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THOMASSEN’S CHOOSABILITY ARGUMENT REVISITED

DAVID R. WOOD AND SVANTE LINUSSON

Abstract. Thomassen (1994) proved that every planar graph is 5-choosable. This

result was generalised by Škrekovski (1998) and He et al. (2008), who proved that

every K5-minor-free graph is 5-choosable. Both proofs rely on the characterisation of

K5-minor-free graphs due to Wagner (1937). This paper proves the same result without

using Wagner’s structure theorem or even planar embeddings. Given that there is no

structure theorem for graphs with no K6-minor, we argue that this proof suggests a

possible approach for attacking the Hadwiger Conjecture.

1. Introduction

In 1943, Hadwiger [2] made the following conjecture, which is widely considered to be

one of the most important open problems in graph theory1; see [14] for a survey.

Hadwiger Conjecture. Every Kt-minor-free graph is (t− 1)-colourable.

The Hadwiger Conjecture is true for t ≤ 6 [9, 10] and unsolved for t ≥ 7. In general,

ct
√
log t is the best known upper bound on the chromatic number ofKt-minor-free graphs,

for some constant c [7, 12]. This result is proved as follows. A graph G is d-degenerate if

every subgraph of G has a vertex of degree at most d. Every d-degenerate graph is (d+1)-

colourable—choose a vertex v of degree at most d, apply induction to G− v, and colour

v with one of the colours not present in its neighbourhood. Kostochka [7] and Thomason

[12] independently proved that every Kt-minor-free graph is ct
√
log t-degenerate, and is

thus ct
√
log t-colourable. The following conjecture remains unsolved.

Weak Hadwiger Conjecture. There is a constant c such that every Kt-minor-free

graph is ct-colourable.

There are (at least) two major obstacles to overcome in a proof of the Hadwiger

Conjecture or the Weak Hadwiger Conjecture:

• There are Kt-minor-free graphs with minimum degree ct
√
log t for some constant

c. Therefore the above degeneracy-based algorithm fails.
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• For t ≥ 6, there is no known precise structural characterisation of Kt-minor-free

graphs (and even for t = 6 the situation seems hopeless).

This paper suggests a possible approach around these two obstacles.

A list-assignment of a graph G is a function L that assigns to each vertex v of G a

set L(v) of colours. G is L-colourable if there is a colouring of G such that the colour

assigned to each vertex v is in L(v). G is k-choosable if G is L-colourable for every

list-assignment L with |L(v)| ≥ k for each vertex v of G. If G is k-choosable then G

is also k-colourable—just use the same set of k colours for each vertex. Also note that

every d-degenerate graph is (d + 1)-choosable. See [19] for a survey on list colourings.

Kawarabayashi and Mohar [6] made the following conjecture:

Weak List Hadwiger Conjecture. There is a constant c such that every Kt-minor-free

graph is ct-choosable.

Kawarabayashi and Mohar [6] wrote that they believe the Weak List Hadwiger Con-

jecture holds for c = 3

2
. Wood [18] conjectured it with c = 1.

List Hadwiger Conjecture. Every Kt-minor-free graph is t-choosable.

For t ∈ {2, 3, 4}, every Kt-minor-free graph is (t − 2)-degenerate, and thus is (t − 1)-

choosable. Now consider the t = 5 case. Thomassen [13] proved that every planar

graph is 5-choosable, and Voigt [15] constructed planar graphs that are not 4-choosable.

Thomassen’s result was generalised by Škrekovski [11] and He et al. [3] as follows:

Theorem 1 ([3, 11]). Every K5-minor-free graph is 5-choosable.

One feature of Thomassen’s proof is that it does not depend on the degeneracy of

planar graphs. Thus list colourings provide a potential route around the first obstacle

above. See [6, 18] for more concrete examples of this idea. The second obstacle remains.

In particular, Thomassen’s proof relies heavily on the structure of planar graphs, as do

the proofs of Theorem 1, both of which employ the structural characterisation of K5-

minor graphs in terms of planar graphs due to Wagner [16]. The main contribution of

this paper is to prove Theorem 1 without using Wagner’s characterisation—even without

planar embeddings. Given that there is no precise structure theorem for Kt-minor-free

graphs for t ≥ 6, we consider this a first step towards proving the (Weak) List Hadwiger

Conjecture for t ≥ 6.

2. Proof of Theorem 1

Our proof of Theorem 1 is inspired by Thomassen’s proof for planar graphs. This

remarkable inductive argument allows two adjacent vertices on the outerface to be pre-

coloured (that is, have a list of one colour), the remaining vertices on the outerface have

a list of three colours, and the other vertices have a list of five colours. The dependence

on the outerface is an obstacle to generalising Thomassen’s proof, and motivates the

following definition.
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Definition 2. Let M be a minor-closed class of graphs. Let B ⊆ V (G) for some graph

G ∈ M. Let GB+α be the graph obtained from G by adding a new vertex α adjacent to

each vertex in B. Then B is an M-boundary of G if GB+α is also in M.

This definition generalises the outerface, since GB+α is planar if and only if all the

vertices in B are on the outerface of some planar embedding of G.

Lemma 3. Let M be a minor-closed class of graphs. Let B be an M-boundary of some

graph G ∈ M. Let v ∈ B. Then C := (B\{v})∪NG(v) is an M-boundary of H := G−v.

Proof. Observe thatHC+α is isomorphic to the graph obtained fromGB+α by contracting

the edge vα. Since GB+α ∈ M and M is minor-closed, HC+α is also in M. That is, C

is an M-boundary of H. �

The following lemma is a corollary of a more general result by Mader [8]; we include

the following simple proof for completeness.

Lemma 4. Let v be a vertex in a 2-connected graph G. Then G/vw is 2-connected for

some edge vw incident to v.

Proof. Suppose on the contrary that G/vw is not 2-connected for each edge vw incident

to v; thus {v,w} is a cut set. Choose such an edge vw to minimise the order of a smallest

component H of G − {v,w}. Since G is 2-connected, v has a neighbour x in H. Thus

G− {v, x} contains a component that is a proper subgraph of H, which contradicts the

choice of vw. �

Let x, y, z be distinct vertices in a graph G. A K3-minor rooted at x, y, z consists of

three connected subgraphs X,Y,Z of G that are pairwise disjoint and pairwise adjacent,

such that x ∈ V (X), y ∈ V (Y ) and z ∈ V (Z). See [4, 5, 17] for more on rooted minors.

A vertex v of G is good (with respect to x, y, z) if at least two of x, y, z are in the same

component of G − v, otherwise v is bad. Note that if v is a vertex in a 2-connected

graph G, then G− v is connected, and all the vertices in {x, y, z} \ {v} are in the same

component of G− v; thus at least two of x, y, z are in one component of G− v. That is,

every vertex is good in a 2-connected graph.

Lemma 5. Let x, y, z be distinct vertices in a graph G. Then G has a K3-minor rooted

at x, y, z if and only if every vertex in G is good.

Proof. (=⇒) Let X,Y,Z be the branch sets of aK3-minor rooted at x, y, z. Let v ∈ V (G).

Without loss of generality, v 6∈ X ∪ Y . Since G[X ∪ Y ] is connected, x and y are in the

same component of G− v. Thus v is good.

(⇐=) We proceed by induction. Let x, y, z be distinct vertices in a graph G in which

every vertex is good. If |V (G)| = 3 and G 6∼= K3, then without loss of generality, G is a

subgraph of the path (x, y, z), implying y is bad. Thus, if |V (G)| = 3 then G ∼= K3, and

we are done. Now assume that |V (G)| ≥ 4.

First suppose that G is disconnected. If x, y and z are all in the same component H

of G, then by induction, H and hence G has a K3-minor rooted at x, y, z. Otherwise

some component contains at most one of x, y, z, say x. Then y and z are both bad.
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Now assume that G is connected. Suppose that G contains a cut-vertex v. Since v

is good, at least two of x, y, z, say x and y, are in the same component of G − v. Let

w be a neighbour of v in a component of G − v not containing x and y. Let G′ be the

graph obtained from G by contracting vw into a vertex v′. We may consider x, y, z to be

vertices of G′. (It is possible that w = z and v′ = z.) In G′, the vertex v′ is good since x

and y remain in the same component of G′ − v′. If some other vertex in G′ is bad, then

it would be bad in G. Thus every vertex in G′ is good. By induction, G′ and hence G

contains a K3-minor rooted at x, y, z.

Now assume that G is 2-connected. Choose v ∈ V (G) \ {x, y, z}. By Lemma 4, G/vw

is 2-connected for some edge vw incident to v. Thus every vertex is good in G/vw. Since

x, y, z are distinct vertices in G/vw, by induction, G/vw and hence G has a K3-minor

rooted at x, y, z. �

A graph G is said to contain every rooted K3-minor if G contains a K3-minor rooted

at x, y, z for all distinct x, y, z ∈ V (G).

Proposition 6. A graph G contains every rooted K3-minor if and only if G is 2-

connected.

Proof. Since every vertex is good in a 2-connected graph, by Lemma 5, a 2-connected

graph contains every rooted K3-minor. For the converse, let G be a graph that contains

every rooted K3-minor. If G is disconnected, then there is no K3-minor rooted at x, y, z,

whenever x and y are in distinct components. Hence G is connected. If G has a cut-

vertex x, then G contains no K3-minor rooted at x, y, z, whenever y and z are in distinct

components of G− x. Hence G is 2-connected. �

Let G1 and G2 be subgraphs of a graph G, such that G = G1∪G2 and V (G1)\V (G2) 6=
∅ and V (G2) \ V (G1) 6= ∅. In particular, there is no edge between V (G1) \ V (G2) and

V (G2) \ V (G1). Then {G1, G2} is a separation of order |V (G1) ∩ V (G2)|.
Theorem 1 is a consequence of the following lemma (with A = B = ∅).

Lemma 7. Let M be the class of K5-minor-free graphs. Let G ∈ M. Let A ⊆ B ⊆ V (G),

such that A is a clique, and B is an M-boundary of G. Let L be a list-assignment of G

such that:

• |L(x)| = 1 for each vertex x ∈ A,

• L(x) 6= L(y) for distinct x, y ∈ A,

• |L(x)| ≥ 3 for each vertex x ∈ B \ A,
• |L(x)| ≥ 5 for each vertex x ∈ V (G) \B.

Then G is L-colourable.

Proof. Let (G,A,B,L) be a counterexample with |V (G)| minimum, and then with |A|
maximum. Clearly |V (G)| ≥ 4.

Case 1. B = ∅: Choose v ∈ V (G). Then G{v}+α, which is obtained from G by

adding a new vertex α adjacent to v, is K5-minor-free. Let L′(v) := {c} for some colour

c ∈ L(v). Let L′(x) := L(x) for every other vertex x. By the choice of (G,A,B,L), the
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instance (G, {v}, {v}, L′) is not a counterexample, and G is L-colourable. Now assume

that B 6= ∅.
Case 2. A = ∅: Choose v ∈ B. Let L′(v) := {c} for some colour c ∈ L(v). Let

L′(x) := L(x) for every other vertex x. Again (G, {v}, B, L′) is not a counterexample,

and G is L-colourable. Now assume that A 6= ∅.
Case 3. G is not connected: Then G contains a separation {G1, G2} with V (G1 ∩

G2) = ∅. Since A is a clique, without loss of generality, A ⊆ V (G1). Let Bi := B∩V (Gi).

Then Bi is an M-boundary of Gi (since Gi
Bi+α ⊆ GB+α). Define Li(x) := L(x) for each

vertex x in Gi. Hence (G1, A,B1, L1) is not a counterexample, and G1 is L1-colourable.

Also (G2, ∅, B2, L2) is not a counterexample, and G2 is L2-colourable. Hence G is L-

colourable. Now assume that G is connected.

Case 4. G contains a cut-vertex v ∈ B: Then G contains a separation {G1, G2}
with V (G1 ∩G2) = {v}. Since A is a clique, without loss of generality, A ⊆ V (G1). Let

Bi := B ∩ V (Gi). Then Bi is an M-boundary of Gi. Define L1(x) := L(x) for each

vertex x in G1. Thus (G1, A,B1, L1) is not a counterexample, and G1 is L1-colourable.

Let L2(v) := {c} where v is coloured c in G1. Let L2(x) := L(x) for every other vertex

x in G2. Then (G2, {v}, B2, L2) is not a counterexample (since v ∈ B2), and G2 is L2-

colourable. Hence G is L-colourable (since v receives the same colour in G1 and in G2,

and each edge of G is in G1 or G2). Now assume that G− v is connected for every vertex

v ∈ B.

Case 5. G contains a cut-vertex v separating two vertices in B: Then G

contains a separation {G1, G2} with V (G1 ∩ G2) = {v}, such that B ∩ V (G1 − v) 6= ∅
and B ∩ V (G2 − v) 6= ∅. Since A is a clique, without loss of generality, A ⊆ V (G1). Let

B1 := B ∩ V (G1). Then B1 is an M-boundary of G1. Define L1(x) := L(x) for each

vertex x in G1. Thus (G1, A,B1, L1) is not a counterexample, and G1 is L1-colourable.

Since G is connected, G1 is connected. Let B2 := (B ∩ V (G2)) ∪ {v}. Then B2 is

an M-boundary of G2, since G2
B2+α is a minor of GB+α obtained by contracting G1

into v (since α has a neighbour in G1 − v). Let L2(v) := {c} where v is coloured c in

G1. Let L2(x) := L(x) for every other vertex x in G2. Then (G2, {v}, B2, L2) is not a

counterexample (since v ∈ B2), and G2 is L2-colourable. Hence G is L-colourable. Now

assume that G contains no cut-vertex separating two vertices in B.

Case 6. G contains a cut-set {v, w} separating two vertices in B, where

v ∈ B: Thus G has a separation {G1, G2} with V (G1)∩V (G2) = {v,w} and B∩V (G1−
{v,w}) 6= ∅ and B ∩ V (G2 − {v,w}) 6= ∅.

Suppose that vw 6∈ E(G). We claim that adding the edge vw creates no K5-minor in

GB+α. Let G′ be the graph obtained from GB+α by adding the edge vw. Let H be a

4-connected minor in G′. Since {α, v,w} is a separator in G′, there are no two branch sets

of H, with one contained in V (G1) \ V (G2), and the other contained in V (G2) \ V (G1).

Thus, without loss of generality, every branch set of H intersects G1. By Cases 4 and 5,

neither v nor w are cut-vertices in G. Thus there is vw-path P in G2. Hence the edge vw

in our H-minor can be replaced by P to obtain an H-minor in GB+α (without vw). Since

K5 is 4-connected and GB+α is K5-minor-free, G′ is also K5-minor-free. That is, adding
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vw does not create a K5-minor in GB+α (and also not in G). Since A is a clique, adding

vw does not break any of the assumptions in the lemma. Now assume that vw ∈ E(G).

Since A is a clique, without loss of generality, A ⊆ V (G1). Let B1 := B ∩ V (G1).

Then B1 is an M-boundary of G1. Define L1(x) := L(x) for each vertex x in G1. Thus

(G1, A,B1, L1) is not a counterexample, and G1 is L1-colourable.

Since G is connected and v is not a cut-vertex, G1 − v is connected. Let B2 :=

(B ∩ V (G2)) ∪ {w}. Then B2 is an M-boundary of G2, since G2
B2+α is a minor of

GB+α obtained by contracting G1 − v into w (since α has a neighbour in G1 − v). Let

L2(v) := {c} where v is coloured c in G1. Let L2(w) := {d} where w is coloured d in

G1. Let L2(x) := L(x) for every other vertex x in G2. Then (G2, {v,w}, B2, L2) is not a

counterexample (since {v,w} ⊆ B2), and G2 is L2-colourable. Hence G is L-colourable.

Now assume that G contains no such cut-set {v,w}.
Case 7. Some vertex v ∈ B has degree at least 3 in G[B]: Let x, y, z be three

neighbours of v in B. If G−v contains a K3-minor rooted at x, y, z, then adding v and α

gives a K5-minor in GB+α, which contradicts the assumption that B is an M-boundary

of G. Thus G− v contains no K3-minor rooted at x, y, z. By Lemma 5, for some vertex

w in G − v, all the vertices in {x, y, z} \ {w} are in distinct components of G − {v,w}.
Thus {v,w} is a cut-set satisfying Case 6 or 7. Now assume that G[B] has maximum

degree at most 2.

Case 8. G[A] is a component of G[B]: Choose v ∈ A. Let G′ := G − v and

A′ := A \ {v} and B′ := (B \ {v}) ∪NG(v). By Lemma 3, B′ is an M-boundary of G′.

Let L′(u) := L(u) \ L(v) for each vertex u ∈ NG(v) \ B. Since |L(v)| = 1 and v has no

neighbour in B \ A, we have |L′(x)| ≥ 3 for each x ∈ B′. Let L′(x) := L(x) for every

other vertex x. Then (G′, A′, B′, L′) is not a counterexample, and G′ is L′-colourable.

Assign v the colour in L(v). This colour is not in L′(u) for each u ∈ NG(v). Thus G is

L-colourable.

Case 9. G[A] is not a component of G[B]: Choose v ∈ B \ A adjacent to

some vertex p ∈ A. Since G[B] has maximum degree at most 2, v has at most one

other neighbour in B; let w be this neighbour (if it exists). Let G′ := G − v and

B′ := (B \ {v}) ∪NG(v). By Lemma 3, B′ is an M-boundary of G′. Let c, d be distinct

colours in L(v) \ L(p). Let L′(u) := L(u) \ {c, d} for each vertex u ∈ NG(v) \ B; thus

|L′(u)| ≥ 5 − 2 = 3. Let L′(x) := L(x) for every other vertex x. Then (G′, A,B′, L′) is

not a counterexample, and G′ is L′-colourable. Assign v colour c or d different from the

colour assigned to w (if w exists). Hence G is L-colourable. �
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Naturforsch. Ges. Zürich, 88:133–142, 1943.

http://diestel-graph-theory.com/index.html


THOMASSEN’S CHOOSABILITY ARGUMENT REVISITED 7

[3] Wenjie He, Wenjing Miao, and Yufa Shen. Another proof of the 5-

choosability of K5-minor-free graphs. Discrete Math., 308(17):4024–4026, 2008.

http://dx.doi.org/10.1016/j.disc.2007.07.089.

[4] Leif K. Jørgensen and Ken-ichi Kawarabayashi. Extremal re-

sults for rooted minor problems. J. Graph Theory, 55(3):191–207, 2007.

http://dx.doi.org/10.1002/jgt.20232.

[5] Ken-ichi Kawarabayashi. Rooted minor problems in highly

connected graphs. Discrete Math., 287(1-3):121–123, 2004.

http://dx.doi.org/10.1016/j.disc.2004.07.007.

[6] Ken-ichi Kawarabayashi and Bojan Mohar. A relaxed Hadwiger’s con-

jecture for list colorings. J. Combin. Theory Ser. B, 97(4):647–651, 2007.

http://dx.doi.org/10.1016/j.jctb.2006.11.002.

[7] Alexandr V. Kostochka. The minimum Hadwiger number for graphs with a

given mean degree of vertices. Metody Diskret. Analiz., 38:37–58, 1982.

[8] Wolfgang Mader. Generalizations of critical connec-

tivity of graphs. Discrete Math., 72(1-3):267–283, 1988.

http://dx.doi.org/10.1016/0012-365X(88)90216-6.

[9] Neil Robertson, Daniel P. Sanders, Paul D. Seymour, and Robin

Thomas. The four-colour theorem. J. Combin. Theory Ser. B, 70(1):2–44, 1997.

http://dx.doi.org/10.1006/jctb.1997.1750.

[10] Neil Robertson, Paul D. Seymour, and Robin Thomas. Had-

wiger’s conjecture for K6-free graphs. Combinatorica, 13(3):279–361, 1993.

http://dx.doi.org/10.1007/BF01202354.
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