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CRITERIA OF STABILIZABILITY FOR SWITCHING-CONTROL
SYSTEMS WITH SOLVABLE LINEAR APPROXIMATIONS∗

XIONGPING DAI†

Abstract. We study the stability and stabilizability of a continuous-time switched control system
that consists of the time-invariant n-dimensional subsystems

ẋ = Aix+ Bi(x)u (x ∈ Rn, t ∈ R+ and u ∈ Rmi ), where i ∈ {1, . . . , N}

and a switching signal σ(·) : R+ → {1, . . . , N} which orchestrates switching between these subsystems
above, where Ai ∈ Rn×n, n ≥ 1, N ≥ 2, mi ≥ 1, and where Bi(·) : Rn → Rn×mi satisfies the
condition ‖Bi(x)‖ ≤ β‖x‖ ∀x ∈ Rn. We show that, if {A1, . . . , AN} generates a solvable Lie algebra
over the field C of complex numbers and there exists an element A in the convex hull co{A1, . . . , AN}
in Rn×n such that the affine system ẋ = Ax is exponentially stable, then there is a constant δ > 0
for which one can design “sufficiently many” piecewise-constant switching signals σ(t) so that the
switching-control systems

ẋ(t) = Aσ(t)x(t) + Bσ(t)(x(t))u(t), x(0) ∈ Rn and t ∈ R+

are globally exponentially stable, for any measurable external inputs u(t) ∈ Rmσ(t) with ‖u(t)‖ ≤ δ.
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1. Introduction. Let Rn be the real n-dimensional Euclidean space with an
inner product 〈·, ·〉 which gives rise to a vector norm ‖ · ‖ on it. In this paper, we
will focus on the stability and stabilizability issues for the continuous-time switched
control system

ẋ(t) = Aσ(t)x(t) +Bσ(t)(x(t))u (x(0) ∈ Rn and t > 0),(1.1)

the subsystems of which are time-invariant continuous-time control systems

ẋ(t) = Aix(t) +Bi(x(t))u (x(0) ∈ Rn, t > 0 and u ∈ Rmi)(1.2)

for i ∈ {1, . . . , N}, where Ai ∈ Rn×n for all indices i, and σ : (0,+∞)→ {1, . . . , N} is
piecewise constant and left-continuous having at most finite number of discontinuities
on any finite interval of R+ := (0,∞). Here n ≥ 1, N ≥ 2 and mi ≥ 1 all are integers.
We assume that the matrix-valued functions Bi(x) ∈ Rn×mi are continuous with
respect to x ∈ Rn satisfying the linear growth condition:

‖Bi(x)‖ ≤ β‖x‖ ∀x ∈ Rn(1.3)

for each i ∈ {1, . . . , N}, for some constant β > 0. However Bi(x) does not need to be
Lipschitz continuous, not even locally, with respect to x ∈ Rn.
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For any given σ(t) and u(t), the switched control system (1.1) is said to be (glob-
ally) exponentially stable, provided that for any given initial state x0 ∈ Rn, its so-
lutions x(t) = φ(t, x0, σ, u) with x(0) = x0, that are absolutely continuous in t but
not necessarily unique because of the lack of the Lipschitz condition of the nonlinear
terms Bi(x), are such that

χχχ+(x0, σ, u) := lim sup
t→+∞

1

t
log ‖φ(t, x0, σ, u)‖ < 0

if x(t) is forwardly complete, i.e., x(t) may be extended on R+.
The stability issues of such switched systems include several interesting phenom-

ena. For example, even when all the subsystems (1.2) are exponentially stable, (1.1)
may have divergent trajectories for certain switching signals σ(t); see, e.g. [4, 27]. An-
other noticeable fact is that one may carefully switch between unstable subsystems
to make (1.1) exponentially stable; see, e.g. [39, 13]. As these examples suggest, the
stability of switched systems depends not only upon the dynamics of each subsystems
but also upon the properties of the switching signals. Therefore, the stability study
of switched systems might be roughly divided into two kinds of problems [25]:

(Q1) one is the stability analysis of switched systems under given sets of admissi-
ble switching signals (all switching signals or switching signals obeying some
constraints);

(Q2) the other is the synthesis of stabilizing switching signals for a given collection
of dynamical/control systems.

In the present paper, the question that we are concerned with is a complex of the
above two kinds of problems. In our context, all subsystems (1.2) are not necessarily
exponentially stable themselves, but there exists an exponentially stable system in
their convex hull co{A1, . . . , AN} in Rn×n. For this, we want to seek some kind of
condition that may guarantee the existence of switching systems (1.1) that are globally
exponentially stable; and further to describe such stable switching signals.

To describe the switching signals that we are of interest to goal here, we need to
introduce the classical symbolic space. Let

(1.4) Σ+
N =

{
ι = (ιk)

+∞
k=1 | ιk ∈ {1, . . . , N} ∀k ≥ 1

}

be the one-sided symbolic sequence space, which is compact and metrizable, endowed
with the standard product topology. Then, there gives rise to the canonical symbolic
dynamical system—the one-sided Markovian (forward) shift transformation:

(1.5) θ : Σ+
N → Σ+

N ; (ιk)
+∞
k=1 7→ (ιk+1)

+∞
k=1.

Observe that the shift θ is continuous and surjective, not generally 1-to-1. For any
vector ~α = (α1, . . . , αN ) ∈ RN with 0 < αi < 1 and α1+· · ·+αN = 1, we can naturally
define a probability measure/distribution, written as P~α, on Σ

+
N in this way: for any

cylinder sets of length k ≥ 1

(1.6) [i1, . . . , ik] :=
{
ι ∈ Σ+

N | ι1 = i1, . . . , ιk = ik
}
,

we have

(1.7) P~α([i1, . . . , ik]) = αi1 · · ·αik ,

for every words (i1, . . . , ik) ∈ {1, . . . , N}k. Then, (Σ+
N , θ,P~α) is an ergodic dynamical

system, see e.g. [30, 40]; that is to say, firstly P~α(θ
−1B) = P~α(B) for any Borel subsets
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B of Σ+
N , and secondly P~α(B) = 0 or 1 if the probability of the symmetric difference

P~α(B△θ−1B) = 0. In addition, it is easy to see that every ι ∈ Σ+
N is a density point

of P~α; that is, every neighborhood of ι has positive measure of P~α.
Now, we make a convention for our convenience: To any ι ∈ Σ+

N , there corresponds
a continuous-time piecewise constant left-continuous switching signal

(1.8) σι(·) : R+ → {1, . . . , N}; σι(t) = ιk whenever k − 1 < t ≤ k ∀k ∈ N,

where and in the sequel N = {1, 2, . . .}. Here we do not care the value σι(0), since
the initial value x(0) = x0 is given previously.

Then, associated to the collection of subsystems given as in (1.2), there generates
a switching-control dynamical system

(1.1)ι ẋ = Aσι(t)x+Bσι(t)(x)u, x(0) ∈ Rn, t ∈ R+, and u ∈ Rmσι(t) ,

for any ι ∈ Σ+
N . Our problem concerned here can now be stated as follows:

Question 1.1. Let ~α = (α1, . . . , αN ) ∈ RN be a positive probability vector; that
is, 0 < αk < 1 for 1 ≤ k ≤ N and α1 + · · ·+ αN = 1.

(1) If the linear affine equation

ẋ(t) = (α1A1 + · · ·+ αNAN )x(t), x(0) ∈ Rn and t ∈ R+

is exponentially stable then, can one design switching signals σι(t) with low
switching frequency so that the corresponding systems (1.1)ι steered by σι(t),
are exponentially stable?

(2) What condition can guarantee that (1.1)ι are globally exponentially stable for
P~α-almost sure ι ∈ Σ+

N ?
Question 1.1.(1), corresponding to the above (Q2), is to find switching signals σι(t) to
steer the switched systems (1.1)ι globally exponentially stable. And Question 1.1.(2),
corresponding to the above (Q1), is also one of the fundamental problems for the
stability analysis of switched systems. Here we will give a unified positive solution to
this question under an additional algebraic condition—solvability.

Let A = {A1, . . . , AN} ⊂ Rn×n be arbitrarily given. Then under the Lie bracket
[Ai, Aj ] = AiAj −AjAi for all Ai, Aj ∈ Rn×n, A generates a Lie algebra, write ALA,
over the field C of complex numbers; that is the smallest Lie algebra containing A
over the field C. Letting

A(0)
LA = ALA, A(1)

LA =
[
A(0)

LA,A
(0)
LA

]
, . . . , A(ℓ)

LA =
[
A(ℓ−1)

LA ,A(ℓ−1)
LA

]
, . . . ,

A is called solvable over C, provided that A(ℓ)
LA = {0n×n} for some integer ℓ ≥ 1,

where 0n×n denotes the zero matrix in Cn×n. For example, abelian or nilpotent A
implies solvable; see, e.g., [19].

It is well known that the Lie algebra ALA plays a very important role in the
theory of reachability and controllability, for example, see [35, 5]. When each of the
subsystems Ai is exponentially stable, some stability criteria, for arbitrary piecewise
constant switching signals, of (1.1) have been developed under the solvability condition
and an additional higher regularity of Bi(x), such as smoothness or analyticity, with
respect to the state-variable x ∈ Rn; for example, see [29, 17, 34, 24, 2, 28, 18].

Under this algebraic solvability condition, our main result obtained in this paper
can be formulated as follows:

Theorem 1.2. Assume that ~α = (α1, . . . , αN ) ∈ RN is a positive probability
vector. Let A = {A1, . . . , AN} ⊂ Rn×n be solvable over the complex-number field C.
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If it holds that

(⋆) ẋ(t) = (α1A1+ · · ·+αNAN )x(t), x(0) ∈ Rn and t ∈ R+, is exponentially stable,

then there hold the following two statements.
(1) For P~α-a.s. ι ∈ Σ+

N , the linear switched systems

(1.1)ι,0 ẋ(t) = Aσι(t)x(t), x(0) ∈ Rn and t ∈ R+

are exponentially stable.
(2) Moreover, if condition (1.3) holds, then for any sufficiently small ε > 0, one can

find a Borel subset W ⊂ Σ+
N with P~α(W ) ≥ 1− ε and a constant δ > 0 such

that for each ι ∈ W , the switching-control systems

(1.1)ι,ε ẋ(t) = Aσι(t)x(t) +Bσι(t)(x(t))u(t), x(0) ∈ Rn and t ∈ R+

are globally exponentially stable, for any measurable external input u(·) with
u(t) ∈ Rmσι(t) and ‖u(t)‖ ≤ δ.

Although the statement (1) of Theorem 1.2 is a direct consequence of the state-
ment (2) in the case ε = 0, the separated formulations are convenient for our argu-
ments later.

Remark 1.3. Under the solvability property of A, condition (⋆) is not only suffi-
cient but also necessary for the statement (1) of Theorem 1.2; see Theorem 4.2 below
for the full details.

Remark 1.4. Our arguments presented here imply that replacing the solvability
of A by a more general condition that A admits a simultaneous triangularization, the
statements of Theorem 1.2 and Remark 1.3 still hold.

Determining whether or not a set A of matrices admits a simultaneous triangu-
larization is itself a long studied problem; for example, see [21, 3, 33].

Remark 1.5. The statements of Theorem 1.2 are given in an almost sure sense.
However, since an arbitrary point ι ∈ Σ+

N is a density point of P~α, we can choose
a sequence of stable switching sequence ι(ℓ) ∈ Σ+

N such that ι(ℓ) → ι as ℓ → +∞.
Secondly, it is a well known fact that the Hausdorff dimension of P~α is equal to its
entropy up to a constant multiplicator [9]. So, if the barycenter (A1 + · · ·+AN )/N of
the convex hull co{A1, . . . , AN} is stable, then the set

{
ι ∈ Σ+

N | ẋ = Aσι(t)x is exponentially stable
}

has the same Hausdorff dimension as the symbolic space Σ+
N under any standard

metrics. Thirdly, from [8], it follows that for every point ι in the basin of P~α, σι(t)
is a stable switching signal under the (⋆)-condition.

Remark 1.6. For any A ∈ Rn×n, it is stable iff each of its eigenvalues has a
negative real part. So, if there exists a stable A in the convex hull co{A1, . . . , AN} in
Rn×n, then one always can find a positive probability vector ~α = (α1+ · · ·+αN ) ∈ RN

such that the convex combination α1A1 + · · ·+ αNAN is stable.
Let us see our Theorem 1.2 from the viewpoint of approximations of solutions of

the linear affine equation

(1.9) ẋ(t) = (α1A1 + · · ·+ αNAN )x(t), x(0) ∈ Rn and t ∈ R+

by solutions of the differential inclusion

(1.10) ẏ(t) ∈ {A1, . . . , AN}y(t), y(0) ∈ Rn and t ∈ R+.
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There is a stabilizing switching strategy, proposed in [41], as follows: If condition
(⋆) of Theorem 1.2 holds, i.e., (1.9) is stable, then from the continuous version of
the Filippov-Wažewski relaxation theorem (cf. [14, 20]), it easily follows that to any
initial state y(0) = ξ, one can find an associated switching signal σξ(t) such that the
solution y(t, ξ, σξ), with y(0) = ξ, of the switched system

(1.10)ξ ẏ(t) = Aσξ(t)y(t), y(0) ∈ Rn and t ∈ R+

converges to zero exponentially fast; that is, it holds that

χ+(ξ, σξ, 0) = lim sup
t→+∞

1

t
log ‖y(t, ξ, σξ)‖ < 0;

this phenomenon is called pointwise exponentially stabilizable in [36, 37]. Yet one
cannot claim the global stability of the above switching system (1.10)ξ steered by
such switching signal σξ(t)! That is to say, different initial states ξ may define different
switching signals σξ(t) suggested by [41]. In [38] also see [36], based on the Baker-
Campbell-Haudorff formula J. Tokarzewski found a periodically switched signal σ(t)
which enables the individual switched dynamical system

(1.10)σ ẋ(t) = Aσ(t)x(t), x(0) ∈ Rn and t ∈ R+

exponentially stable. However, the period of σ(t) is sufficiently small and essentially
the above switched dynamical system (1.10)σ defined by the periodic σ(t) is a small
perturbation of the stable system (1.9) there. Moreover, it is well known that the set
of all periodically switched signals in Σ+

N is countable, 0-Hausdorff-dimensional, and
has only P~α-measure zero.

Clearly, under the additional solvability or simultaneous triangularization condi-
tions, our statement (1) of Theorem 1.2 presented in this paper is much more stronger
than those mentioned above. For the nonlinear case, the relaxation theorem requires
an additional Lipschitz condition for the nonlinear controlled part. There is a similar
comparison if we additionally assume the Lipschitz continuity of Bi(x) with respect
to x ∈ Rn for all indices 1 ≤ i ≤ N .

This paper is organized as follows. The rest Sections 2, 3, 4, and 5 of the paper
are all devoted to proving Theorem 1.2. In Section 2, we will provide an exponential
stability criterion for a time-dependent continuous-time linear equation whose coeffi-
cient matrix is upper-triangular and complex, see Theorem 2.1 below. In Section 3, we
will introduce a continuous-time symbolic semiflow by suspension of the classical one-
sided Markovian shift transformation (Σ+

N , θ). Then, we can think of our switching
dynamical systems as skew-product semiflows driven by the continuous-time symbolic
semiflow. Borrowing the symbolic semiflow and Lie’s theorem of triangularization, we
can apply ergodic theory to proving Theorem 1.2. We will prove the statements (1)
of Theorem 1.2 and Remark 1.3 in Section 4 and the statement (2) of Theorem 1.2
in Section 5. Since in our context Bi(x) may lack the higher regularity in x, the clas-
sical Lyapunov stability theorems cannot work here for proving the statement (2) of
Theorem 1.2. So, we will employ in Section 5 a new tool—Liao-type exponents, first
introduced in [10] and then perfected by the recent work [11]. In fact, there we will
prove a more general result Proposition 5.2.

Finally we are going to conclude this introductory section with a question for
further study.

Question 1.7. Let A = {A1, . . . , AN} ⊂ Rn×n and ~α = (α1, . . . , αN ) be a pos-
itive probability vector. If the (⋆)-condition is satisfied then, do the statements of
Theorem 1.2 still hold without the solvability condition of A?
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2. Lyapunov exponents for linear differential equations. In this section,
we will consider a general linear differential equation

(2.1) ẋ(t) = C(t)x(t), x(0) ∈ Cn and t ∈ R+,

where C(t) =
[
cij(t)

]
1≤i,j≤n

∈ Cn×n, with complex elements, is a Borel-measurable

matrix-valued function of the time-variable t on R+. We assume that the matrix
function C(t) is bounded on R+; that is,

(2.2) supt∈R+
‖C(t)‖ <∞.

It is well known that under condition (2.2), for every initial state x0 ∈ Cn there exists
a unique solution of (2.1), written as x(t) = Φ(t)x0, which is defined on R+ such that
x(0) = x0. This implies that Φ(t) is the principal matrix of (2.1); that is to say,

Φ(0) = Id
C

n (the unit matrix) and Φ̇(t) = C(t)Φ(t) for Leb-a.s. t ∈ R+.

Here Leb denotes the usual Lebesgue measure of R+. Then, the number

(2.3) χ+ := lim sup
t→+∞

1

t
log ‖Φ(t)‖ ∈ R ∪ {−∞}

is called the (maximal) Lyapunov exponent of (2.1). Clearly, for every nonzero initial
state x0 ∈ Cn, its Lyapunov exponent

(2.4) χ+(x0) := lim sup
t→+∞

1

t
log ‖Φ(t)x0‖ ≤ χ+.

If χ+ < 0, then we call (2.1) exponentially stable. According to the classical Lyapunov
theory, see e.g. [26], χ+(x0) can take at most n distinct values for all x0 ∈ Cn\{0}. The
basic question is: Does there hold max{χ+(x0) |x0 ∈ Cn \{0}} = χ+? If C(t) ≡ C(0)
for all t ∈ R+ then the answer is positive. In general, we will see this is still true from
Theorem 2.1 below.

For the system (2.1), a very interesting fact is that, generally speaking, the sta-
bility of the time-invariant systems

ẋ(t) = C(T )x(t), x(0) ∈ Cn and t ∈ R+,

for every T > 0, cannot imply the stability of (2.1); this point is well-illustrated by the
classical Marcus-Yamabe example. Consider the linear periodic differential equation

ẋ(t) =

[
−2 + 2 cos2 t 1− sin 2t
−1− sin 2t −2 + 2 sin2 t

]
x(t) = A(t)x(t), x(0) ∈ R2 and t ∈ R;

one checks that, for each T ∈ R, A(T ) admits λ = −1 as an eigenvalue of algebraic
multiplicity 2 and so ẋ(t) = A(T )x(t) are stable for all T ; however, the differential
equation admits the exponentially unstable solution x(t) = (−et cos t, et sin t)T, where
T means the transpose operation of a square matrix or a column/row vector.

Particularly, we will be interested in the upper-triangular equations. For this, our
result is the following, which is implicitly contained in the proof of the widely known
Perron-Lyapunov regularity theorem [26].

Theorem 2.1. If C(t) =
[
cij(t)

]
∈ Cn×n is upper-triangular, i.e., cij(t) ≡ 0 for

all n ≥ i > j ≥ 1, for t ∈ R+, then it holds that

χ+ = max{ϑi | i = 1, . . . , n},
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where

ϑi := lim sup
T→+∞

1

T

∫ T

0

Re(cii(t)) dt ∀i = 1, . . . , n.

Thus, (2.1) is exponentially stable if and only if ϑi < 0 for all i = 1, . . . , n.
Here Re(c) means the real part of a complex number c ∈ C. This result shows

that if the “time-average” time-invariant system

ẋ(t) = C̃x(t), x ∈ Cn and t ∈ R+ where C̃ = lim sup
T→+∞

1

T

∫ T

0

C(t) dt,

is exponentially stable, then so is (2.1). Our condition (⋆), formulated in Theorem 1.2,
is essentially an other kind of average—“spatial average”. This point will be well
illustrated in Section 4.

Proof. We only consider here the simple, but nontrivial, case of the order n = 2;
the general case can be similarly proved as this.

Now, we define the matrix-valued function Φ∆(t) = [φij(t)] ∈ C2×2 for t ∈ R+

and 0 ≤ ∆ ≤ +∞ as follows:

φ11(t) = exp

(∫ t

0

c11(τ)dτ

)
, φ21(t) = 0,

and

φ12(t) =

∫ t

∆

c12(s)φ22(s) exp

(∫ t

s

c11(τ)dτ

)
ds, φ22(t) = exp

(∫ t

0

c22(τ)dτ

)
.

It is easily seen that for any constant ∆ ∈ [0,+∞], the columns of Φ∆(t) form a basis
of solutions of (2.1) in the case n = 2. So, for any ∆ ≥ 0, we have by (2.3)

χ+ = lim sup
t→+∞

1

t
log ‖Φ∆(t)‖.

Therefore, we need to prove only that χ+ ≤ max{ϑ1, ϑ2}. We next consider the two
solutions of (2.1) described in Φ∆(t) and will show that

φφφ1(t) :=

[
φ11(t)
φ21(t)

]
and φφφ2(t) :=

[
φ12(t)
φ22(t)

]

satisfy, respectively, that

χ+(φφφ1) := lim sup
t→+∞

1

t
log ‖φφφ1(t)‖ = ϑ1

and

χ+(φφφ2) := lim sup
t→+∞

1

t
log ‖φφφ2(t)‖ = ϑ2

for some choice of the constant ∆.
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In fact, from ϑi = lim supt→+∞
1
t

∫ t

0
Re(cii(τ)) dτ for i = 1, 2, it easily follows

that

ϑ1 = lim sup
t→+∞

1

t
log ‖φ11(t)‖ and ϑ2 = lim sup

t→+∞

1

t
log ‖φ22(t)‖.

Then for any constant ε > 0, one can find a constant Kε > 0 such that

‖φ22(t)‖
‖φ11(t)‖

≤ Kεe
(ϑ2−ϑ1+ε)t ∀t > 0.

Now, we need only to estimate χ+(φ12) := lim supt→+∞
1
t
log ‖φ12(t)‖. For that,

observe that for each ε > 0, we have

χ+(φ12) ≤ lim sup
t→+∞

1

t

{
log ‖e

∫
t
0
c11(τ)dτ‖+ log ‖

∫ t

∆

c12(s)φ22(s)e
∫

0
s
c11(τ)dτds‖

}

≤ lim sup
t→+∞

1

t

{
log ‖φ11(t)‖ + log ‖

∫ t

∆

K‖φ22(s)‖/‖φ11(s)‖ds‖
}

≤ ϑ1 + lim sup
t→+∞

1

t
log ‖

∫ t

∆

KKεe
(ϑ2−ϑ1+ε)sds‖.

Here we exploit the fact that ‖c12(t)‖ ≤ K for some constant K by condition (2.2).
We set ∆ = 0 if ϑ2 − ϑ1 ≥ 0, and ∆ = +∞ if ϑ2 − ϑ1 < 0. Then, for every ε > 0 so
small that ϑ2 − ϑ1 + ε < 0 if ϑ2 − ϑ1 < 0, we can obtain that

χ+(φ12) ≤ ϑ1 + lim sup
t→+∞

1

t
log

KKε[e
(ϑ2−ϑ1+ε)t − 1]

ϑ2 − ϑ1 + ε
if ϑ2 − ϑ1 ≥ 0,

and

χ+(φ12) ≤ ϑ1 + lim sup
t→+∞

1

t
log

KKεe
(ϑ2−ϑ1+ε)t

ϑ2 − ϑ1 + ε
if ϑ2 − ϑ1 < 0.

Thus, no matter what ∆ is equal to, it always holds that

χ+(φ12) ≤ ϑ1 + (ϑ2 − ϑ1 + ε) = ϑ2 + ε.

Since ε > 0 is arbitrary, there follows that χ+(φ12) ≤ ϑ2. So,

χ+(φφφ1) = ϑ1 and χ+(φφφ2) = ϑ2,

as desired. Thus, χ+ ≤ max{ϑ1, ϑ2} and then χ+ = max{ϑ1, ϑ2}. This completes the
proof of the theorem.

It is interesting to note that based on Theorem 2.1, the Marcus-Yamabe phe-
nomenon still can occur even if in the upper-triangular case. This point may be illus-
trated by the following linear upper-triangular equation:

ẋ(t) =

[− 1
1+t

a12(t)

0 − 1
1+t

]
x(t) = A(t)x(t), t ∈ R+ and x(0) ∈ R2;

one easily checks that, for each T ∈ R+, A(T ) admits λ = − 1
1+T

< 0 as an eigen-
value of algebraic multiplicity 2; however, this differential equation has the Lyapunov
exponent χ+ = 0 from Theorem 2.1, not less than 0; so not exponentially stable.
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3. Symbolic semiflow. In this section, we will embed, in the manner of sus-
pension, the one-sided Markov shift transformation θ : Σ+

N → Σ+
N defined as (1.5)

in Section 1 into a continuous-time semiflow. The latter is important for us, which
plays the role of the driving system for the switching dynamical system that we are
interested to here.

3.1. Suspension of (Σ+
N , θ,P~α). First, we can define simply a continuous-time

semiflow on the Cartesian product topological space Σ+
N × R+ as follows:

ψ : [0,∞)× (Σ+
N × R+)→ Σ+

N × R+; (t, (ι, τ)) 7→ (ι, τ + t).

We note here that R+ = (0,∞). Next, we introduce an equivalent relationship, written
as “ ∼ ”, for Σ+

N × R+ as follows:

(ξ, t) ∼ (ι, t′) for t, t′ > 0 and ξ, ι ∈ Σ+
N ⇔ t−t′ ∈ Z and

{
ξ = θk(ι) if k = t′ − t ≥ 0,

ι = θk(ξ) if k = t− t′ ≥ 0.

We then define the suspension space as the quotient space

(3.1) S(Σ+
N ) = Σ+

N × R+/ ∼ .

Clearly, there is no loss of generality in assuming S(Σ+
N ) = {(ι, t) | ι ∈ Σ+

N and 0 ≤
t ≤ 1} with (ι, 1) and (θ(ι), 0) identified, namely

(3.1)′ S(Σ+
N ) = Σ+

N × I/ ∼

where I = [0, 1] is the unit interval. Write the elements of S(Σ+
N ) or ∼-classes of

Σ+
N ×R+ as [ι, τ ] from here on. So, S(Σ+

N ) is a compact metrizable topological space,
which is indeed homeomorphic to the compact product space Σ+

N × T1, where T1 is
the unit circle. Observe that ψ can further induce a continuous-time semiflow, called
the symbolic semiflow, on S(Σ+

N ) as follows:

(3.2) Θ : [0,∞)× S(Σ+
N )→ S(Σ+

N ); (t, [ι, τ ]) 7→ [ι, τ + t].

For example, Θ(32 , [ι,
1
2 ]) = [ι, 2] = [θ2(ι), 0] for any ι ∈ Σ+

N .

If we identify Σ+
N with the 0-section [Σ+

N , 0] ⊂ S(Σ+
N ), then θ may be thought of

as the 1-time map Θ(1, ·) restricted to [Σ+
N , 0], noting that [Σ+

N , t + k] = [Σ+
N , t] for

any t ∈ R+ and k ∈ N since θ(Σ+
N ) = Σ+

N .
Given any positive probability vector ~α = (α1, . . . , αN ) ∈ RN and let Leb denote

the standard Lebesgue measure on the unit interval I with Leb(I) = 1. Then, we
naturally define the product probability on the suspension space S(Σ+

N )

(3.3) P~α = P~α ⊗ Leb

in this way: for any Borel sets B1 ⊂ Σ+
N and B2 ⊂ I, we have

P~α([B1, B2]) = P~α(B1) · Leb(B2), where [B1, B2] := {[ι, τ ] : ι ∈ B1, τ ∈ B2}.

Equivalently, we have

∫

S(Σ+
N

)

ϕ([ι, τ ]) dP~α([ι, τ ]) =

∫

Σ+
N

{∫

I

ϕ([ι, τ ]) dLeb(τ)

}
dP~α(ι)
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for any ϕ ∈ C0(S(Σ+
N ),R) (the space of continuous functions on S(Σ+

N )), where P~α is
defined in the same manner as in (1.7) and dLeb(τ) = dτ .

Lemma 3.1. For any probability vector ~α = (α1, . . . , αN ) > 0, the corresponding
P~α is invariant and ergodic for the symbolic semiflow Θ : [0,∞) × S(Σ+

N ) → S(Σ+
N );

that is to say, (S(Σ+
N ), Θ,P~α) is an ergodic semiflow.

We notice here that the statement of Lemma 3.1 still holds if ~α is only a probability
vector, not necessarily positive, by ignoring the letters k whenever αk = 0.

Proof. We notice that the Θ-invariance of P~α is standard. In fact, for any ϕ in
C0(S(Σ+

N ),R) and 0 < t < 1, we have

∫

S(Σ+
N

)

ϕ(Θ(t, ·)) dP~α =

∫

Σ+
N

{∫ 1

0

ϕ([ι, τ + t]) dLeb(τ)

}
dP~α(ι)

=

∫

Σ+
N

{∫ 1+t

t

ϕ([ι, τ ]) dLeb(τ)

}
dP~α(ι)

=

∫

Σ+
N

{∫ 1

t

ϕ([ι, ·]) dτ +

∫ t

0

ϕ([θ(ι), ·]) dτ

}
dP~α(ι)

=

∫

Σ+
N

∫ 1

t

ϕ([ι, τ ]) dτdP~α(ι) +

∫ t

0

∫

Σ+
N

ϕ([θ(ι), τ ]) dP~α(ι)dτ

=

∫

Σ+
N

∫ 1

t

ϕ([ι, τ ]) dτdP~α(ι) +

∫ t

0

∫

Σ+
N

ϕ([ι, τ ]) dP~α(ι)dτ

=

∫

S(Σ+
N

)

ϕ([ι, τ ]) dP~α([ι, τ ]);

similarly, for any t ∈ N we have

∫

S(Σ+
N

)

ϕ(Θ(t, [ι, τ ])) dP~α([ι, τ ]) =

∫

S(Σ+
N

)

ϕ([ι, τ ]) dP~α([ι, τ ]).

This implies that P~α is Θ-invariant. So, it remains to prove only the Θ-ergodicity of
P~α. For that, given any 0 < ρ < 1, let

|ϕ|ρ = sup
ℓ∈N

{
sup{|ϕ(ι)− ϕ(ι′)| : ιj = ι′j , 1 ≤ j ≤ ℓ}

ρℓ

}
∀ϕ ∈ C0(Σ+

N ,R)

and

Hρ(Σ
+
N ) =

{
ϕ ∈ C0(Σ+

N ,R) : |ϕ|ρ <∞
}
.

Elements of Hρ(Σ
+
N ) are referred to as Hölder continuous functions. Let L∞R (S(Σ+

N ))
be the set of bounded, Borel measurable, real-valued functions on S(Σ+

N ). Define
Fρ(S(Σ

+
N )) as the set of the functions G ∈ L∞R (S(Σ+

N )) satisfying

g(ι) =

∫ 1

0

G([ι, τ ]) dLeb(τ) ∈Hρ(Σ
+
N ).

Let Minv(S(Σ
+
N ), Θ) and Minv(Σ

+
N , θ) be the sets of Θ-invariant Borel probability

measures on S(Σ+
N ) and θ-invariant Borel probability measures on Σ+

N , respectively.
They are both nonempty compact convex sets from ergodic theory, see [30, 40]. Then
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from [22, Section 5] (also cf. [1, 16]), it follows that there is a 1-to-1 correspondence
betweenMinv(S(Σ

+
N ), Θ) andMinv(Σ

+
N , θ), given by

Minv(S(Σ
+
N ), Θ) ∋ µ̄ π∗←→ µ ∈ Minv(Σ

+
N , θ)

if and only if

∫

S(Σ+
N )

Gdµ̄ =

∫

Σ+
N

{∫ 1

0

G([ι, τ ]) dτ

}
dµ(ι) ∀G ∈ Fρ(S(Σ

+
N )).

Now, if P~α would not be Θ-ergodic, then [40, Theorem 6.10.(iii)] follows that
there are 0 < λ < 1 and µ̄1, µ̄2 ∈ Minv(S(Σ

+
N ), Θ) such that

P~α = λµ̄1 + (1 − λ)µ̄2 and µ̄1 6= µ̄2.

Let µ̄1
π∗←→ µ1 ∈Minv(Σ

+
N , θ) and µ̄2

π∗←→ µ2 ∈Minv(Σ
+
N , θ). Then, by the definitions

of π∗ and P~α, we have

µ1 6= µ2, P~α
π∗←→ λµ1 + (1 − λ)µ2 and P~α

π∗←→ P~α.

Thus, P~α = λµ1 + (1− λ)µ2 and moreover P~α is not ergodic for θ, a contradiction to
the classical theory of Markov chains.

This completes the proof of the lemma.
For a general discrete-time ergodic semidynamics (X, θ, µ), one can similarly con-

sider its continuous-time ergodic suspension semiflow (S(X), Θ,Pµ).

3.2. Linear skew-product semiflow. We now see the switching dynamics
from the point of view of skew-product semiflow.

Let A = {A1, . . . , AN} ⊂ Rn×n be an arbitrarily given collection of real matrices.
Then, it gives rise to the switching dynamical systems

(3.4) ẋ(t) = Aσι(t)x(t), x(0) ∈ Rn, t ∈ R+, and ι ∈ Σ+
N ,

where the switching signals σι : R+ → {1, . . . , N} are defined in the same way as in
(1.8) in Section 1. For any initial state x(0) = x0 ∈ Rn, the solution to (3.4) steered
by ι ∈ Σ+

N can be expressed as follows:

x(t, x0) =

{
etAι1x0 if 0 < t ≤ 1,

e(t−k)Aιk+1 eAιk · · · eAι1x0 if k < t ≤ k + 1 and k ∈ N.

Now, on the suspension space S(Σ+
N ) defined in the manner as in Section 3.1, we

define a random matrix as follows:

(3.5) A
·
: S(Σ+

N )→ Rn×n; [ι, τ ] 7→ Aσι(τ) ∀ι ∈ Σ+
N and 0 < τ ≤ 1.

Because P~α([Σ
+
N , 0]) = 0, we do not care the evaluation of A

·
at the section Σ+

N ×{0}.
Since A[ι,τ+k] = A[θk(ι),τ ] by σι(τ +k) = σθk(ι)(τ) for every [ι, τ ] ∈ S(Σ+

N ) and k ∈ N,
this makes sense and satisfies

(3.5)′ AΘ(t,[ι,τ ]) = A[ι,τ+t] = Aσι(τ+t) ∀τ ∈ R+ and 0 ≤ t <∞.

Then, we can obtain, from the random matrix A
·
, a linear skew-product dynamical

system

(3.6) ẋ(t) = AΘ(t,[ι,τ ])x(t), 0 ≤ t <∞, x(0) ∈ Rn, and [ι, τ ] ∈ S(Σ+
N )
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driven by the symbolic semiflow Θ : [0,∞)× S(Σ+
N )→ S(Σ+

N ).
Let {Φ[ι,τ ](t)}t∈R+ denote the principal matrix of (3.6); that is to say, it satisfies

Φ̇[ι,τ ](t) = AΘ(t,[ι,τ ])Φ[ι,τ ](t) at Leb-a.s. t ∈ R+ with Φ[ι,τ ](0) = IdRn the unit matrix.
We can check the cocycle property

(3.7) Φ[ι,τ ](t1 + t2) = ΦΘ(t1,[ι,τ ])(t2)Φ[ι,τ ](t1) ∀t1, t2 ∈ R+.

In fact, we need only to notice that for each ι ∈ Σ+
N , for any ℓ ∈ Z+,

Φ[ι,ℓ](t) =

{
etAι1+ℓ if 0 < t ≤ 1,

e(t−k)Aιk+ℓ+1 eAιk+ℓ · · · eAι1+ℓ if k < t ≤ k + 1 and k ∈ N;

and for any 0 < τ < 1

Φ[ι,τ ](t) =

{
etAι1 if 0 < t ≤ 1− τ,
e[t−(k−τ)]Aιk+1 eAιk · · · e(1−τ)Aι1 if k − τ < t ≤ k + 1− τ and k ∈ N.

This implies the cocycle property (3.7).
From the above arguments, we can easily obtain the following result.
Lemma 3.2. Let

Sθ,A : [0,∞)× S(Σ+
N )× Rn → S(Σ+

N )× Rn

be defined in the following way:

(t, ([ι, τ ], x)) 7→ ([ι, τ + t], Φ[ι,τ ](t)x) ∀t ∈ [0,∞) and ([ι, τ ], x) ∈ S(Σ+
N )× Rn.

Then, Sθ,A is a continuous-time semiflow; that is to say,

Sθ,A(0, ([ι, τ ], x)) = ([ι, τ ], x),

Sθ,A(t1 + t2, ([ι, τ ], x)) = Sθ,A (t2,Sθ,A(t1, ([ι, τ ], x))) ,

and

Sθ,A(t, ([ι, τ ], x)) is jointly continuous with respect to t, [ι, τ ] and x.

So, Sθ,A is a continuous-time linear skew-product semiflow driven by the continuous-
time symbolic semiflow Θ.

Proof. Based on the argument above, we need only to notice here that for all
t ∈ [0,∞) there Θ(t, [ι, τ ]) = [ι, τ + t] for any [ι, τ ] ∈ S(Σ+

N ), and that for each k ≥ 1,
ι1 = ι′1, . . . , ιk = ι′k as any two points ι, ι′ are sufficiently close in Σ+

N .
This lemma is important for our discussion later, because combining with the

above Lemma 3.1 it permits us to employ the classical ergodic theorems for the sta-
bility of the linear switching systems (3.6).

4. Stabilizability of linear switching systems. This section will be devoted
to proving the statement (1) of Theorem 1.2 and Remark 1.3 stated in Section 1. Let

A = {A1, . . . , AN} ⊂ Rn×n

be an arbitrary collection of real matrices. Then, it generates the linear switching
dynamical systems

(4.1) ẋ(t) = Aσ(t)x(t), x(0) ∈ Rn and t ∈ R+,
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where σ : R+ = (0,∞)→ {1, . . . , N} are switching signals. For our goal, we need only
to consider the special systems

(4.1)ι ẋ(t) = Aσι(t)x(t), x(0) ∈ Rn, t ∈ R+, and ι ∈ Σ+
N

where σι(t) is defined in the same way as in (1.8); that is, σι(t) ≡ ιk if k − 1 < t ≤ k
for all k ∈ N.

We need an important classical result of triangularization for proving the state-
ment (1) of Theorem 1.2.

Lemma 4.1 (Lie’s theorem [19]). If A is solvable over the field C of complex
numbers, then one can find a nonsingular complex matrix, say T ∈ Cn×n, such that

Ãi = TAiT
−1 ∀i ∈ {1, . . . , N}

all are upper-triangular.
Note that even if the matricesAi have real entries, those of T defined by Lemma 4.1

may be complex [19].
The statements (1) of Theorem 1.2 and Remark 1.3 then follow immediately from

the following theorem.
Theorem 4.2. Let ~α = (α1, . . . , αN ) ∈ RN be a positive probability vector and

assume that A = {A1, . . . , AN} ⊂ Rn×n is solvable over the field C. Then,

(⋆) ẋ(t) = (α1A1 + · · ·+αNAN )x(t), x(0) ∈ Rn and t ∈ R+, is exponentially stable

if and only if for P~α-a.s. ι ∈ Σ+
N , these (4.1)ι are exponentially stable.

Proof. Let ~α = (α1, . . . , αN ) ∈ RN be arbitrarily given as in the assumption of the
statement. Let T be the matrix defined as in Lemma 4.1 by the solvability property
of A so that

(4.2) Ãi = TAiT
−1 =



ã11i · · · ∗
...

. . .
...

0 · · · ãnni


 ∀i ∈ {1, . . . , N}.

And let

Sθ,A : [0,∞)× S(Σ+
N )× Rn → S(Σ+

N )× Rn

be the associated linear skew-product semiflow defined as in Lemma 3.2. We first
notice that for any [ι, τ ] ∈ S(Σ+

N ), the stability of the system

(4.3) ẋ(t) = AΘ(t,[ι,τ ])x(t), x(0) ∈ Rn and t ∈ R+

is equivalent to that of the switching system

(4.4) ẋ(t) = Aσι(τ+t)x(t), x(0) ∈ Rn and t ∈ R+.

In fact, (4.3) and (4.4) are the same equation from (3.5)′. We next consider the
(maximal) Lyapunov exponent of (4.3) given by

(4.5) χ+([ι, τ ]) = lim sup
t→+∞

1

t
log ‖Φ[ι,τ ](t)‖.
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From

(4.6) χ+([ι, τ ]) = lim sup
t→+∞

1

t
log ‖TΦ[ι,τ ](t)T

−1‖,

it follows that for every [ι, τ ] ∈ S(Σ+
N ), (4.3) is exponentially stable if and only if so

is the upper-triangular system

(4.7) ẋ(t) = ÃΘ(t,[ι,τ ])x(t), x(0) ∈ Cn and t ∈ R+

where

(4.8) Ã[ι,τ ] = Ãσι(τ) ∀[ι, τ ] ∈ S(Σ+
N ).

We should notice here that, under the variable transformation z = Tx ∈ C

n for
x ∈ Rn,

Φ̃[ι,τ ](t) := TΦ[ι,τ ](t)T
−1 : Cn → C

n ∀t ∈ R+

is the principal matrix of (4.7), where Φ[ι,τ ](t) : R
n → Rn is naturally complexified by

Φ[ι,τ ](t)(x + iy) = Φ[ι,τ ](t)x + iΦ[ι,τ ](t)y ∀x+ iy ∈ Cn,

where i =
√
−1 is the imaginary unit; thus,

lim sup
t→+∞

1

t
log ‖Φ̃[ι,τ ](t)‖ = lim sup

t→+∞

1

t
log ‖Φ[ι,τ ](t)‖.

Let

(4.9) ϑi([ι, τ ]) = lim sup
T→+∞

1

T

∫ T

0

Re(ãiiσι(τ+t)) dt for i = 1, . . . , n.

Then from Theorem 2.1, it follows that

(4.10) χ+([ι, τ ]) = max{ϑi([ι, τ ]) | i = 1, . . . , n}.

Define the qualitative functions

(4.11) ωi : S(Σ
+
N )→ R; [ι, τ ] 7→ Re(ãiiσι(τ)

)

for each i = 1, . . . , n. It is easy to see that each ωi is bounded and Borel measurable
such that

ωi ∈ Fρ(S(Σ
+
N )) ∀i = 1, . . . , n(4.12a)

and

ωi(Θ(t, [ι, τ ])) = Re(ãiiσι(τ+t)) ∀t ∈ [0,∞) and [ι, τ ] ∈ S(Σ+
N ),(4.12b)

since Θ(t, [ι, τ ]) = [ι, τ + t]. Thus, by (4.9) and (4.12b) we have

(4.13) ϑi([ι, τ ]) = lim sup
T→+∞

1

T

∫ T

0

ωi(Θ(t, [ι, τ ])) dt ∀i = 1, . . . , n
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for any [ι, τ ] ∈ S(Σ+
N ).

Corresponding to the probability vector ~α, there are associated ergodic probability
measures P~α for the dynamics (Σ+

N , θ) and P~α for (S(Σ+
N ), Θ) by Lemma 3.1. Thus

by the classical Birkhoff ergodic theorem [30, 40], it follows, from (4.13) and (4.11),
that for P~α-a.s. [ι, τ ] ∈ S(Σ+

N ) and for each i = 1, . . . , n,

ϑi([ι, τ ]) =

∫

S(Σ+
N

)

ωi([ι, τ ]) dP~α =

∫

S(Σ+
N

)

Re(ãiiσι(τ)
) dP~α([ι, τ ])

=

∫

Σ+
N

{∫ 1

0

Re(ãiiσι(t)
) dt

}
dP~α(ι)

=

∫

Σ+
N

Re(ãiiι1) dP~α(ι);

(4.14)

here the last “=” follows from σι(t) = ι1 for all 0 < t ≤ 1 and any ι = (ιk)
+∞
k=1 ∈ Σ+

N .
Therefore, from (1.7) it follows that for P~α-a.s. [ι, τ ] ∈ S(Σ+

N ), we have

(4.15) ϑi([ι, τ ]) =

N∑

j=1

N∑

k=1

Re(ãiij )P~α([k, j]) =

N∑

j=1

N∑

k=1

αkαjRe(ãiij ) =

N∑

j=1

αjRe(ãiij )

for every i = 1, . . . , n, where [k, j] ⊂ Σ+
N is the cylinder set of length of 2 defined by

the word (k, j) in the same manner as in (1.6) in Section 1.
Sufficiency. Let condition (⋆) hold. Then the equation

ż = T(α1A1 + · · ·+ αNAN )T−1z, z ∈ Cn and t ∈ R+

is exponentially stable. From

T(α1A1 + · · ·+ αNAN )T−1 = α1TA1T
−1 + · · ·+ αNTANT−1

=




N∑
j=1

αj ã
11
j · · · ∗

...
. . .

...

0 · · ·
N∑
j=1

αj ã
nn
j



,

we have from Theorem 2.1

(4.16)

N∑

j=1

αjRe(ãiij ) < 0 ∀i = 1, . . . , n.

Thus from (4.10), (4.15) and (4.16), it follows that

(4.17) χ+([ι, τ ]) < 0 for P~α-a.s. [ι, τ ] ∈ S(Σ+
N ).

Because for any [ι, τ ] ∈ S(Σ+
N ) the exponential stability of (4.3) is equivalent to that

of (4.1)ι, from (4.17) we see that for P~α-a.s. [ι, τ ] ∈ S(Σ+
N ), (4.1)ι are exponentially

stable.
Finally, let

π : S(Σ+
N )→ Σ+

N ; [ι, τ ] 7→ ι.
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Then π∗(P~α) = P~α, i.e., P~α = P~α ◦ π−1. Thus, for P~α-a.s. ι ∈ Σ+
N , (4.1)ι are expo-

nentially stable. This shows the sufficiency.
Necessity. Let (4.1)ι be exponentially stable for P~α-a.s. ι ∈ Σ+

N . Then, we can
obtain that for P~α-a.s. [ι, τ ] ∈ S(Σ+

N ), (4.3) and hence (4.7) are exponentially stable.
So, it follows from Theorem 2.1 that for P~α-a.s. [ι, τ ] ∈ S(Σ+

N ), ϑi([ι, τ ]) < 0 for
each i = 1, . . . , n. Further, by (4.13), Lemma 3.1 and the Birkhoff ergodic theorem, it
follows from (4.15) that

N∑

j=1

αjRe(ãiij ) < 0 for each i = 1, . . . , n.

Thus, from Theorem 2.1 once again, it follows that the equation

(4.18) ż(t) = T(α1A1 + · · ·+ αNAN )T−1z(t), z(0) ∈ Cn and t ∈ R+

is exponentially stable. So, the linear affine equation

ẋ(t) = (α1A1 + · · ·+ αNAN )x(t), x(0) ∈ Rn and t ∈ R+

is exponentially stable, by considering initial z(0) ∈ T(Rn) for (4.18). This completes
the proof of the necessity.

This thus proves the theorem.
From the proof above or directly from Theorem 4.2, we can obtain the following,

which is an important step toward the proof of the statement (2) of Theorem 1.2.

Proposition 4.3. Assume that ~α = (α1, . . . , αN ) ∈ RN is a positive probability
vector. If A = {A1, . . . , AN} ⊂ Rn×n is solvable over the complex field C and the
linear affine equation

ẋ = (α1A1 + · · ·+ αNAN )x, x ∈ Rn and t ∈ R+

is exponentially stable, then for P~α-a.s. [ι, τ ] ∈ S(Σ+
N ),

(4.19) ẋ(t) = AΘ(t,[ι,τ ])x(t), x(0) ∈ Rn and t ∈ R+

are exponentially stable.

Remark 4.4. Up to here, we may ask if we can press forward without letup
until we complete the proof of the statement (2) of Theorem 1.2. Unfortunately, we
cannot. Although we have proved until now that for P~α-a.s. [ι, τ ] ∈ S(Σ+

N ), (4.19) are
exponentially stable, yet to proving the statement (2) of Theorem 1.2, we essentially
need to show that for P~α-a.s. [ι, τ ] ∈ S(Σ+

N ),

(4.20) ẋ = AΘ(t,[ι,τ ])x+ f(x, t), x(0) ∈ Rn and t ∈ R+

are exponentially stable, where ‖f(x, t)‖ ≤ L‖x‖ for sufficiently small L > 0. When
‖f(x, t)‖ ≤ L‖x‖1+γ for some γ > 0, we could conclude our desirable result from the
classical Lyapunov stability theorem [26]. However, the classical Perron counterexam-
ple [32] shows that the high order γ-condition is crucial. So, to overcome the trouble
caused by the lack of such γ, we will select carefully out “sufficiently many good” driv-
ing points [ι, τ ] among the P~α-a.s. [ι, τ ], using another ergodic theorem presented in
Section 5.
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5. Stabilizability of quasilinear switched systems. This section will be
devoted to proving the statement (2) of Theorem 1.2 stated in Section 1, based on
the statement (1) of Theorem 1.2 proved in Section 4.

Let fi(x, t) ∈ Rn, i = 1, . . . , N , be measurable functions, which are continuous
with respect to the state-variable x ∈ Rn, such that the following linear growth
condition holds:

(5.1) ‖fi(x, t)‖ ≤ L‖x‖ ∀x ∈ Rn

uniformly for t ∈ R+ = (0,+∞) and i ∈ {1, . . . , N}, for some constant L > 0. To
prove the statement (2) of Theorem 1.2, it is sufficient to show the following slightly
general stability result.

Theorem 5.1. Assume that ~α = (α1, . . . , αN ) ∈ RN is a positive probability
vector. Let A = {A1, . . . , AN} ⊂ Rn×n be solvable over C, and let the linear affine
equation

ẋ = (α1A1 + · · ·+ αNAN )x, x ∈ Rn and t ∈ R+

be exponentially stable. Then for any sufficiently small ε > 0, one can find a Borel
subset W ⊂ Σ+

N with P~α(W ) ≥ 1− ε and a constant δ > 0 such that for every ι ∈ W ,
the switching systems

(5.2) ẋ(t) = Aσι(t)x(t) + fσι(t)(x(t), t), x(0) ∈ Rn and t ∈ R+

are globally exponentially stable, whenever f1(x, t), . . . , fN(x, t) satisfy condition (5.1)
with L < δ.

Indeed, for proving the statement (2) of Theorem 1.2, we need only to use Theo-
rem 5.1 with fi(x, t) = Bi(x)u(t) for reasonable external input u(t) ∈ Rmσι(t) .

Furthermore, by (3.5)′ this theorem is equivalent to the following proposition.
Proposition 5.2′. Assume that ~α = (α1, . . . , αN ) ∈ RN is a positive probability

vector. Let A = {A1, . . . , AN} ⊂ Rn×n be solvable over C and the linear equation

(⋆) ẋ = (α1A1 + · · ·+ αNAN )x, x(0) ∈ Rn and t ∈ R+ is exponentially stable.

Then for any sufficiently small ε > 0, one can find a Borel subset Z ⊂ S(Σ+
N ) with

P~α(Z) ≥ 1 − ε and a constant δ > 0 such that for each driving point [ι, τ ] ∈ Z, the
switching system

ẋ = Aσι(τ+t)x+ fσι(τ+t)(x, t), x(0) ∈ Rn and t ∈ R+

is globally exponentially stable, if f1(x, t), . . . , fN(x, t) satisfy (5.1) with L < δ.
Moreover, from Proposition 4.3 we easily see that this proposition follows from

the following more general result.
Proposition 5.2. Assume ~α = (α1, . . . , αN ) ∈ RN is a positive probability vector,

and let A = {A1, . . . , AN} ⊂ Rn×n be solvable over C. If the linear switched systems

ẋ = Aσι(τ+t)x, x ∈ Rn and t ∈ R+

are exponentially stable for P~α-a.s. [ι, τ ] ∈ S(Σ+
N ), then for any sufficiently small

ε > 0, one can find a Borel subset Z ⊂ S(Σ+
N ) with P~α(Z) ≥ 1 − ε and a constant

δ > 0 such that for each driving point [ι, τ ] ∈ Z, the switching system

(5.3) ẋ = Aσι(τ+t)x+ fσι(τ+t)(x, t), x ∈ Rn and t ∈ R+
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is globally exponentially stable, if f1(x, t), . . . , fN(x, t) satisfy (5.1) with L < δ.
From here on, we let A = {A1, . . . , AN} be an arbitrarily given collection of real

n× n matrices, N ≥ 2. The remaining part of this section will be devoted to proving
Proposition 5.2.

5.1. Liao-type exponents and a criterion of stability. In this subsection, by
introducing the so-called Liao-type exponent, we will provide a criterion of asymptotic
exponential stability for a kind of deterministic switching systems that are defined by
switching the following infinite number of non-autonomous subsystems:

(5.4) ẋ = Si(t)x + Fi(x, t), (t, x) ∈ R+ × Rn; i ∈ N,

where, for each index i ∈ N = {1, 2, . . .}, Si(t) =
[
Sjk
i (t)

]
1≤j,k≤n

∈ Rn×n is contin-

uous upper-triangular and Fi(x, t) ∈ Rn is continuous with respect to x and Borel-
measurable in t, such that

‖Si(t)x‖ ≤ α‖x‖ and ‖Fi(x, t)‖ ≤ ℓ(t)‖x‖ ∀x ∈ Rn

uniformly for i ∈ N, where α, ℓ(t) both are independent of the indices i ∈ N. We note
that is is not required that Fi(x, t) be Lipschitz with respect to x ∈ Rn.

Given any constant T∗ > 0, we let σ : R+ → N be an arbitrarily given T∗-switching
signal piecewise constant with a switching-time sequence {Tk}∞0 : 0 = T0 < T1 < T2 <
· · · with Tk → +∞; that is to say,

σ(t) ≡ ik ∈ N whenever Tk−1 < t ≤ Tk and Tk − Tk−1 ≤ T∗ ∀k ∈ N.

Then, σ(t) defines a quasi-linear switching system

(S,F)
σ

ẋ(t) = Sσ(t)(t)x + Fσ(t)(x, t), (t, x) ∈ R+ × Rn.

To prove Proposition 5.2 we will present a criterion for the exponential stability of
this type of switched dynamical systems here.

5.1.1. Liao-type exponents of (S,F)
σ
. Let {km}+∞

m=0 be an arbitrarily given
integer sequence such that

k0 = 0 and 1 ≤ km − km−1 ≤∆∆∆ ∀m ∈ N,

where∆∆∆ is a positive integer. According to [10, 11], associated to this sequence {km}∞0 ,
the real number

χ+
∗ (Sσ) := lim sup

m→+∞

1

Tkm

m−1∑

i=0

max
1≤j≤n

{∫ Tki+1

Tki

Sjj

σ(t)(t) dt

}

is called a Liao-type exponent of (S,F)
σ
.

Clearly, to different integer sequences {km}+∞
m=0, one may get different Liao-type

exponents for the same switched system (S,F)
σ
. See [10, 11].

From the above definition, it is easy to see that χ+
∗ (Sσ) is independent of the

“perturbation term” F = {Fi(x, t)}i∈N. Let us see the linear switching system

Sσ ż(t) = Sσ(t)(t)z(t), z(0) ∈ Rn and t ∈ R+
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as the “linear approximation” of (S,F)
σ
. Then from Theorem 2.1,

χ+(Sσ) = max
1≤j≤n

{
lim sup
T→+∞

1

T

∫ T

0

Sjj
σ(t)(t) dt

}

is the (maximal) Lyapunov exponent of the linear system Sσ . From the definitions
above, we have χ+(Sσ) ≤ χ+

∗ (Sσ). And, in general, χ+(Sσ) � χ+
∗ (Sσ). See [11] for

an explicit example.

5.1.2. Criterion of exponential stability. We now can formulate the expo-
nential stability criterion for (S,F)

σ
via the so-called Liao-type exponent as follows:

Theorem 5.3 ([11, Theorem 3.1]). Let Si(t) ∈ Rn×n be upper-triangular for each
i ∈ N, and assume that Sσ has the Liao-type exponent χ+

∗ (Sσ) < 0 associated to a ∆∆∆-
sequence {km}+∞

m=0. Then, there exists a constant δ > 0 such that, whenever ℓ(t) ≤ δ

for t sufficiently large, the switching system (S,F)
σ
is globally, asymptotically, expo-

nentially stable.
Note: Here the constant δ > 0 is independent of F = {Fi(x, t)}i∈N but it actually

depends upon the constants α,∆∆∆,T∗, and the Liao-type exponent χ+
∗ .

In addition, this criterion overcomes the lack of the γ-condition mentioned in
Remark 4.4 in Section 4.

Remark 5.4. We notice here that Lie’s theorem (Lemma 4.1) deduces a simple
upper-triangularization of A via a complex coordinates transformation T. For complex
S = {Si(t)}i∈N, the proof of Theorem 5.3 above presented in [11], however, is invalid.
So, we will need to pursue another natural and real upper-triangularization for A which
having negative Liao-type exponents for sufficiently many switching signals σι(t).

5.2. Frame skew-product semiflows and upper-triangularization. Let
A = {A1, . . . , AN} ⊂ Rn×n be any given. To use the criterion of stability in terms of
Liao-type exponents, we will, in this subsection, introduce a natural triangularization
for A different from Lie’s theorem.

5.2.1. Preliminaries. For each matrix A ∈ A, it gives rise to the time-invariant
continuous-time dynamical system

(A) ẋ(t) = Ax(t), x ∈ Rn and t ∈ R.

Equivalently, it induces a continuous-time linear flow on the state space Rn:

(A)′ ΦA : R× Rn → Rn; (t, x) 7→ etAx.

Sometimes, we identify ΦA(t, x) with ΦA(t)x for all (t, x) ∈ R × Rn. Importantly for
our goal, it can further induce frame flows as follows.

Let ~b1, . . . ,~bn ∈ Rn be arbitrary n vectors. Then b = (~b1, . . . ,~bn) is called an
orthogonal n-frame of Rn, provided that b forms an orthogonal basis of the vector
space Rn, i.e., 〈~bi,~bj〉 = 0 and ‖~bi‖ 6= 0 for 1 ≤ i 6= j ≤ n; if, in addition, ‖~bi‖ = 1 for
every 1 ≤ i ≤ n, then b is called an orthonormal n-frame of Rn. Write n̥ and ̥♮

n as
the sets of all orthogonal and orthonormal n-frames b of Rn inherited topologies from
Rn×n, respectively. Clearly, ̥♮

n is a subspace of n̥ and moreover ̥♮
n is compact, but

n̥ is not.
For the convenience of our discussion later, we denote the classical Gram-Schmidt

orthonormalization procedure by “Ort♮”; that is to say, for each collection of inde-
pendent vectors u = (~u1, . . . , ~un), Ort♮(u) = (~v♮1, . . . , ~v

♮
n) ∈ ̥♮

n is defined in this
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manner:

~v♮1 =
~u1
‖~u1‖

,

~v♮2 =
~u2 − 〈~u2, ~v♮1〉~v♮1
‖~u2 − 〈~u2, ~v♮1〉~v♮1‖

,

...
...

...

~v♮n =

~un −
n−1∑
k=1

〈~un, ~v♮k〉~v
♮
k

‖~un −
n−1∑
k=1

〈~un, ~v♮k〉~v
♮
k‖
.

Similarly, the classical Gram-Schmidt orthogonalization procedure is denoted by “Ort”;
that is to say, Ort(u) = (~v1, . . . , ~vn) ∈ n̥ is defined by

~v1 = ~u1,

~v2 = ~u2 − 〈~u2, ~v♮1〉~v♮1,
...

...
...

~vn = ~un −
n−1∑

k=1

〈~un, ~v♮k〉~v
♮
k.

By induction on the dimension of the state space Rn, we can represent the above
Gram-Schmidt procedure in terms of matrices as follows: Under the canonical n-
frame/basis of Rn, e = (~e1, . . . , ~en), where

~e1 =




1
0
...
0


 ∈ Rn, . . . , ~en =




0
...
0
1


 ∈ Rn,

we may see u = (~u1, . . . , ~un) as an n × n matrix with columns ~u1, . . . , ~un and also

Ort♮(u) as an n× n matrix with columns ~v♮1, . . . , ~v
♮
n; then

(5.5) Ort♮(u) = uΨ−1, where Ψ ∈ Rn×n is unique and upper-triangular.

For any n-frame b = (~b1, . . . ,~bn) ∈ n̥ and any t ∈ R, let

ΦA(t, b) = (ΦA(t,~b1), . . . , ΦA(t,~bn)),

which still is an independent collection of vectors, but not necessarily belong to n̥.
So, for any b ∈ n̥ and any t ∈ R, we let

FA(t, b) = Ort(ΦA(t, b)) ∈ n̥ and F
♮
A(t, b) = Ort♮(ΦA(t, b)) ∈ ̥♮

n.

One can easily check that

(5.6) FA : R× n̥ → n̥ and F
♮
A : R×̥♮

n → ̥♮
n
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both are flows in the classical sense. Specially, we should observe that FA(t, b) and

F
♮
A(t, b) both are smooth with respect to the time-variable t ∈ R.

Inspirited by Liao’s original work [23] for C1-class vector fields on compact Rie-
mannian manifolds, we next introduce the so-called qualitative functions associated
to A.

Definition 5.5. The continuous functions

Ωk : ̥
♮
n ×A → R (k = 1, . . . , n)

given by

Ωk(b, A) =
d

dt

∣∣∣∣
t=0

‖colk(FA(t, b))‖ ∀(b, A) ∈ ̥♮
n ×A,

are called the “Liao qualitative functions of A”.
Here

colk : b = (~b1, . . . ,~bn) 7→ ~bk ∀k = 1, . . . , n.

Note here that, since ΦA(t, x) is continuously differentiable with respect to t ∈ R, the
above continuous functions are well defined. Since ̥♮

n is compact, all Ωk are bounded.
From the definition, we easily have

(5.7) log ‖colk(FA(T, b))‖ =
∫ T

0

Ωk(F
♮
A(t, b), A) dt (k = 1, . . . , n)

for all T ≥ 0 and any b ∈ ̥♮
n. This shows that these functions Ωk are closely re-

lated to the Lyapunov exponents. In fact, lim supT→∞
1
T

∫ T

0 Ω1(F
♮
A(t, b), A) dt is just

a Lyapunov exponent of A.
Under the canonical orthonormal basis e = (~e1, . . . , ~en) of Rn, we view z in Rn

as a column vector with components z1, . . . , zn and b ∈ ̥♮
n as an n-by-n orthogonal

matrix with columns col1b, . . . , colnb, successively; in addition, we sometimes identify
a linear transformation of Rn into itself with an n× n matrix.

Given any orthonormal n-frame b ∈ ̥♮
n, we define, by linear extension, the linear

orthogonal transformation of Rn into itself

(5.8) Tb : R
n → Rn

in the way: ~ek 7→ colkb for 1 ≤ k ≤ n, such that

Tb(z) = bz :=

n∑

k=1

zkcolkb and ‖z‖ = ‖Tb(z)‖ ∀z ∈ Rn.

Now we define a family of linear transformations

(5.9) ΨA,b(t, ·) = T−1

F
♮
A(t,b)

(ΦA(t,Tb(·))) : R
n → Rn ∀t ∈ R,

where ΦA(t, ·) is defined by the equation (A) as before. Then there holds the following
commutativity:

(5.10)

Rn ΨA,b(t,·)−−−−−→ Rn

Tb

y
yT

F
♮
A

(t,b)

Rn ΦA(t,·)−−−−→ Rn

∀t ∈ R.
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Equivalently, in terms of matrices,

(5.10)′ ΦA(t, b) = F
♮
A(t, b)ΨA,b(t, e) ∀t ∈ R.

That is to say,

Ort♮(ΦA(t, b)) = ΦA(t, b)Ψ
−1
A,b(t, e).

We now think of ΨA,b(t, ·) as an n-by-n nonsingular real matrix. Then, Ψ−1
A,b(t) is

upper-triangular from (5.5) and hence ΨA,b(t) is so. Clearly, d
dt
ΨA,b(t, ·) makes sense

since ΦA(t, ·) is a smooth linear flow, and we have from (5.10)

(5.11) ΨA,b(t+ s, ·) = Ψ
A,F

♮
A(t,b) (s, ΨA,b(t, ·)) ∀t, s ∈ R.

Put

RA,b(0) =
d

dt

∣∣∣∣
t=0

ΨA,b(t, ·) ∈ Rn×n(5.12a)

and

RA,b(t) = R
A,F

♮
A(t,b)(0) ∀t ∈ R(5.12b)

for any b ∈ ̥♮
n. Then

RA,b(t+ t1) = R
A,F

♮
A(t,b)(t1) ∀t, t1 ∈ R(5.12c)

for any A ∈ A and any b ∈ ̥♮
n.

Definition 5.6. For any (A, b) ∈ A×̥♮
n, the linear equation

(RA,b) ż(t) = RA,b(t)z(t), (t, z) ∈ R× Rn

is called the “Liao triangularization system of A” under the moving frames F♮
A(R, b).

We will need the following basic results.
Lemma 5.7. Given any (A, b) ∈ A × ̥♮

n, the linear system (RA,b) has the fol-
lowing three properties:

(1) Upper-triangularity: for any t ∈ R, RA,b(t) is upper-triangular with diagonal
elements

Rkk
A,b(t) = Ωk(F

♮
A(t, b), A) for k = 1, . . . , n.

(2) Geometric property: for any z0 ∈ Rn, z(t, z0) is the solution of (RA,b) satis-
fying the initial condition z(0, z0) = z0 if and only if

ΦA(t, bz0) = F
♮
A(t, b)z(t, z0) ∀t ∈ R.

Particularly, ΨA,b(t, ·) is the principal matrix of (RA,b) with ΨA,b(0) = IdRn.
(3) Boundedness: there is a constant C <∞ such that

sup
t∈R





∑

1≤i,j≤n

|Rij
A,b(t)|



 ≤ C

uniformly for b ∈ ̥♮
n.

Proof. This lemma comes immediately from [7, Lemma 8] and so we omit the
details here.

As F♮
A(t, b) is an orthonormal n-frame of Rn, it follows from the statement (2) of

Lemma 5.7 that (A) has the same stability as (RA,b) for any b ∈ ̥♮
n.



Criteria of Stability and Stabilizability 23

5.2.2. Real upper-triangularization of A. For any A ∈ A, we have con-
sidered its induced dynamics in the last Subsection 5.2.1. We will now turn to the
switching of these dynamics. That is to say, we consider the linear dynamical system

Sθ,A : [0,∞)× S(Σ+
N )× Rn → S(Σ+

N )× Rn; (t, ([ι, τ ], x)) 7→ ([ι, τ + t], Φ[ι,τ ](t, x)),

which is the linear skew-product semiflow, driven by the symbolic semiflow

Θ : [0,∞)× S(Σ+
N )→ S(Σ+

N ); (t, [ι, τ ]) 7→ [ι, τ + t],

defined in the same manner as in Lemma 3.2. We notice here that Φ[ι,τ ](t) is piecewise
smooth with respect to t ∈ R+.

Using the Gram-Schmidt procedures as in Subsection 5.2.1, we have got that for
all [ι, τ ] ∈ S(Σ+

N ) with 0 ≤ τ < 1 and ι = (ιk)
+∞
k=1 ∈ Σ+

N ,

(5.13) F[ι,τ ](t, b) := Ort(Φ[ι,τ ](t, b)) ∈ n̥ ∀b ∈ n̥ and t > 0

is such that

F[ι,τ ](t, b) =





FAι1
(t, b) if 0 < t ≤ 1− τ,

FAι2
(t− 1 + τ,FAι1

(1 − τ, b)) if 1 < t+ τ ≤ 2,

FAιk+1
(t− k + τ,FAιk

(1, . . . ,FAι1
(1− τ, b) . . . )) if k < t+ τ ≤ k + 1;

and

(5.14) F
♮
[ι,τ ](t, b) := Ort♮(Φ[ι,τ ](t, b)) ∈ ̥♮

n ∀b ∈ ̥♮
n

is such that

F
♮
[ι,τ ](t, b) =





F
♮
Aι1

(t, b) if t ∈ (0, 1− τ ],
F
♮
Aι2

(t− 1 + τ,F♮
Aι1

(1 − τ, b)) if t ∈ (1, 2]− τ,
F
♮
Aιk+1

(t− k + τ,F♮
Aιk

(1, . . . ,F♮
Aι1

(1− τ, b) . . . )) if t ∈ (k, k + 1]− τ.

As in (5.6), one can easily observe that

(5.15) F : [0,∞)×S(Σ+
N )× n̥ → S(Σ+

N )× n̥; (t, ([ι, τ ], b)) 7→ ([ι, τ+ t],F[ι,τ ](t, b))

and

(5.16) F♮ : [0,∞)×S(Σ+
N )×̥♮

n → S(Σ+
N )×̥♮

n; (t, ([ι, τ ], b)) 7→ ([ι, τ+t],F♮
[ι,τ ](t, b))

both are skew-product semiflows, called frame skew-product semiflows, still driven by
the symbolic semiflow Θ on S(Σ+

N ).
Given any [ι, τ ] ∈ S(Σ+

N ) and b ∈ ̥♮
n, similar to Subsection 5.2.1, we can define a

family of linear isomorphisms/nonsingular matrices:

(5.17) Ψ[ι,τ ],b(t, ·) = T−1

F
♮

[ι,τ]
(t,b)

Φ[ι,τ ](t)Tb(·) : R
n → Rn ∀t ∈ R+.

Then there holds the following commutativity:

(5.18)

Rn
Ψ[ι,τ],b(t,·)−−−−−−−→ Rn

Tb

y
yT

F
♮

[ι,τ]
(t,b)

Rn
Φ[ι,τ](t,·)−−−−−−→ Rn

∀t ∈ R+.
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That is to say,

(5.18)′ Ort♮(Φ[ι,τ ](t, b)) = Φ[ι,τ ](t, b)Ψ
−1
[ι,τ ],b(t, e) ∀t ∈ R+.

It is easily seen that Ψ[ι,τ ],b(t), as an n-by-n nonsingular matrix-valued function of t,

is smooth at t with t+ τ 6∈ Z. Thus, the left-hand side derivative d−

dt
Ψ[ι,τ ],b(t, ·) makes

sense at every t > 0. In addition, the cocycle/semigroup property holds:

(5.19) Ψ[ι,τ ],b(t+ s) = ΨF♮(t,([ι,τ ],b))(s)Ψ[ι,τ ],b(t) ∀t, s ∈ R+.

Similar to (5.12), we put

(5.20) R[ι,τ ],b(t) =

{
d−

dt
Ψ[ι,τ ],b(t)

}
Ψ−1
[ι,τ ],b(t) ∀t > 0,

for any [ι, τ ] ∈ S(Σ+
N ) with 0 ≤ τ < 1 and any b ∈ ̥♮

n, noting that we identify [ι, τ+k]
with [θk(ι), τ ] for all k ∈ N.

Definition 5.8. The linear equation

(R[ι,τ ],b) ż(t) = R[ι,τ ],b(t)z(t), z(0) ∈ Rn and t ∈ R+

for any ([ι, τ ], b) ∈ S(Σ+
N ) × ̥♮

n, is called the “Liao triangularization system of A”
under the moving frames F

♮
[ι,τ ](R+, b).

We will see that (R[ι,τ ],b) is just a switching system of the subsystems (RAk,b)
for k = 1, . . . , N .

For any [ι, τ ] ∈ S(Σ+
N ), there is no loss of generality in assuming 0 ≤ τ < 1 from

(3.5)′. We then observe that

(5.21) σι(τ + ·) : R+ → {1, . . . , N}

is such that

(5.21)′ σι(τ + t) = ιk if (k − 1)− τ < t ≤ k − τ and k ∈ N,

where ι = (ιk)
+∞
k=1 ∈ Σ+

N .
The following two lemmas are useful for the study of the linear system (R[ι,τ ],b).

Lemma 5.9. For any ([ι, τ ], b) ∈ S(Σ+
N )×̥♮

n with 0 ≤ τ < 1, there holds that

R[ι,τ ],b(t) =

{
RAι1

,b(t) if 0 < t ≤ 1− τ,
R

Aιk+1
,F

♮

[ι,τ]
(k−τ,b)(t− (k − τ)) if k − τ < t ≤ k + 1− τ and k ∈ N

where RA,b(t) is as in Definition 5.6.
Proof. Since Φ[ι,τ ](t) is the principal matrix of the switching system

ẋ = Aσι(τ+t)x, x ∈ Rn and t ∈ R+,

we have from (5.21)′

Φ[ι,τ ](t) = ΦAι1
(t) for 0 < t ≤ 1− τ.

So, from (5.14), (5.18), (5.20) and the statement (2) of Lemma 5.7, we can obtain the
first equality of the statement. Similarly, we can prove the second equality. This thus
proves Lemma 5.9.

Lemma 5.10. For any ([ι, τ ], b) ∈ S(Σ+
N )×̥♮

n, there holds that

R[ι,τ ],b(t1 + t2) = RF♮(t1,([ι,τ ],b))(t2) ∀t1, t2 ∈ R+,
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where F♮(·, (·, ·)) is the frame skew-product semiflow as in (5.16).
Proof. Without loss of generality, let 0 ≤ τ < 1. We can find some k ∈ N such

that (k − 1)− τ < t1 + t2 ≤ k − τ . In the case k = 1, from Lemma 5.9 and (5.12c), it
follows that

R[ι,τ ],b(t1 + t2) = RAι1
,b(t1 + t2) = R

Aι1
,F

♮
Aι1

(t1,b)
(t2);

on the other hand, for 0 < τ + t1 + t ≤ 1 we have

Ψ[ι,τ+t1],F
♮
Aι1

(t1,b)
(t) = Ψ

Aι1
,F

♮
Aι1

(t1,b)
(t)

and so by (5.20) we have

RF♮(t1,([ι,τ ],b))(t2) =

{
d−

dt

∣∣∣∣
t=t2

Ψ
Aι1

,F
♮
Aι1

(t1,b)
(t)

}
Ψ−1

Aι1 ,F
♮
Aι1

(t1,b)
(t2);

then, Lemma 5.7.(2) follows that R[ι,τ ],b(t1 + t2) = RF♮(t1,([ι,τ ],b))(t2). For the case
k ≥ 2, the statement can be similarly proved by using the semigroup property.

This thus completes the proof of Lemma 5.10.
Recall that A[ι,τ ] is the random matrix defined by (3.5). From Lemmas 5.7, 5.10

and 5.9, we can obtain the following important results.
Lemma 5.11. Given any ([ι, τ ], b) ∈ S(Σ+

N ) × ̥♮
n, the linear system (R[ι,τ ],b)

possesses the following properties:
(1) Upper-triangularity: for any t > 0, the matrix R[ι,τ ],b(t) is upper-triangular

with diagonal elements

Rkk
[ι,τ ],b(t) = Ωk(F

♮
[ι,τ ](t, b),A[ι,τ+t]) for k = 1, . . . , n.

(2) Geometric property: for any z0 ∈ Rn, z(t, z0) is the solution of (R[ι,τ ],b)
satisfying the initial condition z(0, z0) = z0 if and only if

Φ[ι,τ ](t, bz0) = F
♮
[ι,τ ](t, b)z(t, z0) ∀t ∈ R+.

Particularly, Ψ[ι,τ ],b(t, ·) is the principal matrix of (R[ι,τ ],b).
(3) Boundedness: there is a constant C <∞ such that

sup
t>0





∑

1≤i,j≤n

|Rij
[ι,τ ],b(t)|



 ≤ C

uniformly for b ∈ ̥♮
n and [ι, τ ] ∈ S(Σ+

N ).
Proof. The upper-triangularity follows from the statement (1) of Lemma 5.7,

Lemma 5.9 and Lemma 5.10. The geometric property follows from (5.18) and (5.20).
Finally, the boundedness comes from Lemmas 5.10, 5.9 and 5.7.(3). This thus com-
pletes the proof of Lemma 5.11.

From the geometric property in the above statement, we can clearly see that for
any driving point [ι, τ ] ∈ S(Σ+

N ),

(5.22) ẋ(t) = Aσι(τ+t)x(t), x(0) ∈ Rn and t ∈ R+,

is exponentially stable if and only if so is the Liao upper-triangular system

(R[ι,τ ],b) ż(t) = R[ι,τ ],b(t)z(t), z(0) ∈ Rn and t ∈ R+
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for any/some n-frame b ∈ ̥♮
n.

Comparing with Lie’s theorem, our upper-triangularR[ι,τ ],b(t) is real; yet the cost
that we pay is that A becomes time-dependent. Importantly, from Lemma 5.10 we
can define a natural skew-product system

(5.23) ż(t) = RF♮(t,([ι,τ ],b))(0)z(t), z ∈ Rn and t ∈ R+, ([ι, τ ], b) ∈ S(Σ+
N )×̥♮

n,

driven by the frame skew-product semiflow F♮ defined in (5.16).
From Lemma 5.9, we can obtain the following lemma, which explains (R[ι,τ ],b) in

terms of switching time-dependent subsystems.
Lemma 5.12. Let ([ι, τ ], b) ∈ S(Σ+

N ) × ̥♮
n be any given where 0 ≤ τ < 1 and

write b(t) = F
♮
[ι,τ ](t, b) for all t ∈ R+. Put

Sk(t) =

{
RAι1

,b(t) for k = 1,

RAιk
,b(k−1−τ)(t) for k = 2, 3, . . . ;

and

σ[ι,τ ] : R+ → N; σ[ι,τ ](t) = k if (k − 1)− τ < t ≤ k − τ ∀k ∈ N.

Then, (R[ι,τ ],b) is the switching system

(5.24) ż(t) = Sσ[ι,τ](t)(t)z(t), z(0) ∈ Rn and t ∈ R+

and σ[ι,τ ] is a T∗-switching signal with T∗ = 1.
We will see that (5.3) is equivalent to a perturbation of (5.24) and for “sufficiently

many” driving points [ι, τ ], (5.24) has negative Liao-type exponents. This will allow
us apply Theorem 5.3 to proving Proposition 5.2.

5.3. A spectral theorem. Let ~α = (α1, . . . , αN ) ∈ RN be a positive probability
vector as in the statement of Proposition 5.2. Then, (S(Σ+

N ), Θ,P~α) is an ergodic
semiflow from Lemma 3.1. Since S(Σ+

N ) × ̥♮
n is compact, from the lifting lemma of

ergodic measures proved in [7], we can easily obtain the following ergodicity result.
Lemma 5.13. Let ~α = (α1, . . . , αN ) be a positive probability vector. Then there

exists an ergodic probability measure P~α on S(Σ+
N ) × ̥♮

n for the frame skew-product
semiflow

F♮ : [0,∞)× S(Σ+
N )×̥♮

n → S(Σ+
N )×̥♮

n

such that P~α is its marginal measure; that is to say, for any Borel set B ⊂ S(Σ+
N ),

P~α(B) = P~α(B ×̥♮
n).

Proof. Let

π : S(Σ+
N )×̥♮

n → S(Σ+
N ); ([ι, τ ], b) 7→ [ι, τ ],

be the natural bundle projection. It is continuous and surjective under the natural
topologies. From definitions, there holds the following commutativity:

S(Σ+
N )×̥♮

n

F
♮(t,·,·)−−−−−→ S(Σ+

N )×̥♮
n

π

y
yπ

S(Σ+
N )

Θ(t,·)−−−−→ S(Σ+
N )

∀t ∈ R+.
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As S(Σ+
N )×̥♮

n is compact and P~α is an ergodic probability measure of Θ on S(Σ+
N )

by Lemma 3.1, it follows from [7] that there exists at least one ergodic probability
measure, say P~α for the semiflow F♮ on S(Σ+

N ) × ̥♮
n, such that P~α = P~α ◦ π−1, as

desired.
We notice here that [7] is for flows but same arguments still work for semiflows

and discrete-time continuous transformations.
Based on Lemma 5.13, we can obtain the following result, which is an important

step towards proving Proposition 5.2.
Lemma 5.14. Under the same context as Proposition 5.2, the Liao upper-triangular

systems (R[ι,τ ],b) are exponentially stable for P~α-a.s. ([ι, τ ], b) ∈ S(Σ+
N )×̥♮

n.

Proof. By the assumption of Proposition 5.2, we see that for P~α-a.s. [ι, τ ] ∈ S(Σ+
N ),

ẋ(t) = Aσι(τ+t)x(t), x(0) ∈ Rn and t ∈ R+

are exponentially stable. Then, the statement follows immediately from Lemma 5.13
and Lemma 5.11.(2).

Noting that {Ψ[ι,τ ],b(t)}t∈R+ is the principal matrix of (R[ι,τ ],b) and P~α is ergodic,
from Lemma 5.14 we easily obtain the following.

Corollary 5.15. Under the same context as Proposition 5.2, there exists a con-
stant χ+

~α < 0 such that

lim
t→+∞

1

t
log ‖Ψ[ι,τ ],b(t)‖ = χ+

~α

for P~α-a.s. ([ι, τ ], b) ∈ S(Σ+
N )×̥♮

n.
Proof. Noting (5.23), this is a simple direct result of the classical multiplicative

ergodic theorem [15, 31] and Lemma 5.14.
Recall that from Lemma 5.11, the non-autonomous coefficient matrix of (R[ι,τ ],b)

is R[ι,τ ],b(t) that is real upper-triangular with diagonal elements

Rkk
[ι,τ ],b(t) = Ωk(F

♮
[ι,τ ](t, b),A[ι,τ+t]) for k = 1, . . . , n,

where A[ι,τ+t] = Aσι(τ+t) as in (3.5). For our convenience, we introduce the following
concept.

Definition 5.16. For A = {A1, . . . , AN} ⊂ Rn×n, the functions

(5.25) ωk : S(Σ
+
N )× ̥♮

n → R; ([ι, τ ], b) 7→ Ωk(b, Aσι(τ))

for k = 1, . . . , n, where Ωk is as in Definition 5.5, are called the “Liao qualitative
functions” of the skew-product system (5.23).

Then, from Lemma 5.11 there follows at once that the following holds.
Lemma 5.17. The functions ωk, k = 1, . . . , n, all are bounded Borel-measurable

on S(Σ+
N )×̥♮

n, such that

Rkk
[ι,τ ],b(t) = ωk

(
F♮(t, ([ι, τ ], b))

)

for all t ∈ R+ and any ([ι, τ ], b) ∈ S(Σ+
N )×̥♮

n.
Proof. We need only to prove the Borel measurability. Noting σι(τ) = ι1 for all

0 < τ ≤ 1, this measurability follows from (3.1)′. Note here that the section Σ+
N ×{0}

has null measure in S(Σ+
N ).
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Now, we can use the Birkhoff ergodic theorem again to obtain the following spec-
tral theorem which presents an integral expression of the Lyapunov exponent χ+

~α .
Lemma 5.18. Under the same context as Proposition 5.2, it holds that

χ+
~α = max

{∫

S(Σ+
N

)×̥
♮
n

ωk dP~α | k = 1, . . . , n

}
.

Here χ+
~α is given by Corollary 5.15.

Proof. From the Birkhoff ergodic theorem [30, 40], we see that for k = 1, . . . , n,

∫

S(Σ+
N )×̥

♮
n

ωk dP~α = lim
T→+∞

1

T

∫ T

0

ωk

(
F♮(t, ([ι, τ ], b))

)
dt

for P~α-a.s. ([ι, τ ], b) ∈ S(Σ+
N ) × ̥♮

n. Then, the statement follows immediately from
Corollary 5.15, Lemma 5.17 and Theorem 2.1.

Next, we will show that for P~α-a.s. ([ι, τ ], b) ∈ S(Σ+
N ) × ̥♮

n, (R[ι,τ ],b) have got
negative Liao-type exponents χ+

∗ . To this end, we need an other ergodic theorem.
Theorem 5.19 ([12]). Let φ : [0,∞) × X → X be a semiflow on a compact

metrizable space X, which preserves a probability measure µ, and assume {ti}∞i=1 is
an arbitrarily given real sequence with property

t1 ≥ 1, ti+1 = 2ti ∀i ≥ 1.

Then, for any n real-valued functions fk(·) ∈ L 1
R (X,µ), k = 1, . . . , n, there exists a

Borel subset of µ-measure 1, write as Γ̂, such that for all x ∈ Γ̂,

f∗
k (x) = lim

T→+∞

1

T

∫ T

0

fk(φ(t, x)) dt (k = 1, . . . , n)

and

lim
i→∞



 lim

ℓ→∞

1

ℓ

ℓ−1∑

j=0

max
1≤k≤n

{
|f∗

k (x) −
1

ti

∫ (j+1)ti

jti

fk(φ(t, x)) dt|
}

 = 0.

Particularly, if fk(·) ∈ L ∞
R (X,µ) and µ is φ-ergodic, then Γ̂ is φ-invariant.

This is a strengthened version of the classical Birkhoff ergodic theorem. We will
apply it to the case where X = S(Σ+

N )×̥♮
n, φ = F♮ and fk(·) = ωk(·) for k = 1, . . . , n.

Let

(5.26) χ+
k =

∫

S(Σ+
N )×̥

♮
n

ωk dP~α ∀k = 1, . . . , n.

Then, χ+
~α = max{χ+

k | k = 1, . . . , n} from Lemma 5.18. And as a result of Theo-
rem 5.19, we have the following corollary by choosing ti = 2i−1 for all i = 1, 2, . . .
and letting µ = P~α:

Corollary 5.20. Under the same context as Proposition 5.2, there exists an F♮-
invariant Borel subset Γ of S(Σ+

N )×̥♮
n with P~α-measure 1, such that

lim
i→∞



 lim

ℓ→∞

1

ℓ

ℓ−1∑

j=0

max
1≤k≤n

{
|χ+

k −
1

2i−1

∫ (j+1)2i−1

j2i−1

ωk(F
♮(t, ([ι, τ ], b))) dt|

}

 = 0
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for any ([ι, τ ], b) ∈ Γ .
From this corollary, we now can choose the important Liao-type exponents as

follows:
Lemma 5.21. Under the same context as Proposition 5.2, for any ε > 0 suffi-

ciently small, one can find an integer ℓ ≥ 1 and a Borel subset Zε of S(Σ+
N )×̥♮

n such
that

(1) P~α(Zε) ≥ 1− ε;
(2) for any ([ι, τ ], b) ∈ Zε,

lim sup
m→+∞

1

m2ℓ

m−1∑

i=0

max
1≤j≤n

{∫ (i+1)2ℓ

i2ℓ
ωk(F

♮(t, ([ι, τ ], b))) dt

}
≤ χ+

~α + ε.

Note: Here ℓ can be sufficiently large and χ+
~α is defined as in Corollary 5.15.

Proof. This can be proved by an argument similar to that of [6, Theorem 3.7]. So,
we omit the details here.

Because the qualitative functions ωk are bounded by Lemma 5.17, we can improve
the statement of Lemma 5.21 by choosing sufficiently large ℓ, as follows:

Corollary 5.22. Under the same context as Proposition 5.2, for any ε > 0 so
small that χ+

~α + ε < 0, one can find an integer ℓ ≥ 1 and a Borel subset Zε of the
driving space S(Σ+

N )×̥♮
n such that

(1) P~α(Zε) ≥ 1− ε;
(2) for any ([ι, τ ], b) ∈ Zε with 0 ≤ τ < 1, letting {Tk}+∞

k=0 be defined by

T0 = 0, Tk = k − τ ∀k = 1, 2, . . . ,

we have

χ+
∗ ([ι, τ ], b) := lim sup

m→+∞

1

Tm2ℓ

m−1∑

i=0

max
1≤j≤n

{∫ T
(i+1)2ℓ

T
i2ℓ

ωk(F
♮(t, ([ι, τ ], b))) dt

}

< 0.

So, for any ([ι, τ ], b) ∈ Zε with 0 ≤ τ < 1, χ+
∗ ([ι, τ ], b) is just the Liao-type

exponent of (R[ι,τ ],b) associated to the switching signal σ defined as in Lemma 5.12

with the T∗-switching-time sequence {Tk}+∞
k=0 and {km}+∞

m=0, where km = m2ℓ for all
m ∈ Z+ and T∗ = 1.

5.4. Proof of Proposition 5.2. Now we are ready to prove Proposition 5.2,
which implies Theorem 5.1 and further Theorem 1.2.

Proof. For any ε > 0 sufficiently small, let ℓ ≥ 1 and Zε ⊂ S(Σ+
N ) × ̥♮

n be given
by Corollary 5.22. Given any ([ι, τ ], b) ∈ Zε with 0 ≤ τ < 1, we next consider the
stability of the switching system

(5.27) ẋ(t) = Aσι(τ+t)x(t) + fσι(τ+t)(x(t), t), x(0) ∈ Rn and t ∈ R+,

if f1(x, t), . . . , fN(x, t) satisfy condition (5.1) with L sufficiently small. Here, as before,
R+ = (0,+∞).

Let b(t) = F
♮
[ι,τ ](t, b) as in (5.16) and G(t) = T−1

b(t) for all t ∈ R+, where Tb(t)

is defined in the same way as in (5.8). Then, G(t) is a family of orthogonal trans-
formations and is piecewise smooth in t with G(0) = [col1b, . . . , colnb]

−1. From the
equation

(5.28) ẋ(t) = Aσι(τ+t)x(t), x(0) ∈ Rn and t ∈ R+
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via the nonautonomous coordinates transformations

(5.29) z(t) = G(t)x(t) ∀t ∈ R+

we can obtain the equation
(5.30)

ż(t) =

({
d−

dt
G(t)

}
G−1(t) +G(t)Aσι(τ+t)G

−1(t)

)
z(t), z(0) ∈ Rn and t > 0.

So from Lemma 5.11, it follows that

R[ι,τ ],b(t) =

{
d−

dt
G(t)

}
G−1(t) +G(t)Aσι(τ+t)G

−1(t) ∀t > 0.

Write

(5.31) Fσι(τ+t)(z, t) = G(t)fσι(τ+t)(G
−1(t)z, t).

From (5.1), it follows that

(5.31)′ ‖Fσι(τ+t)(z, t)‖ ≤ L‖z‖.

Then from (5.27), under (5.29) we have got the equation

(5.32) ż(t) = R[ι,τ ],b(t)z(t) + Fσι(τ+t)(z(t), t), z(0) ∈ Rn and t > 0.

Moreover, from (5.21)′ and Lemma 5.12, the equation (5.32) becomes the following
switching system

(5.33) ż(t) = Sσ[ι,τ](t)(t)z(t) + Fσ[ι,τ](t)(z(t), t), z(0) ∈ Rn and t > 0,

which has the Liao-type exponent χ+
∗ ([ι, τ ], b) from Corollary 5.22.

Let C > 0 be given by Lemma 5.11.(3) and χ+
~α < 0 by Corollary 5.15. Applying

Theorem 5.3 with α = C,∆∆∆ = 2ℓ,T∗ = 1, and χ+
∗ = χ+

∗ ([ι, τ ], b), there follows that
one can find some constant

δ = δ(C,χ+
~α , 2

ℓ) > 0

such that (5.33) is globally exponentially stable if the constant L ≤ δ.
This completes the proof of Proposition 5.2.

Then the statements of Theorem 1.2 hold.
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