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Abstract
We consider the inverse sensitivity analysis problem of quantifying the uncertainty of inputs to a
deterministic map given specified uncertainty in a linear functional of the output of the map. This
is a version of the model calibration or parameter estimation problem for a deterministic map. We
assume that the uncertainty in the quantity of interest is represented by a random variable with a
given distribution, and we use the law of total probability to express the inverse problem for the
corresponding probability measure on the input space. Assuming that the map from the input
space to the quantity of interest is smooth, we solve the generally ill-posed inverse problem by
using the implicit function theorem to derive a method for approximating the set-valued inverse
that provides an approximate quotient space representation of the input space. We then derive an
efficient computational approach to compute a measure theoretic approximation of the probability
measure on the input space imparted by the approximate set-valued inverse that solves the inverse
problem.
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1. Introduction
We develop and analyze a numerical method to solve the inverse sensitivity analysis
problem: Given a specified variation and/or uncertainty in the output of a smooth map,
determine variations in the input parameters that produce the observed uncertainty. We
formulate this inverse problem using probability to describe variation by assuming that the
inputs and outputs are random variables. This inverse problem has an abstract interpretation
in which the density is imposed on the output in order to observe the consequences for the
inputs. It also has an experimental interpretation in which the model output matches
observed values of an experiment and the imposed density is associated with the
experimental data, i.e., reflecting the uncertainty in the data or arising as a consequence of
experimental error.

To motivate this inverse sensitivity analysis problem, consider the situation of a
manufacturer who will purchase a large number of metal plates of a given alloy and
thickness that are to be used subsequently in a high temperature environment. In order to
ensure the plates maintain integrity, the manufacturer specifies that a given heat load must
be distributed quasi-uniformly after ten minutes of exposure, with some conditions on how
much the temperature may vary through the plate. The plates are milled with variations in
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the purity of the alloy and the thickness of the plates, both of which affect the heat
distribution under load. To check a batch of plates to see if it meets the requirements, the
manufacturer tests the heat specification on a random sample of plates drawn from the batch.
The random selection of samples, the variation in plate properties, and measurement error
combined lead to a description of the test results as a random variable. After delivery, the
manufacturer decides that knowing the statistics on the size of the plates and the
composition of the alloy would be useful. The heat equation models the heat distribution
under a given load once the conductivity determined by the alloy composition and the
thickness of the plates are specified. The inverse sensitivity problem is to determine the
distribution on the space of parameters consisting of the thickness and alloy purity from the
distribution of the results of the heat experiments on the plates.

The probabilistic inverse problem can be described more precisely as follows. Given

• a model M(Y, λ) with solution Y = G(λ) depending on parameters and data λ in
parameter space Λ ⊂ ℝd,

• a linear functional q(λ) = q(Y (λ)) taking values in an output space 

• an observed probability density ρ q(λ)) = ρ q(Y (λ))) on the output value q(λ),
determine

• a probability density σΛ(λ) on the parameter space Λ that produces the observed
density.

We assume the model M(Y, λ) depends smoothly on the inputs, so the map q(λ) is
implicitly a smooth and deterministic function of λ.

There are several important issues associated with this problem. In general, the parameter
space is multidimensional while there is a single observation (or a low dimensional set of
observations at most). So, the inverse problem is ill-posed in the sense that the inverse
solution of the deterministic model is set-valued. Under the assumption of a smooth model,
we address this issue by constructing a systematic method for approximating set-valued
inverses. Second, we are particularly interested in models that are complicated and/or
expensive to evaluate, e.g., requiring the solution of a differential equation, so that the map
to the output is determined implicitly. We address this issue by using adjoint operators [22,
20, 6, 21, 23, 12, 13, 9, 10, 7, 11] to compute the required derivative information. Third,
while probability densities describe random variables, the densities themselves are not
random. Common approaches to approximating probability densities often use a random
representation obtained by some variation of Monte Carlo sampling [14, 17, 18]; however,
this is not a requirement. In particular, the approach described in this paper is not stochastic,
rather it is based on the simple approximation commonly used in measure theory.

In this paper, we present the basic method and analysis of a measure-theoretic computational
approach for the probabilistic inverse sensitivity analysis problem. In [4], we present a
numerical analysis of the discretization error that arises when evaluating the model by
numerical solution and using a finite number of random samples to represent the distribution
on the output quantity. In [5], we discuss the problem of dealing with multiple quantities of
interest, which has application to data assimilation and “cascaded” uncertainty in operator
decomposition solution of multiphysics problems.

This paper is structured as follows. In section 2, we formulate the probabilistic inverse
problem that we solve and discuss the relation to a Bayesian inverse problem. In section 3.1,
we deal with the set-valued nature of the inverse problem by introducing a theory of
generalized contours and explain how the generalized contours can be approximated. In
section 3.2, we develop a computational measure theoretic method for approximating the

Breidt et al. Page 2

SIAM J Numer Anal. Author manuscript; available in PMC 2013 April 29.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



inverse parameter distribution using approximate generalized contours. In section 4, we
apply the method to a variety of problems. Finally, section 5 summarizes the work.

2. Formulation of the probabilistic inverse problem
The inverse problem we study is the direct inversion of the forward stochastic sensitivity
analysis problem for a deterministic model. We consider a deterministic operator q(λ) that
maps values in a parameter space Λ to an output space  We assume there is a parameter
volume measure μΛ on Λ that determines the volume of sets in Λ. The volume measure
depends on the units of measure used for the parameters and also reflects the structural
dependency among the parameters, e.g., depending on whether or not μΛ is a product
measure. The volume measure is specified as part of the model that defines the map q(λ)
since the parameters must be explicitly defined in the physical model that determines q. We
assume that μΛ is absolutely continuous with respect to the Lebesgue measure and the
volume V of Λ is finite.

We first describe the forward stochastic sensitivity analysis for the deterministic map q(λ).
We assume that a probability density σΛ(λ) is specified on the parameter space Λ. This
density distinguishes the probability of different events in Λ, i.e., the probability of an event
A in Λ, by which we mean a measurable set of values, is computed via

The deterministic model can be expressed in terms of a likelihood function L(q|λ) of the
output q values given the input parameter values λ, where L(q|λ) = δ(q − q(λ)) is the unit
mass distribution at q = q(λ). This implies the fundamental relationship

(2.1)

This is a Fredholm integral equation of the first kind that determines a conditional
probability density ρ q|A) on the output given that the parameters come from A. Thus, we
may determine the conditional probability of event B ⊂ as

For forward sensitivity analysis it is common to take A = Λ so that P(B|A) = P(B), and we
arrive at the common form for the law of total probability given by

(2.2)

This describes an analogue of a Perron–Frobenius map where the deterministic map q(λ)
defines a transformation of the density σΛ(λ) to ρ q). This forward sensitivity analysis
problem is often solved using a Monte Carlo approach: Random parameter sample values λ
are drawn from the distribution σΛ on the parameter space; corresponding values of q(λ) are
computed; and these values are binned to produce an approximate probability distribution on
the output.
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The stochastic inverse sensitivity analysis problem that we study is the inversion of the Law
of Total Probability (2.2).

We assume that an observed probability density ρ (q(λ)) is given on the output
value q(λ), and we seek to compute the corresponding parameter density σΛ(λ)
that yields ρ q(λ)) via (2.2).

It is important to note that what we seek for the solution of the inverse problem is the actual
probability density that can be used to compute the probability of events in the parameter
space Λ. In other words, we seek to compute the inverse of the analogue of the Perron–
Frobenius map between the densities on the input and output spaces. The purpose of this
paper is to describe a method for solving the inverse problem by providing a way to
approximate the probability of an arbitrary event in the input space. This can be used
subsequently to generate an approximation of the inverse density and/or to compute any
desired statistical moments of the inverse density.

We emphasize the fundamental role of the underlying parameter volume measure μΛ in
defining the solution of the inverse problem. In particular, the a priori specification of μΛ
imposes the structure of the measure on Λ, e.g., whether the measure on Λ is a product
measure or not. In general, there are many combinations of σΛ and μΛ that can yield a given
observed density on the output.

We provide a simple illustration of the inverse problem using the map

where λ1, λ2 are random variables. For the inverse problem, we specify that q(λ) has a N(0,
2/25) distribution and seek to determine the parameter distribution σΛ(λ) that yields the
specified output density. This output distribution can be generated by choosing λ1, λ2 to be
independent identically distributed N(0, 1/25) random variables; see Figure 2.1. As well, we
could choose any bivariate normal density

If we find a distribution on Λ that generates q(λ) according to a N(0, 2/25) distribution, then
we accept this as a solution to the inverse problem. The choice of the underlying parameter
volume measure μΛ is critical to this task. In Figures 2.1–2.3, we show five different
probability densities σΛ(λ) that yield the identical N(0, 2/25) density on q(λ). Each of the
five different densities correspond to five different underlying volume distributions μΛ as
shown.

The specification of μΛ has to do with how measurements in Λ are carried out and the
relationships between the parameters. As noted, the volume measure should be specified as
part of defining the model. In many situations involving deterministic models, the product
Lebesgue measure appropriately scaled to account for units is the natural choice. But, this is
not always the case. Continuing the motivating problem, as a first approximation, we might
consider the thickness and alloy composition to be physically independent parameters and
impose a product measure on the space formed by the two variables using independent
normalized Lebesgue measures. A more realistic description will take into account the fact
that the thickness of the plates indirectly depends on the alloy composition during the
milling process. We can model the milling process to determine the thickness as an indirect
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function of the physically independent variables of pressure in the milling process and the
alloy composition. The measure on the space consisting of the thickness and alloy
composition is then determined by propagating the product measure imposed on the
independent alloy composition and pressure variables through the milling model. The
resulting measure on the space consisting of the alloy composition and thickness will not be
a product measure.

The plots of inverse densities given in Figures 2.2–2.3 also illustrate the important point that
injecting probability into the inverse problem by itself does not reduce the ill-posedness,
even after specifying the parameter volume measure. The consequence of ill-posedness on
the stochastic inverse problem is illustrated by the complex measure structure of the inverse
probability densities in the plots. For example, these densities are not product measures. In
general, it is not possible to determine densities for the individual parameters without further
information. We can determine only a measure on the entire parameter space.

Comparison to a Bayesian inverse problem
There is another natural inverse problem associated with the Law of Total Probability (2.1)
that is important in the case of a general likelihood function L(q|λ), not necessarily arising
from a deterministic map. Namely, we may use Bayes’ theorem to invert the likelihood
function to obtain the “posterior density” p(λ|q) given the “prior density” σΛ on the input
space Λ and a “data density” ρ  on the output space  We emphasize that the solution of
this Bayesian inverse problem is a conditional distribution. This is very natural when the
map from the input to output space has been modeled statistically by specifying L(q|λ)
given information about the statistical properties of the input parameters and output quantity,
e.g., when the map is derived empirically, rather than from physical principles.

This Bayesian inverse problem is at the heart of Bayesian inference [26, 1, 19, 18]. In this
approach, the inferential target is a single, unknown parameter (or parameter vector) λ. We
are given data in the form of observations q1,…, qn, for which a typical assumption is
conditional independence,

(2.3)

where {p(qi|λ)} are conditional probability densities with respect to some appropriate
measure, and are specified up to the value of λ. The right-hand side of (2.3) is the likelihood
of the observations given the parameter. We are also given a prior distribution on λ that
gives a probabilistic description of the uncertainty about the values of λ before any data are
observed. This prior distribution is exactly σΛ(λ) in the notation used above. Bayesian
inference then proceeds by using Bayes’ theorem to compute the posteriori conditional
distribution of λ given the observations q1,…, qn:

(2.4)

We could adopt a Bayesian approach to solve the inverse problem we study by modeling
σΛ(λ) parametrically as σΛ(λ|θ) in terms of new (lower-dimensional) parameters θ. This is
known as a mixture or hierarchical model. In Bayesian terminology, σΛ(λ|θ) is the prior
while a new distribution σθ describing θ is the hyperprior. Assuming that the hyperprior is
specified, we then compute the posterior distribution on θ given “data” from ρ q(λ)). Any
desired inferences about the distribution of λ given θ can then be obtained from the
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posterior. The difficulty with this approach is specifying a reasonable conditional model,
which is difficult to verify empirically.

The inverse problem solved in this paper shares some characteristics with the Bayesian
inverse problem, but has fundamental differences as well. In the Bayesian problem, the
inferential target is the parameter λ, and σΛ is given as prior information. The likelihood
L(q|λ) typically involves a nontrivial stochastic structure and is not deterministic.

By contrast, in the inverse problem we solve the inferential target is the distribution σΛ,
which is not given as the prior. Further, our likelihood L(q|λ) is given by a deterministic
map, which completely determines the set-valued inverse.

The choice of inverse problem to solve depends completely on the available information. In
the case of a deterministic physics-based model, the unknowns and quantities subject to
uncertainty are the data and parameter values that are input into the model and the
observations that are supposed to match model output while the likelihood function
determined by the map is completely trivial in a statistical/probabilistic sense. Based on the
law of total probability, the inverse problem we solve is the direct inverse of the
probabilistic forward sensitivity problem for a deterministic model.

3. Solving the inverse problem
As noted above, while probability densities describe the random nature of a random
variable, the densities themselves are not random. While a common approach to compute a
discrete approximation of a probability density employs random sampling, this is not
necessary. In this paper, we describe a method for computing approximate probability
densities that does not require random sampling. Our approach breaks the solution down
into two stages:

1. Construct an approximate representation of the set-valued inverse solution of the
deterministic model.

2. Use measure-theoretic computational methods to approximate the probability
density (measure) structure on the parameter space that corresponds to the set-
valued inverse and the observed output density.

These are independently interesting tasks.

We present a brief overview before providing the details. Under the assumption of a smooth
map, if we are given a fixed output value q̄ ∈  then the implicit function theorem
guarantees the existence of a (d − 1)-dimensional manifold in Λ that is mapped to q̄.
Motivation comes from the two-dimensional case, λ = (λ1, λ2), where the manifolds are
contours of the surface q(λ1, λ2) (left-hand illustration in Figure 3.1). Every point in Λ lies
on a unique contour, so we may consider Λ as a set described by its contours. The set of
(generalized) contours is an equivalence class in the input space, i.e., a quotient space
representation of the input space. In Λ, there exists 1-dimensional curves transverse to the
contours that intersect each contour once and only once (right-hand illustration in Figure
3.1). We can take one of these curves as the index for the set of contours. There is a
bijection between the points on an index curve and the points in the range of the output
q(Λ). Therefore, any measure posed on the range of the output imposes a measure on the
index curve. Thus, the intersections of the contours with the index curve is a random
variable with a distribution uniquely defined by the distribution of the output ρ (q(λ)) (left-
hand illustration in Figure 3.2). In other words, there exists a unique solution to the inverse
sensitivity analysis problem in the set of the contours.
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However, determining the set of contours analytically is infeasible in practice. In [23], the
forward sensitivity analysis problem defined by (2.2), where a given density σΛ(λ) is
propagated through the output surface q(λ), is solved using a piecewise-linear tangent plane
approximation to the output surface. This requires computations involving only inner
products, which is cheap compared to the full model evaluation cost of q(λ) for each new
value of λ. The derivatives of q(λ) are computed implicitly using adjoint methods.
Motivated by this approach, we use a piecewise-linear tangent plane approximation to the
output surface q(λ) to construct approximate contours and an approximate index set.

The next step is to determine the probability density on the parameter set that corresponds to
the distribution on the transverse parameterization of the space of approximate contours. In
order to assign a probability to a measurable set in Λ, we first recognize that such a set is
defined by the contours it contains and the amount of each contour it contains (right-hand
illustration in Figure 3.2). The parameter volume measure μΛ specified on Λ quantifies the
amount of each contour contained in any given set. Combining the results of the generalized
contours with such a measure, the monotone convergence theorem, and additivity properties
of measures, we develop an algorithm to estimate the probability of any measurable set in Λ.
This algorithm employs a piecewise constant approximation of measures that is commonly
used in measure theory. This yields a direct computational method to approximate σΛ(λ).

In the next two sections, we provide details of the two ingredients of the approximate
solution method.

Remark 3.1. Many solution methods for both statistical and deterministic inverse problems
deal with ill-posedness by introducing some form of regularization, either directly or
reposing the inverse problem as an optimization problem. Such methods avoid the need to
deal with set-valued inverse solutions.

Remark 3.2. There are cases of interest, e.g., a parameter domain that contains a bifurcation
point, for which the described method cannot be used in a straightforward fashion. We note
that while an approach based on random sampling may be applied nominally to such a
problem, the interpretation of the results is still problematic.

Remark 3.3. While the solution method for the inverse problem proposed here relies on
derivatives of a quantity of interest, it is not dependent on how those derivatives are
computed. Instead of an adjoint-based approach, the derivatives might be computed using
(deterministic) forward sensitivity analysis that computes the derivatives directly along with
the solution of the model. Yet another approach, presented, e.g., in [27], employs a
stochastic spectral method to obtain a polynomial representation of q(λ), which is then used
to compute gradients.

3.1. Determining the inverse of the deterministic model using generalized contours
We consider a finite dimensional map q from the space of parameters to the output defined
implicitly by solving a finite dimensional nonlinear system of equations,

(3.1)

where x ∈ ℝn, parameter λ ∈ Λ ⊂ ℝd (assuming that Λ is compact) is a random vector, and
f : ℝn+d → ℝn is assumed smooth in both variables. The goal is to compute a quantity of
interest q(λ) = q(x(λ)) = 〈x, ψ〉, described as a linear functional of the solution x(λ). If x
depends smoothly on λ, then the dependence of q on λ is also smooth.
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This problem applies in particular to differential equations that depend on a finite set of
parameters. For differential equations, we require the same assumptions as the standard
existence and uniqueness theorems to guarantee the smoothness of q(λ). This is discussed in
more detail in the second part of this paper [4].

For any q̄ ∈ q(Λ), we define q̌(λ) := q(λ) − q̄. By assumption, q̌(λ) : ℝd → ℝ is
continuously differentiable and there exists λ̄ ∈ Λ such that q(λ̄) = q̄, which implies that q̌
(λ̄) = 0. We are mainly interested in the case where the quantity of interest varies as the
parameters vary, so we assume that ∂λd q̂(λ̄) ≠ 0, i.e. there is at least one nontrivial partial
derivative. We may relax the restriction of ∂λd q̌(λ̄) ≠ 0 for a finite number of points in Λ,
where q(λ) possibly attains a local extreme value and ignore this set of points when
considering the generalized contours.

By the implicit function theorem, there exists an open set Uλ̄ ⊂ Λd−1, where Λd−1 :=
{λd−1 := (λ1, …, λd−1)|λ = (λ1, …, λd) ∈ Λ}, containing λd−1, an open set Vλ̄ ⊂ Λd,
where Λd := {λd|λ ∈ Λ}, and a differentiable function gλ̄ : Uλ̄ → Vλ̄ such that

(3.2)

Since the implicit function theorem is a local result, there may be additional points in Λ that
map to q̄, but are not contained in the set defined by (3.2). Thus, given q̄ ∈ q(Λ), we choose
a collection of sets {Uλ̄ × Vλ̄} = ∪α∈A{Uλ̄α × Vλ̄α}, where ∪α∈A{λ̄α} is the set of all λ ∈
Λ such that q(λ) = q̄. Then using the same notation as in (3.2), the function gλ̄ (λd−1) might
be piecewise defined. The set in (3.2) is a (d−1)-dimensional manifold that is a natural
inverse of q(λ) given q̄. We call this set the generalized contour.

Theorem 3.1. If we choose distinct q̄1, q̄2 ∈ q(Λ), then the generalized contours for q̄1 and q̄2
are unique and do not intersect.

Proof. The nonintersection property follows immediately from the fact that q(λ) is a
function. Uniqueness follows immediately from the choice {Uλ̄ × Vλ̄} = ∪α∈A{Uλ̄α ×
Vλ̄α}, where ∪α∈A{λ̄α} is the set of all λ ∈ Λ such that q(λ) = q̄ for a given value of q̄ ∈
q(Λ).

In two dimensions, the generalized contours are simply contours of the surface q(λ1, λ2).
We denote a generalized contour for a specific quantity of interest q̄ as q−1(q̄). Since q(λ) is
smooth and Λ is compact, q(Λ) defines a compact interval of real numbers, Iq := [qm, qM] =
q(Λ), where qm and qM are the absolute minimum and absolute maximum of q(λ),
respectively. We redefine q(Λ) to be the open interval (qm, qM), which we also denote by Iq.

We next prove that there exists (possibly discontinuous) 1-dimensional curves that are
transverse to the generalized contours that can be used to index the family of generalized
contours. We call any curve that has the property that it intersects each generalized contour
once and only once a transverse parameterization (TP).

We give a constructive proof that is a useful algorithm. The algorithm produces
discontinuous curves in Λ in general.

Theorem 3.2. Suppose f is smooth in (3.1) and q(λ) is a linear functional of the solution to
(3.1). There exists a transverse parameterization for the set of generalized contours.

Proof. We construct the transverse curve from a finite number of connected curves. We fix ε
> 0 and ε > δ > 0, and set Iq,ε = [qm + ε, qM − ε]. If Λ is compact, then the existence of
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transverse curves is guaranteed by the smoothness of q(λ). To construct a curve, we begin at
a point γM ∈ Λ such that q(γM) = qM − δ, and follow the direction of the negative gradient
until the curve either intersects the boundary or a minimum or saddle is reached, and denote
that point γm. From smoothness, exactly one contour for each value of q(λ) between
(q(γm), q(γM)) is intersected by this curve. If (q(γm), q(γM)) does not completely cover Iq,ε,
then we select a point τm ∈ Λ such that q(τm) = qm + δ, and follow the direction of the
gradient until the curve either intersects the boundary or a maximum or saddle is reached,
and denote this point τM. We now check if (q(γm), q(γM)) ∪ (q(τm), q(τM)) covers Iq,ε. If
so, then we eliminate any part of the second curve that gives an overlap with contours
intersected by the first. Otherwise, we continue to create this curve as above trying to cover
the output interval defined by (q(τM), q(γm)). This process produces a countable number of
connected curves whose union forms a (possibly discontinuous) transverse curve through the
generalized contours that corresponds to a countable open cover of Iq,ε, which is compact.
Hence, there is a finite subcover of Iq,ε, which implies that the transverse parameterization
can be constructed from a finite number of curves.

In practice, we construct the transverse curve to the generalized contours of Iq by initially
following the first two steps above with ε = 0, i.e., locate γM ∈ Λ such that q(γM) = qM and
τm ∈ Λ such that q(τm) = qm and construct the pieces of the transverse curve by following
the negative and positive directions of the gradient, respectively. If we now take ε to be half
the minimum of q(γM) − q(γm) and q(τM) − q(τm), then following the steps above, we
construct a curve transverse to all the contours of Iq in a finite number of steps.

3.1.1. Approximating the set of generalized contours—Suppose that q is a linear
function of λ, i.e., q(λ) = γ⊤ λ for some γ ∈ ℝd (recall Λ ⊂ ℝd). Then for fixed q̄ ∈ q(Λ)
we have (with the same conventions as above) Uλ̄, Vλ̄ , and gλ̄ : Uλ̄ → Vλ̄ such that
{(λd−1, gλ̄(λd−1))} is the generalized contour. In this case, we write the function gλ̄(λd−1) =
(q̄ − (γd−1)⊤ (λd−1))/γd explicitly. The generalized contour above is a (d − 1)-dimensional
hyperplane, and we refer to this as a generalized linear contour.

We approximate generalized contours locally by generalized linear contours, and
approximate a generalized contour by a generalized piecewise-linear contour. We use
generalized piecewise-linear contours computed from a piecewise-linear tangent plane
approximation to q(λ). If q is an affine map of λ, i.e., q(λ) = γT λ + q0 for some q0 ∈ ℝ,
then we use the function above with q̄ replaced by q̄ − q0.

We obtain derivative information required to compute the tangent plane approximations
implicitly by introducing the adjoint operator. This approach is very useful when the
forward map is complicated to evaluate, e.g., involving the solution of a differential
equation. But, the derivative information can be obtained by any convenient method.

Local linearization of the linear functional: The goal is to approximate the map q(λ) with
a piecewise-linear map q̂(λ) since it is possible to calculate the generalized contours for this
approximate map.

Theorem 3.3. The generalized linear contours converge pointwise to the true contours
locally in Λ.

Proof. Suppose we choose a reference parameter value λ = μ at which to solve
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exactly. Call this reference solution y. Then according to Taylor’s theorem,

where ℛ ~ O(‖x − y‖2 + ‖λ − μ‖2), for |α| = 2. Here Dxf and Dλf denote the derivatives of f
with respect to x and λ, respectively.

In order to compute the tangent plane approximation efficiently, we use the generalized
Green’s vector φ that solves the adjoint to the linearized problem

(3.3)

where A = Dxf (y; μ). Recall that q(λ) = 〈x, ψ〉, so by substitution of the above and standard
linear algebra we arrive at

Neglecting the higher order term leads to an approximation of q by an affine map q̂. If we
denote the generalized contour of q given q̄ by {(λd−1, gλ̄ (λd−1))} and the generalized
linear contour of q̂ given q̄ by {(λd−1, ĝλ̄ (λd−1))}, then at any λd−1 ∈ Uλ̄,

(3.4)

By assumption, ∂λd q(λ) = φ ⊤∂λd f(y, μ) ≠ 0, so we rewrite (3.4) as

where C−1 = −φ⊤ ∂λd f(y, μ), is a nonzero constant determined entirely by the reference
point (y, μ). Thus, if we define

where ‖ ‖2 denotes the standard Euclidean norm, then as ‖Uλ̄‖ → 0, ‖R‖2 → 0 which implies
that |gλ̄(λd−1) − ĝλ̄ (λd−1)| → 0.

Global linearization of the linear functional: We extend the local linearization technique
to obtain a global piecewise-linear approximation of the linear functional over all of Λ. We

first define a partition of cells  of Λ. The geometry is immaterial, as long as we can
integrate constant functions over the cells. We apply the local linearization technique
described above for each cell, and defining

we obtain a global piecewise-linear approximation q̂(λ) to q(λ) defined by
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(3.5)

where μi is the reference parameter value chosen in cell Bi.

Theorem 3.4. As ‖Bi‖ → 0 (or as M → ∞ when the number of sample points are distributed
uniformly), the generalized linear contour converges pointwise to the generalized contour.

Proof. For the finite system of nonlinear equations, we have

where φi solves the linearized adjoint problem using the reference point (yi, μi). If we let −
〈ℛi, φi〉 denote the higher-order terms neglected in the linearization of q(λ) in cell Bi, then
we can write the error of the piecewise-linear approximation, e(λ) = q̂(λ) − q(λ), as

The generalized linear contour of q̂ given q̄ is a collection of hyperplanes in Λ. Using the
same notation as above,

This yields the convergence result.

The transverse parameterization (TP) for the generalized linear contours is constructed using
q̂ in the same way as described in the proof of Theorem 3.2. Since q̂ is a piecewise-linear
surface, the resulting TP is a piecewise-linear curve in Λ.

Examples: We illustrate the convergence of generalized linear contours to true contours in
the two examples below.

In the first example, we suppose that  over [0, 2] ×
[0, 2]. We approximate q over a uniform partition {Bi} of [0, 2] × [0, 2] into squares, and we
linearize around the midpoint of each Bi to form q̂ in (3.5). We plot various contour curves
and two TP’s on each plot. The results are summarized in Figure 3.3.

For a second example, we suppose q(λ1, λ2) = exp [cos(λ1) + sin(λ2)] on [−2π − 0.1, 2π +
0.1]2. We proceed as above to obtain the numerical results summarized in Figure 3.4.

3.2. Computing the parameter probability density
We now explain how to use the unique solution to the inverse problem in the space of
generalized contours to compute an approximation of the probability density σΛ on Λ. We
first observe if I = [q1, q2] ⊂ is an event with probability P(I) = P(q(λ) ∈ I), then this
corresponds to a measurable set in Λ that is defined as the set of all contours obtained by
q−1(I). From the basic assumptions of smoothness and the nonintersecting property of the
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contours, the set of all contours is a set in Λ that is contained between the two contours
defined by q−1(q1) and q−1(q2) (or possibly one of these contours and the boundary of Λ).
We assign this set the probability P(I). It follows immediately that we can define the inverse
into the set of generalized contours for a given distribution of q(λ) uniquely.

Theorem 3.5. Suppose f is smooth in (3.1) and q(λ) is a linear functional of the solution to
(3.1). If q(λ) is a random variable with distribution Fq(q(λ)), then for a fixed TP in Λ, the
distribution of the intersections of the generalized contours on the TP, which is a random
variable, is unique.

The probability of a measurable set in Λ is determined by the contours the set contains and
the amount of each contour the set contains and the probabilities of those contours. The
parameter volume measure μΛ determines the contours a given set contains and the amount
of each contour the set contains.

3.2.1. Computational measure theory—The method we develop for computing an
approximate probability distribution is based on constructions used in measure theory.

Theorem 3.6. Given a measurable set A ⊂ Λ. we can approximate P(A) using a simple
function approximation to σΛ(λ), which requires only calculations of volumes in Λ

The constructive proof below parallels Algorithm 1 for approximating the probability of a
measurable set A ⊂ Λ.

Proof. For λ restricted between any two contours induced by a subinterval of a partition of
as in Algorithm 1, q(λ) is approximately a uniformly distributed random variable. Suppose

that  is a partition of such that q0 < q1 < … < qN, and if Ej = [qj−1, qj ], then = ∪jEj.
Let Aj = {λ | q(λ) ∈ Ej}. We assume that Λ = ∪jAj . The probability of Aj is given by

We can compute this probability because of the 1-1 correspondence between the contours
and output values, i.e., P(Aj) = P(Ej) = ∫Ej ρ (q) dμ (q). Therefore, we have a simple
function approximation to σΛ(λ) given by

Algorithm 1

Approximate Parameter Probability Distribution Method

Fix simple function approximation, ρ�
(M )(q), to ρ (q) that induces a partition ∪i=1

N (M ) qi−1, qi) of where for

each i = 1, …, N(M), ρ�
(M )(q) is constant on each subinterval [qi−1, qi)

∪i=1
N (M ) qi−1, qi) induces a partition of Λ by generalized contours and {Aj} j=1

N (M ) denotes this partition

Let Pj denote probability of Aj given by ∫ q j−1,qj)
ρ�

(M )(d)dμ�(q)
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Partition Λ with small cells {bi}i=1
M ′

for i = 1, … M′ do

   for j = 1, …,N(M) do

    Calculate ratio of volume of bi ∩ Aj to volume of Aj, store in matrix Vij

   end for

   Set P(bi) equal to ∑ j=1
N (M ) V ijPj

end for

Given event A ⊂ Λ, estimate P(A) using

• inner sums, i.e., sum of P(bi) for all i ∈ I ⊂ {1, …,M′} such that bi ⊂ A,

• outer sums, i.e., sum of P(bi) for all i ∈ I ⊂ {1, …,M′} such that bi ∩ A ≠ ∅,

• average of inner and outer sums, or

•
∫A σΛ,M′ (λ) dμΛ(λ), where σΛ,M ′(λ) = ∑i=1

M ′ P(bi)1bi
(λ).

Given event A ⊂ Λ, we use the law of total probability to write

Using the above simple function approximation to the parameter density, we have

Hence, the probability P(λ ∈ A| q(λ) ∈ Ej) = P(A|Aj) can be calculated from the volume
measure on model space since it depends only on measurable sets in Λ if we use the
approximation q(λ) ~ (Ej) for λ ∈ Aj. The value is the ratio of volume of A ∩ Aj to the
volume of Aj. Since the density on data space is a nonnegative integrable function, there

exists a sequence of simple functions  with

and IM,k = [(k − 1)/2M, k/2M]. We first observe that the partition {IM,k} induces a partition

{EM,k} of  Also, we observe that  in L1 as M → ∞ by the monotone
convergence theorem, and for any measurable set E ⊂ 
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Thus, we can approximate the value of P(A|Aj) by the ratio of volume of A ∩ Aj to the
volume of Aj obtained from the volume measure on model space if the induced partitions
{Aj} come from a sufficiently fine partition {Ej} of data space so that the distribution of
q(λ) for λ ∈ Aj is approximated by Ej.

Since P(A) = sup{P(K) : K ⊂ A, K compact} and P(A) =inf {P(U) : A⊂U, U open}, we can
estimate P(A) using the inner and outer sums described by Algorithm 1.

Remark 3.4. If the set A has not (yet) been specified, we may still carry out the first part of
Algorithm 1 to obtain a discretized approximation of the measure P on model space.

Remark 3.5. The set of cells  in Algorithm 1 is introduced purely for computational

purposes and is not necessary to the approximation of P(A). We choose  in order to
approximate P(A), for any event A ⊂ Λ, without carrying out the calculations in the nested
loops of Algorithm 1 for each new event. If we are interested only in one event, A ⊂ Λ, then

we might skip the step of partitioning Λ by  and replace the step in the nested loop by
the following: Calculate ratio of volume of A ∩ Aj to volume of Aj, store in vector Vj. We

may then approximate .

Remark 3.6. Note that as we refine the partition {Ej} on the data space, which in turn refines
the partition {Aj} on model space, we should consider refining the mesh that defines the
partition {bi} on model space. The reason is that we assign a probability P(bi) to each cell bi
that in essence reapproximates the simple function approximation,

by the new simple function

If the partition {bi} remains fixed as the approximation of ρ (q) by simple functions is
refined by the partition {Ej}, then the representation of σΛ(λ) as a simple function
converges with respect to the fixed {bi}. When choosing {bi}, we should consider that a cell
bi might be large relative to the Aj that it intersects, i.e., bi might intersect many Aj. When
this is the case, estimating the probability over bi by a constant P(bi) might not be an
appropriate approximation. In general, it is not computationally demanding to estimate an
appropriate size of the bi.

Observations on simple function approximations: The use of simple function
approximations of a probability density is sufficiently unusual in the context of stochastic
analysis of differential equations as to justify comment. Simple function approximations
form the basis for classic measure theory because they yield several benefits, including

• Simple function approximations are widely applicable under minimal assumptions
on the density being approximated. As the examples below suggest, probability
densities solving inverse problems appear to be highly complex in general.
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• The convergence analysis for simple function approximations is also widely
applicable. This contrasts with sampling techniques such as Markov chain Monte
Carlo methods whose convergence properties are stochastic and can be highly
sensitive to properties of the problem.

Though we have not exploited the fact in this paper, simple function approximations also
offer significant benefits for stochastic sensitivity analysis of differential equations [12, 13,
9, 10, 7]. In particular, combining a simple function approximation with sensitivity
derivatives of a quantity of interest with respect to parameters provides both a natural
dimension reduction mechanism and the basis for adaptive sampling.

Of course, a significant issue with simple function approximations is the nominal
dependence of accuracy on the dimension of the parameter space. This may be a
consequence of the common approach of using hyper-rectangular cell discretizations of the
underlying space combined with the unfortunate growth in diagonal dimension of hyper-
rectangles as dimension increases, though we report on some inconclusive results of using
radial basis functions in [12]. In our experience, the effects of dimension are nominal up to
dimensions of 8–10, and we have effectively used the piecewise constant approximations to
dimensions of order 15–18. We note that this is effective dimension. By exploiting
dimension reduction, the nominal dimension of the parameter space may be higher.

4. Examples
We apply the new method to solve inverse problems associated with a variety of maps. We
first consider three constrained geometric optimization problems. We then discuss examples
involving a nonlinear ordinary differential equation and a nonlinear elliptic partial
differential equation with two parameters. Finally, we discuss the determination of regions
with high probability.

In the following examples, we have chosen the uniform Lebesgue measure for the parameter
volume measure and often impose a normal distribution on the output quantity of interest.
The first choice is made because it is commonly the (implicit) default, e.g., in Bayesian
inference. The imposition of a normal distribution on the output is also a common choice. In
our examples, it serves the purpose of illustrating the complex nature of the inverse
probability measure that results even when a normal distribution has been imposed on the
output. However, we emphasize that neither of these choices are important in terms of
implementing the numerical solution method, which is readily applied for any distributions.

4.1. A 2-dimensional nonlinear function
We consider the map determined implicitly as the solution of the finite-dimensional
nonlinear system of equations given by

where λ1 and λ2 are the parameters. Geometrically, solutions x = (x1, x2)T to the system
represent intersections of the hyperbola and ellipse. The quantity of interest is the second
component of the solution in the first-quadrant, i.e., q(λ) = q(x(λ)) = x2=〈x, ψ〉, where ψ =
(0, 1)T. According to (3.3), the adjoint problem is
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where μ = (μ1, μ2)T and y = (y1, y2)T are the reference parameter and reference solution for
the forward problem.

In order to create an interesting example, we choose

 based on a sensitivity analysis of the forward
problem in [23]. We use six-uniformly spaced mesh points in both the λ1 and λ2 directions

of Λ to create cells  that partition Λ. We use the centroid of each cell as the reference
parameter μi = (μ1, i, μ2,i)T in that cell and solve the forward problem to obtain reference
solutions yi = (y1,i, y2,i)T at these points, and then solve for the generalized Green’s vector φi
= (φ1,i, φ2,i)T at the reference point (μi, yi). According to (3.5), we obtain a global piecewise-
linear approximation q̂ to q defined as

We assume that the output data is a random variable with normal distribution on the data
space defined by q̂(Λ) (Figure 4.1). We assume μΛ is the Lebesgue measure. We implement
Algorithm 1 to calculate P(bi) for small cells for each fine partition of Λ and determine the
probabilities of events A ⊂ Λ. We plot the results in Figure 4.2.

4.1.1. A three-parameter geometric constrained optimization problem—The
map to be inverted is determined by minimizing the distance to the point (1,−1, 1) among
points constrained to lie on the surface g = 4, where

Geometrically, the parameters determine the shape of the ellipsoid that defines the
constraint. Using the method of Lagrange multipliers we set up a system of nonlinear
equations with four state variables and three parameters. We take the quantity of interest as
the first state variable, which geometrically is interpreted as the first spatial coordinate in the
solution to the constrained minimization problem. We set Λ = [.35, .65] × [.28, .52] × [.42, .
78] and construct a piecewise-linear approximation using 125 points in Λ. We assume a
normal distribution on q(λ) and taking the underlying parameter volume measure μΛ to be a
normalized Lebesgue measure. We use 3375 small cells {Bi} in Algorithm 1. We plot the
probabilities at the midpoint of each cell with the color of the point determined by the
probability of the small cell in Figures 4.3–4.4.

4.1.2. A four-parameter geometric constrained optimization problem—The map
to be inverted is determined by minimizing the distance to the point (5, 5, 5) among points
constrained to lie on the intersection of the surfaces g = 1 and h = 0, where
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Geometrically, g = 1 defines a hyperboloid of one sheet and h = 0 defines a plane through
the origin, and the intersection of the two constraints is a closed curve. Using the method of
Lagrange multipliers we set up a system of nonlinear equations with five state variables and
four parameters. We take the quantity of interest as the first state variable, which
geometrically is interpreted as the first spatial coordinate in the solution to the constrained
minimization problem. We set Λ = [1.4, 2.6] × [.7, 1.3] × [1.4, 2.6] × [.35, .65] and
construct a piecewise-linear approximation using 750 points in Λ. We assume a normal
distribution on q(λ) and take μΛ to be a normalized Lebesgue measure. We use 60750 small
cells {bi} in Algorithm 1. Displaying a 4-dimensional distribution is problematic. We plot
“snapshots” of the approximated probability density for three fixed λ4 values in Figure 4.5.

4.1.3. A two-parameter ordinary differential equation—We now study the nonlinear
ordinary differential equation

The linear functionals (quantities of interest, q(λ)) we study take the form

and we take the quantity of interest to be the average value of x(t) over the time interval [0,
2]. Thus, we set ψ(t) = 1[0,2](t)/2, and the generalized Green’s function φ(t) solves the
adjoint problem,

where A(t) := f′ (y(t; μ)) is the Jacobian of f = λ1 sin(λ2x) evaluated at y(t; μ), μ is a
reference parameter, and y(t; μ) is the solution to (4.1.3) for this reference parameter.
Compare this to (3.3). Using substitution, integration by parts, and Taylor’s theorem, we
arrive at a linear approximation to q(λ) for parameters near μ, and analogous to the finite
dimensional case, we obtain a global piecewise-linear approximation to q(λ) over Λ = [.8,
1.2] × [.1, π − .1] shown in Figure 4.6.

Remark 4.1. There can be substantial error in the reference solutions and gradients used
when applying the method to differential equations whose solutions must be approximated
numerically, and we study the effect of these errors in the second paper [4].

4.1.4. A two-parameter elliptic partial differential equation—We now study a
nonlinear elliptic partial differential equation

The quantities of interest, q(λ), take the form
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and we take the quantity of interest to be the average value of u over Ω. Thus, we set ψ(x, y)
= 1, and the generalized Green’s function φ(t) solves the adjoint problem,

where A := f′ (w(x, y; μ); μ) is the Jacobian of f = λ1 exp(λ2u) evaluated at w(x, y; μ), μ is
a reference parameter, and w(x, y; μ) is the solution to (4.1.4) for this reference parameter.
Using substitution, the weak form of (4.1.4), and Taylor’s theorem, we arrive at a linear
approximation to q(λ) for parameters near μ, and just as with the previous examples, we
obtain a global piecewise-linear approximation to q(λ) over Λ = [.95, 1.05]×[−.1, .1] using
Algorithm 1. We show the results in Figure 4.7.

4.2. Determining regions of high probability
The new method can be applied to find regions of high probability. Consider q(λ) = λ1 +
λ2, where Λ = [0, 1] × [0, 1]. Figure 4.8 shows the generalized contours for 500 samples of
q(λ) taken from a N(0, 2/25) distribution along with the TP and the intersections of contours
on the TP. Where the contours intersect the TP most densely corresponds to a region of high
probability in the space of contours.

We can locate regions of high probability by sorting through the probability of the fine cells
{bi}. We can rank order these cells and determine any cells of high probability. We can also
determine regions of neighboring cells that all have relatively high probability. We illustrate
using the four-parameter geometric constrained optimization problem in section 4.1.2. In
Table 1, we list the ten small cells with highest probability. If we let the events {bi} become
small, under a smoothness assumption, the probabilities of these events are related to the
maximum-likelihood estimate.

5. Conclusion
We consider the probabilistic inverse sensitivity analysis problem: Given a specified
uncertainty in the output of a map, determine variations in the parameters that produce the
observed uncertainty. We formulate this inverse problem using the law of total probability.
We describe and analyze a method for computing the approximate probability density that
solves the inverse problem and does not require random sampling. Our approach breaks the
solution down into two stages:

1. Construct an approximate representation of the set-valued inverse solution of the
ill-posed deterministic inverse problem.

2. Approximate the density on the parameter space that corresponds to the set-valued
inverse and the observed output density using a simple function representation.

We illustrate the method and several features using a variety of examples.

In [4] we present numerical analysis of discretization error, e.g., in evaluating the model by
numerical solution and in finite sampling. In [5], we discuss the problem of dealing with
multiple quantities of interest, which has application to data assimilation and “cascaded”
uncertainty in operator decomposition solution of multiphysics problems.
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Fig. 2.1.
Left: The N(0, 2/25) distribution imposed on the output λ1 + λ2. Right: The joint
distribution of two independent N(0, 1/25) parameters λ1 and λ2. Summing these variables
is one way to compute the imposed normal on the output quantity. Figures 2.2–2.3 show
alternatives.
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Fig. 2.2.
The joint distributions of parameters (λ1, λ2) sampled with respect to the density ρΛ(λ) and
the corresponding volume measure presented in pairs of plots. Left two plots: The volume
measure is uniform Lebesgue on Λ. Right two plots: The volume measure is uniform
Lebesgue a set with three distinct parts.
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Fig. 2.3.
The joint distributions of parameters (λ1, λ2) sampled with respect to the density ρΛ(λ) and
the corresponding volume measure presented in pairs of plots. Left two plots: The volume
measure is uniform Lebesgue on the boundary. Right two plots: The volume measure is
uniform Lebesgue on a nonconvex interior set.
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Fig. 3.1.
Left: Each observation value corresponds to a unique contour curve. Right: On the
horizontal plane, we show a transverse parameterization. Each point on the transverse
parameterization corresponds to a unique contour curve, so the transverse parameterization
acts as an index for the space of contour curves. There is a unique map from the points in the
interval containing the observed output values to the points on the transverse
parameterization.
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Fig. 3.2.
Left: We show a probability distribution imposed on the output values. A sample of output
values drawn from this distribution corresponds to a unique sample of contour curves. Right:
Plotted is a sample of contour lines in parameter space corresponding to a specified
distribution on the output observation values along with three events. We specify the
Lebesgue measure as the parameter volume measure. Event B has relatively low probability
because while it has relatively large area, the probability of the contours is relatively low
(visible because the density is sparse). Event A has intermediate probability because while
the area of event A is relatively small, A contains contours with relatively high probability
(which is visible because of the dense sample of contours). The probability of event C is
largest because it contains the same high probability contours as A but has larger area.
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Fig. 3.3.
Contours of q̂ using 5×5 cells (top left), 10×10 cells (top right), 25×25 cells (bottom left),
and 50 × 50 cells (bottom right). The TP is created using the algorithm outlined in the proof
of its existence and is denoted by the circle-dotted and plus-dotted lines. The circle-dotted
line is constructed from the maximum of q(λ) and follows the negative direction of the
gradient of q(λ), and the plus-dotted line is constructed from the minimum of q(λ) and
follows the direction of the gradient.
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Fig. 3.4.
Contours of q̂ using 7×7 cells (top left), 10×10 cells (top right), 25×25 cells (bottom left),
and 50 × 50 cells (bottom right). The TP is created using the algorithm outlined in the proof
of its existence and is denoted by the square-dotted and circle-dotted lines. The square-
dotted line is constructed from the maximum of q(λ) and follows the negative direction of
the gradient of q(λ), and the circle-dotted line is constructed from the minimum of q(λ) and
follows the direction of the gradient.
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Fig. 4.1.
Left: Uncertainty of output is modeled as a random variable with a normal distribution.
Right: A plot of the map q : Λ → ℝ.
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Fig. 4.2.
Illustration of an application of Algorithm 1. Left: We determine which contours are
contained in an event A ⊂ Λ and how much of each contour is inside the event. Right: We
estimate the probabilities of small cells contained in the event and use an inner and outer
estimate to obtain an approximation of the probability of the event A.
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Fig. 4.3.
We use 15×15×15 small cells in Algorithm 1. We plot the approximate distribution from
several angles. Left: A 3-dimensional view. Right: The same 3-dimensional view rotated 90
degrees clockwise.
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Fig. 4.4.
We use 15×15×15 small cells in Algorithm 1. We plot the approximate distribution from
several angles. Left: The original 3-dimensional view rotated 180 degrees clockwise. Right:
The original 3-dimensional view rotated 270 degrees clockwise.
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Fig. 4.5.
We use 15 × 15 × 15 × 18 small cells in Algorithm 1. We plot “snapshots” of the
approximate probability distribution for three values of the fourth parameter. Left: The
fourth parameter is set at its minimum value. Middle: The fourth parameter is set at its
midpoint value. Right: The fourth parameter is set at its maximum value. Notice how the
probabilities vary in space as we vary the fourth parameter.
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Fig. 4.6.
Left: The global piecewise-linear approximation to q(λ) obtained using Algorithm 1. The
cells in Λ illustrate the coarse discretization of this space for the forward problem of
obtaining a piecewise-linear approximation and the circles in each cell indicate the reference
parameter used to linearize q(λ) in that cell. We assume a normal distribution for q(λ) and
use a grid of 40 × 40 small cells.
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Fig. 4.7.
Left: Global piecewise-linear approximation to q(λ) obtained using Algorithm 1. We used a
11×13 grid of coarse cells to discretize Λ and used the midpoint of each cell as the reference
parameter in that cell. We assume a normal distribution of q(λ) and we use a 33×39 grid of
small cells.
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Fig. 4.8.
Left: Generalized contours from 500 samples of q(λ) = λ1 + λ2 generated from a N(0, 2/25)
distribution. Middle: The TP intersects each contour once and goes from the minimum of
q(λ) in the lower left corner to the maximum of q(λ) in the upper-right corner of the plot.
Right: Intersections of contours on the TP are marked with a star and can be used to index
the inverses and determine a unique distribution of the contours on the TP using any
consistent indexing scheme.

Breidt et al. Page 35

SIAM J Numer Anal. Author manuscript; available in PMC 2013 April 29.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Breidt et al. Page 36

Table 1

We indicate the location of the ten cells with the highest probabilities for the example in section 4.1.2. The
first column gives the probability and the second column gives the dimensions and location of the cells. There
are clearly two distinct regions for events with relatively high probability. In general, one can use this
information to determine where the largest regions of highest probability are located in a high-dimensional
parameter space.

P(bi) order 10−4 bi location

0.600381927 [2.44, 2.52] × [1.22, 1.26] × [2.04, 2.12] × [0.4, 0.4167]

0.600446977 [2.36, 2.44] × [1.06, 1.1] × [1.96, 2.04] × [0.4333, 0.45]

0.600462420 [2.44, 2.52] × [1.18, 1.22] × [2.04, 2.12] × [0.4333, 0.45]

0.600465732 [2.36, 2.44] × [0.98, 1.02] × [2.04, 2.12] × [0.4167, 0.4333]

0.600470136 [2.36, 2.44] × [1.06, 1.1] × [1.96, 2.04] × [0.4167, 0.4333]

0.600474821 [2.36, 2.44] × [1.26, 1.3] × [1.96, 2.04] × [0.4167, 0.4333]

0.600501752 [2.36, 2.44] × [0.98, 1.02] × [2.04, 2.12] × [0.4333, 0.45]

0.600463048 [1.4, 1.48] × [1.18, 1.22] × [1.64, 1.72] × [0.3833, 0.4]

0.600464252 [1.4, 1.48] × [1.18, 1.22] × [1.64, 1.72] × [0.35, 0.3667]

0.600468545 [1.4, 1.48] × [1.18, 1.22] × [1.64, 1.72] × [0.3667, 0.3833]
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