(ε)(r)dM(r)

)

ds

=

∫ t

0

(
∫ s

0
Ae−(s−r)AΦ(ε)(r)dM(r)

)

ds

=

∫ t

0

(
∫ t

r
Ae−(s−r)AΦ(ε)(r)ds

)

dM(r)

=

∫ t

0

(

−e−(t−r)AΦ(ε)(r) + Φ(ε)(r)
)

dM(r)

= −
∫ t

0
e−(t−r)AΦ(ε)(r) dM(r) +

∫ t

0
Φ(ε)(r) dM(r),

which is equivalent to (9), in view of (8).
In the general case (i.e. without assuming that f and Y0 are identically zero), the

mild solution of (7) is given by

Y (ε)(t) +

∫ t

0
e−(t−s)Af(s) ds = e−tAY0 +

∫ t

0
e−(t−s)AΦ(ε)(s) dM(s)

for all t ∈ [0, T ]. Setting

Z(ε)(t) := Y (ε)(t) +

∫ t

0
e−(t−s)Af(s) ds− e−tAY0, (10)

we have Z(ε)(t) ∈ dom(A) for all t ∈ [0, T ] and

Z(ε)(t) =

∫ t

0
e−(t−s)AΦ(ε)(s) dM(s)

for all t ∈ [0, T ]. Therefore, by the first part of the proof, Z(ε) also verifies

Z(ε)(t) = −
∫ t

0
AZ(ε)(s) ds +

∫ t

0
Φ(ε)(r) dM(r) ∀t ∈ [0, T ],

which implies, recalling (10) and applying Fubini’s theorem,

Y (ε)(t) +

∫ t

0
AY (ε)(s) ds+

∫ t

0
f(s) ds = Y0 +

∫ t

0
Φ(ε)(r)dM(r),

thus concluding the proof. �

The next proposition establishes a priori estimates for the mild solution of an equation
with Lipschitz nonlinearities.

Proposition 7. Let y be the mild solution of

dy(t) +Ay(t) dt = f(y(t)) dt+Φ0(y(t−)) dM(t), y(0) = y0,

where f : X → X and Φ0 : X → LQ
2 are Lipschitz continuous. Then

E sup
t≤T

|y(t)|2 . 1 + E|y0|2 + E sup
t≤T

∫ t

0
〈f(y(s)), y(s)〉 ds +

∫ T

0

(

E sup
r≤s

|y(r)|2
)

ds. (11)



STOCHASTIC NONLINEAR WAVE EQUATIONS 7

Proof. Let us recall that the mild solution y is unique, càdlàg, and satisfies (see e.g. [17])

E sup
t≤T

|y(t)|2 < +∞.

Set b(·) := f(y(·)), Φ(·) := Φ0(y(·−)). Then y is the mild solution of

dy(t) +Ay(t) dt = b(t) dt+Φ(t) dM(t), y(0) = y0,

that is

y(t) = e−tAy0 +

∫ t

0
e−(t−s)Ab(s) ds +

∫ t

0
e−(t−s)AΦ(s) dM(s)

P-a.s. for all t ∈ [0, T ]. Applying (I + εA)−1 to both sides we have, in view of Lemma 4,

y(ε)(t) = e−tAy
(ε)
0 +

∫ t

0
e−(t−s)Ab(ε)(s) ds +

∫ t

0
e−(t−s)AΦ(ε)(s) dM(s),

where we have used the notation h(ε) := (I+εA)−1h, for any h for which it makes sense.

In other words, y(ε) is the mild solution of

dy(ε)(t) +Ay(ε)(t) dt = b(ε)(t) dt+Φ(ε)(t) dM(t), y(ε)(0) = y
(ε)
0 .

On the other hand, notice that we can apply Lemma 6 since, by (2) and the Lipschitz
continuity of Φ0,

E

∫ T

0
|Φ0(y(s))|2Q ds . 1 + E sup

t≤T
|y(t)|2 < +∞.

Therefore, y(ε) is also a strong solution of the previous equation, for which we can apply
Itô’s formula for the square of the norm, obtaining

∣

∣y(ε)(t)
∣

∣

2
=
∣

∣y
(ε)
0

∣

∣

2
+ 2

∫ t

0

〈

y(ε)(s−), dy(ε)(s)
〉

+
[

y(ε)
]

(t)

=
∣

∣y
(ε)
0

∣

∣

2 − 2

∫ t

0

〈

Ay(ε)(s), y(ε)(s)
〉

ds+ 2

∫ t

0

〈

b(ε)(s), y(ε)(s)
〉

ds

+ 2

∫ t

0
〈y(ε)(s−),Φ(ε)(s) dM(s)〉+

[

Φ(ε) ·M
]

(t)

≤ |y0|2 + 2

∫ t

0

〈

b(ε)(s), y(ε)(s)
〉

ds+ 2

∫ t

0
〈y(ε)(s−),Φ(ε)(s) dM(s)〉 + [Φ ·M ](t),

where the inequality follows by the monotonicity of A and the contractivity of (I+εA)−1.
Thus we also have

E sup
t≤T

∣

∣y(ε)(t)
∣

∣

2 ≤ E|y0|2 + 2E sup
t≤T

∫ t

0

〈

b(ε)(s), y(ε)(s)
〉

ds

+ 2E sup
t≤T

∫ t

0
〈y(ε)(s−),Φ(ε)(s) dM(s)〉+ E[Φ ·M ](T ). (12)

We are going to get a uniform (with respect to ε) estimate for the third term on the
right-hand side. For this, consider the local martingale

Nε(t) :=

∫ t

0
〈y(ε)(s−),Φ(ε)(s) dM(s)〉, t ∈ [0, T ],
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for which Davis’ and Young’s inequalities yield

E sup
t≤T

|Nε(t)| . E[Nε](T )
1/2 ≤ E sup

s≤T
|y(ε)(s)| [Φ(ε) ·M ](T )1/2

≤ α

2
E sup

s≤T
|y(s)|2 + 1

2α
E[Φ ·M ](T ),

for any α > 0. On the other hand, similarly as above, we have

E[Φ ·M ](T ) = E〈Φ ·M〉(T ) = E

∫ T

0
|Φ0(y(s))|2QM

d〈M〉(s) . 1 +

∫ T

0

(

E sup
r≤s

|y(r)|2
)

ds,

which yields

E sup
t≤T

|Nε(t)| .
α

2
E sup

s≤T
|y(s)|2 + 1

α
+

1

α

∫ T

0

(

E sup
r≤s

|y(r)|2
)

ds,

hence also, by (12),

E sup
t≤T

∣

∣y(ε)(t)
∣

∣

2
. E|y0|2 + E sup

t≤T

∫ t

0

〈

b(ε)(s), y(ε)(s)
〉

ds

+
1

α
+

α

2
E sup

s≤T
|y(s)|2 + 1

α

∫ T

0

(

E sup
r≤s

|y(r)|2
)

ds.

Let us now pass to the limit as ε tends to zero in the previous inequality. We clearly
have

lim
ε→0

E sup
t≤T

|y(ε)(t)|2 = E sup
t≤T

|y(t)|2,

and, similarly,

lim
ε→0

E sup
t≤T

∫ t

0

〈

b(ε)(s), y(ε)(s)
〉

ds = E sup
t≤T

∫ t

0
〈f(y(s)), y(s)〉 ds.

In fact, one has
〈

b(ε)(s), y(ε)(s)
〉

→ 〈f(y(s)), y(s)〉 P-a.s. as ε → 0, and
∣

∣

〈

b(ε)(s), y(ε)(s)
〉∣

∣ ≤ |f(y(s))| |y(s)| . 1 + |y(s)|2,
with E supt≤T |y(t)|2 < ∞. We have thus proved

E sup
t≤T

∣

∣y(t)
∣

∣

2
. E|y0|2 +

1

α
+ E sup

t≤T

∫ t

0
〈f(y(s)), y(s)〉 ds

+
α

2
E sup

t≤T
|y(t)|2 + 1

α

∫ T

0

(

E sup
r≤s

|y(r)|2
)

ds,

which implies (11) choosing α small enough. �

We shall need the following integration-by-parts formula for Hilbert-space-valued
semimartingales (cf. [25, §26.9]).
Lemma 8. Let Z1, Z2 be two X-valued semimartingales. Then one has

〈Z1(t), Z2(t)〉 = 〈Z1(0), Z2(0)〉+
∫ t

0
〈Z1(s−), dZ2(s)〉+

∫ t

0
〈Z2(s−), dZ1(s)〉+ [Z1, Z2](t),

(13)
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P-a.s. for all t ≥ 0, where [Z1, Z2] denotes the quadratic (co)variation of Z1 and Z2.

Let us also recall, for the reader’s convenience, a result of A. Jakubowski on weak
convergence of stochastic integrals in infinite dimensions (see [15, Thm. 4]). Given a
sequence {Zn}n∈N of H-valued semimartingales on the corresponding stochastic bases
(Ω,F ,Fn,P), one says that {Zn}n∈N satisfies the UT condition if, for any sequence of
Fn-adapted H-valued elementary processes {ζn}n∈N uniformly bounded by 1, the family
of random variables

{

∫ T

0
〈ζn(s−), dZn(s)〉

}

n∈N

is uniformly tight.

Theorem 9. For each n ∈ N, let Zn be a H-valued semimartingale with respect to the
stochastic basis (Ω,F ,Fn,P) and let Hn be Fn-adapted and with paths in D

(

[0, T ] →
L2(H → X)

)

. If {Zn}n∈N satisfies the UT condition and (Hn, Zn) → (H,Z) as n → ∞
in probability in D

(

[0, T ] → L2(H → X) ×H
)

, then Z is a semimartingale with respect
to the natural filtration generated by (H,Z) and

(

Hn, Zn,Hn
− · Zn

)

→
(

H,Z,H− · Z
)

as n → ∞ in probability in D([0, T ] → L2(H → X)×H×X
)

.

Note that in [15] the convergences are in law, not in probability. However, everything
goes through with convergence in probability as well, just by inspection of the proof
(as already observed in a completely analogous setting in [20, p. 1041], cf. also [21,
Thm. 5.5]).

Finally, a key role will be played by the following result of Brézis (see [4, Thm. 18]):

Theorem 10. Let β be a maximal monotone graph in R × R such that dom(β) = R

and 0 ∈ β(0). Let {fn}n∈N and {gn}n∈N be sequences of real measurable functions
defined on some finite measure space (Θ,A, µ) such that gn → g µ-a.e. as n → ∞,
fn(x) ∈ β(gn(x)) for µ-a.a. x ∈ Θ, and fn gn ∈ L1(Θ, µ) with

∫

Θ fn gn dµ < C for all
n ∈ N, with C independent of n. Then there is a subsequence {nk}k∈N such that fnk

converges to some f in L1(Θ, µ) as k → ∞, and f(x) ∈ β(g(x)) for µ-a.a. x ∈ Θ.

4. Proof of Theorem 3

4.1. Some preparations. Before starting to prove the main result, it is helpful to
recall a few well-known facts about mild solutions to stochastic wave equations with
Lipschitz nonlinearities. In particular, assuming just for the purposes of this subsection
that β : R → R is Lipschitz continuous, (3) can be written as the following evolution
equation on H := H1

0 × L2:

dU(t) +AU(t) dt+BU(t) dt = G(U(t−)) dM(t), U(0) = (u0, v0), (14)

where U(t) := (u(t), v(t)),

A : dom(A) ⊂ H → H,

(u, v) 7→ (−v,−∆u),
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B : H ∋ (u, v) 7→ (0, β(u)), and G : H ∋ (u, v) 7→ (0, G0(u)). The operator −A generates
a strongly continuous group S(t) = e−tA on H, with

S(t) =





cos
(

t
√
−∆

) 1√
−∆

sin
(

t
√
−∆

)

−
√
−∆sin

(

t
√
−∆

)

cos
(

t
√
−∆

)





(see e.g. [38]), and it is easily seen that (14) admits a unique mild solution, i.e. an
adapted càdlàg process U such that the stochastic integral equation

U(t) +

∫ t

0
S(t− s)B(U(s)) ds = S(t)U(0) +

∫ t

0
S(t− s)G(U(s−)) dM(s), (15)

is satisfied P-a.s. for all t ∈ [0, T ]. An elementary computation based on the explicit
form of S(t) yields that U(t) = (u(t), v(t)) satisfies (15) if and only if it satisfies the
alternative form














u(t) = u0 +

∫ t

0
v(s) ds,

v(t) +

∫ t

0
S22(t− s)β(u(s)) ds = S21(t)u0 + S22(t)v0 +

∫ t

0
S22(t− s)G0(u(s−)) dM(s)

P-a.s. for all t ∈ [0, T ], where Sij(t) denotes the (i, j)-th entry of the operator matrix
S(t). A further computation (which is elementary, apart of having to appeal to a general
stochastic Fubini’s theorem such as the one in [22]) shows that a mild solution satisfies
the Duhamel’s formulation

u(t) +

∫ t

0
S12(t− s)β(u(s)) ds = S11(t)u0 + S12(t)v0 +

∫ t

0
S12(t− s)G0(u(s−)) dM(s).

As already mentioned, this expression motivates the definition of weak solution in the
general case (i.e. without any Lipschitz assumption on β).

4.2. Proof of Theorem 3. Denoting the identity function by I, let

βλ =
1

λ

(

I − (I + λβ)−1
)

, λ > 0,

be the Yosida approximation of β. Recall that the maximal monotonicity of β implies
that, for any λ > 0, (I+λβ)−1 is a contraction defined on the whole real line (see e.g. [5,
Prop. 2.2]). In particular, βλ is a function, not a graph. Furthermore, one can prove (see
e.g. [5, Prop. 2.6]) that βλ : R → R is monotone, Lipschitz continuous with Lipschitz
constant bounded above by 2/λ, and it satisfies βλ ∈ β(I + λβ)−1.

Consider the regularized equation

dUλ(t) +AUλ(t) dt+Bλ(Uλ(t)) dt = G(Uλ(t−)) dM(t), Uλ(0) = (u0, v0), (16)

where Bλ : (u, v) 7→ (0, βλ(u)) is Lipschitz continous from H to itself. Then (16) admits
a unique càdlàg mild solution Uλ such that

E sup
t≤T

|Uλ(t)|2H < +∞

(see e.g. [17]). We are now going to establish a priori estimates for Uλ = (uλ, vλ).
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Proposition 11. There exists a positive constant C, independent of λ, such that

E sup
t≤T

(

|uλ(t)|2H1

0

+ |vλ(t)|2L2

)

< C.

Proof. By Proposition 7, taking into account that Bλ is Lipschitz continuous, we have

E sup
t≤T

|Uλ(t)|2 . 1 + E|U0|2 + E sup
t≤T

∫ t

0

〈

−Bλ(Uλ(s)), Uλ(s)
〉

ds +

∫ T

0
E sup

r≤s
|Uλ(r)|2 ds,

where
∫ t

0

〈

Bλ(Uλ(s)), Uλ(s)
〉

ds =

∫ t

0
〈βλ(uλ(s)), vλ(s)〉L2 ds.

Let us introduce the Moreau-Yosida approximation of j (recall that j is a positive convex
function such that β = ∂j), that is

jλ(x) := inf
y∈R

(

j(y) +
|x− y|2

2λ

)

, λ > 0.

Then one has (see e.g. [1, Thm. 2.2.2]) that jλ ∈ C1(R), βλ = j′λ, and jλ → j pointwise
as λ → 0. Moreover, one also has jλ ≤ j and, obviously, jλ ≥ 0. We can thus write, in
view of the identity uλ(t) = u0 +

∫ t
0 vλ(s) ds, recalling that j′λ = βλ,

∫ t

0
〈βλ(uλ(s)), vλ(s)〉L2 ds =

∫

D
jλ(uλ(t, x)) dx−

∫

D
jλ(u(0, x)) dx ≥ −|j(u0)|L1 .

This implies

E sup
t≤T

|Uλ(t)|2 . 1 + E|U0|2 + E|j(u0)|L1 +

∫ T

0
E sup

r≤s
|Uλ(r)|2 ds,

which, by an application of Gronwall’s inequality, yields the claim. �

Proposition 12. Let ũλ(t) := (I + λβ)−1uλ(t), t ∈ [0, T ]. There exists a positive
constant C, independent of λ, such that

E

∫ T

0
〈β(ũλ(s)), ũλ(s)〉L2 ds < C.

Proof. We split the proof in three steps.

Step 1. We introduce a regularized version of (16) admitting a strong solution. In
particular, setting

Fλ(t) := (0, fλ(t)) :=
(

0, βλ(uλ(t))
)

, Γλ(t) := (0, γλ(t)) :=
(

0, G0(uλ(t−))
)

for all t ∈ [0, T ], it is clear that Uλ is the unique mild solution of

dUλ(t) +AUλ(t) dt+ Fλ(t) dt = Γλ(t) dM(t), Uλ(0) = (u0, v0), (17)

or equivalently














uλ(t) = u0 +

∫ t

0
vλ(s) ds

vλ(t) +

∫ t

0
S11(t− s)fλ(s) ds = S21(t)u0 + S11v0 +

∫ t

0
S11(t− s)γλ(s) dM(s).

(18)
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Using the notation h(ε) := (I − ε∆)−1h for any “object” h for which the expression
makes sense, we may write, recalling that (I + ε∆)−1 and Sij(·), i, j = 1, 2, commute,















u
(ε)
λ (t) = u

(ε)
0 +

∫ t

0
v
(ε)
λ (s) ds,

v
(ε)
λ (t) +

∫ t

0
S11(t− s)f

(ε)
λ (s) ds = S21(t)u

(ε)
0 + S11v

(ε)
0 +

∫ t

0
S11(t− s)γ

(ε)
λ (s) dM(s),

(19)

or equivalently, U
(ε)
λ (t) = (u

(ε)
λ (t), v

(ε)
λ (t)) is the unique mild solution of

dU
(ε)
λ (t) +AU

(ε)
λ (t) dt+ F

(ε)
λ (t) dt = Γ

(ε)
λ (t) dM(t), U

(ε)
λ (0) = (u

(ε)
0 , v

(ε)
0 ), (20)

where

F
(ε)
λ (t) =

(

0, f
(ε)
λ (t)

)

, Γ
(ε)
λ (t) =

(

0, γ
(ε)
λ (t)

)

for all t ∈ [0, T ]. By Lemma 6 we actually have that U
(ε)
λ is a strong solution of (20).

Step 2. Let V
(ε)
λ (t) := (0, (I + λβ)−1u

(ε)
λ (t)), t ∈ [0, T ]. Then both U

(ε)
λ , as a strong

solution of (20), and V
(ε)
λ , are H-valued semimartingales, for which the integration-by-

parts formula (13) yields

〈

U
(ε)
λ (t), V

(ε)
λ (t)

〉

=
〈

U
(ε)
λ (0), V

(ε)
λ (0)

〉

+

∫ t

0

〈

U
(ε)
λ (s−), dV

(ε)
λ (s)

〉

+

∫ t

0

〈

V
(ε)
λ (s−), dU

(ε)
λ (s)

〉

+
[

U
(ε)
λ , V

(ε)
λ

]

(t).

Taking into account (20) and the definitions of U
(ε)
λ , V

(ε)
λ , F

(ε)
λ , Γ

(ε)
λ , we obtain

E
〈

v
(ε)
λ (t), (I + λβ)−1(u

(ε)
λ (t))

〉

L2 = E
〈

v
(ε)
0 , (I + λβ)−1u

(ε)
0

〉

L2

+ E

∫ t

0

〈

v
(ε)
λ (s), d

(

(I + λβ)−1(u
(ε)
λ (s))

)〉

L2

+ E

∫ t

0

〈

(I + λβ)−1u
(ε)
λ (s),∆u

(ε)
λ (s)

〉

L2 ds

− E

∫ t

0

〈

(I + λβ)−1u
(ε)
λ (s), (I − ε∆)−1βλ(uλ(s))

〉

L2 ds

+ E

∫ t

0

〈

(I + λβ)−1u
(ε)
λ (s−), γ

(ε)
λ (s) dM(s)

〉

L2 ds

+ E
[

v
(ε)
λ , (I + λβ)−1u

(ε)
λ

]

(t). (21)

Note that, by (19), ∂su
(ε)
λ (s) = v

(ε)
λ (s), and

(I − λβ)−1u
(ε)
λ (s) = u

(ε)
λ (s) + (I − λβ)−1

(

u
(ε)
λ (s)

)

− u
(ε)
λ (s)

= u
(ε)
λ (s)− λβλ

(

u
(ε)
λ (s)

)

,
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hence

E

∫ t

0

〈

v
(ε)
λ (s), d

(

(I + λβ)−1(u
(ε)
λ (s))

)〉

L2 ds

= E

∫ t

0

〈

v
(ε)
λ (s), d

(

u
(ε)
λ (s)− λβλ(u

(ε)
λ (s))

)〉

L2

= E

∫ t

0
|v(ε)λ (s)|2L2 ds− λE

∫ t

0

〈

v
(ε)
λ (s), dβλ(u

(ε)
λ (s))

〉

L2 .

Denoting a family of C∞
c mollifiers by {ζδ}δ>0, and setting βλδ := βλ ∗ ζδ, one has

E

∫ t

0

〈

v
(ε)
λ (s), dβλδ(u

(ε)
λ (s))

〉

L2

δ→0−−−→ E

∫ t

0

〈

v
(ε)
λ (s), dβλ(u

(ε)
λ (s))

〉

L2

and

E

∫ t

0

〈

v
(ε)
λ (s), dβλδ(u

(ε)
λ (s))

〉

L2
= E

∫ t

0

〈

v
(ε)
λ (s), β′

λδ(u
(ε)
λ (s))v

(ε)
λ (s)

〉

L2
ds ≥ 0,

because, recalling that βλ is a monotonically increasing function, β′
λδ(x) = β′

λ ∗ζδ(x) ≥ 0
for all x ∈ R. Therefore we have

E

∫ t

0

〈

v
(ε)
λ (s), d

(

(I + λβ)−1(u
(ε)
λ (s))

)〉

L2 ds ≤ E

∫ t

0
|v(ε)λ (s)|2L2 ds.

Similarly, we have

E

∫ t

0

〈

(I + λβ)−1(u
(ε)
λ (s)),∆u

(ε)
λ (s)

〉

L2 ds

= E

∫ t

0

〈

u
(ε)
λ (s),∆u

(ε)
λ (s)

〉

L2 ds− E

∫ t

0
λ
〈

βλ(u
(ε)
λ (s)),∆u

(ε)
λ (s)

〉

L2 ds

= −E

∫ t

0

〈

∇u
(ε)
λ (s),∇u

(ε)
λ (s)

〉

L2 ds+ E

∫ t

0
λ
〈

β′
λ(u

(ε)
λ (s))∇u

(ε)
λ (s),∇u

(ε)
λ (s)

〉

L2 ds

≤ 2E

∫ t

0
|∇u

(ε)
λ (s)|2L2 ds,

where the term involving β′
λ can be interpreted, as above, as limits of more regular

expressions obtained replacing βλ with βλδ .
Moreover, by an argument completely similar to one used in the proof of Proposition

7, we get

E sup
t≤T

∫ t

0

〈

(I + λβ)−1u
(ε)
λ (s−), γ

(ε)
λ (s) dM(s)

〉

L2 ds < +∞,

which implies that the stochastic integral appearing on the right-hand side of (21) is a
martingale, hence with expectation zero. Finally, we have that

[

v
(ε)
λ , (I + λβ)−1u

(ε)
λ

]

(t) = 0

for all t ∈ [0, T ] because, as it follows by (19),

(I + λβ)−1u
(ε)
λ (t) = (I + λβ)−1u

(ε)
0 +

∫ t

0
(I + λβ)−1v

(ε)
λ (s) ds
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is a process with finite variation and continuous paths. We have thus proved that

E

∫ T

0

〈

(I + λβ)−1u
(ε)
λ (s), (I − ε∆)−1βλ(uλ(s))

〉

L2 ds

≤ E
〈

v
(ε)
0 , (I + λβ)−1u

(ε)
0

〉

L2 + E
∣

∣

〈

v
(ε)
λ (T ), (I + λβ)−1u

(ε)
λ (T )

〉

L2

∣

∣

+ E

∫ T

0

∣

∣v
(ε)
λ (s)

∣

∣

2

L2 ds+ 2E

∫ T

0

∣

∣∇u
(ε)
λ (s)

∣

∣

2

L2 ds.

Furthermore, Cauchy-Schwarz’ inequality and the contractivity of (I + λβ)−1 and (I −
ε∆)−1 yield

E
〈

v
(ε)
0 , (I + λβ)−1u

(ε)
0

〉

L2 ≤
(

E|v0|2L2

)1/2 (
E|u0|2L2

)1/2
,

E
∣

∣

〈

v
(ε)
λ (T ), (I + λβ)−1u

(ε)
λ (T )

〉

L2

∣

∣ ≤
(

E|vλ(T )|2L2

)1/2 (
E|uλ(T )|2L2

)1/2

≤
(

E sup
t≤T

|vλ(t)|2L2

)1/2 (

E sup
t≤T

|uλ(t)|2L2

)1/2

,

E

∫ T

0

∣

∣v
(ε)
λ (s)

∣

∣

2

L2 ds ≤ E

∫ T

0

∣

∣vλ(s)
∣

∣

2

L2 ds ≤ T E sup
t≤T

|vλ(t)|2L2 ,

E

∫ T

0

∣

∣∇u
(ε)
λ (s)

∣

∣

L2 ds ≤ E

∫ T

0

∣

∣∇uλ(s)
∣

∣

L2 ds ≤ T E sup
t≤T

|uλ(t)|2H1

0

.

Appealing to Proposition 11, we infer that there exists a constant C, independent of ε
and of λ, such that

E

∫ t

0

〈

(I + λβ)−1u
(ε)
λ (s), (I − ε∆)−1βλ(uλ(s))

〉

L2 ds < C. (22)

Step 3. We shall now pass to the limit as ε → 0 in the last inequality. Since the operator
(I + λβ)−1 is bounded, we have that

lim
ε→0

〈

(I + λβ)−1u
(ε)
λ (s), (I − ε∆)−1βλ(uλ(s))

〉

L2 =
〈

(I + λβ)−1uλ(s), βλ(uλ(s))
〉

L2

P-a.s. for all s ∈ [0, T ]. On the other hand, the contractivity of (I+λβ)−1 and (I−ε∆)−1,
the Lipschitz continuity of βλ, and Cauchy-Schwarz’ inequality yield

E

∫ T

0

∣

∣

〈

(I + λβ)−1u
(ε)
λ (s), (I − ε∆)−1βλ(uλ(s))

〉

L2

∣

∣ ds

. E

∫ T

0
(1 + |uλ(s)|2L2) ds < ∞.

Hence, by the dominated convergence theorem, we obtain

E

∫ T

0

〈

(I + λβ)−1uλ(s), βλ(uλ(s))
〉

L2 ds

= lim
ε→0

E

∫ T

0

〈

(I + λβ)−1u
(ε)
λ (s), (I − ε∆)−1βλ(uλ(s))

〉

L2 ds < C,
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where C is the same constant (independent of λ) appearing in (22), thus completing the
proof, upon recalling that βλ ∈ β(I + λβ)−1. �

Proof of Theorem 3. Let (uλ, vλ) be the solution of the regularized equation (16), for
which one has

uλ(t) = u0 +

∫ t

0
vλ(s) ds (23)

for all t ∈ [0, T ], and, by Proposition 11,

E sup
t≤T

|vλ(t)|2L2 < C

for a constant C that does not depend on λ. This implies, for any η > 0,

P
(

sup
t≤T

|vλ(t)|2L2 > η
)

≤ 1

η
E
(

sup
t≤T

|vλ(t)|2L2

)

<
C

η
,

thus also

lim
η→∞

sup
λ

P
(

sup
t≤T

|vλ(t)|2L2 > η
)

= 0. (24)

Let us now show that, for any t ∈ [0, T ] and δ > 0, there exists a compact subset
K = K(t, δ) of L2 such that P(uλ(t) ∈ K) > 1 − δ. In fact, denoting by BR the ball of
radius R centered at the origin of H1

0 and recalling that H1
0 is compactly embedded in

L2, we have that BR is a compact subset of L2, and

P
(

uλ(t) ∈ BR

)

= 1− P
(

|uλ(t)|H1

0

> R
)

≥ 1− 1

R2
E sup

t≤T
|uλ(t)|2H1

0

> 1− C

R2
,

i.e. it is enough to choose R =
√

C/δ and K = BR. This observation and (24) imply,
thanks to a corollary to a theorem of Rebolledo (see e.g. [26, §II.4.4]), that {uλ}λ
is uniformly tight in D([0, T ] → L2). By Skorohod’s representation theorem (see e.g.
[3, § 8.5]), there exists a probability space (Ω̄, F̄ , P̄) and a sequence of random vectors
ξn := (ūn, M̄n) ∈ D([0, T ] → L2 × L2) such that ξn → ξ := (ū, M̄ ) P̄-a.s. as n → ∞,
and the laws of ξn and (uλn

,M) coincide for each n, for some subsequence {λn}n∈N of
λ. Let us set

Bn =
(

Ω̄, F̄ , F̄n, P̄
)

, B =
(

Ω̄, F̄ , F̄, P̄
)

,

where F̄n and F̄ are the filtrations generated by (ūn, M̄n) and (ū, M̄ ), respectively. Then
ūn is F̄n-adapted and càdlàg, and ū is F̄-adapted and càdlàg, since ūn converges P̄-a.s.
to ū as n → ∞ in the Skorohod topology.

Let us assume, for the time being, that the process M̄n is a F̄n-martingale for each
n. Then the process M̄ is a F̄-martingale by a slight modification of the proof of [14,
Prop. IX.1.10], taking into account [op. cit., Prop. IX.1.12 and Rmk. VI.1.10], as well as
the obvious inequality

sup
t≤T

Ē|M̄n(t)|2 = sup
t≤T

E|M(t)|2 < ∞

(where Ē denotes expectation with respect to P̄ on the stochastic basis Bn), which implies
that M̄n is uniformly integrable. On the other hand, a completely similar argument
proves that M̄n is indeed a Fn-martingale for each n: fix n and set Mk := M and
Y k := un, k ∈ N, so that (Y k,Mk) trivially converges in law to (ūn, M̄n), which has the
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same law of (un,M). Since {Mk}k∈N is obviously uniformly integrable, we conclude that
M̄n is a martingale with respect to the filtration generated by (ūn, M̄n), as it follows by
the above mentioned results of [14].

Setting βn := βλn
, we also have that, for each fixed n, ūn solves P̄-a.s. the integral

equation

ūn(t) +

∫ t

0

1√
−∆

sin((t− s)
√
−∆)βn(ūn(s)) ds

= cos(t
√
−∆)u0+

1√
−∆

sin(t
√
−∆)v0+

∫ t

0

1√
−∆

sin((t−s)
√
−∆)G0(ūn(s−)) dM̄n(s),

(25)

because the same equation is satisfied with ūn and M̄n replaced by uλn
and M , respec-

tively (for instance by an argument such as the one used in [18, p. 89]).

Lemma 13. There is a subsequence {nk}k∈N such that ūnk
→ ū P̄ ⊗ Leb-a.e. on

Ω̄× [0, T ]×D.

Proof. Note that we clearly have

Ē

∫ T

0
|ūn(t)− ū(t)|L1 dt . Ē

∫ T

0
|ūn(t)− ū(t)|L2 dt. (26)

Since (23) implies ūn ∈ C([0, T ] → L2), upon recalling that the Skorokhod topology on
D([0, T ] → L2) induces the uniform topology on its subspace C([0, T ] → L2), we have
that ūn converges to ū P̄-a.s. in C([0, T ] → L2). That is

sup
t≤T

|ūn(t)− ū(t)|L2 → 0 (27)

P̄-a.s. as n → ∞. Set Xn :=
∫ T
0 |ūn(t)− ū(t)|L2 dt. By (27), the sequence Xn converges

to 0 in probability. Assume for the moment that

sup
n

Ē|Xn|2L2 < +∞. (28)

Then {Xn}n∈N is uniformly integrable and ĒXn → 0 as n → ∞, whence, by (26),
limn→∞ ūn = ū in L1(Ω̄×D × [0, T ]), thus also ūnk

→ ū P̄⊗ Leb-a.e. on Ω̄×D × [0, T ]
as k → ∞, along a subsequence {nk}k∈N.

It remains to justify (28). Observe that

Ē|Xn|2 . Ē

∫ T

0
|ūn(t)− ū(t)|2L2 dt

. Ē

∫ T

0
|ūn(t)|2L2 + Ē

∫ T

0
|ū(t)|2L2 dt

=: I1 + I2,

and

I1 . sup
n

sup
t≤T

Ē|ūn(t)|2L2 < +∞
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by Proposition 11 and the fact that ūn has the same law as uλn
. On the other hand,

(27) implies
∫ T

0
|ūn(t)|2L2 dt →

∫ T

0
|ū(t)|2L2 dt

P̄-a.s. as n → ∞, hence, by Fatou’s lemma,

I2 = Ē

∫ T

0
|ū(t)|2L2 dt ≤ lim inf

n
Ē

∫ T

0
|ūn(t)|2L2 dt . sup

n
sup
t≤T

Ē|ūn(t)|2L2 < +∞,

which concludes the proof. �

Let us now consider the convergence of the stochastic integrals in (25).

Lemma 14. One has, for each t ∈ [0, T ],
∫ t

0
S12(t− s)G0(ūn(s−)) dM̄n(s) →

∫ t

0
S12(t− s)G0(ū(s−)) dM̄ (s)

in probability as n → ∞.

Proof. By a basic trigonometric identity we can write

sin((t− s)
√
−∆) = sin(t

√
−∆) cos(−s

√
−∆) + cos(t

√
−∆) sin(−s

√
−∆).

Therefore, setting

H1
n(s) := cos(−s

√
−∆)G0(ūn(s)), H2

n(s) := sin(−s
√
−∆)G0(ūn(s)),

for all s ∈ [0, T ], we get
∫ t

0
S12(t− s)G0(ūn(s−)) dM̄n(s) = S12(t)

∫ t

0
H1

n(s−) dM̄n(s)

+
1√
−∆

cos(t
√
−∆)

∫ t

0
H2

n(s−) dM̄n(s).

(29)

By the continuity of G0 and the boundedness of cos(−s
√
−∆) and sin(−s

√
−∆), we infer

(H1
n, M̄n) → (H1, M̄ ) and (H2

n, M̄n) → (H2, M̄) in D([0, T ] → LQ
2 × L2) in probability

as n → ∞, where

H1(s) := cos(−s
√
−∆)G0(ū(s)), H2(s) := sin(−s

√
−∆)G0(ū(s))

for all s ∈ [0, T ]. Let us now show that the sequence {M̄n}n∈N satisfies the UT condition
specified just before the statement of Theorem 9. In fact, denoting a sequence of ele-
mentary processes as in §3, mutatis mutandis, by {ζn}n∈N, (2) and Markov’s inequality
yield

P̄

(∣

∣

∣

∣

∫ t

0
〈ζn(s−), dM̄n(s)〉H

∣

∣

∣

∣

> η

)

≤ T
1

η2
Ē sup

s≤t
|ζn(s)|2H ≤ T

η2
,

which implies, observing that the upper bound just obtained does not depend on n,

lim
η→∞

sup
n

P̄

(
∣

∣

∣

∣

∫ t

0
〈ζn(s−), dM̄n(s)〉H

∣

∣

∣

∣

> η

)

= 0
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for all t ≤ T , i.e. the UT condition is verified. At this point we can apply Jakubowski’s
result Theorem 9 to deduce that

∫ ·

0
Hn

1 (s−) dM̄n(s) →
∫ ·

0
cos(−s

√
−∆)G0(ū(s−)) dM̄ (s),

∫ ·

0
Hn

2 (s−) dM̄n(s) →
∫ ·

0
sin(−s

√
−∆)G0(ū(s−)) dM̄ (s),

in probability inD([0, T ] → L2) as n → ∞, which allows to conclude, in view of (29). �

We can now conclude the proof of Theorem 3. By Proposition 12 and Skorohod’s
representation, there exists a constant C, independent of n, such that

Ē

∫ T

0
〈β(Jnūn), Jnūn〉L2 ds < C,

where Jn := (I +λnβ)
−1. Therefore, by Theorem 10, we have that there exists g ∈ β(ū)

such that, on a further subsequence, still denoted by n,

βn(ūn) → g in L1
(

Ω̄× [0, T ] ×D, P̄⊗ Leb
)

as n → ∞. In particular, passing to a further subsequence if necessary,

βn(ūn) → g in L1([0, T ] → L1) (30)

P̄-a.s. as n → ∞. Let us define the scale of Hilbert spaces

H
m := H

m
1 × H

m
2 := dom

(

(I −∆)m/2
)

× dom
(

(I −∆)(m−1)/2
)

, m ∈ R,

where, for each m ∈ R, dom
(

(I −∆)m/2
)

is endowed with the norm

‖x‖m =
∣

∣(I −∆)m/2x
∣

∣

L2 .

For instance, H0 = L2 × H−1 and H1 = H1
0 × L2, which are the traditional Hilbert

spaces on which the strongly continuous group {S(t)}t∈R associated to the linear wave

equation is considered. Since, for each s ∈ R, (I −∆)s/2 : Hm → Hm−s is an isometric

isomorphism (considered componentwise) and (I −∆)s/2 commutes with S(t) for any s,
t, one immediately verifies that {S(t)}t∈R can be extended (or restricted) to a strongly
continuous group on Hm for all m ∈ R (cf. [12, §II.5] for a related general scheme
to extend semigroups of operators to so-called Sobolev towers). By classical Sobolev
embedding theorems (see e.g. [24]), there exists m > 0 such that L1 ⊂ dom

(

(I −
∆)−(m+1)/2

)

with continuous embedding, therefore, in view of (30),

βn(ūn) → g in L1
(

[0, T ] → H
−m
2

)

P̄-a.s. as n → ∞, and so
∫ t

0
S12(t− s)βn(ūn(s)) ds →

∫ t

0
S12(t− s)g(s) ds

P̄-a.s. as n → ∞ by continuity of {S12(t)}t∈R in H
−m
2 .
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Summing up, we have obtained that (ū, g) solves P̄-a.s. the equation

ū(t) +

∫ t

0

1√
−∆

sin((t− s)
√
−∆)g(s) ds

= cos(t
√
−∆)u0 +

1√
−∆

sin(t
√
−∆)v0 +

∫ t

0

1√
−∆

sin((t− s)
√
−∆)G0(ū(s−)) dM̄ (s),

where all random vectors have to be considered as taking values in H
−m
2 , thus proving

that ū is a (probabilistically) weak solution of (1), in the sense of Definition 1. �
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