
ar
X

iv
:2

11
1.

01
75

9v
1

 [
cs

.D
S]

 2
 N

ov
 2

02
1

Truly Low-Space Element Distinctness and Subset Sum

via Pseudorandom Hash Functions∗

Lijie Chen
MIT

lijieche@mit.edu

Ce Jin
MIT

cejin@mit.edu

R. Ryan Williams
MIT

rrw@mit.edu

Hongxun Wu
Tsinghua University

wuhx18@mails.tsinghua.edu.cn

November 3, 2021

Abstract

We consider low-space algorithms for the classic Element Distinctness problem: given an array

of n input integers with O(log n) bit-length, decide whether or not all elements are pairwise distinct.

Beame, Clifford, and Machmouchi [FOCS 2013] gave an Õ(n1.5)-time randomized algorithm for El-

ement Distinctness using only O(log n) bits of working space. However, their algorithm assumes a

random oracle (in particular, read-only random access to polynomially many random bits), and it was

asked as an open question whether this assumption can be removed.

In this paper, we positively answer this question by giving an Õ(n1.5)-time randomized algorithm

using O(log3 n log logn) bits of space, with one-way access to random bits. As a corollary, we also

obtain a poly(n)-space O∗(20.86n)-time randomized algorithm for the Subset Sum problem, removing

the random oracles required in the algorithm of Bansal, Garg, Nederlof, and Vyas [STOC 2017].

The main technique underlying our results is a pseudorandom hash family based on iterative restric-

tions, which can fool the cycle-finding procedure in the algorithms of Beame et al. and Bansal et al.

∗Supported by NSF CCF-1909429 and NSF CCF-2127597. Lijie Chen is also supported by an IBM Fellowship.

http://arxiv.org/abs/2111.01759v1

Contents

1 Introduction 1

1.1 Our Results . 1

1.2 Related Work . 3

1.3 Open Questions . 4

1.4 Organization . 5

2 Overview of Techniques 5

2.1 Review of the BCM Algorithm . 5

2.2 Overcoming the Ω(
√
n)-wise Independence Barrier . 6

2.3 An Alternative Analysis of the BCM Algorithm . 8

2.4 Pseudorandom Hash Functions, the Dependency Tree, and the Indexing Scheme 10

2.5 A Coupling-based Approach Based on the Dependency Tree 11

2.6 Designing the Extended Random Walk . 12

3 Preliminaries 15

4 Properties of the Pseudorandom Family and their Implications 16

4.1 Construction of the Pseudorandom Family . 16

4.2 Proofs of the Main Results . 17

5 The Extended Walk and the Dependency Tree 19

5.1 The Extended Walk . 19

5.2 Dependency Tree and Node Indexing . 25

5.3 Existence Condition of a Root-to-node Path . 26

6 Warm Up Analysis for One Target Vertex 28

6.1 Notation . 29

6.2 Proof of Lemma 4.2 . 30

6.3 Counting All Occurrences of a Vertex . 32

6.4 Counting All Bad Occurrences of a Vertex . 36

6.5 Proof of Lemma 6.1 . 53

7 The Case of Two Target Vertices 53

7.1 The Relaxed Extended Walk Walk
~k1,~k2

ℓ,m,n,a . 54

7.2 Proof of Lemma 4.3 . 61

7.3 Counting Total Occurrences . 64

7.4 Upper Bounding the Bad Occurrences . 67

A Proof of Lemma 7.18 75

A.1 Useful Facts about the Relaxed Extended Walk walk
~k1,~k2 75

A.2 Some Structure Lemmas . 78

A.3 Proof of Lemma 7.18 . 87

B Proof of Lemma 7.26 90

1 Introduction

What problems can be solved simultaneously in low time and low space? When we restrict the space usage

for solving a problem, how does this affect the possible running time of algorithms? The area of time-space

tradeoffs has studied such questions for decades, beginning with Cobham [Cob66]. A central problem studied

in time-space tradeoffs is Element Distinctness:

Element Distinctness: Given an array of n positive integers a1, a2, . . . , an with ai ≤ poly(n)
for all i, decide whether all ai’s are distinct.

The problem is extremely basic and useful: thinking of the array as describing a function from [n] to

[poly(n)], we are asking if the function is injective. The obvious algorithm that checks all pairs of elements

takes O(n2) time and uses O(log n) bits of workspace. If we allow Õ(n) bits of workspace, Element Dis-

tinctness can be solved in near-linear time by sorting the input array. Applying low-space sorting algorithms

directly [MP80, PR98], one can interpolate between these two algorithms and solve Element Distinctness

in time T (n) and space S(n) for all T (n), S(n) such that T (n)·S(n) ≤ Õ(n2). For comparison-based algo-

rithms, in which the only operation on elements allowed are pairwise comparisons, this time-space tradeoff

was shown to be near-optimal in the 1980s [BFM+87, Yao88].

In 2013, Beame, Clifford, and Machmouchi [BCM13] surprisingly bypassed this longstanding lower

bound, by giving a non-comparison-based algorithm for Element Distinctness with the time-space tradeoff

T (n) ≤ Õ(n3/2/S(n)1/2). In particular, their algorithm can run in Õ(n1.5) time using only O(log n) bits

of space. For brevity, we call this the BCM algorithm. A major disadvantage of the BCM algorithm is that

it requires a random oracle: read-only random access to polynomially many uniform random bits (which do

not count towards the space complexity). In the BCM algorithm, these random bits are used to specify the

outgoing edges of a random 1-out digraph, on which Floyd’s cycle-finding algorithm [Knu69] is performed

to look for a pair of equal elements. Due to complicated dependencies on the paths in this random digraph,

it looks difficult to reduce the number of random bits using pseudorandomness. It was asked as an open

question [BCM13, BGNV18] whether the BCM algorithm can be modified to work with only “one-way

access” to random bits, where we may toss up to O(t) coins in time t, but cannot randomly access arbitrary

coins tossed in the past. In particular, [BCM13] stated it “seems plausible” that the random oracle in the

BCM algorithm could be replaced by some family of poly log(n)-wise independent hash functions in the

analysis.

1.1 Our Results

Our main result in this paper proves that one-way access to randomness is sufficient for implementing the

BCM algorithm. We design a pseudorandom hash family with O(log3 n log log n)-bit seed length based

on iterative restrictions of O(log n log log n)-wise independent generators, and show that the analysis of the

BCM algorithm still works when the random oracle is replaced by our pseudorandom generator. In fact, our

proofs use a careful coupling-based analysis of an infinite tree generated from our pseudorandom generator.

Hence we have the following result.

Theorem 1.1. Element Distinctness can be decided by a Monte Carlo algorithm in Õ(n1.5) time, with

O(log3 n log log n) bits of workspace and no random oracle. Moreover, when there is a colliding pair, the

algorithm reports one.

A closely related problem is the List Disjointness problem (which is equivalent to the 2-Sum problem).

1

List Disjointness: Given two integer arrays (a1, a2, . . . , an) and (b1, b2, . . . , bn) with entries

in [poly(n)], decide whether there are i, j ∈ [n] such that ai = bj .

This problem is harder than Element Distinctness, since the latter problem can be easily reduced to

the former with only O(log n)-factor overhead. The BCM algorithm for Element Distinctness does not

straightforwardly extend to List Disjointness, and it is still open whether List Disjointness can be solved

in no(1)-space and n2−Ω(1) time, even allowing random oracles. Recently, Bansal, Garg, Nederlof, and

Vyas [BGNV18] showed that a variant of the BCM algorithm can be applied to solve List Disjointness

with an improved running time, provided that the input arrays have small second frequency moment (i.e.,

there are few collision pairs within each arrays). Formally, define

F2(a) =

n∑

i=1

n∑

j=1

1[ai = aj],

and assume an upper bound p on F2(a)+F2(b) is known. Then their algorithm solves the List Disjointness

problem in Õ(n
√
p/s) time and O(s log n) space (with random oracle), for any s ≤ n2/p. In this paper, we

show that our pseudorandom family designed for the BCM algorithm also applies to this setting for s = 1.

Theorem 1.2. There is a Monte Carlo algorithm for List Disjointness such that, given input arrays a =
(a1, . . . , an), b = (b1, . . . , bn) and an upper bound p ≥ F2(a) + F2(b), runs in Õ(n

√
p) time and uses

O(log3 n log log n) bits of workspace and no random oracle.

Combining the above List Disjointness algorithm with additive-combinatorial techniques, Bansal et al.

gave a poly(n)-spaceO∗(20.86n)-time algorithm for Subset Sum: Given positive input integers a1, a2 . . . , an
and a target integer t, find a subset of the input integers that sums to exactly t. They also solved the harder

Knapsack problem with essentially the same time and space complexity. Replacing their List Disjoint-

ness subroutine with our Theorem 1.2, we immediately remove the assumption of random oracles in these

algorithms as well.

Theorem 1.3 (Follows from Theorem 1.2 and [BGNV18]). Subset Sum and Knapsack can be solved by a

Monte Carlo algorithm in O∗(20.86n) time, with O(poly(n)) working space and no random oracle.

In our Element Distinctness algorithm (Theorem 1.1), the 1.5 exponent in the time complexity seems

hard to improve using current techniques. However, it is also difficult to prove a matching lower bound for

such a decision problem. Hence we are motivated to look at a closely related multi-output problem for which

our techniques still apply, and for which stronger time-space lower bounds are known. We consider the Set

Intersection problem:

Set Intersection: Given two integer sets A,B represented as two (not necessarily sorted)

input arrays (a1, . . . , an), (b1, . . . , bn) which are promised to not contain duplicates, print all

the elements in their intersection A ∩B.

Patt-Shamir and Peleg [PP93] showed that any poly log(n)-space algorithm for this problem must have time

complexity Ω̃(n1.5), even if the printed elements can be in any order, and each element in A ∩B is allowed

to be printed multiple times. (The recent work of Dinur [Din20] also implies the same lower bound.) We

observe that our techniques imply a nearly-matching time upper bound for this problem, up to polylogarithmic

factors.

Theorem 1.4 (Set Intersection). There is a randomized algorithm that, given input arraysA = (a1, . . . , an), B =
(b1, . . . , bn)whereA andB are both YES instances of Element Distinctness, prints all elements in {a1, . . . , an}∩
{b1, . . . , bn} in Õ(n1.5) time, with O(log3 n log log n) bits of workspace and no random oracle. The algo-

rithm prints elements in no particular order, and the same element may be printed multiple times.

2

1.2 Related Work

In the following, we discuss several related works from various areas.

Element Distinctness and Collision Finding. In cryptography there has been intensive study on find-

ing collisions in random-like functions using attacks based on the birthday paradox. Floyd’s cycle-finding

algorithm [Knu69, Pol75] has been used in memoryless birthday attacks [vOW99], which can be seen as low-

space algorithms for Element Distinctness (or List Disjointness) with random-like input. In contrast, we

consider worst-case input and do not rely on any heuristic assumptions.

Ambainis [Amb07] gave a quantum algorithm for Element Distinctness (as well as List Disjointness)

with optimal O(n2/3) query complexity [AS04]. The space complexity of Ambainis’ algorithm is Õ(n2/3).
In the poly log(n)-space setting, there are no known quantum algorithms that can significantly beat the simple

O(n)-query algorithm obtainable from Grover Search [HM21].

Time-Space Tradeoff Lower Bounds. Borodin and Cook [BC82] proved nearly-optimal time-space trade-

off lower bounds for the sorting problem against (multi-way) branching programs. Their techniques were

extended to prove time-space lower bounds for many other multi-output functions [Yes84, Abr87, Abr91,

Bea91, MNT93, PP93]. Recently, McKay and Williams [MW19] generalized techniques of Beame [Bea91]

to show quadratic time-space product lower bounds against branching programs armed with random oracles.

However, these techniques cannot prove nontrivial time-space lower bounds for decision problems such as

Element Distinctness. For decision problems, the current best known time-space lower bound states that

SAT cannot be solved in n1.801 time and no(1) space ([Wil08, BW15], building on [FLvMV05]). For El-

ement Distinctness, Ajtai [Ajt05] proved that for every k ≥ 1, there exists an ε > 0 such that it cannot

be solved by kn-time εn-space algorithms in the RAM model. Other time-space tradeoff lower bounds for

decision problems are proved in [Kar86, Ajt02, BV02, BSSV03].

Random oracles. In the usual notion of randomized space-bounded computation, the outcomes of previous

coin tosses cannot be recalled unless they are stored in working memory: this is typically called one-way

access to randomness. The stronger model where all previous coin tosses can be recalled (i.e., two-way

access to randomness) has also been studied in the computational complexity literature. For example, Nisan

[Nis93] showed that bounded two-sided error log-space machines with one-way access to randomness can

be simulated by zero-error randomized log-space machines with two-way access to randomness (BPL ⊆
2wayZPL).

In the streaming literature, it is common to first design an streaming algorithm assuming access to a ran-

dom oracle, then to use pseudorandom generators to remove this assumption, sometimes incurring a blowup

in space complexity. Nisan’s pseudorandom generator [Nis92] offers a generic way to derandomize many

streaming algorithms (e.g., [Ind06]). In our case, it is entirely unclear whether any off-the-shelf pseudoran-

dom generators (such as [Nis92] or [FK18]) can be directly applied to replace the random oracle, since the

queries made to the random oracle by the cycle detection algorithm are highly adaptive, dependent on the

outcomes of previous queries.

(Pseudo-)random graphs The Element Distinctness algorithm of Beame et al. [BCM13] (and related

work) uses versions of the following basic fact about random mappings (a.k.a. random 1-out digraphs): start-

ing from any vertex, the expected number of reachable vertices is Θ(
√
n). The statistical properties (such

as cycle lengths and component sizes) of random mappings have been extensively studied, see e.g., [FK16,

3

Chapter 16] and the references therein. However, most of these studies crucially assume the random graphs

are generated with full independence, and generally do not imply useful results about pseudorandomly gen-

erated graphs. One exception is the work of Alon and Nussboim [AN08] on k-wise independent Erdős-Rényi

graphs, but it is very different from our setting of 1-out digraphs.

Subset Sum and Related Problems. The best known time complexity for Subset Sum is O∗(2n/2) based

on a meet-in-middle approach, first given by Horowitz and Sahni [HS74] in 1974. The space complexity

of this algorithm was later improved from O∗(2n/2) to O∗(2n/4) by Schroeppel and Shamir [SS81]. Very

recently, Nederlof and Węgrzycki gave an O∗(2n/2)-time O∗(20.249999n)-space algorithm [NW21]. This al-

gorithm (as well as theO∗(20.86n)-time poly(n)-space algorithm [BGNV18]) used the techniques developed

in [AKKN15, AKKN16], which were inspired by advances on average-case Subset Sum algorithms [HJ10].

The low-space List Disjointness algorithm of [BGNV18] also has implications for average-case k-Sum

algorithms in low space [BGNV18, GLP18]. See also [Wan14, LWWW16].

There is also a long line of research on low-space pseudopolynomial-time algorithms (i.e., with run-

ning time poly(n, t)) for Subset Sum [LN10, EJT10, Kan10, Bri17, JVW21], culminating in an Õ(nt)-time

O(log n log log n+ log t)-space algorithm [JVW21].

1.3 Open Questions

We conclude by discussing several interesting questions left open by our work.

Time-space Tradeoffs? Beame et al. [BCM13] (and Bansal et al. [BGNV18]) not only gave efficient log-

space algorithms for Element Distinctness (and List Disjointness), but also provided a smooth time-space

trade-off interpolating between the log-space algorithms and the linear-space algorithms. These algorithms,

when given S memory, perform the cycle-finding procedure from S starting vertices, and use a redirection

idea (which requires S space to store the redirected edges) to nicely handle the collisions among all these

S walks. Our analysis of the pseudorandom family only considers the case with a single starting vertex,

corresponding to the poly log(n)-space algorithm. It would be interesting to see whether the analysis can

be generalized to the case of multiple starting vertices, and hence remove the random oracle assumption for

these time-space trade-off algorithms as well.

Shorter Seed Length? Our algorithm needs O(log3 n log log n) bits of space to store the “seed”: the

description of the pseudorandom mapping. An interesting question is whether we can reduce this seed length

to O(log n). It seems plausible that our k-wise generators could be replaced by almost k-wise generators

(e.g., [AGHP90]) which have shorter seed length. However, to get O(log n) seed length, one might need

to significantly modify our O(log n)-level iterative restriction approach, which already incurs an O(log n)
multiplicative factor.

Faster List Disjointness Algorithm? We reiterate the question raised by Bansal et al. [BGNV18]: can

List Disjointness be decided in n2−Ω(1) time and no(1) space, even allowing random oracles? In hard

instances for the current algorithms, there is only one “real” collision between the two arrays, but many

“pseudo-collisions” coming from the same array, and it is not clear how to filter these pseudo-collisions

without affecting the real collision. As to the question of whether List Disjointness does not have such an

algorithm, the current lower bound techniques do not seem to distinguish between Element Distinctness

and List Disjointness, and it is entirely unclear how to prove an n1.5+Ω(1)-time lower bound for no(1)-space

4

algorithms solving such decision problems (for example, the best known time lower bound for Element

Distinctness in the small-space setting is barely superlinear [Ajt05]).

1.4 Organization

In Section 2, we provide an overview of the intuitions behind the proof of Theorem 1.1. In Section 3 we give

useful definitions and notations. In Section 4 we give the construction of our pseudorandom family, formally

state the properties satisfied by the pseudorandom family, and show how to use them to obtain algorithms for

Element Distinctness and List Disjointness. Then in Section 5 we define the extended random walk and

dependency tree. Finally, in Sections 6 and 7 we prove that our pseudorandom family satisfies the desired

properties.

2 Overview of Techniques

Now we give an informal overview of the techniques behind the proof of Theorem 1.1.

Notation. Let a = (a1, . . . , an) ∈ [m]n be the input array to Element Distinctness. Throughout this

overview, we will assume our instances are NO instances (note the YES case is simply the absence of a

collision pair), and for simplicity we assume our NO instances have at most one collision pair au = av where

u 6= v. (It turns out that the hardest NO instances are those with exactly one collision pair.) We will always

use (u, v) to denote the unique collision pair in the NO instance that our algorithm needs to find.

Let Hfull be the collection of all functions from [m] to [n], and h ∈R Hfull be a truly random function

(implemented using a random oracle in the BCM algorithm). We define a 1-out digraph (i.e., each node has

at most one outgoing edge) Ga,h on the vertex set [n] with the edge set {(x, h(ax)) | x ∈ [n]} ⊆ [n]× [n].
For a collision pair (u, v), note that vertices u, v ∈ [n] point to the same vertex h(au) = h(av) since au = av.
We also use f∗a,h(s) to denote the set of all vertices reachable from s in the digraph Ga,h.

In the following, we often use bold letters (e.g., x and y) to denote random variables.

2.1 Review of the BCM Algorithm

It is instructive to first review the O(log n)-space Õ(n1.5)-time BCM algorithm for Element Distinctness,

and understand why it requires a random oracle.

The BCM algorithm. The BCM algorithm first chooses a random vertex s ∈ [n] and performs Floyd’s

cycle-finding algorithm on digraph Ga,h starting from s. This will successfully detect u, v if both u and v
are reachable from s, since u and v point to the same vertex. To bound the running time, the following two

properties are established, using a birthday-paradox-style argument.

E
h∈RHfull,s∈R[n]

[|f∗a,h(s)|] ≤ O(
√
n), (1)

Pr
h∈RHfull,s∈R[n]

[u, v ∈ f∗a,h(s)] ≥ Ω(1/n). (2)

Condition (2) says the probability that both u and v are reachable from s is at least Ω(1/n). Thus, running

Õ(n) independent trials of cycle detection (each using a different h) will lead to at least one trial with u
and v reachable, with high probability. Condition (1) says we expect O(

√
n) vertices to be reachable from

s. Together, these imply the running time can be bounded by Õ(n1.5). See Section 4 for a more formal

description.

5

Why the BCM algorithm needs a high degree of independence. Let us see why the birthday argument

mentioned above apparently needs the values of h to be fully independent (or close to that). For simplicity,

we consider how one proves that the probability of reaching v from a random starting vertex s is Θ(1/
√
n)

(the probability of reaching both u and v can be analyzed similarly). Let s0 = s, s1, s2, . . . be the vertices

on the walk starting from s. Conditioning on s0 = s0, s1 = s1, . . . , sk = sk, where as0 , as1 , . . . , ask
are distinct, the distribution of the next vertex sk+1 is uniform over [n], due to the full independence of

h. Once the elements are not distinct (a collision has occurred), the walk will follow the formed cycle

(which is completely determined by the walk history) and no new vertices will be reached. From there, a

standard birthday argument can be applied, yielding the desired Θ(1/
√
n) probability bound of reaching v,

and Θ(1/n) of reaching both u and v.

Note in the argument above we have to condition on all previous (k + 1) random choices, because

determining the value of sk+1 involves the (k + 1) compositions of the h function. Since k is typically as

large as
√
n, it appears that one needs at least Ω(

√
n)-wise independence of the values of h.

2.2 Overcoming the Ω(
√
n)-wise Independence Barrier

We first show how to overcome the need of Ω(
√
n)-wise independence with a toy pseudorandom hash func-

tion family Htoy based on a simple two-level iterative restriction. In particular, Htoy is constructed from

three Θ̃(n1/4)-wise independent hash functions, so that h ∈R Htoy can be sampled using Θ̃(n1/4) random

bits.

Drawing a sample h from the toy pseudorandom hash function family Htoy

• Set a parameter τ = Θ(n1/4 log n), and independently draw two τ -wise independent uniform

hash functions r1, r2 : [m] → [n]. Independently draw a τ -wise independent hash function

g1 : [m]→ {0, 1} such that for every x ∈ [m], g1(x) =

{
0 with probability n−1/4,

1 otherwise.

• Finally, h : [m]→ [n] is defined by h(x) =

{
r1(x) when g1(x) = 1,

r2(x) otherwise.

Now we instantiate the BCM algorithm with the hash function h ∈R Htoy. We can also view f∗a,h(s) as

the following random walk on the vertex set [n].

The random walk corresponding to f∗a,h(s) for h ∈R Htoy

f∗a,h(s) contains the vertices on the following random walk:

• w1 = s.
• For each integer j ≥ 2, set wj = h(awj−1) if there is no k ∈ {2, . . . , j − 1} satisfying

awk−1
= awj−1 ; otherwise the walk is terminated.

Since h ∈R Htoy, the following is an equivalent view of the walk above, in terms of g1, r1 and r2:

• Initially, s0 = s and w is empty.

• For each integer i ≥ 1:

6

1. We start the i-th subwalk from si−1 following the edges defined by x 7→ r1(ax).
2. Each time we visit a new vertex x (including si−1), suppose there are already j−1 vertices

in w. We set wj = x if there is no k ∈ {2, . . . , j − 1} satisfying awk−1
= awj−1 ;

otherwise we terminate the whole walk.

3. Then we check whether g1(ax) = 0. If this happens (with probability n−1/4), we stop

this subwalk, and let si = r2(ax). Namely, we follow the edge x 7→ r2(ax) for one step.

Then we move to Step (1) to continue with the (i+ 1)-th subwalk, starting from si.

Roughly speaking, when h ∈R Htoy, the random walk generated above alternates between subwalks of

typical lengthO(n1/4) defined by r1, and single steps defined by r2. In the below, we provide some intuition

about why such a random walk suffices for analyzing the BCM algorithm. For simplicity, we will make

a unrealistic assumption, which we will mark by underlining it. Later, we will explain how to remove the

assumption.

Intuition. We first argue that each subwalk has length less than τ/2 with high probability. Fix an integer

i ≥ 1, and si−1 = si−1 for some si−1 ∈ [n]. From si−1, suppose the subwalk has visited t + 1 vertices

x1, x2, . . . , xt+1 before termination. From the definition of our subwalk, we have g1(axk) = 1 for every

k ∈ [t]. Assuming the walk does not stop before si , the elements ax1 , . . . , axt+1 must be distinct. By the

τ -wise independence of g1, such an event happens with probability at most (1− n−1/4)−min(t,τ). Applying

a union bound over all possible si−1 ∈ [n], we can conclude that all subwalks have length at most τ/2, with

at probability at least

1− n(1− n−1/4)−τ/2 = 1− n−Θ(1).

From now on, we will condition on the event that all subwalks have length at most τ/2.

In each subwalk, we follow the edges defined by r1 for at most τ/2 steps. By the τ -wise independence

of r1, each subwalk has the same distribution as a truly random walk with the same length, as long as its

starting point si−1 is independent of r1. However, we also note that different subwalks are not independent.

Therefore, our analysis has to overcome the following two challenges:

(i) Remove the dependency of si−1 on r1.

(ii) Handle correlations between subwalks.

First, we show how to handle challenge (i). If si−1 is the random starting point s, it is independent of r1.

Otherwise, si−1 is the vertex reached by a subwalk started from si−2 (which depends on r1) together with a

single step defined by r2. We wish to remove this dependency on r1 using the single step following r2.

The key observation is the following. A truly random walk has typical length Θ(
√
n), while each subwalk

has a typical length Θ(n1/4). So to mimic a truly random walk, our analysis only needs to handle O(n1/4)
queries to the hash function r2 (each query represents one step following r2). Assuming that the walk does

not stop before si for all i ∈ [n1/4], these O(n1/4) queries are distinct. Then by the τ -wise independence of

r2 and the fact that n1/4 ≪ τ , each si can indeed be replaced by a truly uniformly random variable over [n]
without changing the distribution of the generated random walk. Therefore, si−1 is independent of r1 and

g1 as desired.

To handle challenge (ii) (i.e., the correlation across subwalks), the key idea is that in a standard birthday

paradox argument, we do not require complete independence of all items; in fact, pairwise independence

already suffices. Since each subwalk has length at most τ/2 and r1 is τ -wise independent, such subwalks are

7

also pairwise independent, which enables us to perform a birthday-paradox-style analysis. Of course, this is

an oversimplification, and our actual analysis framework will be clarified in Section 2.3.

Here we made the (unrealistic) assumption that the walk does not stop before reaching each si. (In reality,

the walk has to stop during some subwalk.) Note that whether the walk stops at the j-th step is equivalent

to whether j is no greater than the length of the walk |w|. Since |w| is a random variable depending on

all of r1, r2,g1, we have to carefully ensure that our analysis does not involve |w|, to keep si−1 and r1
independent. We will explain how we overcome such difficulty in Section 2.3, and in Section 2.4 we will

extend the two-level structure above into a O(log n)-level tree (using signficantly less randomness in our

hash functions).

2.3 An Alternative Analysis of the BCM Algorithm

The starting point of our work is a coupling-based proof of Condition (2), based on what we call extended

random walks.1 This proof will introduce the key strategy of our later analysis, when we replace the random

oracle by a pseudorandom hash function.

The random walk corresponding to f∗a,h(s). Note for h ∈R Hfull and s ∈R [n], f∗a,h(s) can be seen as a

random walk on the vertex set [n] in a straightforward way.

The random walkw corresponding to f∗a,h(s)

• w1 = s.
• For each integer j ≥ 2, set wj = h(awj−1) if there is no 2 ≤ k ≤ j − 1 such that awj−1 =
awk−1

; otherwise stop the the walk.

Since the walk stops immediately after a collision occurs, one can see that f∗a,h(s) is exactly the set of

all vertices in the walk w = (w1, . . . ,w|w|).
2

Recall (u, v) is the unique collision pair. In order to prove Condition (2), our goal now is to lower bound

the probability

Pr[(∃ (i, j) ∈ [|w|]2)[wi = u ∧wj = v]] (3)

=
∑

(i,j)∈N2

Pr[(i ≤ |w| ∧wi = u) ∧ (j ≤ |w| ∧wj = v)]. (4)

The equality of (3) and (4) holds since, by definition, if there is an (i, j) such that (wi = u) ∧ (wj = v),
then the walk would immediately stop at step max(i, j) + 1 (i.e., |w| = max(i, j)). So w contains at most

one pair (i, j) such that (wi,wj) = (u, v), and hence we can decompose (3) into (4).

Our initial hope is that (4) may be simpler to analyze, as it is a sum of many simpler terms, each of which

only depends on two entries wi and wj . However, the condition (i ≤ |w| ∧ wi = u) is still difficult to

analyze, as it depends on the length |w|.
Coupling with the basic extended walk. To move forward, we wish to find a way to lower bound (3) by a

sum of many simpler probabilities that do not involve |w|. The first idea is to extend the random walk w to

1Condition (1) is easier to establish. We will focus on Condition (2) since it is more difficult.
2Note it is possible that for some j ≥ 2, awj−1

is distinct from all awk−1
for k < j, but h(awj−1

) has a collision with a previous

h(awk−1
). In this case, the walk moves to wj = wk (which was already visited before) and stops at step j + 1.

8

an infinite extended random walk w̄. We stress that the walk w̄ defined below is only used in the analysis,

and not in the algorithm.

Basic extended walk w̄

• Extend the domain of h from [m] to [m] ∪ {⋆0, ⋆1, . . . } as follows: for each t ∈ N, sample

h(⋆t) ∈R [n], where all samples are independent.

• Perform the random walk w. After w ends, set w̄ = w and for every t ∈ N append h(⋆t) to

the end of w̄.

Note that w̄ and w are both defined over the joint probability space (h, s) (for the extended h), and w

is always a prefix of w̄. From the definition of w̄, we have the following nice properties:

• All entries of w̄ are i.i.d. samples from [n]. (5)

• For all i, if aw̄j 6= aw̄k for all 1 ≤ j < k < i, then wi = w̄i. (6)

Proof strategy: subtracting the overcount. By (6), we know that u, v ∈ f∗a,h(s) if there are i, j ∈ N such

that (1) w̄i = u and w̄j = v, and (2) for all 1 ≤ t < q < max(i, j), aw̄t 6= aw̄q . In this way, we have

reformulated the success condition u, v ∈ f∗a,h(s) as a statement that does not involve the length |w| of the

original random walk w, and can be analyzed more easily. Fixing a length parameter L = c
√
n for some

small constant c > 0 to be determined later, we have

Pr[u, v ∈ f∗a,h(s)] ≥ Pr[∃i, j ∈ [L] s.t. (w̄i, w̄j) = (u, v) and for all 1 ≤ t < q ≤ L, aw̄t 6= aw̄q]

=
∑

i,j∈[L]

Pr[(w̄i, w̄j) = (u, v) and for all 1 ≤ t < q ≤ L, aw̄t 6= aw̄q]. (7)

The last equality above holds because if for all 1 ≤ t < q ≤ L, we have aw̄t 6= aw̄q , then there can only

be one pair (i, j) ∈ [L]2 satisfying (w̄i, w̄j) = (u, v).
To further lower bound (7), we define the following two quantities:

Etotal =
∑

(i,j)∈[L]2

Pr[w̄i = u ∧ w̄j = v] and Ebad =
∑

(i,j)∈[L]2

1≤t<q≤L

Pr[w̄i = u ∧ w̄j = v ∧ aw̄t = aw̄q].

We claim that Pr[u, v ∈ f∗a,h(s)] ≥ Etotal−Ebad: note that Etotal counts the total expected number of pairs

(i, j) with (w̄i, w̄j) = (u, v), and Etotal − Ebad subtracts all the “bad pairs” from the total count.3

The rest of the analysis is a straightforward calculation using the property (5). We can see that Etotal =
Θ(L2/n2) = Θ(c2/n), and Ebad = Θ(L4/n3) = Θ(c4/n). Setting c to be small enough, we have Etotal −
Ebad ≥ Ω(1/n), which concludes the proof.

Remark. Setting

Etotal =
∑

i∈[L]

Pr[w̄i = u] and Ebad =
∑

j∈[L]
1≤t<q≤L

Pr[w̄i = u ∧ aw̄t−1 = aw̄q−1], (8)

3We call such an (i, j) a “bad pair” because it should not be counted in (7), and has to be subtracted from the total count. Also,

we remark that is possible that a bad pair is subtracted more than once in Ebad. This is not an issue for us, as we are trying to lower

bound Pr[u, v ∈ f∗
a,h(s)].

9

one can also show Pr[v ∈ f∗a,h(s)] ≥ Ω(1/
√
n) for all possible vertices v, by showing Etotal − Ebad ≥

Ω(1/
√
n) (for L = c

√
n and appropriately small c > 0). Later in this overview, we will explain how to get an

Ω(1/
√
n) lower bound for this single-vertex case when we replace the random oracle h by a pseudorandom

function, and discuss additional challenges that arise for the two-vertex case (with u, v).

2.4 Pseudorandom Hash Functions, the Dependency Tree, and the Indexing Scheme

Next we describe our construction of pseudorandom hash functions h based on iterative restrictions. In

particular, we use a small number of independent partial functions defined by random restrictions to form

a full hash function. By considering how the hash values of vertices on the random walk are determined

by the iterative restriction, we can naturally organize these vertices into a hierarchical structure we call the

dependency tree, which will play an crucial role in our later analysis.

Pseudorandom hashing by iterative restrictions. Instead of using full randomness, we will implement

the hash function h : [m] → [n] by the following iterative pseudorandom restriction process, using only

poly log(n) seed length. Initially, all values of h(x) are undefined. The values are defined over ℓ ≤
log n iterations. In the i-th iteration, we sample O(log n log log n)-wise random functions gi : [m] →
{0, 1}, ri : [m]→ [n], and for every x ∈ [m] such that gi(x) = 1 and h(x) is still undefined, we define h(x)
to be ri(x). See Section 4.1 for details. Informally, in each iteration we independently useO(log n log log n)-
wise generators to fix about half of the remaining undefined values in h: the gi selects which half, and the ri
selects the values. (It is possible that a tiny number of hash values h(x) may still be undefined after log(n)
iterations, but this is not a significant issue for us and we ignore it in this overview.)

Let H denote the above family of pseudorandom functions. In the following, h will denote the random

variable for a function randomly drawn from H. Analogously to Section 2.3, one can define a random walk

w on the random graph Ga,h.

Tree structure of pseudorandom walks. We now describe a dependency tree T for a walkw on Ga,h. We

use non-negative integers to denote the nodes of T : node 0 is a “dummy” node representing the root, and for

µ ≥ 1, node µ corresponds to the µ-th node of walkw if it exists (i.e., node µ is associated with vertexwµ).

We will use Greek letters α, β, µ, . . . to refer to nodes in the dependency tree T .

The tree T has one “level” for each iteration 1, . . . , ℓ of the process defining h. For each node µ of

T , we define level(µ) (the “level of µ”) to be the smallest integer j such that gj(awµ) = 1 (note that this

j corresponds to the iteration in which the hash value of awµ is defined). If no such j exists, then we set

level(µ) = ℓ+ 1. We also set level(0) = ℓ+ 1, and define next(µ) = h(awµ) = rlevel(µ)(awµ). Informally,

next(µ) corresponds to the “next” vertex on the walk after wµ.

Dependency tree T based onw

• Node 0 is the root of T .

• For each node µ of T , its parent par(µ) is defined as the largest node ν < µ with level at least

level(µ).

Observe that the walk w is simply the pre-order traversal of T . Also, observe that every root-to-node

path of T has non-increasing node levels.

Indexing a tree node. Recall ℓ ≤ log n is the number of iterations, which bounds the number of levels of T .

Each node x of T can be assigned a unique “index” in a natural way, via a sequence ~k = (k1, k2, . . . , kℓ) of

non-negative integers, where ki specifies the number of level-i nodes on the path from the root to the node x.

10

level 1

level 2

level 3

level 4

level 5
(ℓ = 4)

0

1

2

3

4

5

6

7

8

9

10 11

12

Figure 1: An example of a dependency tree T . For example, the index of 7 is (0, 0, 2, 1), since the path

0← 2← 4← 7 has two level-3 nodes (node 4 and node 7), and one level-4 node (node 2).

See Figure 1 for an illustration of a tree and the index scheme. We will explain why such indexing scheme

helps our analysis at the end of the next subsection.

2.5 A Coupling-based Approach Based on the Dependency Tree

We wish to mimic the strategy of the coupling-based proof in Section 2.3. Instead of proving an Ω(1/n)
lower bound for Pr[u, v ∈ f∗a,h(s)], we will first consider how to prove an Ω(1/

√
n) lower bound for Pr[u ∈

f∗a,h(s)], which already contains all the important ideas. Then, we will briefly discuss additional technical

challenges that arise for the analysis of the two-vertex case (computing Pr[u, v ∈ f∗a,h(s)]).
As in Section 2.3, our strategy is again to carefully design an extended random walk w̄ which is coupled

with w, so that w is always a prefix of w̄. We will also build a corresponding extended dependency tree

(“extended tree” for short) T̄ on w̄. Note that T would be a subtree of T̄ as w is a prefix of w̄. We will

similarly define next and level values for nodes on extended tree T̄ , and these values would be consistent with

T on the corresponding subtree. We will sometimes use nextT or nextT̄ when there is a chance of confusion

on which tree next is referring to.

We hope to define an extended walk w̄ that maintains Condition (6) as before. For notational convenience,

we slightly change Condition (6) to

For all i, if anext
T̄
(α) 6= anext

T̄
(β) for all 0 ≤ α < β < i− 1, then wi = w̄i. (9)

Note that since nextT̄ (α) = h(aw̄α) = w̄α+1, the above is equivalent to (6).

For an index ~k ∈ Nℓ, we also let µ
~k denote the node indexed by ~k in the dependency tree T̄ . Note that

such a node may not exist in the tree; we use F~k to denote the event that µ
~k exists in T̄ . To lower bound

Pr[u ∈ f∗a,h(s)], we define the following two quantities analogous to (8):

Etotal =
∑

~k∈Nℓ

Pr

[
F~k ∧ next(µ

~k) = u
]
, (10)

and

Ebad =
∑

~k∈Nℓ

~k1<~k2∈Nℓ

Pr[F~k ∧ next(µ
~k) = u ∧ F~k1 ∧ F~k2 ∧ a

next(µ~k1)
= a

next(µ~k2)
]. (11)

Note that our choice of Ebad in (11) is a bit different from that in Section 2.3, as we consider a “bad occur-

rence” to happen whenever there is a collision in w̄ (while in (8) we restricted t, q to the interval [ℓ]). This

will not be a problem if we choose ℓ carefully.

11

By an argument similar to that of Section 2.3, we have that Pr[u ∈ f∗a,h(s)] ≥ Etotal − Ebad. Hence,

the goal is to design w̄ and T̄ such that (9) holds and the summands in Etotal and Ebad can be bounded.

Quick estimate: a sanity check. To better understand the summands inEtotal andEbad, let us first calculate

these summands under the unrealistic assumption that all involved events are independent. Note that F~k
asserts the existence of node µ

~k in the tree T̄ , which requires that there is a tree path starting from the root,

and extending down the levels in a way that is consistent with the vector ~k, which specifies the number of

level-i nodes on this path for every i ∈ [ℓ]. Observe that, for every node β of level i on this path, we must

have gi(awβ) = 1, since otherwise β would not have been on level i, and the path would not extend to reach

β. Hence, the event (F~k ∧ next(µ
~k) = u) is equivalent to the conjunction of the two conditions:

(1) Let α = µ
~k. For all the ki level-i nodes β on the path from root to node α, we have gi(awβ) = 1, and

(2) rlevel(α)(awα) = u,

where Item (2) directly follows from our definition of next(·). Observe that the event in Item (2) happens

with 1/n probability, and for each β the event in Item (1) happens with 1/2 probability. Pretending that all

these events are independent, we would have

Pr

[
F~k ∧ next(µ

~k) = u
]
=
(
2|
~k|1 · n

)−1
, (12)

where |~k|1 is the ℓ1-norm of ~k. Similarly, pretending all events are independent, we would have

Pr
[
F~k ∧ next(µ

~k) = u ∧ F~k1 ∧ F~k2 ∧ a
next(µ~k1)

= a
next(µ~k2)

]
=
(
2|
~k|1+|~k1|1+|~k2|1 · n2

)−1
. (13)

Observe that
∑

~k∈Nℓ
2−|~k|1 =

∑
~k∈Nℓ

2−k1 · 2−k2 · · · · · 2−kℓ = (
∑

i∈N 2−i)ℓ = 2ℓ. Then, plugging (12)

and (13) into (10) and (11), we would have Etotal = Ω(2ℓ/n), and Ebad = O(23ℓ/n2). Setting ℓ = 1
2 ·

log(n)− c for a large enough constant c, we would have

Etotal − Ebad = Ω

(
1

2c
√
n

)
−O

(
1

23c
√
n

)
≥ Ω(1/

√
n). (14)

Now we can explain why we chose such an indexing scheme: the existence of µ
~k and the value of next(µ

~k)

only depends on the ancestors of µ
~k in the dependency tree. Since typically there are at most poly log(n)

many ancestors, we can use the τ -wise independence of gi and ri to analyze the event F~k ∧ next(µ
~k) = u.

2.6 Designing the Extended Random Walk

Finally we explain how to design the extended random walk w̄, by constructing an extended tree T̄ . We

first aim to ensure Condition (12) holds, leading to a desired lower bound on Etotal. Handling Ebad is more

challenging; we will discuss that later.

Specifically, we will ensure that (12) holds for all “short” vectors ~k ∈ [τ/4]ℓ and u ∈ [n], where τ =
O(log n log log n) is the independence parameter of our pseudorandom hash function.4

Establishing (12) by induction. To show (12), we wish to prove the following claim.

4This is already enough for lower bounding Etotal, as the contribution of “long” (non-short) ~k is negligible. Intuitively this is

true because for a “long” ~k, we have |~k|1 ≥ maxi∈[ℓ] ki > τ/4, the probability that µ
~k exists in the tree is quite small (2−|~k|1)

assuming (12). See Lemma 6.1 for a formal proof.

12

Claim 1. Fix an index ~k corresponding to a level-i node (~k = (0, . . . , ki, ki+1, . . . , kℓ) and ki > 0).

Conditioned on the event F~k, with 1/2 probability µ
~k has a level-i child ν (i.e., for ~k′ = (0, . . . , ki +

1, ki+1, . . . , kℓ), F~k
′
holds) and next(ν) is distributed uniformly in [n].

Assuming that Claim 1 holds, then (12) follows by a simple induction.5 However, it is not hard to see

that Claim 1 does not hold for the original tree T . To understand the issue, let ~k,~k′ be as in Claim 1 and

assume µ
~k exists (i.e.,F~k holds). We wish to better understand the conditions under which µ

~k′ exists. Letting

r<i and g<i denote (r1, . . . , ri−1) and (g1, . . . , gi−1) respectively, we additionally fix (r<i,g<i) = (r<i, g<i)
(we use r<i ∧ g<i to denote this event for simplicity).

The existence condition of µ
~k′ in T . Let α be the smallest-numbered node such that α > µ

~k and the level of

α is greater than i−1. Then µ
~k′ exists if and only if α exists and level(α) = i. Hence, our goal is to determine

α. By definition, to move from µ
~k to α in the random walk w, one first move to the node corresponding

to vertex next(µ
~k), and then keep going to the next node, until reaching a node with level at least i. The

following algorithm implements this procedure and returns the simulated random walk, and we observe that

it only uses the values of (r≤i, g≤i). Note that we use (· · ·) to denote a sequence of vertices, and use ◦ to

denote the concatenation of two sequences.

Algorithm 1: Simulating the random walk from s′ until reaching a level greater than i

1 Function sim(s′, i)
2 if i = 0 then

3 return (s′) // stop here since all nodes have levels at least 1

4 s0 ← s′, j ← 0, w ← () // start from s0 = s′

5 repeat

6 w← w ◦ sim(sj, i− 1) // simulate from sj until hitting a node with level at least i

7 xj+1 ← w|w| // vertex xj+1 corresponds to the next node after sj with level ≥ i

8 if gi(axj+1) = 1 then

9 sj+1 ← ri(axj+1) // move to the next node since the node corresponding to xj+1

has level i

10 j ← j + 1

11 until gi(axj) = 0
12 return xj// stop here since the node corresponding to xj has level > i

13 Function Find(s′, i)
14 return the last vertex in the sequence returned by sim(s′, i)

One can see that sim(next(µ), i − 1) generates the entire sub-walk after µ until reaching the next node

with level at least i. Now, the hope is to argue that, conditioning on F~k ∧ r<i ∧ g<i, we have

gi(Find(next(µ), i − 1)) = 1

with probability 1/2.

Two issues with the original random walkw. There are two important issues with the argument above:

1. We need to argue gi(Find(next(µ), i− 1)) is independent from the event F~k ∧ r<i ∧ g<i.
5One also needs to show that with probability 1/2, µ has a level-j child with a uniformly random next-value, for all j < i. We

ignore this part in the technical overview.

13

2. Even if gi(Find(next(µ), i − 1)) = 1, it could be the case that w stops during the simulation of

sim(next(µ), i− 1) due to a collision6, and in that case µ
~k′ also does not exist.

The second issue is fundamental, as it reveals the “global dependency nature” of the original random

walkw: the event that w stops depends on all entries inw.

A locally simulatable extended random walk. To circumvent the second issue, we wish for our extended

random walk w̄ to be locally simulatable. That is, knowing that node µ exists and knowing the value of

next(µ), together with fixed r<i and g<i, one should be able to simulate the extended random walk w̄ after

µ until reaching a node with level at least i. The second issue above amounts to the fact that sim(µ, i) fails to

locally simulate the walkw, since it does not have enough information to determine whether w has already

terminated during its simulation (it cannot determine whether there is a collision between the encountered

node and the nodes before in w).

Similar to the basic extended random walk in Section 2.3, for each i ∈ [ℓ], we extend the domain of gi and

ri from [m] to [m]∪{⋆0, ⋆1, . . . } as follows: for each t ∈ N, we sample gi(⋆t) ∈R {0, 1} and ri(⋆t) ∈R [n],
where all samples are independent.

Since the “local” simulation with respect to node 0, next(0) = s and fixed r≤ℓ and g≤ℓ is just the entire

random walk, we will define our extended random walk by giving its local simulation in Algorithm 2, and

we set w̄ ← walk(s, ℓ, 0).7 Note that walk(s, ℓ, 0) also gives the extended tree T̄ by specifying level and

next.

Algorithm 2: Algorithm for extended walk

1 Function walk(s′, i, µ0) (where s′ ∈ [n], 0 ≤ i ≤ ℓ)
2 if i = 0 then return (s′)
3 C0 ← ∅, star← false

4 j ← 0, s0 ← s′, w ← ()
5 repeat

6 w← w ◦ walk(sj , i− 1, µ0 + |w|)
7 xj+1 ← w|w|

8 y, star←
{
axj+1 , false if axj+1 6∈ Cj ∧ ¬star
⋆t, true otherwise (where t := min{t ∈ N | ⋆t 6∈ Cj})

9 µj+1 ← µ0 + |w|
10 if gi(y) = 1 then

11 Cj+1 ← Cj ∪ {y}, sj+1 ← ri(y)
12 level(µj+1)← i, next(µj+1)← ri(y)
13 j ← j + 1

14 until gi(y) = 0
15 return w

16 Function ExtFind(s′, i)
17 return the last vertex in the sequence returned by walk(s′, i, 0)

6Indeed, if the simulation sim(next(µ), i− 1) detects a pair of collision (two nodes α, β such that awα = awβ
), it would loop

forever.
7see Section 5.1 for a detailed explanation of Algorithm 2.

14

Establishing Claim 1 for T̄ . One can inspect that the algorithm walk behaves the same as sim until a collision

occurs at Line 8 (that is, there is a collision in {ax1 , ax2 , . . . , axj+1}). That is, sim(s, ℓ) and walk(s, ℓ, 0)
behave the same until reaching a collision awj = awk for j 6= k. This implies that (9) holds.

To show Claim 1 holds for w̄ and T̄ , we still have to argue that gi(ExtFind(next(µ), i − 1)) is inde-

pendent from the event F~k ∧ r<i ∧ g<i. Formally proving this requires a delicate induction, but the intu-

ition is that F~k depends on at most ki values in gi and ri, and the procedure walk carefully ensures that

gi(ExtFind(next(µ), i − 1)) is never one of them. Hence, since ki ≤ τ/4 and gi is τ -wise independent, we

have the desired independence.

Handling Ebad and the two-vertex case. We have just established Condition (12) which gives a lower

bound for Etotal; now we briefly discuss how to obtain an upper bound on Ebad sufficient for proving the

desired lower bound on Pr[u ∈ f∗a,h(s)] using (14). One can first observe that (13) cannot hold for all

possible ~k,~k1, ~k2, as there could be a collision between these three paths. In fact, let K be the total number

of nodes in the union of the paths corresponding to~k,~k1, ~k2. Then a revised estimate forPr[F~k∧next(µ~k) =
u∧F~k1 ∧F~k2 ∧ a

next(µ~k1)
= a

next(µ~k2)
] should be

(
2K · n2

)−1
. By a careful calculation, one can show that

this revised estimate is still enough to show Ebad is upper bounded by O(23ℓ/n2), which is good enough for

our purposes.

However, even establishing this revised estimate is quite challenging. Recall that F~k ∧ F~k1 ∧ F~k2 is

equivalent to the condition that, for every level-i node β on the paths from root to µ
~k, µ

~k1 or µ
~k2 , it holds that

gi(awβ) = 1. This amounts to K events and we hope to show they are all independent. However, this is not

true in general, as there can be a collision of awβ between two different paths among these three paths. We

overcome this issue by showing that for each “bad node” µ
~k, there must exist a “bad” collision pair ~k1 and

~k2 on the extended walk without this issue. In such case one can establish a revised estimate; subtracting all

these revised estimates from Egood would still yield a good lower bound on Pr[u ∈ f∗a,h(s)].
Our proof for lower-bounding Pr[u, v ∈ f∗a,h(s)] follows the same template above, while using a more

involved analysis to handle the dependency issues across the paths (we have to consider four paths now: two

corresponding to u and v, and the other two corresponding to the “bad” collision pair).

3 Preliminaries

Let [n] denote {1, 2, . . . , n}. We use N to denote the set of non-negative integers. We use Õ(f) to denote

O(f · poly log f) in the usual way; Ω̃, Θ̃ are defined similarly.

We measure the space complexity of an algorithm by the maximum number of bits in its working memory:

the read-only input is not counted. We measure the time complexity by the number of word operations (with

word length Θ(log n)) in the word RAM model.

For Element Distinctness and List Disjointness, we always assume the input arrays of length n consist

of positive integers bounded from above by m = nc + c, where c is a fixed constant independent of n. (We

often abbrievate this by saying m = poly(n).) For an array a ∈ [m]n, define the second frequency moment

F2(a) =
∑n

i=1

∑n
j=1 1[ai = aj] as the number of colliding pairs (i, j) (including the case where i = j).

Note that n ≤ F2(a) ≤ n2.
We will use the following standard pseudorandomness construction.

Theorem 3.1 (Explicit k-wise independent hash family, [CW79]; see also [Vad12, Corollary 3.34]). For

n,m, k, there is a family of k-wise independent functions H ⊆ {h | h : {0, 1}n → {0, 1}m} such that every

15

function from H can be described in k ·max{n,m} random bits, and evaluating a function from H (given

its description, and given an input x ∈ {0, 1}n) takes time poly(n,m, k).

We often use bold font letters (e.g.,X) to denote random variables. We also use supp(X) to denote the

support of random variable X .

For a set U , we often use x ∈R U to denote the process of selecting an element x from U uniformly at

random.

4 Properties of the Pseudorandom Family and their Implications

We will first define our pseudorandom hash family in Section 4.1, and then give the proofs of our main

theorems in Section 4.2, assuming some key technical lemmas that will be proved in subsequent sections.

4.1 Construction of the Pseudorandom Family

We first introduce some handy notation. For two functions a, b : [m]→ ([n]∪ {⋆}), we naturally view them

as “restrictions” (where ⋆ means “unrestricted”), and define their composition as

(a • b)(x) :=
{
b(x) b(x) 6= ⋆,

a(x) otherwise.

Observe that (a • b) • c = a • (b • c).
Let ℓ ≤ log n and τ = O(log n log log n) be two positive integer parameters to be determined later. A

sample h : [m]→ ([n]∪ {⋆}) fromHℓ,m,n is generated by an ℓ-level iterative restriction process, defined as

follows.

Drawing a sample h from the pseudorandom hash function family Hℓ,m,n

1. For each i ∈ [ℓ], independently draw two random functions gi : [m] → {0, 1} and ri : [m] →
[n] from τ -wise independent hash families (Theorem 3.1). Define hi : [m]→ [n] ∪ {⋆} to be

hi(x) :=

{
⋆ if gi(x) = 0,

ri(x) if gi(x) = 1.

2. Define h to be hℓ • · · · • h2 • h1.

Intuitively, the functions gi : [m] → {0, 1} control whether the value of h(x) should be restricted at the

i-th level, while the functions ri : [m] → [n] determine the value that h(x) is restricted to, at the i-th level.

Note that h(x) = ⋆ if g1(x) = · · · = gℓ(x) = 0, and h(x) = rj(x) if g1(x) = · · · = gj−1(x) = 0 and

gj(x) = 1.

Since m = poly(n), the seed length for each i ∈ [ℓ] is O(log2 n log log n) bits (Theorem 3.1), and

hence the total seed length for describing the hash function h isO(ℓ log2 n log log n) = O(log3 n log log n).
Slightly abusing notation, we also use h ∈R Hℓ,m,n to denote that h is a hash function generated as above.

16

Digraph Ga,h and reachable set f∗a,h(s). Next we set up some notation. Recall that a ∈ [m]n is the input

array. For a hash function h : [m]→ [n], we define a mapping fa,h : [n]→ ([n]∪{⋆}) by fa,h(x) := h(ax).
This mapping naturally defines a n-vertex digraph Ga,h, where each vertex x ∈ [n] has one outgoing edge

x 7→ h(ax) if h(ax) 6= ⋆, and no outgoing edge if h(ax) = ⋆.
We use f∗a,h(s) to denote the set of vertices reachable in Ga,h from s. When a and h are clear from

context, we will simply write f∗a,h(s) as f∗(s). Since each vertex in Ga,h has at most one outgoing edge,

note that the vertices in f∗(s) form either a path or a “rho-shaped” component.

4.2 Proofs of the Main Results

Let a = (a1, . . . , an) ∈ [m]n be the read-only input array. The BCM Element Distinctness algorithm

[BCM13] uses the following version of Floyd’s cycle-finding algorithm performed on the digraph specified

by fa,h.

Lemma 4.1 ([BCM13, Theorem 2.1]). Assuming oracle access to fa,h : [n] → ([n] ∪ {⋆}), there is a de-

terministic algorithm COLLIDE(s) which finds the pair (u, v) ∈ [n] × [n] (if it exists) such that u, v ∈
f∗a,h(s), u 6= v and au = av, in O(|f∗a,h(s)|) time and O(log n) space.8

In the BCM algorithm, hwas chosen from a truly random hash family. Our goal is to show that sampling

h from our pseudorandom hash familyHℓ,m,n also suffices. To do this, we need the following two properties

of our hash familyHℓ,m,n.

Lemma 4.2 (Bounding the visit probability for a single vertex). Suppose ℓ = log n − logF2(a)
2 − 10.9 For

every vertex v ∈ [n], we have

Pr
h∈RHℓ,m,n,s∈R[n]

[v ∈ f∗a,h(s)] = Θ

(
1√
F2(a)

)
.

Lemma 4.3 (Lower bound for collision probability). Suppose ℓ = log n− logF2(a)
2 −10. For every u, v ∈ [n]

such that u 6= v and au = av, we have

Pr
h∈RHℓ,m,n,s∈R[n]

[u, v ∈ f∗a,h(s)] ≥ Ω

(
1

F2(a)

)
.

Lemma 4.2 is proved in Section 6 and Lemma 4.3 is proved in Section 7.

Remark 4.4. In Lemma 4.2, we obtain both a lower bound and an upper bound for Prh,s[v ∈ f∗a,h(s)], and

we will see shortly that only the upper bound will be useful in the proof of Theorem 1.1; the lower bound

part of Lemma 4.2 can be seen as a warm-up for the proof of Lemma 4.3, which requires to prove a lower

bound for the more involved two-vertex case (see Section 7).

Since ℓ ≤ log n, each hash function h from our hash family Hℓ,m,n can be described with a seed of

O(log3 n log log n) bits and can be evaluated in poly log(n) time and O(log3 n log log n) space. Armed

with the two lemmas above, we can prove our main theorems.

8The original BCM algorithm works for fa,h : [n] → [n]. But it works equally well when some vertices v may have no outgoing

edges (i.e., fa,h(v) = ⋆).
9We ignore all floors and ceilings for simplicity.

17

Reminder of Theorem 1.1. Element Distinctness can be decided by a Monte Carlo algorithm in Õ(n1.5)
time, with O(log3 n log log n) bits of workspace and no random oracle. Moreover, when there is a colliding

pair, the algorithm reports one.

Proof. Given input a ∈ [m]n, we first assume that we know the correct parameter 1 ≤ ℓ ≤ log n required

in Lemma 4.2 and Lemma 4.3, and let H be the pseudorandom hash family Hℓ,m,n. We run O(n log n)
trials of the COLLIDE(s) algorithm (Lemma 4.1) on fa,h, where each trial uses a fresh random h ∈ H. We

return YES if no collisions are found, and return NO otherwise. It is evident that this algorithm only requires

one-way access to randomness, and the description of each h can be stored in low space.

We first analyze the running time of this algorithm. By Lemma 4.1, the running time of each trial is

O(|f∗a,h(s)|). By Lemma 4.2, the expected running time of each trial is

E
h∈H,s∈[n]

[|f∗a,h(s)|] · poly log(n) =
∑

v∈[n]

Pr
h∈H,s∈[n]

[v ∈ f∗a,h(s)] · poly log(n) ≤
n · poly log n√

F2(a)
,

where the poly log(n) factor comes from the time complexity of evaluating h(·). Hence, the expected total

running time of O(n log n) trials is Õ(n2/
√
F2(a)) ≤ Õ(n1.5). By Markov’s inequality, with at least

1− o(1) probability, the total running time is bounded by Õ(n1.5).
To analyze the success probability, note that in a “NO” instance (i.e., the elements are not distinct) there

are F2(a)− n > 0 pairs of u, v ∈ [n] such that u 6= v and au = av. By linearity of expectation, Lemma 4.3

implies that the success probability of each trial is

Ω

(
F2(a)− n
F2(a)

)
≥ Ω (1/n) .

Since the samples of h ∈ H are independent across the trials, the probability of not finding any collisions is

at most (1−Ω(1/n))n logn ≤ n−Ω(1). The proof then follows from a simple union bound.

Recall at the beginning of the proof, we assumed ℓ was known. To remove this assumption, our actual

algorithm simply tries all possible ℓ ∈ {1, 2, . . . , log n} one by one (and terminates a trial if the running

time is already too long for a specific ℓ), which only increases the overall running time by an O(log n)
multiplicative factor.

Now we similarly prove the performance of the List Disjointness algorithm.

Reminder of Theorem 1.2. There is a Monte Carlo algorithm for List Disjointness such that, given input

arrays a = (a1, . . . , an), b = (b1, . . . , bn) and an upper bound p ≥ F2(a) + F2(b), runs in Õ(n
√
p) time

and uses O(log3 n log log n) bits of workspace and no random oracle.

Proof. Similar to the proof of Theorem 1.1, we can assume that the correct ℓ required in Lemma 4.2 and

Lemma 4.3 is known. Let array c be the concatenation of a and b, which must satisfy F2(c) ≤ 2(F2(a) +
F2(b)) ≤ 2p. We run 2p log n trials of the COLLIDE(s) algorithm (Lemma 4.1) on fc,h, each time using

a fresh random h ∈ H. We return NO if we find a collision in c where the two items come from a and b
respectively. We return YES if the total time spent by the algorithm exceeds Õ(n

√
p)while no such collisions

have been found.

To analyze the running time, we focus on the first F2(c) log n trials executed by the algorithm. By a

similar argument in the previous proof, with at least 1 − o(1) probability, the total running time of these

18

F2(c) log n trials is at most

Õ

(
F2(c) ·

n√
F2(c)

)
≤ Õ(n ·

√
F2(c)).

By Lemma 4.3, the success probability of each trial is Ω(1/F2(c)) (note that in the previous proof we

had F2(a)− n pairs of “good” collisions (u, v), while here it is possible that we have only one “good” pair,

along with many “bad” pairs coming from the same input array). Then, the probability of finding a collision

during the first F2(c) log n trials is at least 1− nΩ(1).

By a union bound, we can show that, on a “NO” input, with at least 1 − o(1) probability the algorithm

will terminate in one of the first F2(c) log n trials, without exceeding the time limit Õ(n
√
p).

Now we similarly give a low-space algorithm for Set Intersection, with near-optimal time complexity.

Reminder of Theorem 1.4. There is a randomized algorithm that, given input arraysA = (a1, . . . , an), B =
(b1, . . . , bn)whereA andB are both YES instances of Element Distinctness, prints all elements in {a1, . . . , an}∩
{b1, . . . , bn} in Õ(n1.5) time, with O(log3 n log log n) bits of workspace and no random oracle. The algo-

rithm prints elements in no particular order, and the same element may be printed multiple times.

Proof. Similar to the proof of Theorem 1.1, we can assume that the correct ℓ required in Lemma 4.2 and

Lemma 4.3 is known.

As before, we define c to be the concatenation of a and b. We run n log2 n trials of the COLLIDE(s)
algorithm (Lemma 4.1) on fc,h, each using a fresh random h ∈ H. We print all the collisions found. Note

these must be elements in {a1, . . . , an} ∩ {b1, . . . , bn}, by our assumption on the input: since A and B are

YES instances of Element Distinctness, all colliding pairs must have one element fromA and one element

from B.

By a similar argument as in the proof of Theorem 1.1, with 1− o(1) probability the total running time is

bounded by Õ(n1.5). And for every element in the intersection, the probability that it is never printed is at

most (
1− Ω

(
1

F2(c)

))n log2 n

≤ n−ω(1),

where we used F2(c) = Θ(n) implied by the input assumption. The proof then follows from a simple union

bound.

5 The Extended Walk and the Dependency Tree

In this section, we present the definitions of the extended walk and the dependency tree along with several

useful properties of them, which will play an important role in our proof in Sections 6 and 7.

5.1 The Extended Walk

Letting h ∈R Hℓ,m,n and s ∈R [n], recall that the reachable set f∗a,h(s) ⊆ [n] consists of the vertices on the

following pseudorandom walk: starting from a random vertex s, we repeatedly move from the current vertex

x to h(ax), until h(ax) = ⋆, in which case the walk ends. In the case when f∗a,h(s) contains a cycle, this

walk has infinite length, which complicates our analysis.

To facilitate the analysis, we instead define an auxiliary walk w that is jointly distributed with f∗a,h(s).
The auxiliary walk w starts from s, terminates with probability 1 (Lemma 5.3), and has several other nice

19

properties that make it easier to analyze. We will also see that w is related to the reachable set f∗a,h(s) that

we care about. In particular, it includes all the vertices in f∗a,h(s) (Lemma 5.11) as a subset, and for this

reason we call w an extended walk.

Let us formally define the extended walk. The extended walk w is a sequence of vertices generated by

the recursive process walk specified by Algorithm 3, which depends on the input array a and the random

variables h, s, as well as some additionally sampled random variables. We summarize them in the following

box.

The extended walk probability space Walkℓ,m,n,a

• Setup. We sample the random variables as follows:

– Draw the starting vertex s ∈R [n].

– Sample {gi}i∈[ℓ] and {ri}i∈[ℓ], which together determine a sample h ∈R Hℓ,m,n from the

pseudorandom hash family, as described in Section 4.1.

– Then, for each i ∈ [ℓ], we extend the domain of gi and ri from [m] to [m]∪{⋆0, ⋆1, . . . } as

follows: for every t ∈ N, we sample gi(⋆t) ∈R {0, 1}, ri(⋆t) ∈R [n], where the samples

are independent across all ⋆t and all levels i ∈ [ℓ].

• Generating the walk. After fixing {gi}i∈[ℓ], {ri}i∈[ℓ], we define a function walk(s′, i, µ0)
(where s′ ∈ [n] and i ∈ {0, 1, . . . , ℓ}) by the pseudocode in Algorithm 3, which returns a

sequence of vertices.a

Then, the extended walkw is defined as walk(s, ℓ, 0).

aThe sequence returned by the function walk(s′, i, µ0) actually depends on the sampled {gi}i∈[ℓ], {ri}i∈[ℓ] as well, but

we choose not to make it explicit in the notation walk(s′, i, µ0) for simplicity.

We remark that in the pseudocode of Algorithm 3, all the underlined parts are used for assigning some

additional attributes that are helpful for analysis, and have no effect on the return value of the function

walk(s′, i, µ0). Therefore, when we only need the return value of it, we will simply write walk(s′, i) and

ignore all the underlined parts. The meanings and properties of these additionally assigned values will be

explained in detail later in this section, and they will also be summarized in Table 6.1 in Section 6.

Intuitively, in Algorithm 3, walk(s′, i) generates a walk starting from vertex s′, which travels along the

outgoing edges specified by {gi′}1≤i′≤i, {ri′}1≤i′≤i, and stops upon encountering a vertex of level higher

than i (i.e., a vertex x with g1(x) = g2(x) = · · · = gi(x) = 0). As depicted in Figure 2, the walk(s′, i)
process is implemented by recursive calls to walk(sj , i − 1) generating walks of levels up to i − 1, which

are to be concatenated together using edges (xj+1 → sj+1) on level i. More importantly, the extended walk

walk(s′, i) uses some mechanism to avoid the infinite cycling that would occur in the actual walk f∗a,h(s):
if a recursive call to walk(sj , i − 1) ends at some vertex xj+1 whose value axj+1 has already appeared for

some previous j′ < j, then we will not reuse this value when generating its outgoing level-i edge (moreover,

we will also disregard the axj′′+1
values for all future j′′ during walk(s′, i)).

The third parameter µ0 of walk(s′, i, µ0) simply keeps track of the current position relative to the start of

the entire extended walk walk(s, ℓ, 0), and is useful for indexing the nodes on the walk. Note that we stick to

the convention of using Greek letters (e.g., α, β, µ) for indexing the walk.

To better understand Algorithm 3, we start with several simple observations.

Observation 5.1. The return value of walk(s′, i) must be a sequence of vertices starting with s′.

20

Algorithm 3: Algorithm for extended walk

1 Function walk(s′, i, µ0) (where s′ ∈ [n], 0 ≤ i ≤ ℓ)
2 if i = 0 then return sequence (s′)
3 C0 ← ∅, star← false

4 j ← 0, s0 ← s′, w ← () /* () means an empty sequence */

5 repeat

6 w← w ◦ walk(sj , i− 1, µ0 + |w|) /* ◦ means concatenation of two sequences */

7 xj+1 ← w|w| /* We use 1-based indexing, so w|w| means the last vertex in w */

8 y, star←
{
axj+1 , false if axj+1 6∈ Cj ∧ ¬star
⋆t, true otherwise (where t := min{t ∈ N | ⋆t 6∈ Cj})

9 µj+1 ← µ0 + |w|, ai(µj+1)← y, xi(µj+1)← xj+1

10 if j > 0 then right(µj)← µj+1

11 if gi(y) = 1 then

12 Cj+1 ← Cj ∪ {y}, sj+1 ← ri(y)
13 level(µj+1)← i, next(µj+1)← ri(y)

14 j ← j + 1

15 until gi(y) = 0
16 return w

s0 = s′ xj

µj

sj xj+1

µj+1

sj+1

walk(sj , i − 1)

Figure 2: The structure of walk(s′, i). Note that xj+1 is the last vertex of walk(sj, i− 1).

Proof. This immediately follows from Line 2, Line 6 and Line 16 by a simple induction on i.

Observation 5.2. For every s′ ∈ [n], i ∈ {0, 1, . . . , ℓ}, the return value of walk(s′, i, µ0) and the additional

values assigned by walk(s′, i, µ0) only depend on s′, µ0, {gi′}1≤i′≤i, {ri′}1≤i′≤i and the input array a.

Proof. The observation is trivial when i = 0. When i ≥ 1, in walk(s′, i), the algorithm only examined the

values of gi(·) and ri(·). The recursive calls walk(·, i′) made by walk(s′, i) can only have lower levels i′ ≤ i,
and hence only depends on the values of gi′(·) and ri′(·).

The following lemmas says that with probability 1, walk(s, ℓ) terminates.

Lemma 5.3. With probability 1, w = walk(s, ℓ) has finite length.

Proof. We will prove a stronger statement that for every s′ ∈ [n] and i ∈ {0, 1, . . . , ℓ}, walk(s′, i) has finite

length with probability 1, by an induction on i.

21

For the base case i = 0, this clearly holds due to Line 2. Now, suppose the inductive hypothesis holds

for i − 1. We fix an s′ ∈ [n] and consider walk(s′, i), and it follows from the inductive hypothesis that all

recursive calls to walk(sj, i− 1) terminate with probability 1.

Next, we consider the following two cases: (1) the repeat loop in walk(s′, i) terminates within m rounds

or (2) it executes more than m rounds. In Case (1), walk(s′, i) terminates with probability 1, so from now on

we focus on Case (2). In this case, y eventually becomes ⋆t for some t ∈ N at Line 8 since Cj ⊆ [m] when

star = false. After that, since gi(⋆t) ∈R {0, 1} are independently sampled across all t ∈ N, with probability

1 there is t ∈ N for which gi(⋆t) = 0. Hence, the repeat loop terminates with probability 1. Finally, we

simply apply a union bound over all starting points s′ ∈ [n], which proves our induction hypothesis for i.

Assigned values. Now, let us elaborate on the values ai(µ), xi(µ), level(µ), next(µ), right(µ) assigned in

the underlined lines in Algorithm 3. To begin with, we first explain the role of µ0. Roughly speaking, µ0
is the number of vertices before walk(s′, i) in the final extended walk w. Formally, we have the following

lemma.

Lemma 5.4. Fix i ∈ {0, 1, . . . , ℓ}. Consider all function calls walk(·, i, ·) during the generation of w.

Suppose they are walk(s1, i, µ10),walk(s
2, i, µ20), . . . ,walk(s

t, i, µt0) sorted by increasing order of µj0 for j ∈
[t]. The following hold:

(1) w = walk(s1, i, µ10) ◦ walk(s2, i, µ20) ◦ · · · ◦ walk(st, i, µt0), and µj0 =
∑j−1

t′=1 |walk(st
′
, i)|.

(2) For each µ ∈ [|w|], there is a unique function callwalk(sj , i, µj0) such that µj0 < µ ≤ µj0+|walk(sj , i)|.

Proof. We prove Item (1) by an induction on i. By definition, when i = ℓ, we have w = walk(s, ℓ, 0). This

proves the base case. Now, suppose the statement holds for i. We prove it also holds for i− 1.

For each walk(sj, i, µj0), by Line 6, we have

walk(sj , i, µj0) = walk(sj1, i− 1, µj,10) ◦ walk(sj2, i− 1, µj,20) ◦ · · · ◦ walk(sjtj , i− 1, µ
j,tj
0), (15)

and for every t′ ∈ [tj], it holds that

µj,t
′

0 = µj0 +

t′−1∑

q=1

|walk(sjq, i− 1)|. (16)

From the induction hypothesis, it follows that

w = walk(s1, i, µ10) ◦ walk(s2, i, µ20) ◦ · · · ◦ walk(st, i, µt0),

and µj0 =
∑j−1

t′=1 |walk(st
′
, i)|. It also holds for i− 1 by expanding each walk(sj , i, µj0) using (15) and (16).

Item (2) then follows directly from the definition of µj0 and Item (1).

The following lemma explains the role of next(·). We additionally define next(0) to be the starting vertex

w1 = s of the extended walk w.

Lemma 5.5. For every w ∈ supp(w), we have wµ+1 = next(µ) for all µ ∈ [0, |w| − 1].

22

Proof. Consider the moment when next(µ) is assigned a value (Line 13 in Algorithm 3), which happens

inside the if-body of gi(y) = 1. At this point, we have µ = µj+1 = µ0 + |w|, and we assign ri(y)
to both next(µ) and sj+1. After that, since gi(y) = 1, the repeat loop must execute another round with

jnew ← j + 1. At the beginning of the new round, we concatenate w with walk(sjnew , i − 1), which starts

with sjnew = sj+1 = next(µ) by Observation 5.1. Hence, wµ+1 must equal next(µ).

Now, let us look at the properties of ai(·) and level(·). From Algorithm 3 we can see that ai(µ) is the

argument we pass to functions gi(·) and ri(·) for determining whether (and what) to assign to next(µ) at the

current level.

Observation 5.6. Let (w, g) ∈ supp(w,g). For every µ ∈ [|w| − 1], we have gi(ai(µ)) = 0 for all

i ∈ [level(µ) − 1], and glevel(µ)(alevel(µ)(µ)) = 1. In addition, for µ = |w|, we have gi(ai(µ)) = 0 for all

i ∈ [ℓ], and level(µ) is undefined10 .

Proof. Suppose duringwalk(s′, i, µ0)whenµj+1 = µ, the value of level(µ) is not yet assigned. If gi(ai(µ)) =
0, then the if-test at Line 11 is not passed and hence Line 13 is not reached, which means level(µ) can only

be assigned later at a higher level of the recursion with level(µ) > i. On the other hand, if gi(ai(µ)) = 1
at this point, then we assign level(µ) = i at Line 13. Hence, we must have glevel(µ)(alevel(µ)(µ)) = 1, and

gi′(ai′(µ)) = 0 for all i′ < i = level(µ).
The “in addition” part follows from a similar argument.

Hence, we introduce the following shorthand.

Definition 5.7. We denote x(µ) = xlevel(µ)(µ) and a(µ) = alevel(µ)(µ).

Next, we have several simple observations.

Observation 5.8. For every (w, r) ∈ supp(w, r) and µ ∈ [|w| − 1], we have next(µ) = rlevel(µ)(a(µ)).

Proof. When level(µ) and next(µ) are assigned together in Line 13, we have y = ai(µ), and hence next(µ) =
ri(y) = ri(ai(µ)) = rlevel(µ)(alevel(µ)(µ)).

In the following, we write y = ⋆∗ to denote that y = ⋆t for some t ∈ N, and write y 6= ⋆∗ otherwise.

Observation 5.9. For every w ∈ supp(w), µ ∈ [|w| − 1], and i ∈ [level(µ)], if ai(µ) 6= ⋆∗, then ai(µ) =
awµ .

Proof. Note that when we assign ai(µ) = y at Line 9, we have µj+1 = µ, and by Line 8 we must have

y = axj+1 if y 6= ⋆∗. Then we simply note that xj+1 = wµj+1 = wµ by Line 7 and Line 9.

Then, we examine how the values of ai(·) are determined in the repeat loop of walk(s′, i). Observe that,

by our definition at Line 8, we never assign the same y value to ai(·) twice: when the value axj+1 appears

for the second time, we will set star← true and replace this value with ⋆∗. In more detail, this is formalized

in the following lemma.

Lemma 5.10. In walk(s′, i, µ0), ai(µj) is uniquely determined from x1, x2, . . . , xj as follows:

1. Let j′ = min{j′ | ∃j′′ s.t. 1 ≤ j′′ < j′ ≤ j, axj′′ = axj′}.
10In Section 5.2 we will specially define its level to be ℓ+ 1

23

2. If no such j′ exists, then ai(µj) = axj . Otherwise, ai(µj) = ⋆j−j′ .

In particular, ai(µj) 6= ai(µj′) holds for all j 6= j′.

Proof. By Line 9 and Line 12, we know Cj = {ai(µ1), ai(µ2), . . . , ai(µj)}. By Line 8, we know star

switches from false to true when axj+1 ∈ Cj . For those j before star switches, ai(µj) = axj , and for those

j after the switch, ai(µj) = ⋆∗.
Hence, star switches at the first j′ such that there exists 1 ≤ j′′ < j′ with axj′′ = axj′ . If such j′ does

not exist, star is still false at j, and we know ai(µj) = axj . Otherwise, star switches at j′, and by Line 8 we

have ai(µj′) = ⋆0, ai(µj′+1) = ⋆1, . . . , and ai(µj) = ⋆j−j′.

Finally, we show the connection between the extended walkw and the reachable set f∗a,h(s).

Lemma 5.11. Let (w, h, s) ∈ supp(w,h, s), where w = walk(s, ℓ) is the extended walk, and h is the hash

function. The following hold:

1. The reachable set f∗a,h(s) is a subset of the vertices in w.

2. For every µ ∈ [|w|], if for every two distinct α, β ∈ [µ], it holds that awα 6= awβ , then wµ ∈ f∗a,h(s). In

particular, if there are no two distinct α, β ∈ [|w|] such that awα = awβ , then f∗a,h(s) contains exactly

the same vertices as w.

Proof. We first prove that, for every µ ∈ [|w|], if there are no two distinct α, β ∈ [µ] such that awα = awβ ,

then ai(µ) = awµ for every i ∈ [level(µ)].
We will use induction on µ. Suppose the inductive hypothesis holds for 1, 2, . . . , µ − 1. Now we show

that ai(µ) 6= ⋆∗ for every i ∈ [level(µ)], which immediately implies that ai(µ) = awµ by Observation 5.9

and finishes the inductive step.

Suppose for contradiction that we assigned ai(µ) = ⋆∗ at Line 9 for some i ∈ [level(µ)]. Then, by the

definition of y at Line 8, the only two cases are (1) awµ ∈ Cj , or (2) star = true (which implies ⋆0 ∈ Cj). In

either case, there is an earlier η < µ such that either (1) awη = awµ (which follows from the way we updateCj
at Line 12) or (2) ai(η) = ⋆∗ and level(η) = i (because ai(µj+1) = y is added to Cj+1 at Line 12 only when

level(µj+1) = i). Case (1) contradicts our assumption that awα 6= awβ for every two distinct α, β ∈ [µ].
Case (2) contradicts the inductive hypothesis that ai(η) = awη 6= ⋆∗. Therefore we have ai(µ) = awµ 6= ⋆∗.

Hence for every µ ∈ [|w|], for all i ∈ [level(µ)], gi(ai(µ)) and ri(ai(µ)) have the same values as the

pseudorandom functions gi(awµ) and ri(awµ) that were used to define h(awµ) for h ∈ Hℓ,m,n. Then, by

Observation 5.6 and our definition of h, it is evident that next(µ) = h(awµ), and hence wµ+1 = h(awµ) by

Lemma 5.5.

The actual reachable set f∗a,h(s) has vertices {w′
1, w

′
2, . . . } where w′

1 = s and w′
µ+1 = h(aw′

µ
) for every

µ ≥ 1. Note that w1 = w′
1 = s by Observation 5.1. We have proved that for every µ such that no two distinct

α, β ∈ [µ] satisfy awα = awβ , we have wµ+1 = h(awµ) and w′
µ+1 = h(aw′

µ
). Then, let µ0 be the smallest

µ ∈ [|w|] such that there exists α < µ with aw′
α
= aw′

µ
. If such µ0 does not exist, then a simple induction

shows w′
η = wη holds for all η. Otherwise, we can similarly show (w1, w2, . . . , wµ0) = (w′

1, w
′
2, . . . , w

′
µ0).

This proves Item (2).

On the other hand, from w′
µ0+1 = h(aw′

µ0
) = h(aw′

α
) = w′

α+1, it follows that {w′
µ0+1, w

′
µ0+2, . . . } ⊆

{w′
1, w

′
2, . . . , w

′
µ0}. Hence, {w′

1, w
′
2, . . . } is be a subset of {w1, w2, . . . }, which proves Item (1).

24

level 1

level 2

level 3

level 4

level 5
(ℓ = 4)

0

1

2

3

4

5

6

7

8

9

10 11

12

Figure 3: The dependency tree T . The index of 7 is (0, 0, 2, 1), since the path 0 → 2 → 4 → 7 has two

level-3 nodes (node 4 and node 7), and one level-4 node (node 2).

5.2 Dependency Tree and Node Indexing

Using the information of level(·) determined by the recursive process w = walk(s, ℓ), we can define a natural

tree structure that we call the dependency tree. The tree consists of |w| + 1 nodes, labeled by integers from

0 to |w|. We will also use Greek letters (e.g., α, β, µ) to refer to the nodes on the dependency tree. The

µ-th vertex wµ in the extended walk corresponds to node µ on the tree. Node 0 is the root of the tree, and

we define level(0) = ℓ + 1 and next(0) = s. Moreover, for the last node |w|, its level is not assigned by

walk(s, ℓ), so we define level(|w|) = ℓ+ 1 as well.

In the rest of the paper, we will reserve the term “node” for nodes (referred to using Greek letters) on the

dependency tree, and use the term “vertex” to refer to the vertices in the walks on the digraph Ga,h, i.e., a

“vertex” is always in the set [n].
To define the dependency tree, we specify the parent of each node µ as follows.

Definition 5.12. In the dependency tree, the parent node of node µ is defined as

par(µ) := max
µ′<µ
{µ′ | level(µ′) ≥ level(µ)},

i.e.,the last node before µ that has level at least level(µ). Note that such µ′ always exists as we have level(0) =
ℓ+ 1.

From this definition, we immediately see that the pre-order traversal of the tree is the node sequence

0, 1, 2, . . . , |w| (see example in Fig. 3). Since we let tree node µ correspond to the µ-th vertex wµ in w, we

get a natural correspondence between the extended walk w and the pre-order traversal of the dependency

tree. In Fig. 4, we illustrate how the dependency tree is consistent with the recursive structure of walk(s′, i).

Definition 5.13. We use p(µ) to denote the path from the root to the node µ on the dependency tree.

We also observe that the levels of nodes on p(µ) are non-increasing. Having the tree structure, we

introduce a way to index the nodes, which will play a crucial role in our proofs in Sections 6 and 7.

Definition 5.14 (Indexing tree nodes using ~k). We index a node µ in the dependency tree by a sequence
~k = (k1, k2, . . . , kℓ) ∈ Nℓ, where ki specifies the number of level-i nodes on the path p(µ). We use µ

~k or

µ[~k] to denote the unique node in the dependency tree indexed by ~k. Note that the node µ
~k may not exist in

the tree.11

11One example of node indexing is shown in Figure 3.

25

s0 = s′

x1

µ1

µ0

· · · xj

µj

sj sj+1

xj+1

µj+1

xt

µt· · ·

walk(s′, i, µ0)

walk(sj , i− 1, µj)

Figure 4: The dependency tree and walk(s′, i, µ0). Starting from s′ = s0, the function walk(s′, i, µ0) first

calls walk(s0, i− 1, µ0) which generates the subtrees of µ0 of level ≤ i− 1. Then, walk(s0, i− 1, µ0) stops

at the first vertex x1 of level ≥ i, where x1 corresponds to node µ1. Then, in walk(s′, i, µ0) we find that the

level of µ1 equals i, and hence let s1 = next(µ1) and explicitly handle the edge x1 → next(µ1). Then we

similarly continue with the recursive call walk(s1, i − 1, µ1), and so on. Finally, walk(s′, i, µ0) terminates

when it meets a node µt so that gi(y) = 0 at Line 11 in Algorithm 3, implying that level(µt) > i. The vertex

xt will be the last vertex in the walk returned by walk(s′, i, µ0).

In our analysis in Sections 6 and 7, we will use the strategy of fixing a particular sequence ~k ∈ Nℓ, and

letting µ
~k, w

µ~k
, a(µ

~k), next(µ
~k), level(µ

~k) be random variables (provided that µ
~k exists in the tree).

We naturally define the ordering of indices as follows.

Definition 5.15. For two sequences ~k1, ~k2 ∈ Nℓ, we say that ~k1 < ~k2 (or ~k1 is to the left of ~k2), if there is

i ∈ [ℓ] such that, k1i < k2i and k1t = k2t for all t ∈ {i + 1, . . . , ℓ}. This can be seen as the lexicographical

order on the reversed sequences.

The definition above is justified by the following observation: for two nodes µ
~k1 , µ

~k2 indexed by ~k1, ~k2,

µ
~k1 < µ

~k2 if and only if ~k1 < ~k2.
Finally, we introduce some notation for indexing ancestors in the tree.

Definition 5.16. Given ~k ∈ Nℓ, i ∈ [ℓ], and j ∈ [ki], the j-th level-i ancestor of µ
~k corresponds to index

~ki,j = (0, . . . , 0, j, ki+1, . . . , kℓ), and we use µ
~k
i,j to denote this ancestor. We also define µ

~k
ℓ,0 = 0, namely

the root node, and we recursively define µ
~k
i,0 = µ

~k
i+1,ki+1

, which is the last ancestor of µ
~k with level greater

than i.
We clarify that, according to our definition, the existence of node µ

~k
i,j in the dependency tree does not

necessarily require the existence of µ
~k.

5.3 Existence Condition of a Root-to-node Path

As mentioned in Section 2.5 and Section 2.6, our main proof will involve analyzing root-to-node paths on

the dependency tree. In this section we will prove several useful lemmas for such analysis.

26

We first prove a few lemmas on the values of right(·) assigned at Line 10 in walk(s, ℓ).

Lemma 5.17. For every node µ ∈ [|w| − 1], we have right(µ) = minα>µ{α | level(α) ≥ level(µ)}, i.e.,

right(µ) is the next node with level at least as high as µ.

Proof. First, by inspecting the structure of the dependency tree resulted from Algorithm 3, we observe that

every node µ ∈ [|w| − 1] must get assigned a value for right(µ) (provided that the walk terminates, which

happens with probability 1 by Lemma 5.3).

When right(µ) gets assigned at Line 10 (where µj = µ), we have level(µ) = i, and right(µ) = µj+1. By

the definition of µj+1 at Line 9, right(µ) corresponds the last vertex returned by the recursive callwalk(sj , i−
1), and all nodes µ′ ∈ [µ + 1, right(µ) − 1] must have level(µ′) ≤ i − 1 which were assigned during

walk(sj , i− 1).
At this point, if gi(y) = 1, then we will assign level(right(µ)) = level(µj+1) = i. Otherwise, gi(y) = 0,

and we will return to the parent level of recursion, where again right(µ) corresponds to the last vertex of

the returned walk, and will eventually get assigned a higher level level(right(µ)) = i′ during walk(s′′, i′) for

some i′ > i. In any case, right(µ) is the first node after µ that has level at least level(µ).

Moreover, by the definition of walk(s, ℓ), we know right(µ) = µ+ |walk(next(µ), level(µ)− 1)|.
For technical reason, we need to extend the definition of right as follows.

Definition 5.18. For w ∈ supp(w), µ ∈ [|w| − 1], and i ∈ {0, 1, . . . , ℓ}, we define

righti(µ) = min
α>µ
{α | level(α) ≥ i},

namely, the next node with level at least i.

We also need the following definition to denote the last vertex returned by walk(s′, i).

Definition 5.19. Let last(s′, i) be the last vertex in the sequence returned by walk(s′, i).

Now we are ready to prove the following lemma, which determines when µ
~k
i,j exists.

Lemma 5.20. For (w, g, r) ∈ supp(w,g, r) and ~k ∈ Nℓ, the following hold:

(a) Suppose µ
~k
i,j−1 exists. Then, µ

~k
i,j exists if and only if gi(ai(righti(µ

~k
i,j−1))) = 1.

(b) xi(righti(µ
~k
i,j−1)) = last(next(µ

~k
i,j−1), i − 1)

Proof. We first consider the easier case of j > 1.

Case 1: j > 1. Consider the function call walk(s′, i, µ0) such that µ0 < µ
~k
i,j−1 ≤ µ0 + |walk(s′, i, µ0)|. It

exists and is unique by Lemma 5.4. Then µj−1 = µ
~k
i,j−1 and µj = right(µj−1) = right(µ

~k
i,j−1). The node

µ
~k
i,j exists if and only if µj is of level i, which is equivalent to gi(ai(µj)) = gi(ai(right(µ

~k
i,j−1))) = 1 by

Observation 5.6. Since in this case µi,j−1 is of level i, righti(µ
~k
i,j−1) is the same as right(µ

~k
i,j−1). Thus (a)

holds when j > 1,

Moreover, in this case, by Line 9, xi(µj) = xj where xj = last(sj−1, i − 1) (by Line 6, 7). From

Line 12, 13, we know sj−1 = next(µj−1) = next(µ
~k
i,j−1). Together, we get xi(right(µ

~k
i,j−1)) = xi(µj) =

last(next(µ
~k
i,j−1), i− 1). This proves (b) when j > 1.

Now we consider the corner case of j = 1, which is slightly more technical and makes the righti notation

in the lemma statement necessary.

27

Case 2: j = 1. In this case, µ
~k
i,0 is of level higher than i. Specifically, by our recursive definition of

µ
~k
i,0 = µ

~k
i+1,ki+1

, we ultimately have µ
~k
i,0 = µ

~k
i′,j′ where i′ = min{i′ ∈ [i + 1, ℓ] | ki′ > 0} and j′ = ki′ ,

provided that i′ exists; if such i′ does not exist, then we set i′ = ℓ+ 1, and in this case µ
~k
i,0 = 0, namely the

root of the dependency tree.

Consider the function call walk(next(µ
~k
i′,j′), i

′−1, µ~ki′,j′)12, which recursively callswalk(next(µ
~k
i′,j′), i

′−
2, µ

~k
i′,j′), and so on, until we reach the recursive call walk(next(µ

~k
i′,j′), i, µ

~k
i′,j′), in which we have the follow-

ing:

(i) s0 = next(µ
~k
i′,j′) = next(µ

~k
i,0).

(ii) µ1 = µ
~k
i′,j′ + |walk(next(µ

~k
i′,j′), i− 1)|.

Note that walk(next(µ
~k
i′,j′), i, µ

~k
i′,j′) first calls walk(next(µ

~k
i′,j′), i − 1, µ

~k
i′,j′), which returns a sequence

with last vertex corresponding to node µ1 defined in (ii). Hence, µ1 is the first node after µ
~k
i′,j′ of level at

least i. Namely, µ1 = righti(µ
~k
i′,j′) = righti(µ

~k
i,0). Then, note µ

~k
i,1 exists if and only if level(µ1) = i, or

equivalently, gi(ai(µ1)) = 1 by Observation 5.6. Together with µ1 = righti(µ
~k
i,0), this proves (a) when

j = 1.

By (i), we know xi(µ1) = last(s0, i− 1) = last(next(µ
~k
i,0), i− 1). Together with µ1 = righti(µ

~k
i,0), this

proves (b) when j = 1.

Moreover, we remark that the values of xi(µ
~k
i,1), xi(µ

~k
i,2), . . . , xi(µ

~k
i,j−1), xi(righti(µ

~k
i,j−1)) are enough

to uniquely determine ai(righti(µ
~k
i,j−1)).

Observation 5.21. Fix (w, g, r) ∈ supp(w,g, r) and ~k ∈ Nℓ. Suppose µ
~k
i,1, . . . , µ

~k
i,j−1 exist. From x̄1 =

xi(µ
~k
i,1), x̄2 = xi(µ

~k
i,2), . . . , x̄j−1 = xi(µ

~k
i,j−1), x̄j = xi(righti(µ

~k
i,j−1)), the value of ai(righti(µ

~k
i,j−1)) can

be uniquely determined as follows:

1. Let j′ = min{j′ | ∃j′′ s.t. 1 ≤ j′′ < j′ ≤ j, ax̄j′′ = ax̄j′}.

2. If no such j′ exists, then ai(righti(µ
~k
i,j−1)) = ax̄j . Otherwise, ai(righti(µ

~k
i,j−1)) = ⋆j−j′ .

Proof. In the function call walk(next(µ
~k
i,0), i, µ

~k
i,0), we have µj−1 = µ

~k
i,j−1, and hence xj′ in this function

call equals x̄j′ . Then this observation follows directly from Lemma 5.10.

6 Warm Up Analysis for One Target Vertex

In this section we prove Lemma 4.2.

In Section 6.1, we introduce the important conventions and notation used in this section. In Section 6.2,

we prove Lemma 4.2, assuming the technical lemmas Lemma 6.1, Lemma 6.2, and Lemma 6.3. These

technical lemmas will be proved in Section 6.5, Section 6.3, and Section 6.4 respectively.

12In the corner case i′ = ℓ+ 1, this is walk(s, ℓ, 0).

28

6.1 Notation

Throughout this section, we fix ℓ,m, n ∈ N and a ∈ [m]n such that ℓ ≤ log n, and we will always work with

(the probability space of) the extended walk Walkℓ,m,n,a. We use w, s,g, r,h, a, level, next to denote the

corresponding random variables in the extended walk. We also use T to denote the dependency tree build

on the extended walk. Note that w, a, level, next,h,T are all determined by (s,g, r).
For every i ∈ {0, 1, . . . , ℓ}, we use g≤i to denote the collection (g1, . . . ,gi). Similarly, we use r≤i

to denote the collection (r1, . . . , ri). For notational convenience, throughout this section, for (g≤t, r≤t) ∈
supp((g≤t, r≤t)), we will always use g≤t ∧ r≤t to denote the event [g≤t = g≤t ∧ r≤t = r≤t].

We now set τ = 20 log n log log n. We say ~k ∈ Nℓ is short, when ki ≤ τ/4 for all i ∈ [ℓ]. Otherwise,

we say ~k is long. We use Kshort to denote the set of all short ~k ∈ Nℓ, that is, Kshort = {0, 1, . . . , τ/4}ℓ. For
~k ∈ Nℓ, we let B~k be the collection of all two-dimensional sequences~b = {bi,j}i∈[ℓ],j∈[ki] with bi,j ∈ [n] for

every i ∈ [ℓ] and j ∈ [ki].
Let Elong be the event that the dependency tree has a node whose index is not a short sequence, i.e.,

Elong :=

[
∃~k ∈ Nℓ s.t.

ℓ
max
i=1

ki > τ/4 and µ
~k exists

]
.

The following lemma, which will be proved in Section 6.5, states that the probability of Elong is small.

Lemma 6.1. In probability space (w,T), it holds that

Pr[Elong] ≤ nℓ/2τ/4.

Now we formally define the events F~k,~bi,j over the probability space of Walkℓ,m,n,a, which will be used

throughout the section. Let ~k ∈ Nℓ be a sequence. For 1 ≤ I ≤ ℓ, 0 ≤ J ≤ kI and~b ∈ B~k, we define F~k,~bI,J
as the event that the following two hold:

• For every I < i ≤ ℓ and every 1 ≤ j ≤ ki, node µ
~k
i,j exists and next(µ

~k
i,j) = bi,j .

• For every 1 ≤ j ≤ J , node µ
~k
I,j exists and next(µ

~k
I,j) = bI,j .

We also use F~k,~bi as shorthand for F~k,~bi,ki . Specifically, we define F~k,~bℓ+1 to be always true. For simplicity, we

sometimes use p(~k) to denote p(µ
~k), i.e., the path from the root to the node µ

~k on the dependency tree.

In Table 6.1 we provide a summary of all the notations defined and used in this section, as well as the

notations for Walkℓ,m,n,a defined in Section 5.1.

29

Notation Meaning

w,T random variables; the extended walk and the dependency tree

Greek letters (α, β, γ) tree nodes

p(α) the path on T from root to α

par(α) the parent of node α on T

(gi, ri) components of hash function in Hℓ,m,n
r≤i, g≤i the sequence (r1, . . . , ri) and (g1, . . . , gi)

r≤t ∧ g≤t the event [r≤t = r≤t ∧ g≤t = g≤t]

ℓ number of components (sub-restrictions, levels) inHℓ,m,n; number of levels; ℓ ≤ log n

τ independence parameter in Hℓ,m,n; τ = 20 log n log log n

next(α) wα+1, i.e., next vertex after node α

ai(α) the parameter we passed to gi, ri trying to determine the next vertex after node α

level(α) the smallest i such that gi(ai(α)) = 1; next(α) is determined by rlevel(α)

µ
~k or µ[~k] the tree node determined by ~k

µ
~k
i,j the j-th level i ancestor of µ

~k; equals the parent of µ
~k
i,1 if j = 0 (roughtly speaking)

Kshort {0, 1, . . . , τ/4}ℓ
B~k set of two-dimensional sequence~b with values in [n] and shape ~k

righti(α) the first node after α of level ≥ i
right(α) the first node after α of level ≥ level(α)

Elong the event that µ
~k exists for any long ~k

F~k,~bi,j the event that for all (i′, j′) before or equal to (i, j), µ
~k
i′,j′ exists and next(µ

~k
i′,j′) =

~bi′,j′

⋆∗ ⋆t for any t ∈ N
p(~k) the path p(µ

~k) from root to µ
~k

walk(s′, i) the level ≤ i extended walk from s′

last(s′, i) the last vertex of walk(s′, i)

Table 1: Summary of Notation

6.2 Proof of Lemma 4.2

Reminder of Lemma 4.2. Suppose ℓ = log n− logF2(a)
2 − 10. For every vertex v ∈ [n], we have

Pr
h∈RHℓ,m,n,s∈R[n]

[v ∈ f∗a,h(s)] = Θ

(
1√
F2(a)

)
.

Our proof strategy is to utilize Lemma 5.11. We first count the number of times that vertex v occurs in

walkw, and then subtract the “bad occurrences” of v, i.e., the occurrences of v in thosew where there exist

α 6= β ∈ [|w|], awα = awβ .

30

By Lemma 5.5, we always have wµ+1 = next(µ). Thus we have13

{µ | wµ = v} =
{
~k ∈ Nℓ

∣∣∣ next(µ~k) = v
}
.

Note that when we write next(µ
~k), we implicitly require that the node µ

~k exists. We will follow this conven-

tion in the rest of the paper.

Since gi and ri are only τ -wise independent, our technique can only handle those~k ∈ Kshort. Fortunately,

the contribution of those ~k ∈ Kshort will already be sufficient to provide a good lower bound. Namely, we

only count

#
{
~k ∈ Kshort

∣∣∣ next(µ~k) = v
}
.

The occurrence wµ = v is a bad occurence only when there exist14 α 6= β ∈ [|w|], awα = awβ . Hence

if we let ~k′ be the index of α− 1 and ~k′′ be the index of β − 1, then wµ = v is a bad occurrence only when

∃~k′ 6= ~k′′ ∈ Nℓ, a
next(~k′)

= a
next(~k′′)

.

Note here ~k′ and ~k′′ may not belong in Kshort. But by Lemma 6.1, this cannot happen too often. Therefore

we can still get our desired bound.

Formally, we will first prove the following two lemmas.

Lemma 6.2 (Counting the number of occurrence of v). For every vertex v ∈ [n], it holds that

2ℓ

n
− 1

n3
≤ E
w,T

[
#
{
~k ∈ Kshort

∣∣∣ next(µ~k) = v
}]
≤ 2ℓ

n
.

Lemma 6.3 (Upper bounding the bad occurrence of v). For every vertex v ∈ [n], let Cv = #{i | ai = av}
be the number of occurrences of av in the input a. It holds that

E
w,T

[
#
{
~k ∈ Kshort

∣∣∣ next(µ~k) = v ∧ ∃~k′ 6= ~k′′ ∈ Nℓ, a
next(µ~k′)

= a
next(µ~k′′)

}]
≤ 48

8ℓF2(a)

n3
+16

4ℓCv
n2

+
1

n3
.

Based on Lemma 6.2 and Lemma 6.3, we are ready to prove Lemma 4.2.

Proof of Lemma 4.2. From Lemma 5.5 and Lemma 5.11, we have

Pr
h,s

[v ∈ f∗a,h(s)] ≥ E
w,T

[
#
{
~k ∈ Kshort

∣∣∣ next(µ~k) = v ∧ ∀~k′ 6= ~k′′ ∈ Nℓ, a
next(µ~k′)

6= a
next(µ~k′′)

}]

= E
w,T

[
#
{
~k ∈ Kshort

∣∣∣ next(µ~k) = v
}]

− E
w,T

[
#
{
~k ∈ Kshort

∣∣∣ next(µ~k) = v ∧ ∃~k′ 6= ~k′′ ∈ Nℓ, a
next(µ~k′)

= a
next(µ~k′′)

}]

≥ 2ℓ

n
− 48

8ℓF2(a)

n3
− 16

4ℓCv
n2
− 2

n3
(Lemma 6.2 and 6.3)

=
1

210
√
F2(a)

− 48

230
√
F2(a)

− 16Cv
220F2(a)

− 2

n3
(ℓ = log n− logF2(a)

2 − 10)

≥ Ω

(
1√
F2(a)

)
,

13We also use #A to denote the size |A| of a set A.
14We use the shorthand x 6= y ∈ A to mean x, y ∈ A and x 6= y.

31

where the last step follows from Cv = #{i | ai = av} ≤
√
F2(a) ≤ n.

For the other direction, we have

Pr
h,s

[v ∈ f∗a,h(s)] ≤ Pr
w,T

[
∃~k ∈ Kshort s.t. next(µ

~k) = v
]
+Pr[Elong]

≤ E
w,T

[
#
{
~k ∈ Kshort

∣∣∣ next(µ~k) = v
}]

+Pr[Elong]

≤ 2ℓ

n
+ nℓ/2τ (Lemma 6.2 and Lemma 6.1)

≤ O
(

1√
F2(a)

)
, (ℓ = log n− logF2(a)

2 − 10)

where the last step follows from the fact that ℓ ≤ log n, τ ≥ 20 log n log log n, so that nℓ/2τ/4 ≤ 1
n3 .

The rest of the section is devoted to the proofs of Lemma 6.2 (Section 6.3) and Lemma 6.3 (Section 6.4).

6.3 Counting All Occurrences of a Vertex

Now we count the expected number of occurrences of v, namely,

E

[
#
{
~k ∈ Kshort

∣∣∣ next(µ~k) = v
}]

.

We first enumerate and fix the sequence ~k. Then by linearity of expectation, what we want is the summation

of the probability

Pr

[
µ
~k exists ∧ next(µ

~k) = v
]
.

over all ~k ∈ Kshort. To compute this probability, we will use an induction between the levels on the depen-

dency tree.

Let us first look at the case within a single level. Intuitively, when conditioning on r≤i−1 ∧ g≤i−1 and

F~k,~bi,j−1 (which asserts next(µ
~k
i,j−1) = b

~k
i,j−1) for some fixed~b, the vertex xj (in walk(s′, i)) is simply the last

vertex of walk(sj−1, i − 1) = walk(next(µ
~k
i,j−1), i − 1), which is determined by r≤i−1, g≤i−1 by Observa-

tion 5.2. Hence axj is fixed by ~b, r≤i−1, g≤i−1, and is independent of ri, gi. Due to the fact j ≤ τ (since

~k ∈ Kshort) and gi, ri are τ -wise independent, this allow us to argue that gi(axj) = 1 with 1/2 probability

and ri(axj) ∈R [n] is uniformly random.

Then we can prove level(right(µ
~k
i,j−1)) = i holds with 1/2 probability, and that next(µ

~k
i,j) is uniformly

random (when level(right(µ
~k
i,j−1)) = i and hence µ

~k
i,j exists). This argument is formalized in the following

important lemma, which functions as the inductive step in our whole induction proof.

Lemma 6.4. Fix ~k ∈ Kshort and~b ∈ B~k. In probability space (s,h,w), suppose (as induction hypothesis)

that the event F~k,~bi+1 is independent of the joint random variable (g≤i, r≤i). Then, for all i ∈ [ℓ] and j ∈ [ki],
and all g≤i−1 ∈ supp(g≤i−1), r≤i−1 ∈ supp(r≤i−1), it holds that

Pr

[
F~k,~bi,j

∣∣∣ F~k,~bi,j−1 ∧ g≤i−1 ∧ r≤i−1

]
=

1

2n
.

32

Proof. Fix i ∈ [ℓ] and j ∈ [ki] and let g≤i−1 ∈ supp(g≤i−1) and r≤i−1 ∈ supp(r≤i−1). We let E≤i−1

denote the event
[
g≤i−1 ∧ r≤i−1

]
for convenience. Our goal is to show that

Pr

[
F~k,~bi,j

∣∣∣ F~k,~bi,j−1 ∧ E≤i−1

]
=

1

2n
.

By Lemma 5.20 (a), µ
~k
i,j exists if and only if gi(ai(righti(µ

~k
i,j−1))) = 1. Then let us inspect how

ai(righti(µ
~k
i,j−1)) is determined. Let walk(s′, i, µ0) be the function call such that µ0 < righti(µ

~k
i,j−1) ≤

µ0 + |walk(s′, i, µ0)| which exists and is unique by Lemma 5.4. In this function call, µj = righti(µ
~k
i,j−1).

Conditioning on F~k,~bi,j−1, we know that µ
~k
i,1, . . . , µ

~k
i,j−1 exist. Then by Observation 5.21, ai(µj) is deter-

mined by xi(µ
~k
i,1), . . . , xi(µ

~k
i,j−1), xi(righti(µ

~k
i,j−1)), namely, by all xi(righti(µ

~k
i,j′−1)) for j′ ∈ [1, j].

By Lemma 5.20 (b), xi(righti(µ
~k
i,j′−1)) = last(next(µ

~k
i,j′−1), i− 1). Conditioning on F~k,~bi,j−1, for j′ ≤ j

we have next(µ
~k
i,j′−1) = bi,j′−1 (for the corner case of j′ = 1, we recursively define bi,0 = bi−1,ki−1

).

Moreover, by Observation 5.2, last(·, i − 1) only depends on r≤i−1 and g≤i−1. Therefore, conditioning

on F~k,~bi,j−1 ∧ E≤i−1, each xi(righti(µ
~k
i,j′−1)) (1 ≤ j′ ≤ j) is uniquely determined from ~k,~b, g≤i−1, r≤i−1.

Hence, they also uniquely determine ai(righti(µ
~k
i,j′−1)) for 1 ≤ j′ ≤ j.

Recall that µ
~k
i,j exists if and only if gi(ai(µj)) = 1. If µ

~k
i,j exists, we know µ

~k
i,j = µj and next(µj) =

ri(ai(µj)). So our goal is to show that gi(ai(µj)) = 1∧ri(ai(µj)) = bi,j indeed happens with 1
2n probability.

We prove this using the fact that ri(·) and gi(·) are τ -wise independent, and our condition F~k,~bi,j−1 has only

revealed the values of ri(·),gi(·) at no more than j ≤ τ many points.

By F~k,~bi,j−1, for all j′ ∈ [j − 1], we have ri(a(µj′)) = next(µj′) = bi,j′ and gi(a(µj′)) = 1. For

ri ∈ supp(ri) and gi ∈ supp(gi), define an predicate

P (ri, gi) :=
[
∀j′ ∈ [j − 1], gi(ai(µj′)) = 1 ∧ ri(ai(µj′)) = bi,j′

]
.

By definition, F~k,~bi,j−1 is true if and only ifF~k,~bi+1 is true and for each j′ ≤ j−1, level(µj′) = i∧next(µj′) =
bi,j′ , which is equivalent to gi(ai(µj′)) = 1 ∧ ri(ai(µj′)) = bi,j′ . Thus,

F~k,~bi,j−1 ∧ E≤i−1 = F
~k,~b
i+1 ∧ E≤i−1 ∧ P (ri,gi).

We have shown that each ai(µj′) is uniquely determined by r≤i−1, g≤i−1 and ~k,~b, so P (ri, gi) is a

predicate of ri, gi only, and hence P (ri,gi) only depends on the randomness of ri,gi. To prevent confusion,

we stress that P is defined using the particular r≤i−1, g≤i−1 that we have fixed at the beginning of the proof,

and does not depend on the random variables r≤i−1,g≤i−1.

From our assumption that F~k,~bi+1 is independent of the joint random variable (r≤i,g≤i), we know that the

event F~k,~bi+1 ∧ E≤i−1 is independent of ri,gi. Since P (ri, gi) is a predicate of ri, gi, we know F~k,~bi+1 ∧ E≤i−1

is still independent of ri,gi when conditioning on P (ri,gi). Namely, since

Pr

[
ri = ri,gi = gi

∣∣∣ F~k,~bi+1 ∧ E≤i−1

]
= Pr [ri = ri,gi = gi] ,

and P (ri, gi) is a predicate of only ri, gi, we know that

Pr

[
ri = ri,gi = gi

∣∣∣ F~k,~bi+1 ∧ E≤i−1, P (ri, gi)
]
= Pr [ri = ri,gi = gi | P (ri, gi)] ,

33

Hence, we can derive

Pr

[
F~k,~bi,j

∣∣∣ F~k,~bi,j−1 ∧ E≤i−1

]

= Pr

[
gi(ai(µj)) = 1, ri(ai(µj)) = bi,j

∣∣∣ F~k,~bi,j−1 ∧ E≤i−1

]

= Pr
[
gi(ai(µj)) = 1, ri(ai(µj)) = bi,j

∣∣∣ F~k,~bi+1 ∧ E≤i−1 ∧ P (ri,gi)
]

= Pr [gi(ai(µj)) = 1, ri(ai(µj)) = bi,j | P (ri,gi)]

=
1

2n
,

where the last step follows from the fact that gi(·) and ri(·) are τ -wise independent, j ≤ τ , and ai(µj)
is different from all other ai(µj′) by definition (see the “in particular” part of Lemma 5.10) and uniquely

determined by~b, r≤i−1, g≤i−1.

Iterative application of Lemma 6.4 leads to the following corollary.

Corollary 6.5. Fix~k ∈ Kshort and~b ∈ B~k. In probability space (s,h,w), suppose (as induction hypothesis)

that the event F~k,~bi+1 is independent of the joint random variable (g≤i, r≤i). Then, for all i ∈ [ℓ], g≤i−1 ∈
supp(g≤i−1) and r≤i−1 ∈ supp(r≤i−1), it holds that

Pr

[
F~k,~bi

∣∣∣ F~k,~bi+1 ∧ g≤i−1 ∧ r≤i−1

]
=

2−ki

nki
.

Proof. We let E≤i−1 to denote the event
[
g≤i−1 ∧ r≤i−1

]
for convenience. From the definition of the F~k,~bi,j

and Lemma 6.4, we have

Pr

[
F~k,~bi

∣∣∣ F~k,~bi+1 ∧ E≤i−1

]
= Pr

[
F~k,~bi,ki

∣∣∣ F~k,~bi,0 ∧ E≤i−1

]

=

ki∏

j=1

Pr
[
F~k,~bi,j

∣∣∣ F~k,~bi,j−1 ∧ E≤i−1

]

=
2−ki

nki
.

Then we iteratively use Corollary 6.5 to obtain the probability of F~k,~b1 .

Lemma 6.6. Fix ~k ∈ Kshort and ~b ∈ B~k. For all i ∈ [ℓ + 1], letting g≤i−1 ∈ supp(g≤i−1) and r≤i−1 ∈
supp(r≤i−1). In probability space (s,h,w), we have

Pr

[
F~k,~bi

∣∣∣ g≤i−1 ∧ r≤i−1

]
=

2−
∑ℓ
j=i kj

n
∑ℓ
j=i kj

.

Proof. We prove this by induction. For the base case i = ℓ+ 1, F~k,~bi is always true by definition, and hence

Pr

[
F~k,~bi

∣∣∣ g≤i−1 ∧ r≤i−1

]
= 1.

34

Suppose the induction hypothesis holds for i+ 1. Note this implies Pr

[
F~k,~bi+1

∣∣∣g≤i ∧ r≤i
]
= Pr

[
F~k,~bi+1

]

for every possible g≤i and r≤i, meaning that F~k,~bi+1 is independent of the joint variable (g≤i, r≤i). Hence, it

satisfies the premise of Corollary 6.5.

From the definition of F~k,~bi , we have

Pr

[
F~k,~bi

∣∣∣ g≤i−1 ∧ r≤i−1

]
= Pr

[
F~k,~bi

∣∣∣ F~k,~bi+1 ∧ g≤i−1 ∧ r≤i−1

]
·Pr

[
F~k,~bi+1

∣∣∣ g≤i−1 ∧ r≤i−1

]
.

From induction hypothesis, we have

Pr

[
F~k,~bi+1

∣∣∣ g≤i−1 ∧ r≤i−1

]
= E

(gi,ri)∈R(gi,ri)

[
Pr

[
F~k,~bi+1

∣∣∣ gi ∧ ri ∧ g≤i−1 ∧ r≤i−1

]]
=

2−
∑ℓ
j=i+1 kj

n
∑ℓ
j=i+1 kj

.

From Corollary 6.5, it follows that

Pr

[
F~k,~bi

∣∣∣ F~k,~bi+1 ∧ g≤i−1 ∧ r≤i−1

]
=

2−ki

nki
.

Putting everything together, we have

Pr

[
F~k,~bi

∣∣∣ g≤i−1 ∧ r≤i−1

]
=

2−ki

nki
· 2

−
∑ℓ
j=i+1 kj

n
∑ℓ
j=i+1 kj

=
2−

∑ℓ
j=i kj

n
∑ℓ
j=i kj

.

Finally, we are ready to count the number of occurrences of v, and prove Lemma 6.2.

Reminder of Lemma 6.2. For every vertex v ∈ [n], it holds that

2ℓ

n
− 1

n3
≤ E
w,T

[
#
{
~k ∈ Kshort

∣∣∣ next(µ~k) = v
}]
≤ 2ℓ

n
.

Proof. For each ~k ∈ Nℓ and~b ∈ B~k, we say (~k,~b) is good, if next(µ
~k) = v holds in the event F~k,~b1 . Recall

that ~k is short, when ki ≤ τ/4 for all i ∈ [ℓ]; and otherwise ~k is long.

We first break the expectation into the sum of contribution of all possible index ~k and~b. By linearity of

expectation, we have

E
w,T

[
#
{
~k ∈ Kshort

∣∣∣ next(µ~k) = v
}]

=
∑

~k∈Kshort

∑

~b∈B~k

Pr

[
F~k,~b1 ∧ (~k,~b) is good

]
.

Then, by Lemma 6.6, for all ~k ∈ Kshort,~b ∈ B~k, it holds that

Pr

[
F~k,~b1

]
=

2−
∑ℓ
j=1 kj

n
∑ℓ
j=1 kj

.

There are n
∑ℓ
j=1 kj many sequences ~b ∈ B~k, and n(

∑ℓ
j=1 kj)−1 of them satisfy next(µ

~k) = v. Thus for

all short ~k,
∑

~b∈B~k

Pr

[
F~k,~b1 ∧ (~k,~b) is good

]
=

2−
∑ℓ
j=1 kj

n
.

35

Then, we have

∑

~k∈Kshort

∑

~b∈B~k

Pr

[
F~k,~b1 ∧ (~k,~b) is good

]

=
∑

~k∈Kshort

2−(k1+k2+···+kℓ)

n

=



τ/4∑

i=0

2−i



ℓ

/n

=
(
2− 2−τ/4

)ℓ
/n.

Putting everything together, we have

2ℓ

n
≥ E
w,T

[
#
{
~k ∈ Kshort

∣∣∣ next(µ~k) = v
}]

=
(
2− 2−τ/4

)ℓ
/n ≥ 2ℓ

n
− 1

n3
,

which completes the proof.

6.4 Counting All Bad Occurrences of a Vertex

Now we move on to prove Lemma 6.3 which upper bounds the number of “bad” occurrences of v as follows,

E
w,T

[
#
{
~k ∈ Kshort

∣∣∣ next(µ~k) = v ∧ ∃~k′ 6= ~k′′ ∈ Nℓ, a
next(µ~k′)

= a
next(µ~k′′)

}]
≤ 12

8ℓF2(a)

n3
+8

4ℓCv
n2

+
1

n3
.

We first apply a union bound on ~k′ and ~k′′, and similar to the proof of Lemma 6.2, we enumerate three

sequences ~k1 ∈ Kshort, ~k2 ∈ Nℓ, ~k3 ∈ Nℓ, and sum up the contribution of

Pr
w,T

[
µ
~k1 , µ

~k2 , µ
~k3 exist ∧ next(µ

~k1) = v ∧ a
next(µ~k2)

= a
next(µ~k3)

]

over all ~k1, ~k2, ~k3. Intuitively, one would expect this to give the desired upper bound. However there is some

subtlety due to possible collisions between the paths from root to the nodes µ
~k1 , µ

~k2 , µ
~k3 , which we formally

define below. Recall that p(µ) denote the path on T from root to node µ.

Definition 6.7. We say a pair of nodes (α, β) is a collision between two paths p1 and p2, if α ∈ p1 \ p2, β ∈
p2 \ p1, and (a(α), level(α)) = (a(β), level(β)) (where a(·) is defined in Definition 5.7). The level of a

collision (α, β) is defined as level(α) (which equals level(β)).

For a collision (α, β), the values of next(α) and next(β) are actually the same random variable rlevel(α)(a(α)).

When collisions appear between p(µ
~k1), p(µ

~k2), and p(µ
~k3), the correlations caused by these collisions

would make our analysis difficult.

36

π1 π2

ᾱ− 1 φ− 1

=⇒ π1 π2

ᾱ− 1 φ− 1

Figure 5: Moving ᾱ− 1 to the corresponding node in the subtree of π2

6.4.1 Structure of Bad Cases

To get around such difficulty, we need to exploit the combinatorial structure of the dependency trees. We let

φ = µ
~k1+1, ᾱ = µ

~k2+1 and β̄ = µ
~k3+1. Then by Observation 5.5, next(µ

~k1) = v∧a
next(µ~k2)

= a
next(µ~k3)

is equivalent to wφ = v ∧ awᾱ = awβ̄ .

The following lemma asserts that, fixing any (w, T) ∈ supp ((w,T)), whenever there exist collisions

between p(ᾱ − 1) and p(β̄ − 1), there always exists another pair of α and β satisfying awα = awβ as well,

such that there are no such problematic collisions between paths p(α− 1) and p(β − 1).

Lemma 6.8. Fix (w, T) ∈ supp((w,T)). Suppose T contains two nodes ᾱ 6= β̄ such that awᾱ = awβ̄ .

Then for every node φ on T , there must exist nodes α and β, such that α 6= β, awα = awβ , and for any two

of the paths p(φ− 1), p(α − 1), p(β − 1) there is no collision (as in Definition 6.7) between them.

The intuition for Lemma 6.8 is as following: We call a pair (ᾱ, β̄) a duplicate if and only if ᾱ < β̄ and

awᾱ = awβ̄ . Take the duplicate (ᾱ, β̄) with the smallest β̄. Since it is the first pair of duplicate on w (in the

sense that w1, w2, . . . , wβ̄−1 contains no duplicate), we can prove there is no collision between p(ᾱ− 1) and

p(β̄ − 1). So the only problem left is the possible collisions with p(φ− 1).
Suppose there is a collision between p(ᾱ− 1) and p(φ− 1), namely there are two nodes π1 ∈ p(ᾱ− 1) \

p(β̄− 1) and π2 ∈ p(β̄− 1) \p(ᾱ− 1) that (a(π1), level(π1)) = (a(π2), level(π2)). Then, intuitively, by the

way how subtrees of π1 and π2 are generated, these two subtrees should be the same. Note ᾱ − 1 is in the

subtree of π1. We can move it to the corresponding node in the subtree of π2. See Figure 5. After moving,

the original collision π1, π2 between path p(ᾱ− 1) and p(φ− 1) becomes a common ancestor π2. Thus we

can eliminate collisions with p(φ− 1) in this way, and find desired α, β.

Before proving Lemma 6.8, we first prove a few technical lemmas which formalize the intuition that the

subtrees of π1 and π2 should be the same. We will need a few extra notations.

Definition 6.9. We define suc(η) to be the set of nodes within the subtree of η that has the same level as µ.

Then we define p∗(µ) = ∪η∈p(µ)suc(η) which is an extension of p(µ). (See Figure 6)

For simplicity, we let p(~k) denote p(µ
~k), i.e.,the path from root to the node with index ~k. Similarly, we

use p∗(~k) to denote p∗(µ
~k).

37

µ

Figure 6: The dependency tree T and extension p∗(µ) (marked in red)

Lemma 6.10. Fix sequence ~k1 and w, T ∈ supp(w,T). Let σ be a node in T and ~k be the index of σ.

Suppose there is a collision between p(σ) and p∗(~k1).
Let i be the lowest level that contains such collision. Then there must be a node π3 ∈ p∗(~k1) of level i

such that a(π3) = a(µ
~k
i,ki

).

Proof. Let (π1, π2) be the collision of level i. Formally, π1 = µ
~k
i,j is the node on p(σ) with smallest i such

that ∃π2 ∈ p∗(~k1) satisfying (a(π2), level(π2)) = (a(π1), i). If there are multiple such (π1, π2), we choose

the one that minimizes j.
Recall the definition of right (which can be found in Table 6.1). We prove the existence of such π3 by

the following algorithm. Note that level(π1) = level(π2) = i.

Algorithm 4: Finding π3

1 α← π1, β ← π2
2 for t ∈ [j + 1, ki] do

3 if ai(right(α)) = ai(right(β)) then

4 α← right(α), β ← right(β)
5 else

6 Let η ∈ p∗(~k1) be the node such that ai(η) = ai(right(α)) and level(η) = i.
7 α← right(α), β ← η

8 π3 ← β

To prove the lemma, we need to prove following two facts about the algorithm.

1. Throughout Algorithm 4, level(α) = level(β) = i.

2. At Line 6, such node η always exists.

We first show that these two facts are sufficient to prove the lemma. Suppose these facts are true. By

Fact 2, the algorithm will not abort by error. When the algorithm terminates, since initially α = π1 = µ
~k
i,j

and α← right(α) is executed for ki−j steps, we have α = µ
~k
i,ki

. Observe that the invariant ai(α) = ai(β) is

preserved through the algorithm. Then by Fact 1 and the invariant, we know (ai(β), level(β)) = (ai(α), i).
Moreover, since β only move to right(β) and η ∈ p∗(~k1), we know β ∈ p∗(~k1). As a result, we can let

π3 ← β and it satisfies the lemma requirements.

38

Proof of Fact 1. Since initially α = π1 = µ
~k
i,j , and for each t it moves to right(α), we know that at the

beginning of the each loop α = µ
~k1
i,t−1, and at the end of the each loop α = right(µ

~k1
i,t−1) = µ

~k1
i,t (since

t ∈ [j + 1, ki]). We know α is always of level i.
For β, each time it either move to a level i node η or move to right(β). Since at Line 4, gi(ai(right(β))) =

gi(ai(right(α))) = 1, and by our discussion above level(right(α)) = i, we know right(β) must also be of

level i.

Proof of Fact 2. Now we inspect how ai(right(α)) and ai(right(β)) are determined. For α = µ
~k
i,t−1,

in the function walk, from st−1 = next(α), we first perform walk(st−1, i − 1). xt is the last vertex of

this walk, and therefore xt = wright(α). Then ai(right(α)) is determined by axt = awright(α)
and Ct−1. If

star = true, ai(right(α)) = ⋆t (t > 0). Otherwise, either ai(right(α)) = awright(α)
, or it equals ⋆0 because

awright(α)
∈ Ct−1. Note awright(α)

∈ Ct−1 if and only if there is a node η ∈ p(~k) of level i before α, such that

ai(η) = awright(α)
. ai(β) is determined in the same way. In conclusion, we have following propositions:

• xt = wright(α) is the last vertex of walk(next(α), i − 1). (17)

• ai(right(α)) = ⋆0 only when ∃η ∈ p(~k) of level i, such that ai(η) = awright(α)
, η < α. (18)

• These two also holds for β by replacing α with β, and p(~k) with p∗(~k1). (19)

Observe that we kept the invariant ai(α) = ai(β) throughout the algorithm. Therefore, since next(α) =
ri(ai(α)) and next(β) = ri(ai(β)). We know next(α) = next(β). Thus both walk(next(α), i − 1) and

walk(next(β), i− 1) are the same walk. Hence, by (17), wright(α) = wright(β). If both ai(right(α)) 6= ⋆∗ and

ai(right(β)) 6= ⋆∗ holds, we would have ai(right(α)) = awright(α)
= awright(β)

= ai(right(β)).
Note if ai(right(α)) = ⋆t′ for t′ > 0, this would imply ai(α) = ⋆t′−1. Since ai(α) = ai(β), we must

have ai(right(β)) = ai(right(β)) then. The same holds for β.

Thus the only possibility of entering Line 6 is when exactly one of ai(right(α)) = ⋆0 and ai(right(β)) =
⋆0 happens. Note here α ∈ p(~k) and β ∈ p∗(~k1), and wright(α) = wright(β) implies awright(α)

= awright(β)
.

Case 1: ai(right(α)) 6= ⋆∗ and ai(right(β)) = ⋆0. By (18) and (19), this happens only when there is a

node η ∈ p∗(~k1) such that (ai(η), level(η)) = (awright(β)
, i). On the other side, since ai(right(α)) 6= ⋆∗,

ai(right(α)) = awright(α)
= awright(β)

= ai(η). Therefore such η exists.

Case 2: ai(right(α)) = ⋆0 and ai(right(β)) 6= ⋆∗. By (18), there must be η′ ∈ p(~k) before right(α) that

(ai(η
′), level(η′)) = (awright(α)

, i) = (ai(right(β)), i). Note (η′, β) is a collision of level i. We then prove

η′ < π1 to reach a contradiction with the minimality of π1.
Since ai(right(α)) = ⋆0, we have not entered Line 6 in Case 2 before since α is always moving to

right(α), and ai(right(α)) becomes ⋆0 for at most once. If we have entered Line 6 before in Case 1, there

must be a node β′ ∈ p∗(~k) such that ai(right(β
′)) = ⋆0. Since gi(right(β

′)) = gi(right(α)) = 1, right(β′)
is of level i. We let η ← right(β′). This proves the existence of η.

Otherwise, we have not entered Line 6 before. We know that (ai(π1), . . . , ai(α)) = (ai(π2), . . . , ai(β)),

which implies η′ < π1, since otherwise ai(right(β)) would also be ⋆0. However, the way we pick π1 = µ
~k
i,j

minimizes j. Therefore, there cannot be such η′, a contradiction. Hence desired η always exists.

Suppose a path p(σ) has collision with p∗(~k1), and let the lowest such collision be of level i. Then

Lemma 6.10 states that there exists π3 on p∗(~k1) such that ai(π3) equals that of the last level i node on p(~k),

39

i.e.,ai(µ
~k1

i,ki
). This leads to the following corollary saying there must be a node σ′ within the subtree of π3

such that the path from π3 to σ′ is the same as that from µ
~k
i,ki

to σ.

We first define what does it mean for two paths to be the same. Roughly speaking, two paths are the same

if they have the same shape and same a(µ) at each node µ.

Definition 6.11. We say two paths p(~k1) and p(~k2) are the same below level i if

• ∀ 1 ≤ j < i, k1j = k2j .

• ∀ 1 ≤ j < i, 1 ≤ t ≤ k1j , a(µ
~k1
j,t) = a(µ

~k2
j,t).

Corollary 6.12. Fix sequence ~k1 and w, T ∈ supp(w,T). Let σ be a node in T and ~k be the index of σ.

If there is a collision between p(σ) and p∗(~k1), let π3 be defined as Lemma 6.10. Otherwise, let π3 be the

lowest common ancestor of them, i.e.,the last node on p(σ) that is also on p∗(~k1). Let i = level(π3). There

must be a descendant σ′ of π3 such that the followings hold:

• π3 is the last level i node on p(σ′). (20)

• p(σ′) is the same as p(σ) below level i (21)

• (a(σ′), level(σ′)) = (a(σ), level(σ)) (22)

• There is no collision between p(σ′) and p∗(~k1). (23)

Proof. When there is no collision between p(σ) and p∗(~k1), we let σ′ = σ which satisfies all the require-

ments. When there is collision between p(σ) and p∗(~k1), let ~k be the index of σ and ~k3 be the index of π3.
We define ~k′ to be

k′j =

{
k3j j ≥ i
kj j < i

.

Let σ′ be the node µ
~k′ which a priori may not exist. We will later prove that σ′ does exist.

If σ′ = µ
~k′ exists, since k′j = k3j for all j ≥ level(π3), it must be a descendant of π3, and π3 is the last

level i node on p(σ′). This proves (20).

Let γ = µ
~k
i,ki

. By the definition of walk, wγ+1, . . . , wright(γ) is generated by walk(next(γ), i − 1).
Similarly, wπ3+1, . . . , wright(π3) is generated by the return value of walk(next(π3), i − 1).

Since ai(γ) = ai(π3) (by Lemma 6.10), we know next(γ) = ri(ai(γ)) = ri(ai(π3)) = next(π3). This

implies that walk(next(γ), i − 1) is the same walk as walk(next(π3), i − 1). Since ~kj and ~k′j are the same

for all j < i, and their last level i nodes are γ and π3 respectively. µ
~k′ exists if and only if µ

~k exists. Since

σ = µ
~k exists, we know σ′ = µ

~k′ also exists. Besides, below level i, these two paths (p(σ) and p(σ′)) are

generated by the same walk (since walk(next(γ), i− 1) is the same as walk(next(π3), i− 1)), so they are the

same below level i. This proves (21). Note if i > level(σ), (21) implies (22). If i = level(σ), (20) implies

σ = γ and π3 = σ′. Therefore (22) also holds.

Finally, we prove (23). By definition of π3 in Lemma 6.10, there is no collision between p(σ) and p∗(~k1).
Since p(σ′) is the same as p(σ) below level i, there is also no collision between p(σ′) and p∗(~k1) below level

i. Moreover, by (20), the last level i node of p(σ′) is π3 ∈ p∗(~k1). Thus there is also no collision between

them above or equal level i. This concludes the proof of (23).

40

Roughly speaking, we need to apply Corollary 6.12 to p(ᾱ−1) and p(β̄−1) respectively. Before applying

Corollary 6.12, there is no collision between them. We need to prove that this property is preserved after

applying Corollary 6.12. This gives the following corollary which will be used in the proof of Lemma 6.8.

We will later apply it with µ = ᾱ− 1 and η = β̄ − 1.

Corollary 6.13. Fix sequence ~k1 and (w, T) ∈ supp((w,T)). Suppose there are two nodes µ and η
such that there is no collision between p(µ) and p(η). Then there must exist two nodes µ′, η′ such that

(a(µ), level(µ)) = (a(µ′), level(µ′)) and (a(η), level(η)) = (a(η′), level(η′)), and there is no collision be-

tween p(µ′), p(η′) and p∗(~k1).

Proof. We apply Corollary 6.12 to σ = µ (resp. η) and get σ′ = µ′ (resp. η′) and πµ3 (resp. πη3). Let

iµ = level(πµ3) and iη = level(πη3).
Our proof is by contradiction. Suppose there are α′ ∈ p(µ′) \ p(η′) and β′ ∈ p(η′) \ p(µ′) such that

(a(α′), level(α′)) = (a(β′), level(β′)). If level(α′) ≥ iµ, we know α′ ∈ p(πµ3) by Corollary 6.12 (20).

However, since πµ3 ∈ p∗(~k1), we know α′ ∈ p∗(~k1). This contradicts Corollary 6.12 (23) saying that there

is no collision between p(η′) and p∗(~k1). Same contradiction follows if level(β′) ≥ iη.
Therefore, we must have level(α′) < iµ and level(β′) < iη. By Corollary 6.12 (21), there is a node

α ∈ p(µ) corresponding to α′ such that (ai(α), level(α)) = (ai(α
′), level(α′)). Similarly, there is also a

node β ∈ p(η) corresponding to β′ such that (ai(β), level(β)) = (ai(β
′), level(β′)).

If α 6= β, we reach a contradiction with the assumption that there is no collision between p(µ) and p(η).
If α = β, let i be the level of the lowest common ancestor of µ and η (i.e.,the last node on p(µ) that is also

on p(η)). Since α ∈ p(µ) and β ∈ p(η), we know i ≤ level(α). On the other hand, level(α) = level(α′) < iµ
and level(β) = level(β′) < iη. Thus iµ and iη are strictly higher than i. Since p(µ), p(η) overlaps above

level i, and iµ is the lowest level that contains a collision (or common ancestor when there is no collision)

between p(µ) and p∗(~k1) (resp. iη is the lowest level that contains a collision (or common ancestor when

there is no collision) between p(η) and p∗(~k1)), we know iµ = iη. Moreover, if we let γ be the last level iµ
node on p(µ), it is also the last node on p(η) of that level (again because these two paths overlaps above level

i).
Hence since πµ3 , π

η
3 ∈ p∗(~k1) satisfies (a(πµ3), level(π

µ
3)) = (a(γ), level(γ)) = (a(πη3), level(π

η
3)) (by

Lemma 6.10). We must have πµ3 = πη3 . Thus from α = β and Corollary 6.12 (21), we know α′ = β′. Then

it cannot be a collision.

We are finally ready to prove Lemma 6.8.

Reminder of Lemma 6.8. Fix (w, T) ∈ supp((w,T)). Suppose T contains two nodes ᾱ 6= β̄ such that

awᾱ = awβ̄ . Then for every node φ on T , there must exist nodes α and β, such that α 6= β, awα = awβ , and

for any two of the paths p(φ−1), p(α−1), p(β−1) there is no collision (as in Definition 6.7) between them.

Proof of Lemma 6.8. Let (ᾱ, β̄) = argmin(α,β){β | awα = awβ , α < β}, i.e., it is the first duplicate in w
in the sense that β̄ is minimized. We first prove that there is no node γ ∈ p(ᾱ − 1) such that a(γ) = ⋆∗.
Suppose there is. Take the first such γ, then we have a(γ) = ⋆0, and there must be a node γ′ before γ such

that awγ′ = awγ . Since γ < ᾱ < β̄, this contradicts the fact that (ᾱ, β̄) is the first duplicate.

Suppose there is π1 ∈ p(ᾱ − 1) \ p(β̄ − 1) and π2 ∈ p(β̄ − 1) \ p(ᾱ − 1) such that a(π1) = a(π2).
By the discussion above, we know a(π1) cannot be ⋆∗. Therefore awπ1 = awπ2 . Again since π2 < β̄, this

contradicts the fact that (ᾱ, β̄) is the first duplicate.

Thus there is no collision between p(ᾱ− 1) and p(β̄− 1). The remaining problem is that there might be

collisions between p(φ− 1) and these two paths.

41

Let ~k1 be the index of node φ − 1. Then we apply Corollary 6.13 with µ = ᾱ − 1 and η = β̄ − 1.

We get µ′ and η′ such that there is no collision between p(µ′), p(η′), p(~k1). Besides by Corollary 6.13

(22), (a(µ′), level(µ′)) = (a(µ), level(µ)) and (a(η′), level(η′)) = (a(η), level(η)). Therefore wµ′+1 =
rlevelµ′ (a(µ

′)) = rlevelµ(a(µ)) = wµ+1 (i.e.,wα = wᾱ). Similarly, wη′+1 = wη+1 (i.e.,wβ = wβ̄).

We can let simply α = µ′ + 1 and β = η′ + 1. Then we have awα = awᾱ = awβ̄ = awβ . Since there is

no collision between p(ᾱ − 1), p(β̄ − 1) and ᾱ < β̄, we know (a(µ), level(µ)) 6= (a(η), level(η)). Hence,

(a(µ′), level(µ′)) 6= (a(η′), level(η′)). We get µ′ 6= η′ and thereby α 6= β.

6.4.2 Upper Bounding the Bad Occurrences

Now we are finally ready to upper bound those bad occurrences of v. In order to handle such case with three

paths, we need to extend our definition of µ
~k
i,j and F~k,~bi,j to the union of t paths.

Notation. We first define the following notion of ancestor.

Definition 6.14. Given two vectors ~k1, ~k2 ∈ Nℓ, we say that ~k1 is an ancestor of ~k2, if the following holds

∃i ∈ [ℓ] s.t. [∀t ∈ [i+ 1, ℓ], k1t = k2t] ∧ [0 < k1i ≤ k2i] ∧ [∀t ∈ [i− 1], k1t = 0] ∧ [~k1 6= ~k2].

Note when both µ
~k1 and µ

~k2 exists, µ
~k1 is an ancestor of µ

~k2 on T if and only if ~k1 is an ancestor of ~k2.
In Section 5, we defined ~ki,j = (0, . . . , 0, j, ki+1, . . . , kℓ), and we also defined how to compare two

indices. We say ~k1 < ~k2 if and only if

∃i ∈ [ℓ] s.t. [∀t ∈ [i+ 1, ℓ], k1t = k2t] ∧ [k1i < k2i]

Recall p(v) denotes the path on T from root to node v. We use P
~k to denote the set of all indices that are

either ~k or an ancestor of ~k. Note that if µ
~k exists on T , then the set of indices of all nodes in p(v) is exactly

P
~k.

Let ~K = {~k1, ~k2, . . . , ~kt} be a set of t paths. We define ~Ki,j to be the j-th index in level i in the union

of P
~k1 , P

~k2 , . . . , P
~kt . Namely, we take out all the distinct indices in {(~k1)i,j}

j∈[~k1i]
∪{(~k2)i,j}

j∈[~k2i]
∪ · · · ∪

{(~kt)i,j}
j∈[~kti]

and sort them in increasing order (by the comparsion we defined above). ~Ki,j is the j-th one

among them. Note it is uniquely determined by ~K, i, and j.

For an index ~k, we use par(~k) be the largest ~k′ such that ~k′ is an ancestor of ~k. We also use par
~K
i,j to

denote par(~Ki,j). Therefore, suppose ~k = ~Ki,j , by this definition ~k′ = (0, . . . , 0, ki−1, ki+1, . . . , kℓ). Note

here ki ≥ 1 since ~Ki,j is of level i.

We make the following observation about existence of µ
~K
i,j .

Observation 6.15. Fix (w, g) ∈ (w,g) and ~K. Recall µ[~k] has the same meaning as µ
~k. The following

holds:

(a) Suppose µ
[
par

~K
i,j

]
exists, µ

~K
i,j exists if and only if gi

(
ai

(
righti

(
µ
[
par

~K
i,j

])))
= 1.

(b) xi

(
righti

(
µ
[
par

~K
i,j

]))
= last

(
next

(
µ
[
par

~K
i,j

])
, i− 1

)

42

(c) Suppose µ
~K
i,1, . . . , µ

~K
i,j−1 and µ

[
par

~K
i,j

]
exist. From x̃1 = xi

(
µ
~K
i,1

)
, x̃2 = xi

(
µ
~K
i,2

)
, . . . , x̃j−1 =

xi

(
µ
~K
i,j−1

)
, x̃j = xi

(
righti

(
µ
[
par

~K
i,j

]))
, one can uniquely determine ai

(
righti

(
µ
[
par

~K
i,j

]))
.

Specifically, let j0 = max{j0 | ~Ki,j0 is an ancestor of ~Ki,j}. Then let j′ = min{j′ | ∃j′′ s.t. j0 ≤
j′′ < j′ ≤ j, ax̄j′′ = ax̄j′}. If such j′ does not exist, then ai

(
righti

(
µ
[
par

~K
i,j

]))
= ax̄j . Otherwise,

ai

(
righti

(
µ
[
par

~K
i,j

]))
= ⋆j−j′ .

(d) If µ
~K
i,j exists, then µ

~K
i,j = righti

(
µ
[
par

~K
i,j

])
.

Proof. Suppose ~Ki,j ∈ P~k for ~k ∈ ~K and ~Ki,j = ~ki,t = ~k′.

By definition of µ
~k
i,t−1, its index is (0, . . . , 0, k′i − 1, k′i+1, . . . , k

′
ℓ). This is exactly par

~K
i,j . Thus (a) and

(b) follows directly from Lemma 5.20.

Note j0 = j− t+1. If we let x̄j′ = x̃j′+j0−1 = xi(µ
~k
i,j′) for j′ ∈ [1, t− 1] and x̄t = x̃j . We can directly

apply Observation 5.21 and get (c). For (d), note if µ
~K
i,j exists, then µ

~K
i,j = µ

~k
i,t, and righti

(
µ
[
par

~K
i,j

])
=

righti

(
µ
~k
i,t−1

)
= µ

~k
i,t.

For the ease of notation, we let ζ i,j = righti

(
µ
[
par

~K
i,j

])
.

Let Ki be the number of distinct level i indices in the union of these t paths P
~k1 , P

~k2 , . . . , P
~kt . We use

B ~K to denote the collection of all two-dimensional sequence ~b = {bi,j}i∈[ℓ],j∈[Ki] with bi,j ∈ [n] for every

1 ≤ i ≤ ℓ, 1 ≤ j ≤ Ki.

Fix ~K and~b ∈ B ~K . For 1 ≤ I ≤ ℓ, 0 ≤ J ≤ KI , we define F ~K,~b
I,J to be the following event:

• For every I < i ≤ ℓ and every 1 ≤ j ≤ Ki, node µ
~K
i,j exists and next(µ

~K
i,j) = bi,j .

• For every 1 ≤ j ≤ J , node µ
~K
I,j exists and next(µ

~K
I,j) = bI,j .

Same as before, we use F ~K,~b
i to denote F ~K,~b

i,Ki
. Specifically, F ~K,~b

ℓ+1 is always true.

Furthermore, we define the following event capturing collisions between these t paths in ~K . Let G̃ ~Ki,j
denote the event that for all 1 ≤ t1 < t2 ≤ j, ai(µ

~K
i,t1

) 6= ai(µ
~K
i,t2

). We also define G̃ ~Ki = G̃ ~Ki,Ki ∧ G̃
~K
i+1 and

let G̃ ~Kℓ+1 to be always true. Note G̃ ~Ki , F ~K,~b
i , and F ~K,~b

i,Ki
involves different levels while G̃ ~Ki,j only involves level

i.
G̃ ~Ki,j captures level i collisions between these paths for the following reason: By how our extended walk

assign ai(µ) to each node µ, for level i nodes α, β on the same path, we always have ai(α) 6= ai(β). Therefore

if ai(µ
~K
i,t1

) 6= ai(µ
~K
i,t2

) they must belong to different paths.

We summarize the notation in Table 6.4.2.

43

Notation Meaning

µ
~k or µ[~k] the tree node determined by ~k

ℓ number of components (sub-restrictions, levels) in Hℓ,m,n; number of levels; ℓ ≤ log n

τ independence parameter inHℓ,m,n; τ = 20 log n log log n

(ri, gi) components of hash function inHℓ,m,n
r≤i, g≤i the sequence (r1, . . . , ri) and (g1, . . . , gi)

r≤t ∧ g≤t the event [r≤t = r≤t ∧ g≤t = g≤t]

~K a set of indices; subset ofNℓ

P
~k the set of indices of all ancestors of ~k

Kshort {0, 1, . . . , τ/4}ℓ

B~k set of two-dimensional sequence~b with values in [n] and shape ~k

~Ki,j the j-th index among all level i indices in ∪~k∈ ~KP
~k

µ
~K
i,j the node µ

~Ki,j

Ki the number of distinct level i indices in ∪~k∈ ~KP
~k

par(µ) a node; the parent of µ

par(~k) an index; the parent of ~k

par
~K
i,j an index; the parent of ~Ki,j

F ~K,~b
i,j the event that for all (i′, j′) before or equal to (i, j), µ

~K
i′,j′ exists and next(µ

~K
i′,j′) =

~bi′,j′

F ~K,~b
i the event F ~K,~b

i,Ki

G̃ ~K,~bi,j the event that for all ai(µ
~K
i,j′) are distinct for 1 ≤ j′ ≤ j

G ~K,~bi the event G ~K,~bi,Ki
∧ G ~K,~bi+1,Ki+1

∧ · · · ∧ G ~K,~bℓ,Kℓ

p(~k) the path p(µ
~k) from root to µ

~k

ζ i,j the node righti

(
µ
[
par

~K
i,j

])

Table 2: Summary of Notation

Proof idea. We have the following lemmas which are extensions of Lemma 6.4 and Corollary 6.5. Similar

as Lemma 6.4, let us first look at the case within a single level. Recall by our definition of µ
[
par

~K
i,j

]
above,

it is well-defined even when µ
~K
i,j does not exist. For some fixed ~K,~b, conditioning on r≤i−1 ∧ g≤i−1 and

F ~K,~b
i,j−1, µ

[
par

~K
i,j

]
is guaranteed to exist.

The vertexwζi,j corresponding to node ζ i,j = righti

(
µ
[
par

~K
i,j

])
is simply last

(
next

(
µ
[
par

~K
i,j

]
, i− 1

))

which is determined by r≤i−1, g≤i−1 by Lemma 5.2. Assume j ≤ τ . Then by the τ -wise independence of

ri,gi, since our condition F ~K,~b
i,j−1 only reveal ri(·) and gi(·) no more than j − 1 ≤ τ − 1 many points. Then

we divide into two cases to upper bound the probability of G̃ ~Ki ∧ F
~K,~b
i . When ai(ζ

i,j) 6= ai(µ
~k
i,j′) for all

j′ ≤ j − 1, we know level(ζ i,j) = i holds with 1/2 probability and next(ζ i,j) is uniformly random. Oth-

44

erwise, gi(ai(ζ
i,j)) = gi(ai(µ

~k
i,j′)) = 1 so that level(ζ i,j) = i . Then we know (µ

~k
i,j′ , ζ

i,j) is a collision of

level i and so that G̃ ~Ki = 0. Therefore, in both cases, we are able to upper bound G̃ ~Ki ∧ F
~K,~b
i .

In Lemma 6.4, we were able to exactly compute probability ofF~k,~bi which is independent of r≤i−1,g≤i−1.

Therefore we can argue that conditioning on F~k,~bi , r≤i−1,g≤i−1 is still uniformly distributed. This is neces-

sary for the induction step in Corollary 6.5 and Lemma 6.6. However, here we can only get an upper bound

of F ~K,~b
i ∧ G̃ ~Ki . Neither F ~K,~b

i nor F ~K,~b
i ∧ G̃ ~Ki is independent of r≤i−1,g≤i−1.

To remedy this, we add auxiliary events A ~K,~b
i so that the probability of event (F ~K,~b

i ∧ G̃ ~Ki) ∨ A ~K,~b
i

exactly matches the upper bound for F ~K,~b
i ∧ G̃ ~Ki . This guarantees that (F ~K,~b

i ∧ G̃ ~Ki) ∨ A ~K,~b
i is independent

of r≤i−1,g≤i−1.

Below we explicitly define the sequence ~c to emphasize that it only depends on ~K,~b, i, r≤i−1, g≤i−1).
One may compare it with Observation 6.15 (c).

Definition 6.16. Recall last(s′, i) is defined in Definition 5.19. Let ~c(~K,~b, i, r≤i−1, g≤i−1) to be a sequence

defined as following:

For each j ∈ Ki, let ipar, jpar be two integers such that par(~Ki,j) = ~Kipar ,jpar . Note here ipar, jpar can

be determined from ~K, i, j. We let xj = last(bipar,jpar , i − 1). This is well-defined since by Lemma 5.2,

last(·, i − 1) only depends on r≤i−1, g≤i−1.

Then let j0 = max{j0 | ~Ki,j0 is an ancestor of ~Ki,j}. Then we know the level i ancestors of ~Ki,j are

exactly ~Ki,j0 , . . . ,
~Ki,j−1. Similar to Observation 6.15 (c), we let j′ = min{j′ | ∃j′′ s.t. j0 ≤ j′′ < j′ ≤

j, axj′′ = axj′}. Finally, we let

[
~c(~K,~b, i, r≤i−1, g≤i−1)

]
j
=

{
axj j′ does not exist

⋆j−j′ Otherwise

When ~K,~b, i, r≤i−1, g≤i−1 are clear from context, we drop them and simply write ~c.

Observation 6.17. Fix a level i ∈ [ℓ], and fix ~K = {~k1, ~k2, . . . , ~kt}, j ∈ [Ki], ~b ∈ B ~K , r≤i−1 and g≤i−1.

Recall we defined ζ i,j = righti

(
µ
[
par

~K
i,j

])
. Let ~c be defined in Definition 6.16. Assuming F ~K,~b

i,j−1 holds, we

have ai(ζ
i,j) = cj .

Proof. Below we use the same definition of xj, i
par, jpar as Definition 6.16.

By F ~K,~b
i,j−1, we know next

(
µ
[
~Kipar,jpar

])
= bipar,jpar . Then from Observation 6.15 (b), we know that

xj = last
(
next

(
µ
[
~Kipar ,jpar

])
, i− 1

)
= xi

(
righti

(
µ
[
~Kipar,jpar

]))
= xi

(
righti

(
µ
[
par

~K
i,j

]))
. This

also holds for all 1 ≤ j′ < j for the same reason.

By F ~K,~b
i,j−1, µ

~K
i,j′ exists for all 1 ≤ j′ < j. Therefore righti

(
µ
[
par

~K
i,j′

])
= µ

~K
i,j′. Thus for all 1 ≤ j′ < j,

we have xj′ = xi(µ
~K
i,j′). Thus from Observation 6.15 (c) and the definition of ~c, we know that ai(ζ

i,j) =
cj .

Definition 6.18. P
~K,~b,r≤i−1,g≤i−1

i,j (ri, gi) is a predicate of ri, gi defined as following:

Let ~c be the sequence defined in Definition 6.16. For ri ∈ supp(ri) and gi ∈ supp(gi),

P
~K,~b,r≤i−1,g≤i−1

i,j (ri, gi) :=
[
∀j′ ∈ [j], gi(cj′) = 1 ∧ ri(cj′) = bi,j′

]
.

45

When ~K,~b, r≤i−1, g≤i−1 are clear from the context, we simply writePi,j(ri, gi). We also viewPi,j(ri,gi)
as an event in probability space (ri,gi).

Let E≤i−1 denote the event [r≤i−1 ∧ g≤i−1]. We have the following observation.

Observation 6.19. Fix ~K,~b.

F ~K,~b
i,j ∧ E≤i−1 = F

~K,~b
i+1 ∧ E≤i−1 ∧ Pi,j(ri, gi)

Specifically, we have

F ~K,~b
i ∧ E≤i−1 = F

~K,~b
i+1 ∧ E≤i−1 ∧ Pi(ri, gi)

Proof. We prove by induction. The base case is when j = 0, both sides of the equation are exactly the same.

Assume this holds for j − 1.

Let ~c be define as Definition 6.16. By definition,

F ~K,~b
i,j ∧ E≤i−1 = F

~K,~b
i,j−1 ∧ E≤i−1 ∧ [µ

~K
i,j exists ∧ next(µ

~K
i,j) = bi,j]

= F ~K,~b
i,j−1 ∧ E≤i−1 ∧ [gi(ai(ζ

i,j) = 1 ∧ ri(ai(ζ i,j)) = bi,j] (Observation 6.15 (a))

= F ~K,~b
i,j−1 ∧ E≤i−1 ∧ [gi(cj) = 1 ∧ ri(cj) = bi,j] (Observation 6.17)

= F ~K,~b
i+1 ∧ E≤i−1 ∧ Pi,j−1(ri, gi) ∧ [gi(cj) = 1 ∧ ri(cj) = bi,j] (Inductive hypothesis)

= F ~K,~b
i+1 ∧ E≤i−1 ∧ Pi,j(ri, gi)

Recall the definition of G̃ ~Ki,j depends on µ
~K
i,t1
, µ

~K
i,t2

for 1 ≤ t1 < t2 ≤ j. Therefore it is not well-defined

whenF ~K,~b
i,j is not true since these nodes may not exist. For this technical reason, we extend it to the following

definition.

Definition 6.20. G ~K,~bi,j is the event defined as following. Let ~c be the sequence ~c(~K,~b, r≤i−1,gi−1) defined

in Definition 6.16. We let

G ~K,~bi,j := [∀1 ≤ t1 < t2 ≤ j, ct1 6= ct2] .

We also define G ~Ki = G ~Ki,Ki ∧ G
~K
i+1.

When F ~K,~b
i,j holds, G ~Ki,j is the same as G̃ ~Ki,j . So it also captures the collision between paths. But it has the

nice property that even when F ~K,~b
i,j does not hold, G ~Ki,j is still well-defined.

Now we are ready to state the following lemma which is an extension of Lemma 6.4.

Lemma 6.21. Fix ~K = {~k1, ~k2, . . . , ~kt} ⊆ Kshort (t ≤ 4) and ~b ∈ B ~K . In probability space (s,h,w),

for any event A ~K,~b
i+1 such that

(
F ~K,~b
i+1 ∧ G

~K
i+1

)
∨ A ~K,~b

i+1 is independent of r≤i,g≤i. Fix r≤i−1, g≤i−1 ∈
supp(r≤i−1,g≤i−1). For j ≤ τ , we have

Pr

[
Pi,j(ri, gi) ∧ G ~Ki,j

∣∣∣
((
F ~K,~b
i+1 ∧ G

~K
i+1

)
∨ A ~K,~b

i+1

)
∧ E≤i−1 ∧ Pi,j−1(ri, gi) ∧ G ~Ki,j−1

]
≤ 1

2n
.

46

Proof. Let ~c be defined as in Definition 6.16. Since ~c is fixed by (~K,~b, i, r≤i−1, g≤i−1), the value of G ~Ki,j−1

is also uniquely determined. Therefore we can drop G ~Ki,j−1 in the condition. Namely,

Pr

[
Pi,j(ri, gi) ∧ G ~Ki,j

∣∣∣
((
F ~K,~b
i+1 ∧ G

~K
i+1

)
∨ A ~K,~b

i+1

)
∧ E≤i−1 ∧ Pi,j−1(ri, gi) ∧ G ~Ki,j−1

]

=Pr

[
Pi,j(ri, gi) ∧ G ~Ki,j

∣∣∣
((
F ~K,~b
i+1 ∧ G

~K
i+1

)
∨ A ~K,~b

i+1

)
∧ E≤i−1 ∧ Pi,j−1(ri, gi)

]

By definition,

Pr

[
Pi,j(ri, gi) ∧ G ~Ki,j

∣∣∣
((
F ~K,~b
i+1 ∧ G

~K
i+1

)
∨ A ~K,~b

i+1

)
∧ E≤i−1 ∧ Pi,j−1(ri, gi)

]

=Pr

[
gi(cj) = 1 ∧ ri(cj) = bi,j ∧ G ~Ki,j

∣∣∣
((
F ~K,~b
i+1 ∧ G

~K
i+1

)
∨ A ~K,~b

i+1

)
∧ E≤i−1 ∧ Pi,j−1(ri, gi)

]

The main difference with Lemma 6.4 is that cj may not be different from all other cj′ (j′ < j) now.

However we know either cj is different from all other cj′ or we have G ~Ki,j = 0.

Then we have

Pr

[
gi(cj) = 1 ∧ ri(cj) = bi,j ∧ G ~Ki,j

∣∣∣
((
F ~K,~b
i+1 ∧ G

~K
i+1

)
∨ A ~K,~b

i+1

)
∧ E≤i−1 ∧ Pi,j−1(ri, gi)

]

≤Pr
[
gi(cj) = 1 ∧ ri(cj) = bi,j ∧ [∀j′ < j, cj′ 6= cj]

∣∣∣
((
F ~K,~b
i+1 ∧ G

~K
i+1

)
∨A ~K,~b

i+1

)
∧ E≤i−1 ∧ Pi,j−1(ri, gi)

]

=Pr
[
gi(cj) = 1 ∧ ri(cj) = bi,j ∧ [∀j′ < j, cj′ 6= cj]

∣∣ Pi,j−1(ri, gi)
]

≤ 1

2n
.

The second last step follows from our assumption that
(
F ~K,~b
i+1 ∧ G

~K
i+1

)
∨ A ~K,~b

i+1 is independent of E≤i,
which implies its joint event with E≤i−1 is independent of ri, gi. Since Pi,j−1(ri, gi) is merely a predicate of

ri and gi, we know such independence is still true conditioning on Pi,j−1(ri, gi).
The last step follows from the fact that j ≤ τ and τ -wise independence of ri and gi.

Lemma 6.22. Fix ~K = {~k1, ~k2, . . . , ~kt} such that~kj ∈ Kshort for every j ∈ [t] and~b ∈ B ~K . SupposeA ~K,~b
i+1 is

an event such that (F ~K,~b
i+1 ∧G

~K
i+1)∨A

~K,~b
i+1 is independent of r≤i,g≤i. Let r≤i−1, g≤i−1 ∈ supp(r≤i−1,g≤i−1).

There is an event A ~K,~b
i such that

Pr

[
(F ~K,~b

i ∧ G ~Ki) ∨ A ~K,~b
i

∣∣∣
((
F ~K,~b
i+1 ∧ G

~K
i+1

)
∨ A ~K,~b

i+1

)
∧ r≤i−1 ∧ g≤i−1

]
=

2−Ki

nKi
.

Moreover, A ~K,~b
i is true only when

(
F ~K,~b
i+1 ∧ G

~K
i+1

)
∨ A ~K,~b

i+1 is true.

Proof. Let E≤i−1 be the event r≤i−1 ∧ g≤i−1. Since by Observation 6.19,

F ~K,~b
i ∧ E≤i−1 = F

~K,~b
i+1 ∧ E≤i−1 ∧ Pi(ri, gi)

We know that

47

Pr

[
F ~K,~b
i ∧ G ~Ki

∣∣∣
((
F ~K,~b
i+1 ∧ G

~K
i+1

)
∨ A ~K,~b

i+1

)
∧ E≤i−1

]

=Pr

[
F ~K,~b
i+1 ∧ P

~b,~c
i ∧ G

~K
i

∣∣∣
((
F ~K,~b
i+1 ∧ G

~K
i+1

)
∨ A ~K,~b

i+1

)
∧ E≤i−1

]

≤Pr

[
P
~b,~c
i ∧ G

~K
i

∣∣∣
((
F ~K,~b
i+1 ∧ G

~K
i+1

)
∨ A ~K,~b

i+1

)
∧ E≤i−1

]

By Lemma 6.21, we have

Pr

[
F ~K,~b
i ∧ G ~Ki

∣∣∣
((
F ~K,~b
i+1 ∧ G

~K
i+1

)
∨A ~K,~b

i+1

)
∧ E≤i−1

]

≤Pr

[
P
~b,~c
i ∧ G

~K
i

∣∣∣
((
F ~K,~b
i+1 ∧ G

~K
i+1

)
∨A ~K,~b

i+1

)
∧ E≤i−1

]

=

ki∏

j=1

Pr

[
P
~b,~c
i,j ∧ G

~K
i,j

∣∣∣
((
F ~K,~b
i+1 ∧ G

~K
i+1

)
∨A ~K,~b

i+1

)
∧ E≤i−1 ∧ P

~b,~c
i,j−1 ∧ G

~K
i,j−1

]

≤2−Ki

nKi
.

For each r≤i−1, g≤i−1 ∈ supp(r≤i−1,g≤i−1), we choose an arbitrary event

A ~K,~b,r≤i,g≤i−1

i ⊂
((
F ~K,~b
i+1 ∧ G

~K
i+1

)
∨ A ~K,~b

i+1

)
∧ E≤i−1

to increase the probability and make

Pr

[(
F ~K,~b
i ∧ G ~Ki

)
∨ A ~K,~b,r≤i−1,g≤i−1

i

∣∣∣∣
((
F ~K,~b
i+1 ∧ G

~K
i+1

)
∨ A ~K,~b

i+1

)
∧ E≤i−1

]
=

2−Ki

nKi

Then we take the disjoint union of them and let

A ~K,~b
i =

⊔

r≤i−1,g≤i−1

A ~K,~b,r≤i−1,g≤i−1

i

Therefore for all r≤i−1, g≤i−1 ∈ supp(r≤i−1,g≤i−1),

Pr

[(
F ~K,~b
i ∧ G ~Ki

)
∨ A ~K,~b

i

∣∣∣
((
F ~K,~b
i+1 ∧ G

~K
i+1

)
∨ A ~K,~b

i+1

)
∧ r≤i−1 ∧ g≤i−1

]
=

2−Ki

nKi
.

At the same time, A ~K,~b
i ⊂ (F ~K,~b

i+1 ∧ G
~K
i+1) ∨ A

~K,~b
i+1.

The last piece is the lemma extending Lemma 6.6. We need the following proposition first.

Proposition 6.23. Let X ,Y,Z be three events. We have

Pr[X|Z] = Pr[X|Y ∧ Z] ·Pr[Y|Z] +Pr[X|¬Y ∧ Z] ·Pr[¬Y|Z].

In particular, when X is a subset event of Y , we have Pr[X|¬Y ∧ Z] = 0 and hence

Pr[X|Z] = Pr[X|Y ∧ Z] ·Pr[Y|Z].

48

Lemma 6.24. Fix ~K = {~k1, ~k2, . . . , ~kt}(t ≤ 4) such that ~kj ∈ Kshort for every j ∈ [t], and fix ~b ∈ B ~K .

For all i ∈ [ℓ], let r≤i−1, g≤i−1 ∈ supp(r≤i−1,g≤i−1). Then there is a sequence of events
{
A ~K,~b
i

}
i∈[ℓ]

such

that:

Pr

[(
F ~K,~b
i ∧ G ~Ki

)
∨A ~K,~b

i

∣∣∣ r≤i−1 ∧ g≤i−1

]
=

2−
∑ℓ
j=iKj

n
∑ℓ
j=iKj

, ∀i ∈ [ℓ]

In particular,

Pr

[
F ~K,~b
1 ∧ G ~K1

]
≤ 2−

∑ℓ
j=1Kj

n
∑ℓ
j=1Kj

.

Proof. We prove this by induction. The base case is when i = ℓ + 1. F ~K,~b
i and G ~Ki are always true by

definition. Therefore Pr

[
F ~K,~b
i ∧ G ~Ki

∣∣∣ Ei−1

]
= 1. The event A ~K,~b

i is set to be an empty event.

Otherwise, suppose the induction hypothesis holds for i + 1. Note this implies for all r≤i, g≤i ∈
supp(r≤i,g≤i), it holds that Pr

[(
F ~K,~b
i+1 ∧ G

~K
i+1

)
∨ A ~K,~b

i+1

∣∣∣ r≤i ∧ g≤i
]

= Pr

[(
F ~K,~b
i+1 ∧ G

~K
i+1

)
∨A ~K,~b

i+1

]
.

This shows that (F ~K,~b
i+1 ∧ G

~K
i+1) ∨ A

~K,~b
i+1 is independent of r≤i,g≤i, meaning that it satisfies the premise

of Lemma 6.22.

Let E≤i−1 be the event that r≤i−1 = r≤i−1 ∧ g≤i−1 = g≤i−1. We have

Pr

[(
F ~K,~b
i ∧ G ~Ki

)
∨ A ~K,~b

i

∣∣∣ Ei−1

]

=Pr

[(
F ~K,~b
i ∧ G ~Ki

)
∨ A ~K,~b

i

∣∣∣
((
F ~K,~b
i+1 ∧ G

~K
i+1

)
∨ A ~K,~b

i+1

)
∧ Ei−1

]
Pr

[(
F ~K,~b
i+1 ∧ G

~K
i+1

)
∨ A ~K,~b

i+1

∣∣∣ Ei−1

]
.

The last equality follows from Proposition 6.23. To check the premise of Proposition 6.23, we need to

prove that

Pr

[
(F ~K,~b

i ∧ G ~Ki) ∨ A ~K,~b
i

∣∣∣ ¬
((
F ~K,~b
i+1 ∧ G

~K
i+1

)
∨ A ~K,~b

i+1

)
∧ Ei−1

]
= 0

This follows from the fact that F ~K,~b
i ∧ G ~Ki ⊂ F

~K,~b
i+1 ∧ G

~K
i+1 and A ~K,~b

i ⊂ (F ~K,~b
i+1 ∧ G

~K
i+1) ∨ A

~K,~b
i+1.

Then from induction hypothesis, we have

Pr

[(
F ~K,~b
i+1 ∧ G

~K
i+1

)
∨ A ~K,~b

i+1

∣∣∣ Ei−1

]
= E

(ri,gi)∈R(ri,gi)

[
Pr

[(
F ~K,~b
i+1 ∧ G

~K
i+1

)
∨A ~K,~b

i+1

∣∣∣ r≤i ∧ g≤i
] ∣∣∣ Ei−1

]

=
2−

∑ℓ
j=i+1Kj

n
∑ℓ
j=i+1Kj

.

From Lemma 6.22,

Pr

[(
F ~K,~b
i ∧ G ~Ki

)
∨A ~K,~b

i

∣∣∣
((
F ~K,~b
i+1 ∧ G

~K
i+1

)
∨ A ~K,~b

i+1

)
∧ Ei−1

]
=

2−Ki

nKi
.

Putting everything together,

Pr

[(
F ~K,~b
i ∧ G ~Ki

)
∨ A ~K,~b

i

∣∣∣ Ei−1

]
=

2−Ki

nKi
· 2

−
∑ℓ
j=i+1Kj

n
∑ℓ
j=i+1Kj

=
2−

∑ℓ
j=iKj

n
∑ℓ
j=iKj

.

Since Ki only counts the number of level i nodes in the union of P
~k1 , P

~k2 , . . . , P
~kt , it maybe smaller

than ~k1i +
~k2i + · · ·+ ~ki. Therefore, we need a lemma to account for that.

49

Lemma 6.25. We have

2tℓ ≤
∑

(~k1,~k2,...,~kt)∈(Nℓ)t

K={~k1,~k2,...,~kt}

ℓ∏

i=1

2−Ki ≤ t! · 2t(ℓ+1)

Proof. We first show the first inequality. Note that for K = {~k1, ~k2, . . . , ~kt}, we have

ℓ∑

i=1

Ki ≤
ℓ∑

i=1

t∑

j=1

kji .

Hence we have

∑

(~k1,~k2,...,~kt)∈(Nℓ)t

K={~k1,~k2,...,~kt}

ℓ∏

i=1

2−Ki ≥
∑

(~k1,~k2,...,~kt)∈(Nℓ)t

t∏

j=1

ℓ∏

i=1

2−k
j
i ≥ 2tℓ.

Next we show the second inequality, and we will prove it by induction. For the base case t = 1, the

expression simplifies to

∑

~k∈Nℓ

ℓ∏

i=1

2−ki = 2ℓ,

which proves the base case.

Then suppose the statement holds for t− 1. And our goal is to upper bound

∑

(~k1,~k2,...,~kt)∈(Nℓ)t

K={~k1,~k2,...,~kt}

ℓ∏

i=1

2−Ki .

Let ~K ′ = {~k1, . . . , ~kt−1} be the union of first t− 1 indices, and let ~K = {~k1, ~k2, . . . , ~kt}. We have that

ℓ∑

i=1

Ki =

ℓ∑

i=1

K ′
i +

ℓ∑

i=1

kti − |~kt ∩ ~K ′|,

where |~kt ∩ ~K ′| denote the common length of path ~kt and the union ~K ′.

Now we fix ~K ′ and try to calculate its contribution together with all possible ~kt ∈ Nℓ such that ~kt is (one

of) the left-most vertices among ~k1, . . . , ~kt−1, ~kt.
Suppose |~kt ∩ ~K ′| = j, then we know the j-length prefix of ~kt has at most one possibility (the left-most

depth-j node on the sub-tree formed by ~K ′, if depth-j nodes exist in ~K ′). And we can bound the contribution

of this case by

2ℓ−j ·
ℓ∏

i=1

2−K
′
i .

By a union bound, the contribution of this ~K ′ together all possible ~kt ∈ Nℓ such that ~kt is the left-most

vertex can be bounded by
ℓ∑

j=0

2ℓ−j ·
ℓ∏

i=1

2−K
′
i ≤ 2ℓ+1 ·

ℓ∏

i=1

2−K
′
i .

50

Summing up for all possible ~K ′, we can bound the contribution when ~kt is the left-most vertex by

∑

~k1,~k2,...,~kt−1

~K ′={~k1,~k2,...,~kt−1}

ℓ∏

i=1

2−K
′
i · 2ℓ+1.

By the induction hypothesis, this can be further bounded by

(t− 1)! · 2t·(ℓ+1).

By symmetry, for each i ∈ [t], the contribution when ~ki is (one of) the left-most vertex can also be

bounded by the above quantity. The lemma then follows from a union bound over the left-most vertex.

Finally, we can obtain the desired upper bound, and prove Lemma 6.3.

Reminder of Lemma 6.3. Let Cv = #{i | ai = av} be the number of occurrences of av in the input a. It

holds that

E
w,T

[
#
{
~k ∈ Kshort

∣∣∣ next(µ~k) = v ∧ ∃~k′ 6= ~k′′ ∈ Nℓ, a
next(µ~k′)

= a
next(µ~k′′)

}]
≤ 48

8ℓF2(a)

n3
+16

4ℓCv
n2

+
1

n3
.

Proof. We apply Lemma 6.8 with φ = µ
~k + 1, α = µ

~k′ + 1, and β = µ
~k′′ + 1. Note by Lemma 5.5, we

know that wφ = next(µ
~k). Similarly, wα = next(µ

~k′) and wβ = next(µ
~k′′).

E
w,T

[
#
{
~k ∈ Kshort

∣∣∣ next(µ~k) = v ∧ ∃~k′ 6= ~k′′ ∈ Nℓ, a
next(µ~k′)

= a
next(µ~k′′)

}]

= E
w,T

[
#
{
~k1 ∈ Kshort

∣∣∣ next(µ~k
1
) = v ∧ ∃~k2 6= ~k3 ∈ Nℓ, a

next(µ~k2)
= a

next(µ~k3)
,

no collision between p(~k1), p(~k2), p(~k3)
}]

≤ E
w,T

[
#
{
~k1 ∈ Kshort

∣∣∣ next(µ~k1) = v ∧ ∃~k2 6= ~k3 ∈ Kshort, a
next(µ~k2)

= a
next(µ~k3)

,

no collision between p(~k1), p(~k2), p(~k3)
}]

+E[|Kshort| · Elong]

≤
∑

(~k1,~k2,~k3)∈(Kshort)3

~k2 6= ~k3

Pr

[
G{~k

1,~k2,~k3}
1 ∧ next(µ

~k1) = v ∧ a
next(µ~k2)

= a
next(µ~k3)

]
+E[|Kshort| · Elong].

First, by Lemma 6.1, τ ≥ 20 log n log log n, and ℓ ≤ log n, we have

E

[
|Kshort| · Elong

]
≤ τ ℓ · nℓ/2τ/4 ≤ nℓ · 2ℓ log τ−τ/4 ≤ n log n · 22 logn log logn−5 logn log logn ≤ 1

n3

Next we bound
∑

(~k1,~k2,~k3)∈(Kshort)3s.t. ~k2 6= ~k3

Pr

[
G{~k

1,~k2,~k3}
1 ∧ next(µ

~k1) = v ∧ a
next(µ~k2)

= a
next(µ~k3)

]
.

There are two cases, first case is that ~k1 = ~k2 or ~k1 = ~k3. By symmetry, we only consider the case when
~k1 = ~k3 here. Let ~K = {~k1, ~k2}.

51

When ~k1 = ~k3. By Lemma 6.24, for any sequence~b ∈ B ~K , we have

Pr

[
F ~K,~b
1 ∧ G ~K1

]
=

2−
∑ℓ
j=1Kj

n
∑ℓ
j=1Kj

.

Note there aren
∑ℓ
j=1Kj many such sequence~b ∈ B ~K , andn

∑ℓ
j=1Kj−2·Cv of them satisfy that next(µ

~k1) =
v and a

next(µ~k2)
= a

next(µ~k3)
= a

next(µ~k1)
= av.

We have

∑

(~k1,~k2,~k3)∈(Kshort)3s.t. ~k2 6= ~k3 ∧ ~k1 = ~k3

Pr

[
G{~k

1,~k2,~k3}
1 ∧ next(µ

~k1) = v ∧ a
next(µ~k2)

= a
next(µ~k3)

]

=
∑

(~k1,~k2)∈(Kshort)2s.t. ~k1 6= ~k2

Pr

[
G{~k

1,~k2}
1 ∧ next(µ

~k1) = v ∧ a
next(µ~k2)

= av

]

≤
∑

(~k1,~k2)∈(Nℓ)2

K={~k1,~k2}

2−
∑ℓ
j=1Kj

n
∑ℓ
j=1Kj

· n
∑ℓ
j=1Kj−2 · Cv

≤8Cv · 4ℓ
n2

. (Lemma 6.25)

When ~k1, ~k2, ~k3 are distinct. Now we consider the other case when ~k1, ~k2, ~k3 are distinct. Let ~K ′ =
{~k1, ~k2, ~k3}.

Same as before, by Lemma 6.24, for any sequence~b ∈ B ~K ′, we have

Pr

[
F ~K ′,~b
1 ∧ G ~K ′

1

]
=

2−
∑ℓ
j=1K

′
j

n
∑ℓ
j=1K

′
j

Note there are n
∑ℓ
j=1Kj many such sequence ~b ∈ B ~K ′ , and n

∑ℓ
j=1Kj−3 · F2(a) of those satisfies that

next(µ
~k1) = v and a

next(µ~k2)
= a

next(µ~k3)
.

Hence, we have

∑

(~k1,~k2,~k3)∈(Kshort)3

s.t. ~k1, ~k2, ~k3 are distinct

Pr

[
G{~k

1,~k2,~k3}
1 ∧ next(µ

~k1) = v ∧ a
next(µ~k2)

= a
next(µ~k3)

]

≤
∑

(~k1,~k2,~k3)∈(Nℓ)3

K ′={~k1,~k2,~k3}

2−
∑ℓ
j=1K

′
j

n
∑ℓ
j=1K

′
j

· n
∑ℓ
j=1K

′
j−3 · F2(a)

≤48 · 8ℓF2(a)

n3
. (Lemma 6.25)

Summing up everything proves the theorem.

52

6.5 Proof of Lemma 6.1

Reminder of Lemma 6.1. It holds that

Pr[Elong] ≤ ℓn/2τ/4.

Proof. For every i ∈ [ℓ], we define event E ilong as

E ilong :=
[
∃k ∈ Nℓ s.t. ki > τ/4 and µ

~k exists
]
.

Then we can see Elong =
⋃ℓ
i=1 E ilong.

In the following, we will show that for each i ∈ [ℓ], Pr[E ilong] is small. Now we fix i ∈ [ℓ], suppose there

exists ~k ∈ Nℓ such that µ
~k exists and ki > τ/4. We are going to fix (r≤i−1, g≤i−1) ∈ supp((r≤i−1,g≤i−1))

and conditioning on the event r≤i−1 ∧ g≤i−1. Moreover here we also fix r∈supp(ri).

Now, µ
~k exists and ki > τ/4 in particular implies there exists a starting point s0 = w

µ
~k
i,0

∈ [n] such

that the walk walk(s0, i) visits at least other τ/4 level-i nodes µ
~k
i,1, µ

~k
i,2 . . . , µ

~k
i,τ/4. For these nodes, by

Observation 5.21, we know that ai(µ
~k
i,j) is uniquely determined by xi(µ

~k
i,1), xi(µ

~k
i,2), . . . , xi(µ

~k
i,j). On the

other hand, each xi(µ
~k
i,j) = last(next(µ

~k
i,j−1), i−1) by Lemma 5.20 (b). Here next(µ

~k
i,j−1) = ri(ai(µ

~k
i,j−1))

(by Lemma 5.5), and last(·, i− 1) only depends on r≤i−1 and g≤i−1 (by Observation 5.2). Hence, by simple

induction, each ai(µ
~k
i,j) is independent of gi. Moreover, by the definition of extended walk, they are all

distinct.

Therefore for a fixed s0 ∈ [n], we have that

Pr[gi(ai(µ
~k
i,j)) = 1 for all j ∈ [τ/4]] ≤ 2−τ/4.

By a union bound over different s0 ∈ [n], we have that

Pr[E ilong] ≤ n/2τ/4.

The lemma follows from another union bound over i ∈ [ℓ].

7 The Case of Two Target Vertices

This section is devoted to proving Lemma 4.3, which is restated below.

Reminder of Lemma 4.3. Suppose ℓ = log n − logF2(a)
2 − 10. For every u, v ∈ [n] such that u 6= v and

au = av, we have

Pr
h∈RHℓ,m,n,s∈R[n]

[u, v ∈ f∗a,h(s)] ≥ Ω

(
1

F2(a)

)
.

We recall that the second frequency moment F2(a) =
∑n

i=1

∑n
j=1 1[ai = aj] (including the case where

i = j). The main difficulty in extending the previous proof to the case of two vertices is handling the

collisions between paths. Suppose we enumerate ~k1, ~k2 and compute Pr[next(µ
~k1) = u, next(µ

~k2) = v].

53

p∗(~k1)

Ci,~k1 ← Ck1
i

C0 ← Ci,~k1

p∗(~k2)

Figure 7: The initial C0 on p∗(~k2) “inherit” the set Ck1i
from p(~k1).

There may be collisions between paths p(µ
~k1) and p(µ

~k2), which cause the same problem we encountered

in Section 6.4.2. However it is hard to exploit the structure of such two paths as we did in Section 6.4.2,

since now even estimating the total counts involves more than one path. Note that we need a lower bound

on the total counts, while our previous approach in Section 6 that exploits the combinatorial structure (i.e.,

Lemma 6.8) only gives us an upper bound. Therefore we will take different approach.

We will define a different walkw
~k1,~k2 (called a relaxed extended walk) for each pair of (~k1, ~k2) separately,

and bound the contribution of (~k1, ~k2) by analyzing this walkw
~k1,~k1 . Roughly speaking, w

~k1,~k2 is obtained

by adapting the extended walkw so that whenever a collision happens between p(~k1) and p(~k2), we replace

the later one with true randomness. In this way, before we visit any vertex twice, the walk w
~k1,~k2 behaves

exactly as the original walk f∗a,h. Therefore, we can sum up Pr

[
w
~k1,~k2

µ~k1
= u,w

~k1,~k2

µ~k2
= v
]
, and subtract

Pr

[
w
~k1,~k2

µ~k1
= u,w

~k1,~k2

µ~k2
= v ∧ ∃α 6= β, a

w
~k1,~k2
α

= a
w
~k1,~k2

β

]
. This naturally lower-bounds the contribution

of (~k1, ~k2) to Pr[u, v ∈ f∗a,h]. Finally we conclude the proof by summing up the contribution over all ~k1, ~k2.

7.1 The Relaxed Extended Walk Walk
~k1,~k2

ℓ,m,n,a

Now we define the relaxed extended walk Walk
~k1,~k2

ℓ,m,n,a for each ~k1, ~k2 ∈ Nℓ such that ~k1 < ~k2.

The main (and only) difference between Walk
~k1,~k2

ℓ,m,n,a and Walkℓ,m,n,a is how the nodes on p∗(~k2) are

handled. (Recall that the extension p∗(µ) of a node µ is defined in Definition 6.9.) For a node µ ∈ p∗(~k2)
with level(µ) = i, Walk

~k1,~k2

ℓ,m,n,a replaces ai(µ) with ⋆∗ if it would otherwise become a collision with p(~k1).

We do this by letting the initial C0 on p∗(~k2) “inherit” the set Ck1i
from p(~k1). See Figure 7. To implement

this, here we pass an extra parameter ~k to walk
~k1,~k2(s′, i, µ0, ~k), where ~k is the index of µ0. The index of

node µj in walk
~k1,~k2(s′, i, µ0, ~k) is just (0, . . . , 0, j, ki+1, . . . , kℓ) assuming it is of level i. Hence we can tell

whether node µj is on p∗(~k2) by looking at ~k.

To minimize the effect of this change, instead of letting xj+1 ← w|w|, we invoke last(sj, i − 1) (de-

fined in Definition 5.19) and let xj+1 be the vertex it returns. In this way, xj+1 is uniquely determined by

sj, r≤i−1, g≤i−1, independent of the extra parameter ~k. We will explain the benefit of this later, after giving

the formal definition of walk
~k1,~k2 .

54

The Relaxed Extended Random Walk Probability space Walk
~k1,~k2

ℓ,m,n,a

• Setup. We sample the random variables as follows:

– Draw the starting vertex s ∈R [n].

– Sample {gi}i∈[ℓ] and {ri}i∈[ℓ], which together determine a sample h ∈R Hℓ,m,n from the

pseudorandom hash family.

– Then, for each i ∈ [ℓ], we extend the domain of gi and ri from [m] to [m]∪ {⋆0, ⋆1, . . . }
as follows: for every ⋆t we sample gi(⋆t) ∈R {0, 1}, ri(⋆t) ∈R [n], where the samples

are independent across all ⋆t.

• Generating the walk. The sampled {gi}i∈[ℓ], {ri}i∈[ℓ] and s uniquely determine

a sequence w
~k1,~k2 = (w

~k1,~k2

1 , w
~k1,~k2

2 , . . .) of vertices returned by the function

walk
~k1,~k2(s, ℓ, 0, (0, 0, . . . , 0)) defined in Algorithm 5.

• Assigned values. Here, in additional to ai(µ), next(µ), right(µ), level(µ), we also we explicitly

assign index(µ) just to emphasize the index of µ. We underline the parts where we assign these

values, and note that they have no effect on the returned value of the function. We also write

walk
~k1,~k2(s′, i,~k) and drop µ0 when we only need its return value.

55

Algorithm 5: Generating a relaxed extended walk

1 Function walk
~k1,~k2(s′, i, µ0, ~k) (where s′ ∈ [n], 0 ≤ i ≤ ℓ)

2 if i = 0 then return sequence (s′) which contains a single vertex.

3 if [∀t ∈ [i+ 1, ℓ], kt = k2t] ∧ [∃t ∈ [i+ 1, ℓ], k1t < k2t] ∧ [k2i > 0] then

/* This condition says that µ0 6∈ p(~k1) and is the last node of p(~k2) above level i and

p∗(~k2) is non-empty on level i. It is equivalent to µ1, µ2, · · · ∈ p∗(~k2) \ p∗(~k1). */

4 C0 ← Ci,
~k1

5 else

6 C0 ← ∅
7 star← false, j ← 0, s0 ← s′, w = ().
8 repeat

9 ~k′ ← (0, 0, . . . , 0, j, ki+1, . . . , kℓ) /* Here ~k′ equals index(µj). */

10 w = w ◦ walk~k1,~k2(sj , i− 1, µ0 + |w|, ~k′) /* Here µ0 + |w| equals µj. */

11 xj+1 ← last(sj, i− 1)

12 y, star←
{
axj+1 , false if axj+1 6∈ Cj ∧ ¬star
⋆t, true otherwise (where t = min{t ∈ N | ⋆t 6∈ C})

13 Let µj+1 = µ0 + |w|, xi(µj+1)← xj+1, ai(µj+1)← y.

14 if j > 0 then right(µj)← µj+1

15 if gi(y) = 1 then

16 Cj+1 ← Cj ∪ {y}, sj+1 ← ri(y)
17 level(µj+1)← i, next(µj+1)← ri(y)

18 index(µj+1)← (0, · · · , 0, j + 1, ki+1, . . . , kℓ)

19 j ← j + 1.

20 until gi(y) = 0
21 if [∀t ∈ [i+ 1, ℓ], kt = k1t] ∧ [∃t ∈ [i+ 1, ℓ], k1t < k2t] then

/* This condition says that µ0 is the last node of p(~k1) above level i and is not the

last node of p(~k2). It is equivalent to µ1, µ2, · · · ∈ p∗(~k1) \ p∗(~k2) when k1
i > 0. */

22 Ci,
~k1 ← Cmin(j,k1i)

23 return w.

The structure of walk
~k1,~k2(s, i, µ0, ~k) is illustrated in Figure 8. We first set up some notations.

Notation. Throughout this section, we fix ℓ,m, n ∈ N, a ∈ [m]n and ~k1, ~k2 ∈ Nℓ, ~k1 < ~k2, and we will

always work with the (relaxed) extended walk Walk
~k1,~k2

ℓ,m,n,a. We use w
~k1,~k2 , s,g, r, level, next,h to denote

the corresponding random variables in the extended walk. We also use T to denote the dependency tree built

on the extended walkw
~k1,~k2.

Note thatw
~k1,~k2 , level, next,h,T are all determined by (s,g, r). Then we recall the following shorthand.

Reminder of Definition 5.7. We denote x(µ) = xlevel(µ)(µ) and a(µ) = alevel(µ)(µ).

Recall the definition of collision is as following.

56

x1 · · · xj

sj

xj+1

last(sj , i− 1)

· · ·

w
~k1,~k2

µj+1 − 1 µj+1

walk
~k1,~k2

(sj , i− 1, µ0, ~k
′)

µ
~k′

µ
~k

Figure 8: walk
~k1,~k2(s, i, µ0, ~k). ~k is the index of µ0. For each j, it recursively call walk

~k1,~k2(sj , i−1, µj , ~k
′)

to generate a subwalk of level ≤ i − 1. w
~k1,~k2
µj+1 is also generated by this subwalk, and it is the last vertex of

this subwalk. However, here xj+1 may not equal w
~k1,~k2
µj+1 . This is due to the fact that it is now determined by

last(sj , i− 1) which is the last vertex of the original (not relaxed) subwalk.

Reminder of Definition 6.7. Let p(µ) denote the path on T from root to node µ. We say (α, β) is a collision

between two paths p1 and p2 if α ∈ p1 \p2, β ∈ p2 \p1, and (a(α), level(α)) = (a(β), level(β)) (where a(·)
is defined in Definition 5.7). The level of a collision (α, β) is the same as level(α) (which equals level(β)).

We make the following definition according to the condition at Line 3 and Line 21.

Definition 7.1. We say an index ~k is consistent with ~k2 but not ~k1 above level i if and only if [∀t ∈ [i +
1, ℓ], kt = k2t] ∧ [∃t ∈ [i + 1, ℓ], k1t < k2t] ∧ [k2i > 0]. This means ~k is the same as ~k2 above level i and

different from ~k1 above level i. Besides, it also requires k2i to be nonzero.

Similarly, we say an index~k is consistent with~k1 but not~k2 above level i if and only if [∀t ∈ [i+1, ℓ], kt =
k1t] ∧ [∃t ∈ [i + 1, ℓ], k1t < k2t]. This means ~k is the same as ~k1 above level i and different from ~k2 above

level i. Note here we do not require k1i to be nonzero.

We have the following lemma about these conditions.

Lemma 7.2. Consider a function call walk
~k1,~k2(s′, i, µ0, ~k). Suppose it generates nodes µ1, µ2, . . . , µt.

1. If~k is consistent with~k2 but not with~k1 above level i, then µ1, µ2, . . . , µt ∈ p∗(~k2)\p∗(~k1). Moreover,

µj = µ
~k2
i,j for j ∈ [k2i] if µ

~k2 exists.

2. If ~k is consistent with ~k1 but not with ~k2 above level i, then µ1, µ2, . . . , µt ∈ p∗(~k1) \ p∗(~k2) when

k1i > 0. Moreover, µj = µ
~k1
i,j for j ∈ [k1i] if µ

~k1 exists.

Proof. By Line 18, we know index(µj) = (0, · · · , 0, j, ki+1, . . . , kℓ).

Suppose ~k is consistent with ~k2 but not with ~k1 above level i. From (1) k2i ≥ 1 = [index(µ1)]i since

k2i > 0, and (2) [index(µ1)]t = k2t for every t ∈ [i + 1, ℓ], it follows that index(µ1) is an ancestor of ~k2

57

according to Definition 6.14. Hence we have µ1 ∈ p(µ
~k2). Since by Definition 6.9, suc(µ1) ⊂ p∗(µ

~k2)

where suc(µ1) contains the level i descendants of µ1. Consequently, µ1, µ2, . . . , µt ∈ p∗(µ~k2).
On the other hand, since there exists t′ ∈ [i + 1, ℓ], k1t′ < k2t′ = kt′ , the same argument shows that

µ1 6∈ p(µ
~k1). Hence µ1, µ2, . . . , µt 6∈ p∗(µ

~k1). Together, they imply µ1, µ2, . . . , µt ∈ p∗(~k2) \ p∗(~k1).
Moreover, when µ

~k2 exists, we have t ≥ k2i . Since [index(µj)]i = j and µj ∈ p(~k2), we know that µj = µ
~k2
i,j .

The case when ~k is consistent with ~k1 but not with ~k2 above level i and k1i > 0 follows from the same

argument.

The following lemma is the main purpose of this relaxation.

Lemma 7.3. Fix two sequences ~k1, ~k2 such that ~k1 < ~k2. For all (w
~k1,~k2 , T) ∈ supp(w

~k1,~k2 ,T) such that

µ
~k1 and µ

~k2 exist, we know there is no collision between p(~k1) and p(~k2).

Proof. For each level i ∈ [ℓ], we prove there is no collision of level i between these two paths. If p(~k1) and

p(~k2) intersects on level i, we know there is no collision between them since one must contain the other on

level i.
If they do not intersect on level i, since ~k1 < ~k2, there must be t ∈ [i + 1, ℓ] such that k1t < k2t . The

corner case when k1i = 0 or k2i = 0 is evident since then there cannot be level i collisions. Hence, without

loss of generality, we can assume that k1i > 0 and k2i > 0.

Since µ
~k1 exists, consider the function call walk

~k1,~k2(s, i, µ,~k) in which ~k is consistent with ~k1 but not

with ~k2 above level i. By k1i > 0 and Lemma 7.2 (2), µj = µ
~k1
i,j for j ∈ [k1i] (i.e., the function call

generates the level i nodes on p(~k1)). From Line 22 of Algorithm 5, we know Ci,k
1
= Ck1i

= {ai(α) | α ∈
p(~k1) ∧ level(α) = i}.

Then since µ
~k2 exists, consider the function call walk

~k1,~k2(s, i, µ,~k) in which ~k is consistent with ~k2 but

not with~k1 above level i. By Lemma 7.2 (1), we know µj = µ
~k2
i,j for j ∈ [k2i] (i.e., the function call generates

the level i nodes on p(µ
~k2)). In this function call, from Line 4 of Algorithm 5, we haveC0 = Ci,k

1
. Therefore,

by how ai(µj) is assigned at Line 13 and how y is assigned at Line 12. We know ai(µj) 6∈ C0 = Ci,k
1
. Thus

ai(µj) 6= ai(α) for all level i nodes α on p(~k1).

We have the following lemma similar to Lemma 5.5 whose proof is also the same as that of Lemma 5.5.

Lemma 7.4. Fix (w
~k1,~k2 , T) ∈ supp(w

~k1,~k2 ,T). We have w
~k1,~k2

µ+1 = next(µ) for every µ ∈ [|w~k1,~k2 | − 1].

We also prove an analogue of Lemma 5.10.

Lemma 7.5. In walk
~k1,~k2(s′, i, µ0), one can uniquely determine ai(µj) from C0, x1, x2, . . . , xj as follows:

1. Let j′ = min{j′ | [∃j′′ s.t. 1 ≤ j′′ < j′ ≤ j, axj′′ = axj′] ∨ [axj′ ∈ C0]}.

2. If no such j′ exists, then ai(µj) = axj . Otherwise, let t0 = #{t ≥ 0 | ⋆t ∈ C0}. We have ai(µj) =
⋆t0+j−j′.

Proof. By Line 9 and Line 12, we know Cj = C0 ∪ {ai(x1), ai(x2), . . . , ai(xj)}. By Line 8, we know star

switches from false to true when axj+1 ∈ Cj . For those j before star switches, ai(xj) = axj , and for those

j after switch, ai(xj) = ⋆∗.
Hence, star switches at the first j′ such that there either exists 1 ≤ j′′ < j′ with axj′′ = axj′ , or axj′ ∈ C0.

If no such j′ exists, then star is still false at j, and hence ai(µj) = axj . Otherwise, star switches at j′, and

by Line 8 we have ai(µj′) = ⋆t0 , ai(µj′+1) = ⋆t0+1, . . . , and ai(µj) = ⋆t0+j−j′.

58

The following lemma follows from essentially the same proof of Observation 5.21 by replacing Lemma 5.10

with Lemma 7.5 in the proof.

Lemma 7.6. Fix ~k1, ~k2 ∈ Nℓ such that ~k1 < ~k2, (w
~k1,~k2, T) ∈ (w

~k1,~k2,T), and ~k ∈ Nℓ. Suppose

µ
~k
i,1, . . . , µ

~k
i,j−1 exist. If ~k is consistent with ~k2 but not ~k1 above level i (as defined in Definition 7.1), let

C̄0 = Ci,
~k1. Otherwise, let C̄0 = ∅.

From C̄0, x̄1 = xi(µ
~k
i,1), x̄2 = xi(µ

~k
i,2), . . . , x̄j−1 = xi(µ

~k
i,j−1), x̄j = xi(righti(µ

~k
i,j−1)), one can

uniquely determine ai(righti(µ
~k
i,j−1)) as follows:

1. Let j′ = min{j′ | [∃j′′ s.t. 1 ≤ j′′ < j′ ≤ j, ax̄j′′ = ax̄j′] ∨ [ax̄j′ ∈ C̄0]}.

2. If no such j′ exists, then ai(righti(µ
~k
i,j−1)) = ax̄j . Otherwise, let t0 = #{t ≥ 0 | ⋆t ∈ C̄0}. We have

ai(righti(µ
~k
i,j−1)) = ⋆t0+j−j′.

Proof. Consider the function call walk
~k1,~k2(s, i, µ0, ~k

0) in which we assign ai(righti(µ
~k
i,j−1)).

In such function call, by Line 9 of Algorithm 5, we know k′t = k0t for all t ∈ [i + 1, ℓ]. Since ~k′ is

simply the index of µj (by Line 9, 18), when we assign ai(righti(µ
~k
i,j−1)) (at Line 13), ~k′ = ~Ki,j . Together,

we know kt = k0t for all t ∈ [i + 1, ℓ]. Noticing in this function call, Line 3 only depends on k0t for those

t ∈ [i + 1, ℓ], therefore by definition of C̄0, we know C0 = C̄0. Hence we can apply Lemma 7.5, and this

concludes the proof.

Lemma 7.7. Fix ~k1, ~k2 ∈ Nℓ such that ~k1 < ~k2 and (w
~k1,~k2 , T) ∈ (w

~k1,~k2 ,T). For every node µ ≤ µ
~k2 ,

we have w
~k1,~k2
µ = xi(µ) for every i ∈ [level(µ)].

Proof. Consider the function call which assign xi(µ) at Line 13. Note that w
~k1,~k2
µ is the last vertex of

walk
~k1,~k2(sj , i − 1, ~k′), while xi(µ) is the last vertex of walk(sj, i − 1). Here we have j = k′i, since in

Algorithm 5 we let k′i ← j at Line 9 before calling walk
~k1,~k2(sj , i− 1, ~k′). Then, we know that the index of

µ is (0, 0, . . . 0, k′
level(µ) + 1, k′

level(µ)+1, . . . , k
′
ℓ) with level(µ) ≥ i.

Suppose for contradiction that w
~k1,~k2
µ 6= xi(µ). Then it must be the case that, at the beginning of

walk
~k1,~k2(sj , i − 1, ~k′) (or one of its recursive calls on lower levels), the set C0 is initialized to an non-

empty set (since otherwise the behavior of walk
~k1,~k2(sj , i − 1, ~k′) and walk(sj, i − 1) would be exactly the

same).

Let walk
~k1,~k2(·, i′, ~k′′) (i′ ≤ i− 1) be the recursive call where C0 is not initialized empty. Since it is an

recursive call made by walk
~k1,~k2(sj, i− 1, ~k′), we have ∀t ≥ i, k′′t = k′t. We also have ∀t ≥ i′ +1, k′′t = k2t ,

which follows from C0 6= ∅ and the condition at Line 3 in Algorithm 5. Together they imply k′t = k2t for all

t ≥ i.
Hence, the index of µ can be alternatively written as (0, 0, . . . 0, k2

level(µ) + 1, k2
level(µ)+1, . . . , k

2
ℓ) where

level(µ) ≥ i. This contradicts µ ≤ µ~k2 .

The following lemma relates our relaxed extended walk w
~k1,~k2 to the actual reachable set f∗a,h(s) in the

original walk, provided that they are defined using the same {gi}i∈[ℓ], {ri}i∈[ℓ] and s ∈ [n].

59

Lemma 7.8. Fix ~k1, ~k2 ∈ Nℓ such that ~k1 < ~k2 and (w
~k1,~k2 , T, h, s) ∈ (w

~k1,~k2 ,T ,h, s).

Suppose µ
~k1 and µ

~k2 exist. Let φ = µ
~k1 + 1, ψ = µ

~k2 + 1. If there are no two distinct α, β ∈ [ψ − 1]

such that a
w
~k1,~k2
α

= a
w
~k1,~k2

β

, then w
~k1,~k2

φ , w
~k1,~k2

ψ ∈ f∗a,h(s).

Proof. To simplify notation, in this proof we drop the superscript ~k1, ~k2 on the variable w
~k1,~k2 representing

the relaxed extended walk, and simply write w instead.

The proof is similar to that of Lemma 5.11. We will first prove that, for every µ ≤ ψ − 1, if there are no

α, β ∈ [µ], α 6= β such that awα = awβ , then we must have ai(µ) = awµ for all i ∈ [level(µ)].
To prove the statement above, we again use induction on µ. Suppose the hypothesis holds for 1, 2, . . . , µ−

1. Since µ ≤ ψ − 1, by Lemma 7.7, we know wµ = xi(µ) for i ∈ [level(µ)]. Now we will show that

ai(µ) 6= ⋆∗ for i ∈ [level(µ)], which will immediately imply ai(µ) = axi(µ) = awµ and finish the inductive

step.

Suppose for contradiction that we assigned ai(µ) = ⋆∗ in Algorithm 5. Then, at this point, the only two

cases are (1) awµ ∈ Cj , or (2) ⋆∗ ∈ Cj . The main difference with Lemma 5.11 is that now the initial value

of C0 may be a non-empty set Ci,
~k1. But we can still see that there must be a node η < µ such that (1)

awη = awµ , or (2) ai(η) = ⋆∗ while level(η) = i. Case (1) contradicts our assumption of awα 6= awβ for all

α, β ∈ [ψ − 1], α 6= β. Case (2) contradicts the inductive hypothesis of ai(η) = awη 6= ⋆∗. Therefore we

must have ai(µ) = awµ 6= ⋆∗ for all i ∈ [level(µ)].
Again, similar to Lemma 5.11, for such µ, for all i ∈ level(µ), gi(ai(µ)), ri(ai(µ)) will have the same

values as the pseudorandom functions gi(awµ), ri(awµ) that were used to define h(awµ) for h ∈ Hℓ,m,n.

Then, it is evident that wµ+1 = next(µ) = h(awµ) (where the first equality follows from Lemma 7.4).

Suppose the actual reachable set f∗a,h(s) has vertices {w′
1, w

′
2, . . . } where w′

1 = s and w′
µ+1 = h(aw′

µ
).

By our induction before, for every µ ≤ ψ − 1 such that no α, β ∈ [µ] satisfy awα = awβ , we must have

w′
µ+1 = wµ+1. Hence, we know wη = w′

η for all η ∈ [ψ]. In particular, we have wφ, wψ ∈ f∗a,h(s).

We also observe that the following lemma holds with the same proof as Lemma 5.20.

Lemma 7.9. Fix ~k1, ~k2 ∈ Nℓ such that ~k1 < ~k2, (w
~k1,~k2 , g, r) ∈ (w

~k1,~k2 ,g, r), and ~k ∈ Nℓ, the following

hold:

(a) Suppose µ
~k
i,j−1 exists, µ

~k
i,j exists if and only if gi(ai(righti(µ

~k
i,j−1))) = 1.

(b) xi(righti(µ
~k
i,j−1)) = last(next(µ

~k
i,j−1), i − 1)

Recall µ[~k] has the same meaning as µ
~k. Its following generalization to multiple paths also holds.

Lemma 7.10. Fix ~k1, ~k2 ∈ Nℓ such that ~k1 < ~k2, (w
~k1,~k2 , g) ∈ supp(w

~k1,~k2 ,g), and ~K ⊆ Nℓ such that
~k1, ~k2 ∈ ~K. The following holds:

(a) Suppose µ
[
par

~K
i,j

]
exists, µ

~K
i,j exists if and only if gi

(
ai

(
righti

(
µ
[
par

~K
i,j

])))
= 1.

(b) xi

(
righti

(
µ
[
par

~K
i,j

]))
= last

(
next

(
µ
[
par

~K
i,j

])
, i− 1

)

(c) Suppose µ
~K
i,1, . . . , µ

~K
i,j−1 and µ

[
par

~K
i,j

]
exist. From x̃1 = xi

(
µ
~K
i,1

)
, x̃2 = xi

(
µ
~K
i,2

)
, . . . , x̃j−1 =

xi

(
µ
~K
i,j−1

)
, x̃j = xi

(
righti

(
µ
[
par

~K
i,j

]))
, one can uniquely determine ai

(
righti

(
µ
[
par

~K
i,j

]))
.

60

(d) If µ
~K
i,j exists, then µ

~K
i,j = righti

(
µ
[
par

~K
i,j

])
.

Proof. (a) and (b) follows from the same proof as Observation 6.15 by replacing Lemma 5.20 with Lemma 7.9.

(d) follows from exact the same proof of Observation 6.15 (d).

For (c), note there are two cases. From the index ~Ki,j , we can tell when we assign ai

(
righti

(
µ
[
par

~K
i,j

]))
,

whether C0 = ∅ or Ci,
~k1.

IfC0 = ∅, it follows the same proof as Observation 6.15 (c) by replacing Observation 5.21 with Lemma 7.6.

If C0 = Ci,
~k1. Since ~k1 ∈ ~K and ~k1 < ~k2, we know there exists 1 ≤ j0 ≤ j1 < j such that level i

nodes on p(~k1) are exactly µ
~K
i,j0
, µ

~K
i,j0+1, . . . , µ

~K
i,j1

. (Note when there is no level i node on p(~k1), we have

C0 = Ci,
~k1 = ∅ which belongs to the previous case.) When determine ai of these nodes, we have C0 = ∅.

Thus by applying the previous case, we can determine ai(α) for all α ∈ p(~k1), level(α) = i. Then Ci,
~k1

contains exactly ai(α) for all such α. Thus as Ci,
~k1 is determined, we can apply Lemma 7.6 to conclude the

proof.

Definition 7.11. Fix ~k1, ~k2 ∈ Nℓ such that ~k1 < ~k2, ~K , ~K ⊆ Nℓ such that ~k1, ~k2 ∈ ~K , and level i ∈ [ℓ].

There exists a function family {A~k1,~k2, ~K,i,j}j∈Ki which maps (x1, x2, . . . , xj) ∈ [n]j to [m] ∪ {⋆t}t∈N
satisfying the following.

For any (w
~k1,~k2 , T) ∈ supp(w

~k1,~k2 ,T), let x̃1 = xi

(
µ
~K
i,1

)
, x̃2 = xi

(
µ
~K
i,2

)
, . . . , x̃j−1 = xi

(
µ
~K
i,j−1

)
, x̃j =

xi

(
righti

(
µ
[
par

~K
i,j

]))
.

Ifµ
~K
i,1, . . . , µ

~K
i,j−1 andµ

[
par

~K
i,j

]
exist, we always have ai

(
righti

(
µ
[
par

~K
i,j

]))
= A

~k1,~k2, ~K,i,j(x̃1, x̃2, . . . , x̃j).

Note the existence of such function family is guaranteed by Lemma 7.10 (c).

7.2 Proof of Lemma 4.3

Similar to the case for one vertex, we will then prove our result using the following two lemmas. But note

here that we separately consider the contribution of each pair (~k1, ~k2). Therefore in the rest of the paper, we

will use the following notations.

Notation. Recall Kshort = {0, 1, . . . , τ/4}ℓ and τ = 20 log n log log n.

We will always use F ~K,~b
i,j to denote the corresponding event under Walk

~k1,~k2

ℓ,m,n,a. And recall that we use

F ~K,~b
i to denote F ~K,~b

i,Ki
, and we define F ~K,~b

ℓ+1 to be always true.

For every i ∈ {0, 1, . . . , ℓ}, we use g≤i to denote the collection (g1, . . . ,gi). Similarly, we use r≤i to

denote the collection (r1, . . . , ri).
For notation convenience, throughout this section, for (g≤t, r≤t) ∈ supp((g≤t, r≤t)), we will always use

g≤t ∧ r≤t to denote the event [g≤t = g≤t ∧ r≤t = r≤t].
We will need the following two lemmas that handle the total occurrences and the bad occurrences, re-

spectively.

Lemma 7.12 (Lower bounding the number of occurrences of u, v). Fix ~k1, ~k2 ∈ Kshort such that ~k1 < ~k2.

Let K = {~k1, ~k2}, φ = µ
~k1 + 1, and ψ = µ

~k2 + 1.

For every two distinct vertices u, v ∈ [n], it holds that

Pr

[
w
~k1,~k2

φ
= u ∧w~k1,~k2

ψ
= v
]
=

2−
∑ℓ
j=1Kj

n2
.

61

Notation Meaning

µ
~k or µ[~k] the tree node determined by ~k

ℓ number of components (sub-restrictions, levels) in Hℓ,m,n; number of levels; ℓ ≤ log n

τ independence parameter inHℓ,m,n; τ = 20 log n log log n

(gi, ri) components of hash function inHℓ,m,n
r≤i, g≤i the sequence (r1, . . . , ri) and (g1, . . . , gi)

~K a set of indices; subset ofNℓ

P
~k the set of indices of all ancestors of ~k

Kshort {0, 1, . . . , τ/4}ℓ

B~k set of two-dimensional sequence~b with values in [n] and shape ~k

~Ki,j the j-th index among all level i indices in ∪~k∈ ~KP
~k

µ
~K
i,j the node µ

~Ki,j

Ki the number of distinct level i indices in ∪~k∈ ~KP
~k

par
~K
i,j an index; the parent of ~Ki,j

F ~K,~b
i,j the event that for all (i′, j′) before or equal to (i, j), µ

~K
i′,j′ exists and next(µ

~K
i′,j′) =

~bi′,j′

F ~K,~b
i the event F ~K,~b

i,Ki

G̃ ~K,~bi,j the event that for all ai(µ
~K
i,j′) are distinct for 1 ≤ j′ ≤ j

G ~K,~bi the event G ~K,~bi,Ki
∧ G ~K,~bi+1,Ki+1

∧ · · · ∧ G ~K,~bℓ,Kℓ

p(~k) the path p(µ
~k) from root to µ

~k

Table 3: Summary of Notation

Lemma 7.13 (Upper bounding the bad occurrences of u, v). Fix ~k1, ~k2 ∈ Kshort such that ~k1 < ~k2 and

two distinct vertices u, v ∈ [n] such that au = av. Let Cu = #{i ∈ [n] | ai = au} denote the number of

occurrences of au in the input array a, φ = µ
~k1 + 1, and ψ = µ

~k2 + 1.

It holds that

Pr

[
w
~k1,~k2

φ
= u ∧w~k1,~k2

ψ
= v ∧

[
∃(α, β), 0 < α < β < ψ ∧ a

w
~k1,~k2
α

= a
w
~k1,~k2

β

]]

≤
∑

(~k3,~k4)∈(Nℓ)2

K={~k1,~k2,~k3,~k4}

2−
∑ℓ
j=1KjF2(a)

n4
+ 4

∑

~k3∈Nℓ

K={~k1,~k2,~k3}

2−
∑ℓ
j=1KjCu
n3

+ n2ℓ/2τ/4.

We also need the following simple lemma to accompany the use of Lemma 7.12.

Lemma 7.14. If 2 ≤ ℓ < log n, we have

∑

(~k1,~k2)∈(Kshort)2

~k1 6=~k2,K={~k1,~k2}

ℓ∏

i=1

2−Ki ≥ 22ℓ−1.

62

Proof. For K = {~k1, ~k2}, we have

ℓ∑

i=1

Ki ≤
ℓ∑

i=1

2∑

j=1

kji .

Hence we have

∑

(~k1,~k2)∈(Kshort)2

~k1 6=~k2,K={~k1,~k2}

ℓ∏

i=1

2−Ki ≥
∑

(~k1,~k2)∈(Kshort)2

K={~k1,~k2}

ℓ∏

i=1

2−Ki −
∑

~k1∈Kshort

ℓ∏

i=1

2−k
1
i

≥
∑

(~k1,~k2)∈(Kshort)2

K={~k1,~k2}

2∏

j=1

ℓ∏

i=1

2−k
j
i − 2ℓ

= (2− 2−τ/4)2ℓ − 2ℓ

≥ 22ℓ(1− ℓ2−τ/4 − 2−ℓ) (by (1− x)n ≥ 1− nx)

≥ 22ℓ−1,

where the last step follows from the fact that ℓ2−τ/4 ≤ logn
(logn)log n

≤ 1
4 and 2−ℓ ≤ 1

4 .

Now we are ready to prove Lemma 4.3.

Proof of Lemma 4.3. We let φ = µ
~k1 + 1 and ψ = µ

~k2 + 1. By Lemma 7.8, we have

Pr
h,s

[u, v ∈ f∗a,h(s)] ≥
∑

~k1<~k2

(~k1,~k2)∈(Kshort)2

Pr

[
w
~k1,~k2

φ = u ∧w~k1,~k2

ψ = v ∧
[
∀α 6= β ∈ [ψ − 1], a

w
~k1,~k2
α

6= a
w
~k1,~k2

β

]]

=
∑

~k1<~k2

(~k1,~k2)∈(Kshort)2

(
Pr
[
w
~k1,~k2

φ
= u ∧w~k1,~k2

ψ
= v
]

−Pr

[
w
~k1,~k2

φ = u ∧w~k1,~k2

ψ = v ∧
[
∃(α, β), 0 < α < β < ψ ∧ a

w
~k1,~k2
α

= a
w
~k1,~k2

β

]])

(24)

Plugging Lemma 7.12 and 7.13 in (24), we have

(24) ≥ 1

2

∑

(~k1,~k2)∈(Kshort)2

~k1 6=~k2,K={~k1,~k2}

2−
∑ℓ
j=1Kj

n2
− 1

2

∑

(~k1,~k2,~k3,~k4)∈(Nℓ)4

K={~k1,~k2,~k3,~k4}

2−
∑ℓ
j=1KjF2(a)

n4
(25)

− 1

2
· 4 ·

∑

(~k1,~k2,~k3)∈(Nℓ)3

~K={~k1,~k2,~k3}

2−
∑ℓ
j=1KjCu
n3

− 1

2
|Kshort|2n2ℓ/2τ/4 (26)

63

Here the first summation can be lower bounded using Lemma 7.14, while the other two summations can

be upper bounded by Lemma 6.25. So we have,

(26) ≥ 1

2

(
4ℓ

4n2
− 4! · 24 · 16

ℓF2(a)

n4
− 4 · 3! · 23 · 8

ℓCu
n3
− τ2ℓn2ℓ2−τ/4

)

=
1

2

(
1

222F2(a)
− 384

240F2(a)
− 192Cu

230F2(a)1.5
− n2ℓ22ℓ log τ−τ/4

)

(ℓ = log n− logF2(a)
2 − 10 and Cu ≤

√
F2(a))

≥ Ω

(
1

F2(a)

)
.

In the last step, we bound n2ℓ22ℓ log τ−τ/4 using the fact that τ ≥ 20 log n log log n, ℓ ≤ log n. Hence

log τ ≤ 2 log log n and

n2ℓ22ℓ log τ−τ/4 ≤ n2 log n24 logn log logn−5 logn log logn ≤ O
(

1

nlogn−3

)
.

7.3 Counting Total Occurrences

The following lemma is analogous to Lemma 6.4. We essentially mimic the proof of Lemma 6.4, and remark

one place where we crucially use the fact that we are working with Walk
~k1,~k2

ℓ,m,n,a instead of Walkℓ,m,n,a.

Lemma 7.15. Fix ~k1, ~k2 ∈ (Kshort)2 such that ~k1 < ~k2. Let ~K = {~k1, ~k2} and fix~b ∈ B ~K .

In the joint probability space (w
~k1,~k2 ,h,T), suppose (as induction hypothesis) that the event F ~K,~b

i+1 is

independent of the joint random variable (g≤i, r≤i).
Then, for all i ∈ [ℓ] and j ∈ [Ki], letting g≤i−1 ∈ supp(g≤i−1) and r≤i−1 ∈ supp(r≤i−1), it holds that

Pr
[
F ~K,~b
i,j

∣∣∣ F ~K,~b
i,j−1 ∧ g≤i−1 ∧ r≤i−1

]
=

1

2n
.

Proof. Fix i ∈ [ℓ] and j ∈ [Ki] and let g≤i−1 ∈ supp(g≤i−1) and r≤i−1 ∈ supp(r≤i−1). We let E≤i−1

denote the event
[
g≤i−1 ∧ r≤i−1

]
for convenience. Our goal is to show that

Pr

[
F ~K,~b
i,j

∣∣∣ F ~K,~b
i,j−1 ∧ E≤i−1

]
=

1

2n
.

By Lemma 7.10 (a), µ
~K
i,j exists if and only if gi

(
ai

(
righti

(
µ
[
par

~K
i,j

])))
= 1. Then let us inspect how

ai

(
righti

(
µ
[
par

~K
i,j

]))
is determined.

By Lemma 7.10 (c), ai

(
righti

(
µ
[
par

~K
i,j

]))
is determined by xi(µ

~K
i,1), . . . , xi(µ

~K
i,j−1), xi

(
righti

(
µ
[
par

~K
i,j

]))
.

Note since F ~K,~b
i,j−1 holds, by Lemma 7.10 (d), righti

(
µ
[
par

~K
i,j′

])
= µ

~K
i,j′ for j′ ∈ [j − 1].

Namely, ai

(
righti

(
µ
[
par

~K
i,j

]))
is determined by all xi

(
righti

(
µ
[
par

~K
i,j′

]))
for j′ ∈ [j].

64

By Lemma 7.10 (b), xi

(
righti

(
µ
[
par

~K
i,j′

]))
= last

(
next

(
µ
[
par

~K
i,j′

])
, i− 1

)
. Conditioning on

F ~K,~b
i,j′−1 is true, let ipar and jpar be such that par

~K
i,j′ = ~Kipar,jpar , we know next

(
µ
[
par

~K
i,j′

])
= bipar,jpar .

Thus next
(
µ
[
par

~K
i,j′

])
can be determined from ~K,~b, i, j′ .

Moreover, by Observation 5.2, last(·, i − 1) only depends on r≤i−1 and g≤i−1.
15 Therefore, con-

ditioning on F ~K,~b
i,j−1 ∧ E≤i−1, each xi

(
righti

(
µ
[
par

~K
i,j′

]))
(1 ≤ j′ ≤ j) is uniquely determined from

~K,~b, g≤i−1, r≤i−1, i, j
′. Hence ai

(
righti

(
µ
[
par

~K
i,j′

]))
is also uniquely determined for 1 ≤ j′ ≤ j.

Formally, for every j′ ∈ [j], let µj′ = righti

(
µ
[
par

~K
i,j′

])
. Note that µ

~K
i,j exists if and only if gi(ai(µj)) =

1. If µ
~K
i,j exists, we know µ

~K
i,j = µj and next(µj) = ri(ai(µj)). So our goal is to show that gi(ai(µj)) =

1 ∧ ri(ai(µj)) = bi,j indeed happens with probability 1
2n .

For ri ∈ supp(ri) and gi ∈ supp(gi), define a predicate

P (ri, gi) :=
[
∀j′ ∈ [j − 1], gi(a(µj′)) = 1 ∧ ri(a(µj′)) = bi,j′

]
.

By the discussion above, we have

F ~K,~b
i,j−1 ∧ E≤i−1 = F

~K,~b
i+1 ∧ E≤i−1 ∧ P (ri, gi).

As we have shown, for every j′ ∈ [j−1], a(µj′) is determined by r≤i−1, g≤i−1 and ~K,~b, i, j′, soP (ri,gi)
only depends on the randomness of (ri,gi). (Note since it is defined using r≤i−1, g≤i−1 which we have fixed,

it does not depend on the randomness of r≤i−1,g≤i−1.)

Together with our assumption, we know that the event F ~K,~b
i+1 ∧ E≤i−1 is still independent of ri,gi when

conditioning on P (ri,gi).
Hence,

Pr

[
F ~K,~b
i,j

∣∣∣ F ~K,~b
i,j−1 ∧ E≤i−1

]

=Pr
[
gi(a(µj)) = 1 ∧ ri(a(µj)) = bi,j

∣∣∣ F ~K,~b
i,j−1 ∧ E≤i−1

]

=Pr

[
gi(ai(µj)) = 1 ∧ ri(ai(µj)) = bi,j

∣∣∣ F ~K,~b
i+1 ∧ E≤i−1 ∧ P (ri,gi)

]

=Pr [gi(ai(µj)) = 1 ∧ ri(ai(µj)) = bi,j | P (ri,gi)]

=
1

2n
.

The last step follows from the fact that gi(·) and ri(·) are τ -wise independent, j ≤ Ki ≤ τ , and since
~K = {~k1, ~k2}, by Lemma 7.3, ai(µj) 6= ai(µj′) for every j′ ∈ [j − 1].

Remark. In the last step, we crucially used the fact that we are working with Walk
~k1,~k2

ℓ,m,n,a instead of

Walkℓ,m,n,a, since for Walkℓ,m,n,a, there may be collisions between p(~k1) and p(~k2), but for Walk
~k1,~k2

ℓ,m,n,a,

Lemma 7.3 guarantees that there is no such collision.

15Note walk
~k1,~k2(·, i− 1, ·, ·) does not have such nice property. It not only depends on r≤i−1 and g≤i−1 but also on Ci

′,~k1 for

i′ ∈ [i− 1]. This is why we are using last(·, i− 1) instead of walk
~k1,~k2(·, i− 1, ·, ·) in the relaxed extended walk (Algorithm 5).

65

Repeated applications of Lemma 7.15 lead to the following corollary. We omit the proof of Corollary 7.16

since it is identical to that of Corollary 6.5.

Corollary 7.16. Fix ~k1, ~k2 ∈ Nℓ such that ~k1 < ~k2. Let ~K = {~k1, ~k2} and fix~b ∈ B ~K .

In the joint probability space (w
~k1,~k2 ,h,T), suppose (as induction hypothesis) that the event F ~K,~b

i+1 is

independent of the joint random variable (g≤i, r≤i). Then, for all i ∈ [ℓ], letting g≤i−1 ∈ supp(g≤i−1) and

r≤i−1 ∈ supp(r≤i−1), it holds that

Pr

[
F ~K,~b
i

∣∣∣ F ~K,~b
i+1 ∧ g≤i−1 ∧ r≤i−1

]
=

2−Ki

nKi
.

Iteratively applying Corollary 7.16, we can obtain the following lemma. We omit its proof since it can

be proved in the same way as Lemma 6.6.

Lemma 7.17. Fix ~k1, ~k2 ∈ Nℓ such that ~k1 < ~k2. Let ~K = {~k1, ~k2} and fix~b ∈ B ~K .

In the joint probability space (w
~k1,~k2 ,h,T), for all i ∈ [ℓ + 1], letting g≤i−1 ∈ supp(g≤i−1) and

r≤i−1 ∈ supp(r≤i−1), it holds that

Pr

[
F ~K,~b
i

∣∣∣ g≤i−1 ∧ r≤i−1

]
=

2−
∑ℓ
j=iKj

n
∑ℓ
j=iKj

.

Finally we can prove Lemma 7.12, which give a lower bound on the number of good occurrences.

Reminder of Lemma 7.12. Fix ~k1, ~k2 ∈ Kshort. Let K = {~k1, ~k2}, φ = µ
~k1 + 1, and ψ = µ

~k2 + 1.

For every two distinct vertices u, v ∈ [n], it holds that

Pr
[
w
~k1,~k2

φ
= u ∧w~k1,~k2

ψ
= v
]
=

2−
∑ℓ
j=1Kj

n2
.

Proof of Lemma 7.12. The proof is similar to the first half of the proof of Lemma 6.2. For ~b ∈ B ~K , we say

that~b is good, if next(µ
~k1) = u and next(µ

~k2) = v according to~b.
We first break the probability into the contributions of all possible~b ∈ B ~K ,

Pr

[
w
~k1,~k2

µ~k1+1
= u ∧w~k1,~k2

µ~k2+1
= v
]
=
∑

~b∈B ~K

Pr[F ~K,~b
1 ∧~b is good].

By Lemma 7.17, for every sequence~b ∈ B ~K , it holds that

Pr

[
F ~K,~b
1

]
=

2−
∑ℓ
j=1Kj

n
∑ℓ
j=1Kj

.

There are n
∑ℓ
j=1Kj many sequences ~b ∈ B ~K , and n

∑ℓ
j=1Kj−2 of them satisfy next(µ

~k1) = u and

next(µ
~k2) = v (i.e., they are good). Thus, we have

∑

~b∈B ~K

Pr

[
F~k,~b1 ∧~b is good

]
=

2−
∑ℓ
j=1Kj

n2
.

66

7.4 Upper Bounding the Bad Occurrences

Now we generalize Lemma 6.8 to two vertices. Its proof is defered to Appendix A. We first recall the defi-

nition of collisions between two paths.

Reminder of Definition 6.7. Let p(µ) denote the path on T from root to node µ. We say there is a collision

between two paths p1 and p2 if there are two nodes α and β such that α ∈ p1 \ p2, β ∈ p2 \ p1, and

(alevel(α)(α), level(α)) = (alevel(β)(β), level(β)).

We also say that there is no collision between a set of paths if there is no collision between any two of

the paths in the set.

Lemma 7.18. Let u, v ∈ [n] be such that u 6= v and au = av. Fix (w
~k1,~k2 , T) ∈ supp((w

~k1,~k2 ,T)). Let

φ = µ
~k1 +1, ψ = µ

~k2 +1 and assume that wφ = u and wψ = v. If there is a pair of nodes (α̃, β̃) such that

0 < α̃ < β̃ < ψ and awα̃ = aw
β̃
, then the following holds:

• There are two nodes α and β such that α 6= β, awα = awβ , {α, β} 6= {φ,ψ}, and there is no collision

between p(φ− 1), p(ψ − 1), p(α − 1), and p(β − 1).

Now we extend Definition 6.16 to our relaxed walk walk
~k1,~k2 .

Definition 7.19. Fix ~k1, ~k2 ∈ Nℓ such that ~k1 < ~k2 and ~K ⊆ Nℓ such that ~k1, ~k2 ∈ ~K . Fix i ∈ [ℓ],~b ∈ B ~K ,

and (r≤i−1, g≤i−1) ∈ supp(r≤i−1,g≤i−1). Let {A~k1,~k2, ~K,i,j}j∈[Ki] be the family of functions defined in

Definition 7.11. ~c(~K,~b, i, r≤i−1, g≤i−1) is a vector of length Ki defined as follows:

For each j ∈ [Ki], let ipar and jpar be such that par(~Ki,j) = ~Kipar ,jpar . Note here ipar, jpar can be

determined from ~K, i, and j. We let xj = last(bipar,jpar , i − 1). This is well-defined since by Lemma 5.2,

last(·, i − 1) only depends on r≤i−1 and g≤i−1.

Then for each j ∈ [Ki], we let

[
~c(~K,~b, r≤i−1, g≤i−1)

]
j
= A

~k1,~k2, ~K,i,j(x1, x2, . . . , xj).

When ~K,~b, i, r≤i−1, and g≤i−1 are clear from context, we drop them and simply write ~c.

Lemma 7.20. Fix (w
~k1,~k2 , T) ∈ supp(w

~k1,~k2 ,T) and level i ∈ [ℓ], and fix ~K = {~k1, ~k2, . . . , ~kt}, j ∈ [Ki],
~b ∈ B ~K , r≤i−1 and g≤i−1. We defined ζ i,j = righti

(
µ
[
par

~K
i,j

])
. Let ~c be defined in Definition 7.19.

Assuming F ~K,~b
i,j−1 holds, we have ai(ζ

i,j) = cj .

Proof. We use the same notation as Definition 6.16. For each j ∈ [Ki], we let ipar and jpar be such that

par(~Ki,j) = ~Kipar,jpar . Note here ipar, jpar can be determined from ~K, i, and j. We let xj = last(bipar,jpar , i−
1). This is well-defined since by Lemma 5.2, last(·, i − 1) only depends on r≤i−1 and g≤i−1.

By F ~K,~b
i,j−1, we know next

(
µ
[
~Kipar ,jpar

])
= bipar,jpar . Then from Lemma 7.10 (b), we know that xj =

last
(
next

(
µ
[
~Kipar,jpar

])
, i− 1

)
= xi

(
righti

(
µ
[
~Kipar,jpar

]))
= xi

(
righti

(
µ
[
par

~K
i,j

]))
. For the same

reason, for all 1 ≤ j′ < j, we have xj′ = xi

(
righti

(
µ
[
par

~K
i,j′

]))
.

Since F ~K,~b
i,j−1 holds, for every j′ ∈ [j−1], we know µ

~K
i,j′ exists and therefore righti

(
µ
[
par

~K
i,j′

])
= µ

~K
i,j′.

Thus for all 1 ≤ j′ < j, we have xj′ = xi

(
righti

(
µ
[
par

~K
i,j′

]))
= xi(µ

~K
i,j′). Thus from Definition 7.11 and

the definition of ~c, we know that ai(ζ
i,j) = cj .

67

We then define P
~K,~b,r≤i−1,g≤i−1

i,j (ri, gi) and G ~K,~bi,j in the same way as Definition 6.18 and Definition 6.20.

Except now we use ~c defined in Definition 7.19.

Definition 7.21. P
~K,~b,r≤i−1,g≤i−1

i,j (ri, gi) is a predicate of ri, gi defined as following: Let ~c be the sequence

defined in Definition 7.19. For ri ∈ supp(ri) and gi ∈ supp(gi),

P
~K,~b,r≤i−1,g≤i−1

i,j (ri, gi) :=
[
∀j′ ∈ [j], gi(cj′) = 1 ∧ ri(cj′) = bi,j′

]
.

We also define P
~K,~b,r≤i−1,g≤i−1

i (ri, gi) = P
~K,~b,r≤i−1,g≤i−1

i,Ki
(ri, gi). When ~K,~b, r≤i−1, g≤i−1 are clear

from the context, we simply write Pi,j(ri, gi) and Pi(ri, gi).

Definition 7.22. G ~K,~bi,j is the event defined as following. Let ~c be the sequence ~c(~K,~b, r≤i−1,g≤i−1) defined

in Definition 7.19. We let

G ~K,~bi,j := [∀1 ≤ t1 < t2 ≤ j, ct1 6= ct2] .

We also define G ~Ki = G ~Ki,Ki ∧ G
~K
i+1.

The following observation holds with the same proof as Observation 6.19 except replacing Observa-

tion 6.15 with Lemma 7.10 and Observation 6.17 with Lemma 7.20 in the proof.

Observation 7.23. Fix ~K,~b. For P defined in Definition 7.21.

F ~K,~b
i,j ∧ E≤i−1 = F

~K,~b
i+1 ∧ E≤i−1 ∧ Pi,j(ri, gi)

Specifically, we have

F ~K,~b
i ∧ E≤i−1 = F

~K,~b
i+1 ∧ E≤i−1 ∧ Pi(ri, gi)

Thus the following lemmas follows.

Lemma 7.24. Fix ~k1, ~k2 ∈ Kshort such that ~k1 < ~k2, ~K = {~k1, ~k2, . . . , ~kt} ⊆ Kshort such that t ≤ 4, and

~b ∈ B ~K . In the joint probability space (w
~k1,~k2,h,T), fixing r≤i−1, g≤i−1 ∈ supp(r≤i−1,g≤i−1), for any

event A ~K,~b
i+1 such that (F ~K,~b

i+1 ∧ G
~K
i+1) ∨ A

~K,~b
i+1 is independent of r≤i,g≤i, we have

Pr
[
Pi,j(ri, gi) ∧ G ~Ki,j

∣∣∣
((
F ~K,~b
i+1 ∧ G

~K
i+1

)
∨ A ~K,~b

i+1

)
∧ E≤i−1 ∧ Pi,j−1(ri, gi) ∧ G ~Ki,j−1

]
≤ 1

2n
.

Proof. The proof is the same as that of Lemma 6.21.

We also generalize Lemma 6.24 as follows.

Lemma 7.25. Fix ~k1, ~k2 ∈ Kshort such that ~k1 < ~k2, ~K = {~k1, ~k2, . . . , ~kt} ⊆ Kshort such that t ≤ 4, and

~b ∈ B ~K . Let i ∈ [ℓ], and r≤i−1, g≤i−1 ∈ supp(r≤i−1,g≤i−1). In the joint probability space (w
~k1,~k2 ,h,T),

there is a sequence of events A ~K,~b
i such that:

Pr

[(
F ~K,~b
i ∧ G ~Ki

)
∨ A ~K,~b

i

∣∣∣ r≤i−1 ∧ g≤i−1

]
=

2−
∑ℓ
j=iKj

n
∑ℓ
j=iKj

.

In particular,

Pr
[
F ~K,~b
1 ∧ G ~K1

]
≤ 2−

∑ℓ
j=1Kj

n
∑ℓ
j=1Kj

.

68

Proof. This follows the same proof as Lemma 6.21 with the only difference is that the use of Lemma 6.21 is

replaced by Lemma 7.24, and the use of Observation 6.19 is replaced by Observation 7.23.

Then Lemma 7.13 follows the similar proof strategy as that of single vertex case.

Recall we define Elong

Elong :=

[
∃~k ∈ Nℓ s.t.

ℓ
max
i=1

ki > τ/4 and µ
~k exists

]
.

We observe that a similar conclusion as Lemma 6.1 also holds for walk
~k1,~k2 whose proof is deferred to

Appendix B.

Lemma 7.26. Fix ~k1, ~k2 ∈ Kshort such that ~k1 < ~k2. In the probability space (w
~k1,~k2,T), it holds that

Pr[Elong] ≤ n2ℓ/2τ/4.

Now we are ready to prove Lemma 7.13, which is restated below.

Reminder of Lemma 7.13. Fix ~k1, ~k2 ∈ Kshort and two distinct vertices u, v ∈ [n] such that au = av. Let

Cu = #{i ∈ [n] | ai = au} denote the number of occurrences of au in the input array a, φ = µ
~k1 + 1, and

ψ = µ
~k2 + 1.

It holds that

Pr

[
w
~k1,~k2

φ = u,w
~k1,~k2

ψ = v ∧ ∃(α, β), 0 < α < β < ψ, a
w
~k1,~k2
α

= a
w
~k1,~k2

β

]

≤
∑

(~k3,~k4)∈(Nℓ)2

K={~k1,~k2,~k3,~k4}

2−
∑ℓ
j=1KjF2(a)

n4
+ 4

∑

~k3∈Nℓ

K={~k1,~k2,~k3}

2−
∑ℓ
j=1KjCu
n3

+ n2ℓ/2τ/4.

Proof of Lemma 7.13. By Lemma 7.18, we have

Pr

[
w
~k1,~k2

φ
= u,w

~k1,~k2

ψ
= v ∧ ∃0 < α < β < ψ, a

w
~k1,~k2
α

= a
w
~k1,~k2

β

]

≤Pr
[
w
~k1,~k2

φ = u,w
~k1,~k2

ψ = v ∧ ∃(α, β), α < β, a
w
~k1,~k2
α

= a
w
~k1,~k2

β

∧

no collision between p(φ− 1), p(ψ − 1), p(α− 1), p(β − 1)
]

≤Pr
[
w
~k1,~k2

φ
= u,w

~k1,~k2

ψ
= v ∧ ¬Elong ∧ ∃(α, β), α < β, a

w
~k1,~k2
α

= a
w
~k1,~k2

β

∧

no collision between p(φ− 1), p(ψ − 1), p(α− 1), p(β − 1)
]
+Pr[Elong]

≤
∑

~k3,~k4∈Kshort

~k3 6=~k4

Pr
[
next(µ

~k1) = u ∧ next(µ
~k2) = v ∧ a

next(µ~k3)
= a

next(µ~k4)
∧ {~k3, ~k4} 6= {~k1, ~k2}∧

no collision between p(~k1), p(~k2), p(~k3), p(~k4)
]
+Pr[Elong]

First, from Lemma 7.26, we have Pr[Elong] ≤ n2ℓ/2τ/4.
Next, we will prove an upper bound on

69

∑

~k3,~k4∈Kshort

~k3 6=~k4

Pr
[
next(µ

~k1) = u ∧ next(µ
~k2) = v ∧ a

next(µ~k3)
= a

next(µ~k4)
∧ {~k3, ~k4} 6= {~k1, ~k2}∧

no collision between p(~k1), p(~k2), p(~k3), p(~k4)
]
.

There are two cases, the first case is that at least one of the four following equalities holds (1) ~k1 = ~k3,
(2) ~k1 = ~k4, (3) ~k2 = ~k3, or (4) ~k2 = ~k4, and the second case is that ~k1, ~k2, ~k3, ~k4 are distinct. Now we

consider the first case, and by symmetry, we only need to consider the case of ~k1 = ~k4.

When ~k1 = ~k4. Since ~k1 = ~k4, {~k3, ~k4} 6= {~k1, ~k2} implies ~k3 6∈ {~k1, ~k2}. Therefore ~k1, ~k2, ~k3 are

distinct. Let ~K = {~k1, ~k2, ~k3}. Since ~K ⊆ Kshort, by Lemma 7.25, for every sequence~b ∈ B ~K , we have

Pr

[
F ~K,~b
1 ∧ G ~K1

]
=

2−
∑ℓ
j=1Kj

n
∑ℓ
j=1Kj

.

There are n
∑ℓ
j=1Kj many sequences~b ∈ B ~K , and n

∑ℓ
j=1Kj−3 · Cu of them satisfy that next(µ

~k1) = u,

next(µ
~k2) = v, and a

next(µ~k3)
= au.

We have

∑

~k3∈Kshort

~k3 6∈{~k1,~k2}

Pr
[
next(µ

~k1) = u, next(µ
~k2) = v ∧ a

next(µ~k3)
= a

next(µ~k4)
∧

no collision between p(~k1), p(~k2), p(~k3)
]

=
∑

~k3∈Kshort

~k3 6∈{~k1,~k2}

Pr

[
G{~k

1,~k2,~k3}
1 ∧ next(µ

~k1) = u ∧ next(µ
~k2) = v ∧ a

next(µ~k3)
= au

]

≤
∑

~k3∈Nℓ

~K={~k1,~k2,~k3}

2−
∑ℓ
t=1KtCu
n3

.

When ~k1, ~k2, ~k3, ~k4 are distinct. Now we consider the other case when ~k1, ~k2, ~k3, ~k4 are distinct. Let
~K = {~k1, ~k2, ~k3, ~k4}.

Similar to the previous case, by Lemma 6.24, for any sequence~b ∈ B ~K , we have

Pr

[
F ~K,~b
1 ∧ G ~K1

]
=

2−
∑ℓ
j=1Kj

n
∑ℓ
j=1Kj

.

Note there aren
∑ℓ
j=1Kj many sequences~b ∈ B ~K ′ , and n

∑ℓ
j=1Kj−4·F2(a) of them satisfy that next(µ

~k1) =

u, next(µ
~k2) = v and a

next(µ~k3)
= a

next(µ~k4)
.

Hence, we have

70

∑

~k3,~k4∈Kshort

|{~k1,~k2,~k3,~k4}|=4

Pr
[
w
~k1,~k2

φ = u ∧w~k1,~k2

ψ = v ∧ a
next(µ~k3)

= a
next(µ~k4)

∧

no collision between p(~k1), p(~k2), p(~k3), p(~k4)
]

=
∑

~k3,~k4∈Kshort

|{~k1,~k2,~k3,~k4}|=4

Pr

[
G{~k

1,~k2,~k3,~k4}
1 ∧ next(µ

~k1) = u ∧ next(µ
~k2) = v ∧ a

next(µ~k3)
= a

next(µ~k4)

]

≤
∑

~k3,~k4∈Nℓ

~K={~k1,~k2,~k3,~k4}

2−
∑ℓ
j=1KjF2(a)

n4
.

Summing up these two cases proves the theorem.

References

[Abr87] Karl R. Abrahamson. Generalized string matching. SIAM J. Comput., (6):1039–1051, 1987. 3

[Abr91] Karl R. Abrahamson. Time-space tradeoffs for algebraic problems on general sequential ma-

chines. J. Comput. Syst. Sci., (2):269–289, 1991. 3

[AGHP90] Noga Alon, Oded Goldreich, Johan Håstad, and René Peralta. Simple constructions of almost

k-wise independent random variables. In 31st Annual Symposium on Foundations of Computer

Science, pages 544–553, 1990. 4

[Ajt02] Miklós Ajtai. Determinism versus nondeterminism for linear time RAMs with memory re-

strictions. J. Comput. Syst. Sci., (1):2–37, 2002. 3

[Ajt05] Miklós Ajtai. A non-linear time lower bound for boolean branching programs. Theory Comput.,

(1):149–176, 2005. 3, 5

[AKKN15] Per Austrin, Petteri Kaski, Mikko Koivisto, and Jesper Nederlof. Subset sum in the absence of

concentration. In 32nd International Symposium on Theoretical Aspects of Computer Science,

STACS 2015, pages 48–61, 2015. 4

[AKKN16] Per Austrin, Petteri Kaski, Mikko Koivisto, and Jesper Nederlof. Dense Subset Sum may be the

hardest. In Proceedings of the 33rd Symposium on Theoretical Aspects of Computer Science

(STACS), pages 13:1–13:14, 2016. 4

[Amb07] Andris Ambainis. Quantum walk algorithm for Element Distinctness. SIAM Journal on Com-

puting, 37(1):210–239, 2007. 3

[AN08] Noga Alon and Asaf Nussboim. k-wise independent random graphs. In 49th Annual IEEE

Symposium on Foundations of Computer Science, FOCS 2008, pages 813–822. IEEE Computer

Society, 2008. 4

71

[AS04] Scott Aaronson and Yaoyun Shi. Quantum lower bounds for the collision and the element

distinctness problems. J. ACM, (4):595–605, 2004. 3

[BC82] Allan Borodin and Stephen A. Cook. A time-space tradeoff for sorting on a general sequential

model of computation. SIAM J. Comput., (2):287–297, 1982. 3

[BCM13] Paul Beame, Raphaël Clifford, and Widad Machmouchi. Element distinctness, frequency mo-

ments, and sliding windows. In 2013 IEEE 54th Annual Symposium on Foundations of Com-

puter Science, pages 290–299. IEEE, 2013. 1, 3, 4, 17

[Bea91] Paul Beame. A general sequential time-space tradeoff for finding unique elements. SIAM J.

Comput., (2):270–277, 1991. 3

[BFM+87] Allan Borodin, Faith E. Fich, Friedhelm Meyer auf der Heide, Eli Upfal, and Avi Wigderson.

A time-space tradeoff for Element Distinctness. SIAM J. Comput., (1):97–99, 1987. 1

[BGNV18] Nikhil Bansal, Shashwat Garg, Jesper Nederlof, and Nikhil Vyas. Faster space-efficient algo-

rithms for Subset Sum, k-Sum, and related problems. SIAM J. Comput., (5):1755–1777, 2018.

1, 2, 4

[Bri17] Karl Bringmann. A near-linear pseudopolynomial time algorithm for Subset Sum. In Proceed-

ings of the 28th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1073–1084,

2017. 4

[BSSV03] Paul Beame, Michael E. Saks, Xiaodong Sun, and Erik Vee. Time-space trade-off lower bounds

for randomized computation of decision problems. J. ACM, (2):154–195, 2003. 3

[BV02] Paul Beame and Erik Vee. Time-space tradeoffs, multiparty communication complexity, and

nearest-neighbor problems. In Proceedings on 34th Annual ACM Symposium on Theory of

Computing, pages 688–697. ACM, 2002. 3

[BW15] Samuel R. Buss and Ryan Williams. Limits on alternation trading proofs for time-space lower

bounds. Comput. Complex., (3):533–600, 2015. 3

[Cob66] Alan Cobham. The recognition problem for the set of perfect squares. In 7th Annual Symposium

on Switching and Automata Theory, pages 78–87. IEEE Computer Society, 1966. 1

[CW79] J. Lawrence Carter and Mark N. Wegman. Universal classes of hash functions. Journal of

Computer and System Sciences, 18(2):143–154, 1979. 15

[Din20] Itai Dinur. Tight time-space lower bounds for finding multiple collision pairs and their applica-

tions. In Advances in Cryptology - EUROCRYPT 2020 - 39th Annual International Conference

on the Theory and Applications of Cryptographic Techniques, pages 405–434. Springer, 2020.

2

[EJT10] Michael Elberfeld, Andreas Jakoby, and Till Tantau. Logspace versions of the theorems of

Bodlaender and Courcelle. In Proceedings of the 51st IEEE Symposium on Foundations of

Computer Scienc (FOCS), pages 143–152, 2010. 4

[FK16] Alan Frieze and Michał Karoński. Introduction to random graphs. Cambridge University

Press, 2016. 4

72

[FK18] Michael A. Forbes and Zander Kelley. Pseudorandom generators for read-once branching pro-

grams, in any order. In 59th IEEE Annual Symposium on Foundations of Computer Science,

FOCS 2018, pages 946–955. IEEE Computer Society, 2018. 3

[FLvMV05] Lance Fortnow, Richard J. Lipton, Dieter van Melkebeek, and Anastasios Viglas. Time-space

lower bounds for satisfiability. J. ACM, (6):835–865, 2005. 3

[GLP18] Isaac Goldstein, Moshe Lewenstein, and Ely Porat. Improved space-time tradeoffs for kSUM.

In 26th Annual European Symposium on Algorithms, ESA 2018, pages 37:1–37:14, 2018. 4

[HJ10] Nick Howgrave-Graham and Antoine Joux. New generic algorithms for hard knapsacks. In

Advances in Cryptology - EUROCRYPT 2010, 29th Annual International Conference on the

Theory and Applications of Cryptographic Techniques Proceedings, pages 235–256. Springer,

2010. 4

[HM21] Yassine Hamoudi and Frédéric Magniez. Quantum time-space tradeoff for finding multiple

collision pairs. In 16th Conference on the Theory of Quantum Computation, Communication

and Cryptography, TQC 2021, pages 1:1–1:21, 2021. 3

[HS74] Ellis Horowitz and Sartaj Sahni. Computing partitions with applications to the knapsack prob-

lem. Journal of the ACM, 21(2):277–292, 1974. 4

[Ind06] Piotr Indyk. Stable distributions, pseudorandom generators, embeddings, and data stream com-

putation. J. ACM, (3):307–323, 2006. 3

[JVW21] Ce Jin, Nikhil Vyas, and Ryan Williams. Fast low-space algorithms for Subset Sum. In Pro-

ceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, pages 1757–

1776. SIAM, 2021. 4

[Kan10] Daniel M. Kane. Unary subset-sum is in logspace. CoRR, 2010. 4

[Kar86] Mauricio Karchmer. Two time-space tradeoffs for element distinctness. Theor. Comput. Sci.,

(3):237–246, 1986. 3

[Knu69] Donald E. Knuth. The art of computer programming, vol. 2: Seminumerical algorithms, 1969.

1, 3

[LN10] Daniel Lokshtanov and Jesper Nederlof. Saving space by algebraization. In Proceedings of the

42nd ACM Symposium on Theory of Computing (STOC), pages 321–330, 2010. 4

[LWWW16] Andrea Lincoln, Virginia Vassilevska Williams, Joshua R. Wang, and R. Ryan Williams. De-

terministic time-space trade-offs for k-SUM. In 43rd International Colloquium on Automata,

Languages, and Programming, ICALP 2016, pages 58:1–58:14, 2016. 4

[MNT93] Yishay Mansour, Noam Nisan, and Prasoon Tiwari. The computational complexity of universal

hashing. Theor. Comput. Sci., (1):121–133, 1993. 3

[MP80] J. Ian Munro and Mike Paterson. Selection and sorting with limited storage. Theor. Comput.

Sci., pages 315–323, 1980. 1

73

[MW19] Dylan M. McKay and Richard Ryan Williams. Quadratic time-space lower bounds for com-

puting natural functions with a random oracle. In 10th Innovations in Theoretical Computer

Science Conference, ITCS 2019, pages 56:1–56:20, 2019. 3

[Nis92] Noam Nisan. Pseudorandom generators for space-bounded computation. Comb., (4):449–461,

1992. 3

[Nis93] Noam Nisan. On read-once vs. multiple access to randomness in logspace. Theor. Comput.

Sci., (1):135–144, 1993. 3

[NW21] Jesper Nederlof and Karol Wegrzycki. Improving schroeppel and shamir’s algorithm for subset

sum via orthogonal vectors. In STOC ’21: 53rd Annual ACM SIGACT Symposium on Theory

of Computing, pages 1670–1683. ACM, 2021. 4

[Pol75] John M. Pollard. A Monte Carlo method for factorization. BIT, 15:331–334, 1975. 3

[PP93] Boaz Patt-Shamir and David Peleg. Time-space tradeoffs for set operations. Theor. Comput.

Sci., (1):99–129, 1993. 2, 3

[PR98] Jakob Pagter and Theis Rauhe. Optimal time-space trade-offs for sorting. In 39th Annual

Symposium on Foundations of Computer Science, FOCS ’98, pages 264–268. IEEE Computer

Society, 1998. 1

[SS81] Richard Schroeppel and Adi Shamir. A T = O(2n/2), S = O(2n/4) algorithm for certain

NP-complete problems. SIAM Journal on Computing, 10(3):456–464, 1981. 4

[Vad12] Salil P. Vadhan. Pseudorandomness. Found. Trends Theor. Comput. Sci., (1-3):1–336, 2012.

15

[vOW99] Paul C. van Oorschot and Michael J. Wiener. Parallel collision search with cryptanalytic ap-

plications. J. Cryptol., (1):1–28, 1999. 3

[Wan14] Joshua R. Wang. Space-efficient randomized algorithms for K-SUM. In Algorithms - ESA

2014 - 22th Annual European Symposium, pages 810–829. Springer, 2014. 4

[Wil08] R. Ryan Williams. Time-space tradeoffs for counting NP solutions modulo integers. Comput.

Complex., (2):179–219, 2008. 3

[Yao88] Andrew Chi-Chih Yao. Near-optimal time-space tradeoff for Element Distinctness. In 29th An-

nual Symposium on Foundations of Computer Science, pages 91–97. IEEE Computer Society,

1988. 1

[Yes84] Yaacov Yesha. Time-space tradeoffs for matrix multiplication and the discrete Fourier trans-

form on any general sequential random-access computer. J. Comput. Syst. Sci., (2):183–197,

1984. 3

74

A Proof of Lemma 7.18

In this appendix we prove Lemma 7.18. In Appendix A.1, we prove many useful facts about the relaxed

extended random walk walk
~k1,~k2 , which will be useful for later proofs. In Appendix A.2, we prove several

lemmas that are crucial for our proof of Lemma 7.18. Finally, we prove Lemma 7.18 in Appendix A.3.

Notation. In this appendix, since we always refer to w
~k1,~k2 , we drop the superscript and simply write w.

A.1 Useful Facts about the Relaxed Extended Walk walk
~k1,~k2

Algorithm 6: Generating relaxed extended walkwalk
~k1,~k2(s′, i, µ0, ~k): (where s′ ∈ [n], 0 ≤ i ≤ ℓ)

1 if i = 0 then return sequence (s′) which contains a single vertex.

2 if [∀t ∈ [i+ 1, ℓ], kt = k2t] ∧ [∃t ∈ [i+ 1, ℓ], k1t < k2t] ∧ [k2i > 0] then

/* Here the condition says that µ0 6∈ p(~k1) and is the last node of p(~k2) above level i and

p∗(~k2) is non-empty on level i. It is equivalent to µ1, µ2, · · · ∈ p∗(~k2) \ p∗(~k1). */

3 C0 ← Ci,
~k1

4 else

5 C0 ← ∅
6 star← false, j ← 0, s0 ← s′, w = ().
7 repeat

8 ~k′ ← (0, 0, . . . , 0, j, ki+1, . . . , kℓ) /* Here ~k′ equals index(µj). */

9 w = w ◦ walk~k1,~k2(sj , i− 1, µ0 + |w|, ~k′) /* Here µ0 + |w| equals µj. */

10 xj+1 ← last(sj, i− 1)

11 y, star←
{
axj+1 , false if axj+1 6∈ Cj ∧ ¬star
⋆t, true otherwise (where t = min{t ∈ N | ⋆t 6∈ C})

12 Let µj+1 = µ0 + |w|, xi(µj+1)← xj+1, ai(µj+1)← y.

13 if j > 0 then right(µj)← µj+1

14 if gi(y) = 1 then

15 Cj+1 ← Cj ∪ {y}, sj+1 ← ri(y)
16 level(µj+1)← i, next(µj+1)← ri(y)

17 index(µj+1)← (0, · · · , 0, j + 1, ki+1, . . . , kℓ)

18 j ← j + 1.

19 until gi(y) = 0
20 if [∀t ∈ [i+ 1, ℓ], kt = k1t] ∧ [∃t ∈ [i+ 1, ℓ], k1t < k2t] then

/* Here the condition says that µ0 is the last node of p(~k1) above level i and is not the

last node of p(~k2). It is equivalent to µ1, µ2, · · · ∈ p∗(~k1) \ p∗(~k2). */

21 Ci,
~k1 ← Cmin(j,k1i)

22 return w.

We will need the following facts about walk
~k1,~k2 . For convenience, we also recall the code of function

walk
~k1,~k2 in Algorithm 6.

Fact A.1. Fix (w, T) ∈ (w
~k1,~k2 ,T) and assume that µ

~k1 , µ
~k2 exist.

75

(a) Within walk
~k1,~k2(s′, i,~k), ∀~k∗ ∈ Nℓ, if level(µj) = i, µj ∈ p∗(~k∗) if and only if ∀t ∈ [i+ 1, ℓ], [kt =

k∗t] ∧ [k∗i > 0]. Moreover µj ∈ p(~k∗) if and only if µj ∈ p∗(~k∗) and j ≤ k∗i .

(b) Let α, β ≤ µ~k2 be two nodes. If ax(α) = ax(β) or a(α) = a(β) 6= ⋆∗, we have awα = awβ .

(c) Suppose xi(α) = xi(β). ai(α) 6= ai(β) only when ai(α) = ⋆∗ or ai(β) = ⋆∗.

(d) For any two nodes α, β both of level i, if ai(α) = ai(β), we have xi(right(α)) = xi(right(β)).

(e) There is no collision between p(~k1) and p∗(~k2).

(f) For a node α on level i, if gi(right(α)) = 1, then right(α) is also on level i.

(g) For a node α on level i with index ~k, let j ∈ [ki − 1] and β = µ
~k
i,j . If ai(β) = ⋆∗, then ai(α) = ⋆∗.

Consequently, if ai(α) 6= ⋆∗, then ai(β) 6= ⋆∗.

(h) In walk
~k1,~k2(s′, i,~k), suppose the condition at Line 2 is met. we know µj ∈ p∗(~k2) if level(µj) = i.

(i) For a node α 6∈ p∗(~k2) on level i, if ai(α) 6= ⋆∗ and ai(right(α)) = ⋆t, there must be a node η ∈ p(α)
such that ai(η) = axi(right(α)) and level(η) = i. Moreover, we must have t = 0.

(j) For a node β ∈ p̃(~k1, ~k2) on level i, if ai(β) 6= ⋆∗ and ai(right(β)) = ⋆∗, there must be a node

η ∈ p̃(~k1, ~k2) such that axi(η) = axi(right(β)) and level(η) = i.

(k) For a node α 6∈ p∗(~k2) on level i, if ai(α) = ⋆∗ or ai(right(α)) = ⋆t for t > 0, there must be a level i
node η on p(α) such that ai(η) = ⋆0.

(l) For a node β ∈ p̃(~k1, ~k2) on level i, if ai(β) = ⋆∗ or ai(right(β)) = ⋆t for t > 0, there must be a level

i node η on p̃(~k1, ~k2) such that ai(η) = ⋆0.

Proof.

Proof of (a). If k∗i > 0, since the first level i ancestors of µ
~k∗ has index (~k∗)i,1 = (0, . . . , 0, 1, k∗i+1, k

∗
ℓ),

we know level i nodes of p∗(~k∗) are (0, . . . , 0, j, k∗i+1, k
∗
ℓ) with j ≥ 1. If level(µj) = i, by how its index is

assigned (Line 17), we know it is in p∗(~k∗) when ∀t ∈ [i+ 1, ℓ], [kt = k∗t].
Specifically, if k∗i = 0, there is no level i node on p(~k∗). By definition of p∗(~k∗), there is also no

level i node on it. The moreover part follows from the fact that all level i ancestors of µ
~k∗ have indices

(~k∗)i,j = (0, . . . , 0, j, k∗i+1, k
∗
ℓ) for 1 ≤ j ≤ k∗i .

Proof of (b). Since α, β ≤ µ
~k2 , by Lemma 7.7, we have x(α) = wα and x(β) = wβ . Therefore ax(α) =

ax(β) implies awα = awβ . For any node µ, if a(µ) 6= ⋆∗, then a(µ) = ax(µ) holds by Line 11, 12. Thus

a(α) = a(β) 6= ⋆∗ also suffice.

Proof of (c). By line 11, 12, we know ai(α) 6= axi(α) only when ai(α) = ⋆∗. The same also holds for β.

Therefore since axi(α) = axi(β), the observation holds.

Proof of (d). For each node µj of level i at Line 8 - 13, we know right(µj) = µj+1 and xi(µj+1) = xj+1 =
last(sj , i− 1)(Line 12, 10). Here sj = ri(ai(µj)) (Line 12, 15).

Hence for each node µ of level i, xi(right(µ)) is the return value of last(ri(ai(µ)), i− 1). From ai(α) =
ai(β), we get xi(right(α)) = xi(right(β)) directly.

76

Proof of (e). By Line 12, 15, we know Cj = {ai(µ1), ai(µ2), . . . , ai(µj)}. Therefore by Line 21 and (a),

we know Ci,
~k1 = {ai(α)|α ∈ p(~k1) ∧ level(α) = i}.

Let the level i nodes on p∗(~k2) be β1, β2, . . . , βj . Initially, C0 = Ci,
~k1. For each t ∈ [j], ai(βt) is chosen

in a way so that ai(βt) 6∈ Ct−1. Then Ct = Ct−1 ∪ {ai(βt)}. Since Ci,
~k1 ⊆ Ct holds for all t ∈ [j], we

know ai(α) 6= ai(βt),∀t ∈ [j].
Hence there is no collision between p(~k1) and p∗(~k2).

Proof of (f). When µj = α, by Line 13, right(α) = µj+1. By Line 12 and Line 14, level(µj+1) = i if and

only if gi(ai(µj+1)) = 1. Thus the statement holds.

Proof of (g). By Line 15, once star switches from false to true, y is always ⋆∗, and star is always true.

Therefore, since ai(µj) = y (Line 12), if ai(µj) = ⋆∗ for j ≤ ki, then we must have ai(µki) = ⋆∗. This

proves that once ai(β) = ai(µ
~k
i,j) = ⋆∗, we must have ai(α) = ai(µ

~k
i,ki

) = ⋆∗.

Proof of (h). If the condition at Line 2 met, and level(µj) = i, we know index(µj) = (0, . . . , 0, j +
1, ki+1, . . . , kℓ) by Line 17 where kj = k2j for j ∈ [i+ 1, ℓ] and k2i > 0. Thus we can see that index(µ1) is

an ancestor of ~k2. Therefore, by definition of p∗(~k2), µj ∈ p∗(~k2).
Proof of (i). Consider the function call that assigns ai(α). Since α 6∈ p∗(~k2), by the contrapositive of (h), we

know thatC0 = ∅. Supposeα = µj and right(α) = µj+1. Then by Line 15,Cj = {ai(µ1), ai(µ2), . . . , ai(µj)}.
Since ai(α) 6= ⋆∗, star = false, and there is no ⋆∗ in Cj . Hence if ai(right(α)) = ⋆t, we must have t = 0.

Moreover, by Line 11, this happens only when axi(right(α)) ∈ Cj which means there is 1 ≤ j′ ≤ j such that

ai(µj′) = axi(right(α)). Let η = µj′ . This concludes the proof.

Proof of (j). Also consider the function call that assigns ai(β). The difference with (i) is that now C0 may

not be ∅. By Line 15, Cj = C0 ∪ {ai(µ1), ai(µ2), . . . , ai(µj)}. Suppose β = µj , right(β) = µj+1. Since

ai(β) 6= ⋆∗, star = false. By Line 11, ai(µj+1) = ⋆∗ only when axi(right(β)) ∈ Cj . If axi(right(β)) ∈ Cj \C0,

there is 1 ≤ j′ ≤ j such that ai(µj′) = axi(right(β)). We simply let η = µj′. η ∈ p̃(~k1, ~k2) since β = µj ∈
p̃(~k1, ~k2) and j′ < j.

If axi(right(β)) ∈ C0, by Line 3, C0 = Ci,
~k1 which equals {ai(α) | α ∈ p(~k1) ∧ level(α) = i} by Line

21. Hence there is η ∈ p(~k1) ⊆ p̃(~k1, ~k2) that satisfies the requirement. In either case, we can find such η.

This concludes the proof.

Proof of (k). Similar as (i). Also consider the function call that assigns ai(α). Since α 6∈ p∗(~k2), by

contrapositive of (h), we know that C0 = ∅. Suppose α = µj and right(α) = µj+1.

ByC0 = ∅ and Line 11, we know ai(µ1) 6= ⋆∗. Then because ai(α) = ⋆∗ or ai(right(α)) = ⋆t for t > 0,

there must exist 1 ≤ j′ ≤ j + 1 such that ai(µj′) = ⋆∗ and ai(µj′−1) 6= ⋆∗. By (i), we know ai(µ
′
j) = ⋆0.

Since t > 0, we know j′ 6= j + 1. Thus 1 ≤ j′ ≤ j, and we let η = µj which is of level i. η ∈ p(α) since

j′ ≤ j.
Proof of (l). If there is a node α ∈ p(~k1) \ p∗(~k2) such that ai(α) = ⋆∗ and level(α) = i. Then by (k) such

node η ∈ p(α) ⊆ p̃(~k1, ~k2) exists.

Then suppose there is no such α. Consider the function call that assigns ai(β). We will prove there is

no ⋆∗ in C0. Let S1 be the set of level i nodes on p(~k1), and S2 be the set of level i nodes on p∗(~k2). By the

tree structure, S1 is either a subset of S2 or disjoint with S2.
If S1 is a subset of S2, we know C0 = ∅ by Line 2, since there is no t ∈ [i+1, ℓ] that k1t < k2t (otherwise

S1 ∩ S2 = ∅). If S1 and S2 are disjoint, C0 = Ci,
~k1, and by Line 21, Ci,

~k1 = {ai(µ)|µ ∈ S1}. We prove

77

p∗(~k1)

γi α

p∗(~k2)

β

ai(α) = ai(β)

p̃(~k1, ~k2) p̃(~k1, ~k2)

Figure 9: The definition of γi and the level i nodes in p̃(~k1, ~k2)

by contradiction. Suppose there is µ ∈ S1 such thhat ai(µ) = ⋆∗, namely ⋆∗ ∈ C0. We let α = µ. Then

α ∈ p(~k1) \ p∗(~k2) = S1 \ S2 = S1 and level(α) = i. This contradicts with the fact there is no such α.

In either case, ⋆∗ 6∈ C0. Thus let µj′ be the first node among µ1, . . . , µj , µj+1 such that ai(µj′) = ⋆∗.
By Cj′−1 = C0 ∪ {ai(µ1), . . . , ai(µj′−1)}, we know ⋆∗ 6∈ Cj′−1. Hene by Line 11, we have ai(µj′) = ⋆0.

Thus we know j′ ≤ j and we simply let η = µj . In such case, η ∈ p∗(~k2) ⊆ p̃(~k1, ~k2) and level(η) = i.

A.2 Some Structure Lemmas

Similar as before, we shall first extend Lemma 6.10, Corollary 6.12 and 6.13. To do so, we first need an extra

definition. See Figure 9.

Definition A.2. Assuming that µ
~k1 and µ

~k2 exist and ~k1 < ~k2.
Define γi := max{γ ∈ p∗(~k1) | level(γ) = i ∧ p(γ) has no collision wtih p∗(~k2)}, namely, the last

level i node on p∗(~k1) such that its path has no collision with p∗(~k2). We define p̃(~k1, ~k2) to be

p̃(~k1, ~k2) =




ℓ⋃

i=1
γiexists

p(γi)



⋃
p∗(~k2).

By Fact A.1(e), if k1i > 0, γi must exist, and p(~k1) ⊆ p̃(~k1, ~k2).

Lemma A.3. Fix ~k1, ~k2 ∈ Nℓ such that ~k1 < ~k2 and (w, T) ∈ supp(w
~k1,~k2,T). Assuming that µ

~k1 and

µ
~k2 exist. Suppose σ = µ

~k is a node in T . Let π3 = Find(σ, T). The following hold:

1. π3 ∈ p̃(~k1, ~k2).

2. If there is a collision between p(σ) and p̃(~k1, ~k2), then letting i be the level of the lowest such collision,

it holds that (ai(π3), level(π3)) = (ai(µ
~k
i,ki

), i).

3. There is no collision between p(σ) and p̃(~k1, ~k2) below level(π3).

Proof. Let π3 = Find(σ, T). First, if there is no collision between p(σ) and p̃(~k1, ~k2), then one can straight-

forwardly verify π3 satisfy all the required conditions. From now on we assume that there is a collision

between p(σ) and p̃(~k1, ~k2).

78

Algorithm 7: Find(σ, T)

1 ~k = index(σ)

2 if there is a collision between p(σ) and p̃(~k1, ~k2) then

3 Let i be the level of the lowest such collision;

4 Let π1, π2 be such a collision on level i; /* break ties by picking the lexicographically

first pair */

5 if ai(µ
~k
i,ki

) 6= ⋆∗ then

6 return Find-Case-I(π1, π2, ~k, T); /* see Algorithm 8 */

7 else

8 return Find-Case-II(π1, π2, ~k, T); /* see Algorithm 9 */

9 else

10 Let π3 be the last node on p(σ) that is also on p̃(~k1, ~k2);
11 return π3;

Let i, π1, π2 be as defined in Line 3 and Line 4 in Algorithm 7. Formally, π1, π2, i are defined as follow-

ing. π1 = µ
~k
i,j is the node on p(σ) \ p̃(~k1, ~k2) with the smallest i such that ∃π2 ∈ p̃(~k1, ~k2) \ p(σ) satisfying

(ai(π2), level(π2)) = (ai(π1), i). If there are multiple such pairs, we pick the lexicographically first pair.

Depending on whether ai(µ
~k
i,ki

) 6= ⋆∗, we divide the proof into two cases.

The case when ai(µ
~k
i,ki

) 6= ⋆∗. In this case, π3 is found by Algorithm 8. We will prove the following three

Algorithm 8: Find-Case-I(π1, π2, ~k, T)

/* Finding π3 when ai(µ
~k
i,ki

) 6= ⋆∗ */

1 α← π1, β ← π2;

2 while α 6= µ
~k
i,ki

do

3 if ai(right(α)) = ai(right(β)) then

4 α← right(α), β ← right(β);

5 if β 6∈ p̃(~k1, ~k2) then

6 Let η ∈ p∗(~k2) be the node such that ai(η) = ai(β) and level(η) = i;
7 β ← η; /* If η does not exist, the algorithm aborts. */

8 else

9 Let η ∈ p̃(~k1, ~k2) be the node such that ai(η) = ai(right(α)) and level(η) = i;
10 α← right(α), β ← η; /* If η does not exist, the algorithm aborts. */

11 π3 ← β;

12 return π3;

facts about Algorithm 8:

1. Throughout Algorithm 8, level(α) = level(β) = i.

2. Algorithm 8 terminates.

79

3. At Line 6 and 9, the node η always exists.

We first show that these three facts are sufficient. First observe that the invariant ai(α) = ai(β) is

preserved during algorithm. Suppose these facts are true. When the algorithm terminates, we have α =

µ
~k
i,ki

, (a(β), level(β)) = (a(α), i)). Moreover by Line 6 and Line 9, we know that it always holds that

β ∈ p̃(~k1, ~k2). Hence, π3 satisfies the requirements of the lemma by Fact 1, the invariant ai(α) = ai(β), the

definition of i, and Fact 2.

Now we prove these three facts.

Proof of Fact 1. Observe that initially α = π1 which is on p(~k) and of level i. Then in each iteration, α

always moves to right(α) until α = µ
~k
i,ki

. From the assumption that σ = µ
~k exists, we know µ

~k
i,ki

exists.

Thus, level(α) = i holds throughout Algorithm 8.

For β, each time it either (1) moves to a level-i node η, or (2) moves to right(β). For Case (1) clearly

we still have level(β) = i. For Case(2), from ai(right(α)) = ai(right(β)), we have gi(ai(right(β))) =
gi(ai(right(α))) = 1, implying that right(β) must also be of level i by Fact A.1(f). Hence, level(β) = i
always holds. This finishes the proof of Fact 1.

Proof of Fact 2. Fact 2 follows from the observation that after each iteration we have α ← right(α) and α
never moves to its left. So eventually the algorithm must stop.

Proof of Fact 3. We first prove that η always exists at Line 9.

Base on Fact 1 and ai(α) = ai(β), it follows from Fact A.1(d) that xi(right(α)) = xi(right(β)). There-

fore by Fact A.1(c), the only possibility of entering Line 9 is when at least one of ai(right(α)) = ⋆∗ and

ai(right(β)) = ⋆∗ is true. Since ai(µ
~k
i,ki

) 6= ⋆∗, from Fact A.1(g), we know ai(right(α)) 6= ⋆∗. Thus here

ai(right(β)) = ⋆∗.
If ai(β) = ⋆∗, by ai(α) = ai(β), we would have ai(right(α)) = ai(right(β)) and would not enter Line

9. Therefore ai(β) 6= ⋆∗. Since by Line 6, we always have β ∈ p̃(~k1, ~k2), by Fact A.1(j), there must exist

η ∈ p̃(~k1, ~k2) such that (ai(η), level(η)) = (axi(right(β)), i). On the other side, since a(right(α)) 6= ⋆0,
ai(right(α)) = axi(right(α)) = axi(right(β)) = ai(η). Therefore such η exists.

Then we prove that η always exists at Line 6. Since each time β either move to right(β) or to η ∈ p̃(~k1, ~k2)
(note p∗(~k2) ⊆ p̃(~k1, ~k2)), the only possibility of β 6∈ p̃(~k1, ~k2) is when β = right(γi) where γi is defined

as in Definition A.2. Note by Fact 1, β = right(γi) is of level i. Then suppose there is no η ∈ p∗(~k2) such

that ai(η) = ai(right(γi)). Instead of γi, right(γi) should be the last level i node on p∗(~k1) whose path

p(right(γi)) has no collision with p∗(~k2). This contradicts the definition of γi. Thus such node η must exist.

The case when ai(µ
~k
i,ki

) = ⋆∗. In this case, π3 is found by Algorithm 9.

Similar to the previous case, we will prove the following three facts about Algorithm 9:

1. Throughout Algorithm 9, level(α) = level(β) = i.

2. Algorithm 9 terminates.

3. At Line 8 both ηα and ηβ always exist; At Line 11, ηα always exists; at Line 14, ηβ always exists.

These three facts above are enough to imply that the found π3 satisfies the requirements of the lemma,

by the same argument as that of the previous case.

Proof of Fact 1. Initially α = π1 ∈ p(σ). Then in each iteration, α may move to either right(α) or a node

ηα ∈ p(σ) of level i until we reach α = µ
~k
i,ki

. Noteαmoves to ηα either at Line 8 where (ai(ηα), level(ηα)) =

80

Algorithm 9: Find-Case-II(π1, π2, ~k, T)

/* Finding π3 when ai(µ
~k
i,ki

) = ⋆∗ */

1 α← π1, β ← π2;

2 while α 6= µ
~k
i,ki

do

3 if ai(right(α)) = ai(right(β)) then

4 α← right(α), β ← right(β);
5 else

6 if ai(right(β)) = ⋆∗ then

7 Let ηα ∈ p(σ) be the node that ai(ηα) = ⋆0 and level(ηα) = i;

8 Let ηβ ∈ p̃(~k1, ~k2) be the node that ai(ηβ) = ⋆0 and level(ηβ) = i;
9 α← ηα, β ← ηβ;

10 else
/* now it must hold that ai(right(α)) = ⋆∗ */

11 Let ηα ∈ p(σ) be the node that ai(ηα) = ai(right(β)) and level(ηα) = i;
12 α← ηα, β ← right(β);

13 if β 6∈ p̃(~k1, ~k2) then

14 Let ηβ ∈ p∗(~k2) be the node such that ai(ηβ) = ai(β) and level(ηβ) = i;
15 β ← ηβ;

16 π3 ← β;

17 return β;

(⋆0, i) or at Line 11 where ai(ηα) 6= ⋆∗ and level(ηα) = i. Since ai(µ
~k
i,ki

) = ⋆∗, in both cases, such

ηα ∈ p(σ) = p(µ
~k) is always a node before or equal µ

~k
i,ki

. Therefore, α is always on path p(µ
~k
i,ki

) and of

level i.
For β, same as that of Algorithm 8, in each iteration it move to either (1) a level i node ηβ , or (2) move

to right(β). The fact clearly holds in Case (1). For Case (2), it moves to right(β) either at Line 4 or Line 11.

For Line 4, since ai(right(α)) = ai(right(β)) holds, we know gi(ai(right(β))) = gi(ai(right(α))) = 1, and

right(β) must also be of level i by Fact A.1(f). For Line 11, since ai(ηα) = ai(right(β)) holds, and ηα is of

level i, we know gi(ai(right(β))) = gi(ai(ηα)) = 1, and right(β) must also be of level i by Fact A.1(f).

Proof of Fact 3. Here we prove Fact 3 before Fact 2. For Line 14, the analysis is the same as that of Line 6

of Algorithm 8.

For Line 8 and 11, similar as before, given Fact 1 and ai(α) = ai(β), it follows from Fact A.1(d) that

xi(right(α)) = xi(right(β)). Therefore, by Fact A.1(c), the only possibility of entering Line 6 is when at

least one of ai(right(α)) = ⋆∗ and ai(right(β)) = ⋆∗ happens.

Note since π1 6∈ p̃(~k1, ~k2), we know α 6∈ p∗(~k2). Similarly, µ
~k
i,ki
6∈ p∗(~k2). We will need this fact in

following case analysis.

Suppose ai(right(α)) = ⋆t1 and ai(right(β)) = ⋆t2 . Note t1 6= t2, or otherwise we would not have

entered Line 6. If t1 > t2, from α 6∈ p∗(~k2), we have ai(α) = ⋆t1−1. Then by ai(α) = ai(β) = ⋆t1−1,

we must have ai(right(β)) = ⋆t1 . This contradicts with the assumption t1 > t2. Since same thing holds

for t2 > t1, we know exactly one of ai(right(α)) = ⋆∗ and ai(right(β)) = ⋆∗ happens. Also we must have

ai(α) = ai(β) 6= ⋆∗.

81

• If ai(right(α)) = ⋆∗ and ai(right(β)) 6= ⋆∗, since ai(α) 6= ⋆∗ and α 6∈ p∗(~k2), by Fact A.1(i), there

must be a node η ∈ p(σ) such that (ai(η), level(η)) = (axi(right(α)), i).

Since ai(right(β)) 6= ⋆∗, ai(right(β)) = axi(right(β)) = axi(right(α)) = ai(η). Here xi(right(α)) =
xi(right(β)) follows from Fact 1, ai(α) = ai(β), and Fact A.1(d). This proves the existence of ηα at

Line 11.

• If ai(right(α)) 6= ⋆∗ and ai(right(β)) = ⋆t, by ai(µ
~k
i,ki

) = ⋆∗, µ
~k
i,ki
6∈ p∗(~k2) and Fact A.1(k), we

know there must exist such ηα = µ
~k
i,j such that j ≤ k and ai(ηα) = ⋆0. This proves the existence of

ηα at Line 8.

Similarly, since ai(right(β)) = ⋆t, by Fact A.1(l), if t > 0, such ηβ must also exist. If t = 0, since

gi(right(β)) = gi(ηα) = 1, by Fact A.1(f), we know level(right(β)) = i. Then we can simply let

ηβ = right(β). This proves the existence of ηβ at Line 8.

Proof of Fact 2. We will consider the following two cases depending on whether Algorithm 9 enters Line 8

during the execution.

We first observe that Algorithm 9 enters Line 8 at most once. Once Algorithm 9 enters Line 8 during the

execution, after α← ηα, β ← ηβ , we have ai(α) = ai(β) = ⋆0.
We prove that the algorithm then stops within T steps without entering Line 8 again, where T is the

integer such that ai(µ
~k
i,ki

) = ⋆T . This follows from a simple induction. Suppose after t (t ≥ 0) steps,

ai(α) = ai(β) = ⋆t, we always have ai(right(α)) = ai(right(β)) = ⋆t+1. Thus in the t+ 1 step, we would

enter Line 4 and have α← right(α), β ← right(β). Noticing Line 14 preserves ai(α) and ai(β), this finishes

the inductive step. The base case follows from the fact that ai(α) = ai(β) = ⋆0 before the first step.

Otherwise, Algorithm 9 never enters Line 8. When it enters Line 4 and Line 11, β always moves to

right(β). For Line 14, β 6∈ p̃(~k1, ~k2) can only happen if it equals right(γi), and β then moves to a node

η ∈ p∗(~k2) which is after right(γi) ∈ p∗(~k1) \ p̃(~k1, ~k2). Putting these together, since β always moves to

right(β) or a node η after it, the algorithm must eventually stop.

The following remark will be useful for later proofs.

Remark A.4. Fix ~k1, ~k2 ∈ Nℓ such that ~k1 < ~k2 and (w, T) ∈ supp(w
~k1,~k2 ,T). Assuming that µ

~k1 and

µ
~k2 exist. Let σ, η be two nodes in T , and let πσ3 = Find(σ, T) and πη3 = Find(η, T). Let i be the level of

the lowest common ancestor of σ and η. If level(πσ3) > i and level(πη3) > i, then πσ3 = πη3 .

Proof. Let πσ1 , π
σ
2 be the nodes π1, π2 in Find(σ, T). Let πη1 , π

η
2 be the nodes π1, π2 in Find(η, T). Let

i0 = min(level(πσ1), level(π
η
1)). Since level(πσ1) = level(πσ3) > i and level(πη1) = level(πη3) > i, we know

i0 > i. Therefore, p(σ) and p(η) contains exactly the same level i0 nodes. Let µ be the last level i0 node on

p(σ). It is also the last level i0 node on p(η).
Then by Line 4, we know level(πσ1) = i0 (resp. level(πη1) = i0) since it is the lowest level that contains

collision between p(σ) (resp. p(η)) and p̃(~k1, ~k2).
By Lemma A.3, we know (a(πσ3), level(π

σ
3)) = (a(µ), i0) = (a(πη3), level(π

η
3)) and πσ3 , π

η
3 ∈ p̃(~k1, ~k2).

By Fact A.1 (e), there is no collision between p(~k1) and p∗(~k2). Together with Definition A.2, this implies

that all α 6= β ∈ p̃(~k1, ~k2) such that level(α) = level(β) must have ai(α) 6= ai(β).
Hence (a(πσ3), level(π

σ
3)) = (a(πη3), level(π

η
3)) implies πσ3 = πη3 .

82

Next we recall the definition of two paths being the same below level i.

Reminder of Definition 6.11. We say two paths p(~k1) and p(~k2) are the same below level i if

• ∀ 1 ≤ j < i, k1j = k2j .

• ∀ 1 ≤ j < i, 1 ≤ t ≤ k1j , aj(µ
~k1
j,t) = aj(µ

~k2
j,t).

The follow lemma is similar to Corollary 6.12. However, since the initial value of C0 in walk
~k1,~k2 may

be non-empty. It is more complicated.

Lemma A.5. Fix ~k1, ~k2 ∈ Nℓ such that ~k1 < ~k2 and (w, T) ∈ supp(w
~k1,~k2,T). Assuming that µ

~k1 and

µ
~k2 exist. Fix a node σ ≤ µ~k2 , and let π3 = Find(σ, T).

Then, there must be a descendant σ′ of π3 such that the following hold:

1. (a(σ′), level(σ′)) = (a(σ), level(σ)).

2. There is no collision between p(σ′) and p̃(~k1, ~k2).

3. p(σ′) is the same as p(σ) below level level(π3).

Proof. When there is no collision between p(σ) and p̃(~k1, ~k2), we simply take σ′ = σ. One can verify that

σ′ satisfies all the required conditions.

In the rest of the proof we assume there there is a collision between p(σ) and p̃(~k1, ~k2). Let i be the

level of the lowest such collision. By Lemma A.3, we have that π3 ∈ p̃(~k1, ~k2) and (ai(π3), level(π3)) =

(ai(µ
~k
i,ki

), i). We also let ~k be the index of σ and ~k3 be the index of π3.
We decompose the proof into two claims. Claim 2 is an outer induction step between levels, and Claim 3

is an inner induction step within a single level. The lemma is proved by an outer induction that repeatedly

applies Claim 2, while Claim 2 itself is proved by an inner induction that repeatedly applies Claim 3.

The node σ′. We define ~k′ and σ′ as follows:

k′j =

{
k3j j ≥ level(π3)

kj j < level(π3)
for j ∈ {0, 1, . . . , ℓ}, and σ′ = µ

~k′ .

Note that here a priori the node σ′ may not exist. If it exists, since ∀j ≥ level(π3), k
′
j = k3j , it must be a

descendant of π3.
In the rest of the proof we will prove that the node σ′ always exists, and it satisfies the requirement of the

lemma.

Recall that we use index(µ) to denote the index of a node µ. Let i = level(π3). The node σ is generated by

walk
~k1,~k2(next(µ

~k
i,ki

), i−1, index(µ~ki,ki))while σ′ (if exists) is generated byw
~k1,~k2 bywalk

~k1,~k2(next(π3), i−
1, index(π3)). The difference with Corollary 6.12 is that now although next(µ

~k
i,ki

) = next(π3), these two

walks could still be different since index(µ
~k
i,ki

) 6= index(π3).
16 But still, we are going to prove that since

there is no collision strictly below level i between p(σ) and p̃(~k1, ~k2), we have that p(σ′) is the same as p(σ)
below level i.

We need the following claim.

16As they could affect the initial value of C0 at Line 3 and 5 in Algorithm 6.

83

Claim 2. For j ∈ [i− 1], suppose the following holds

• µ
~k′

J,k′J
exists and a(µ

~k
J,kJ

) = a(µ
~k′

J,k′J
) for every J ∈ {j + 1, . . . , i}. (27)

Then,

• µ
~k′
j,t exists and a(µ

~k
j,t) = a(µ

~k′
j,t) for every t ∈ {0, 1, . . . , kj}. (28)

Before proving Claim 2, we show that it implies our lemma.

The Outer Induction. Note that π3 = µ
~k′

i,k′i
(by definition of ~k′) exists and ai(µ

~k
i,ki

) = ai(π3) (by the

guarantee on π3). (27) holds for j = i − 1. From Claim 2, it further implies that (28) holds for j = i − 1
as well. Then we can apply Claim 2 repetitively, to show that (28) holds for every j ∈ [level(σ), i − 1]. By

Definition 6.11, it follows that p(σ′) is the same as p(σ) below level i.

Note (27) implies the special case of (28) when t = 0. By our definition, µ
~k
j,0 and µ

~k′
j,0 equals µ

~k
p,kp

and

µ
~k′

q,kq
for p = min{p ∈ [j+1, ℓ] | kp > 0} and q = min{q ∈ [j+1, ℓ] | k′q > 0} respectively. As j ∈ [i−1],

we have p ≤ i and q ≤ i because node π3 ∈ p(~k′) and µ
~k
i,ki
∈ p(~k) are both of level i. Furthermore, since

kj′ = k′j′ for j′ ∈ [i − 1], we know p = q always holds. Hence by (27), a(µ
~k
j,0) = a(µ

~k
p,kp

) = a(µ
~k
q,kq

) =

a(µ
~k′
j,0). This will be the base case of the inner induction.

Specifically, (27) implies the following:

• µ
~k′
j,0 exists and a(µ

~k
j,0) = a(µ

~k′
j,0). Moreover, we also know that level(µ

~k
j,0) = level(µ

~k′
j,0). (29)

Now we prove Claim 2.

Proof of Claim 2. Fix j ∈ [i − 1]. Note that if kj = 0 the claim holds immediately. Thus from now on we

assume kj > 0.

Assuming (27) holds, we will establish (28) by proving the following claim. For ease of notation, for

t ∈ {0, 1, . . . , kj}, we let ζt = µ
~k
j,t and ζ ′t = µ

~k′
j,t.

Claim 3. For t ∈ [kj], suppose

• ζ ′t′ exists and a(ζt′) = a(ζ ′t′) for t′ ∈ {0, 1, . . . , t− 1}. Specifically, level(ζ0) = level(ζ ′0).
(30)

Then
• ζ ′t exists and a(ζt) = a(ζ ′t). (31)

Clearly (28) follows from Claim 3 by a simple induction. Here the base case (i.e.,(30) with t = 1) of the

induction follows from (29).

Before proving Claim 3, we first inspect how the existence of ζ ′t and the values of aj(ζt) and aj(ζ
′
t) are

determined in Algorithm 5.

How aj(ζt) and aj(ζ
′
t) are determined. For aj(ζt) (t ∈ [kj]), it is determined by function call

walk
~k1,~k2(next(µ

~k
j,0), j, index(µ

~k
j,0)).

Initially, C0 = ∅. This is because by definition, i = level(π3) is the lowest level such that there is a collision

between p(σ) and p̃(~k1, ~k2). Therefore, imust be lower than the level of least common ancestor of p(σ) and

84

p∗(~k2). Together with j < i, we know ζt 6∈ p∗(~k2). Hence in such function call, the initial value of C0 has

to be the empty set. The the function call determines each xi(µj) and ai(µj) in order.

Note here we have proved

• ζt 6∈ p∗(~k2). (32)

For aj(ζ
′
t), it is determined by function call

walk
~k1,~k2(next(µ

~k′

j,0), j, index(µ
~k′

j,0)).

If index(µ
~k′
j,0) satisfies the condition at Line 2, Algorithm 6, C ′

0 will be (C ′)j,
~k1 . Otherwise, C ′

0 ← ∅.
Then the function call determined each xi(µ

′
j) and ai(µ

′
j) in order, and C ′

j+1 will be C ′
j ∪ {ai(µ′j+1)}.

Now we are ready to prove Claim 3.

Proof of Claim 3. We will first show that it suffices to prove aj(ζt) = aj(right(ζ
′
t−1)), and then prove

aj(ζt) = aj(right(ζ
′
t−1)) via a proof by contradiction.

Assuming aj(ζt) = aj(right(ζ
′
t−1)), we have gj(aj(right(ζ

′
t−1))) = gj(aj(ζt)) = 1 and ζ ′t must exist.

From (30) we have that for t′ ∈ {0, 1, . . . , t−1}, ζ ′t′ exists and a(ζt′) = a(ζ ′t′). Moreover, for t′ ∈ [t−1],
by definition, we know level(ζt′) = level(ζ ′t′) = j. For t′ = 0, we also know level(ζ0) = level(ζ ′0).

Since next(ζt−1) = rlevel(ζt−1)(a(ζt−1)) = rlevel(ζ′t−1)
(a(ζ ′t−1)) = next(ζ ′t−1), we have

xj(ζt) = last(next(ζt−1), j − 1) = last(next(ζ ′t−1), j − 1) = xj(ζ
′
t).

As ζ ′t = right(ζ ′t−1), we have aj(ζt) = aj(ζ
′
t), which proves the claim.

Now it remains to prove aj(ζt) = aj(right(ζ
′
t−1)). Suppose that aj(ζt) 6= aj(right(ζ

′
t−1)) for the sake of

contradiction. By Fact A.1(c), we know that

• at least one of aj(ζt) = ⋆∗ and aj(right(ζ
′
t−1)) = ⋆∗ is true. (33)

Below we first prove under our assumption aj(ζt) 6= aj(right(ζ
′
t−1)), the following hold:

• aj(right(ζ
′
t−1)) = ⋆∗, and (34)

• either aj(ζt) 6= ⋆∗ or aj(ζt) = ⋆0. (35)

Proving (34) and (35). We first consider the case t = 1. Since C0 = ∅, it follows that aj(ζt) 6= ⋆∗. Hence

aj(right(ζ
′
t−1)) = ⋆∗ by (33). Therefore, both of (34) and (35) hold when t = 1.

Now consider the case when t > 1. Suppose aj(ζt−1) = ⋆x, by aj(ζt−1) = aj(ζ
′
t−1), we must have

aj(ζt) = aj(right(ζ
′
t−1) = ⋆x+1. This contradicts with our assumption that aj(ζt) 6= aj(right(ζ

′
t−1). The

same thing holds for ζ ′t−1. Suppose a(ζ ′t−1) = ⋆x. By aj(ζt−1) = aj(ζ
′
t−1), we reach the same contradiction.

So we have

• aj(ζt−1) 6= ⋆∗ and aj(ζ
′
t−1) 6= ⋆∗. (36)

In addition, by (32), ζt 6∈ p∗(~k2). Thus by Fact A.1 (i), we know either aj(ζt) = ⋆0 or aj(ζt) 6= ⋆∗.

85

If aj(ζt) = ⋆0, by Fact A.1 (i), there must be a node ζt′ with t′ < t such that aj(ζt′) = axj(ζt). Since

aj(ζ
′
t′) = aj(ζt′) = axj(ζt) = axj(ζ′t), in such case, we must have axj(ζ′t′)

∈ C ′
t−1 and aj(right(ζ

′
t−1)) = ⋆∗.

Besides, by (33), if aj(ζt) 6= ⋆∗, we must have aj(right(ζ
′
t−1)) = ⋆∗.

Now, given (34) and (35), we consider the following two cases, and show that both of them lead to

contradictions.

Case 1: aj(right(ζ
′
t−1)) = ⋆∗ and aj(ζt) 6= ⋆∗. Since aj(ζ

′
t−1) 6= ⋆∗ (36), by Fact A.1 (j), there must be

η ∈ p̃(~k1, ~k2) with (aj(η), level(η)) = (aj(ζt), j). Since j < i, this contradicts the fact that there is no

collision between p(σ) and p̃(~k1, ~k2) below level i.

Case 2: aj(right(ζ
′
t−1)) = ⋆d and aj(ζt) = ⋆∗. By (35), we have aj(ζt) = ⋆0 here. Moreover, since we

assumed aj(right(ζ
′
t−1)) 6= aj(ζt) for contradiction, we know d > 0 in this case. By Fact A.1 (l), there must

be η ∈ p̃(~k1, ~k2) with (aj(η), level(η)) = (⋆0, j) = (aj(ζt), level(ζt)). This leads to the same contradiction.

Next we need the following corollary of Lemma A.5.

Corollary A.6. Fix ~k1, ~k2 ∈ Nℓ such that ~k1 < ~k2 and (w, T) ∈ supp(w
~k1,~k2 ,T). Assuming that µ

~k1 and

µ
~k2 exist. Suppose there are two nodes µ and η such that

• µ 6= η and µ, η ≤ µ~k2 , and (37)

• there is no collision between p(µ) and p(η). (38)

Then there exist two nodes µ′, η′ such that

• (a(µ), level(µ)) = (a(µ′), level(µ′)) and (a(η), level(η)) = (a(η′), level(η′)), and (39)

• there is no collision between p(µ′), p(η′), p(~k1) and p(~k2). (40)

Proof. We first apply Lemma A.5 twice: (1) with node σ = µ to get πµ3 = Find(µ, T) and its descendant µ′

and (2) with node σ = η to get πη3 = Find(η, T) and its descendant η′.
For convenience we let iµ = level(πµ3) and iη = level(πη3). By Lemma A.5, we have

• (a(µ′), level(µ′)) = (a(µ), level(µ)) and (a(η′), level(η′)) = (a(η), level(η)). (41)

• For σ′ ∈ {µ′, η′}, there is no collision p(σ′) and p̃(~k1, ~k2). (42)

• p(µ′) is the same as p(µ) below level iµ; p(η′) is the same as p(η) below level iη . (43)

Note that (39) follows immediately from (41). So we only need to show there is no collision between

p(µ′), p(η′), p(~k1) and p(~k2) (i.e., (40)). Note that p(~k1), p(~k2) ⊆ p̃(~k1, ~k2), (42) and Fact A.1(e) further

imply that we only need to show there is no collision between p(µ′) and p(η′).
Let i be the level of the lowest common ancestor of µ and η. We will consider two cases below.

Case I: iµ > i and iη > i. By Remark A.4, it follows that πη3 = πµ3 .

From (43), min(iµ, iη) > i and the fact that µ and η have lowest common ancestor at level i, it follows

that p(µ′) and p(η′) also have lowest common ancestor at level i. Therefore, it suffices to check p(µ′) and

p(η′) have no collision below level i.

86

Applying (43) together with (38), it follows that there is no collision between p(µ′) and p(η′).

Case II: iµ ≤ i or iη ≤ i. Without loss of generality, we assume that iµ ≤ iη . Consequently, it follows that

iµ ≤ i. In this case, we have that p(µ′) and p(η′) are the same with p(µ) and p(η) below level iµ respectively

(from (43) and note iµ ≤ iη). From (38), it follows that p(µ′) and p(η′) has no collision below iµ.

The part of p(µ′) with level above or equal to iµ is exactly p(πµ3) ⊆ p̃(~k1, ~k2). Therefore since p(η′) has

no collision with p̃(~k1, ~k2) (from (42)), there is no collision between p(µ′) and p(η′).

A.3 Proof of Lemma 7.18

Notation. To prove Lemma 7.18, we first recall the following notations. We use a(µ) as a shorthand for

alevel(µ)(µ) and x(µ) as a shorthand for xlevel(µ)(µ). We always fix ~k1, ~k2 ∈ Nℓ such that ~k1 < ~k2 and

(w
~k1,~k2 , T) ∈ supp(w

~k1,~k2 ,T). We let φ = µ
~k1 + 1 and ψ = µ

~k2 + 1. Recall that we denote w
~k1,~k2 by w

to simplify the notation. We also need the definition of pairs of good duplicates.

Definition A.7. We call (ᾱ, β̄) a pair of good duplicates if ᾱ < β̄ < ψ and awᾱ = awβ̄ . A pair of good

duplicates is said to be non-dominated if there is no other good duplicate (α′, β′) 6= (α, β) such that α′ ≤
α, β′ ≤ β.

Lemma A.8. The following hold:

• Suppose (α, β) is a non-dominated pair of good duplicates. For every µ ∈ [α], a(µ) 6= ⋆∗.

• If (α, β) is the pair of good duplicates with the minimum β, then for every µ ∈ [β − 1], a(µ) 6= ⋆∗.

Proof. Let (α, β) be the pair of good duplicates with the minimum β. We first show that Item (2) implies

Item (1). To see it, note that for every non-dominated pair of good duplicates (α′, β′), since β ≤ β′, by its

non-dominated property, we must have µ ≤ α′ ≤ α ≤ β − 1.

So now it suffices to prove Item (2). It suffices to prove that there is no node γ ∈ [β − 1] such that

a(γ) = ⋆0. Suppose there is such γ, then there must be a node γ′ < γ such that ax(γ′) = ax(γ). Since we also

know γ, γ′ < ψ by Definition A.7, from Fact A.1 (b), we know awγ = awγ′ . This contradicts the assumption

that (α, β) is the pair of good duplicates with minimum β, since γ < β.

We also need the following corollary.

Corollary A.9. Suppose (α, β) is the pair of good duplicates with minimum α. For every µ ∈ [ψ] \ {α}, it

holds that a(α− 1) 6= a(µ− 1).

Proof. Suppose a(α − 1) = a(µ − 1). By Lemma A.8, we know a(α− 1) 6= ⋆∗. Since α − 1, µ − 1 < ψ,

by (b) of Fact A.1, we have awα−1 = awµ−1 . Since µ ≤ ψ and µ 6= α, (α − 1, µ − 1) is a pair of good

duplicates. This contradicts the minimality of α.

The following lemma is crucial for the proof of Lemma 7.18.

Lemma A.10. Let (ᾱ, β̄) be any non-dominated pair of good duplicates. There is no collision between p(ᾱ)
and p(β̄).

Moreover, if awᾱ = awβ̄ 6= awφ = awψ , we can always find α, β such that α 6= β, awα = awβ ,

{α, β} 6⊆ {φ,ψ}, and there is no collision between p(φ− 1), p(ψ − 1), p(α − 1), p(β − 1).

87

Proof. Suppose there is π1 ∈ p(ᾱ− 1) \ p(β̄ − 1) and π2 ∈ p(β̄ − 1) \ p(α− 1) such that a(π1) = a(π2).

By Lemma A.8, we know a(π1) and a(π2) cannot be ⋆∗. Moreover, π1, π2 ≤ β̄ − 1 < ψ (i.e.,π1, π2 ≤ µ
~k2

as ψ = µ
~k2 + 1), by Fact A.1 (b), awπ1 = awπ2 . Again since π1 < ᾱ, π2 < β̄, this contradicts the fact

that (ᾱ, β̄) is a non-dominated pair of good duplicates. Hence, there is no collision between p(ᾱ − 1) and

p(β̄ − 1).
Applying Corollary A.6 to ᾱ − 1 and β̄ − 1, we can get α − 1 and β − 1 such that there is no collision

between p(φ−1), p(ψ−1), p(α−1), and p(β−1). However, this does not guarantee that {α, β} 6⊆ {φ,ψ}.
We now show {α, β} 6⊆ {φ,ψ} via a proof by contradiction. Assume {α, β} 6⊆ {φ,ψ}. Then we know

awα = awβ = awφ = awψ .

Since (a(α−1), level(α−1)) = (a(ᾱ−1), level(ᾱ−1)), we know next(α−1) = rlevel(α−1)(a(α−1)) =
rlevel(ᾱ−1)(a(ᾱ − 1)) = next(ᾱ − 1). Therefore, wα = next(α − 1) = next(ᾱ − 1) = wᾱ. The same also

holds for β, and we know wβ = wβ̄ .

Then awα = awᾱ , awβ = awβ̄ . Recall we also know awα = awβ = awφ = awψ . This contradicts with

the assumption that awᾱ = awβ̄ 6= awφ = awψ . Hence {α, β} 6⊆ {φ,ψ}.

Finally, we are ready to prove Lemma 7.18, which is restated below.

Reminder of Lemma 7.18. For every u, v ∈ [n] such that u 6= v and au = av, fix (w, T) ∈ supp(w
~k1,~k2 ,T).

Let (φ− 1, ψ− 1) be the pair of nodes (µ
~k1 , µ

~k2) and assume wφ = u,wψ = v. Let (α̃, β̃) be any pair such

that 0 < α̃ < β̃ < ψ, awα̃ = aw
β̃
.

If such pair (α̃, β̃) exists, the following must hold:

• There are two nodes α and β such that α 6= β, awα = awβ , {α, β} 6= {φ,ψ}, and there is no collision

between p(φ− 1), p(ψ − 1), p(α − 1), p(β − 1).

Proof of Lemma 7.18. Since (α̃, β̃) is a pair of good duplicates, we know there exists pairs of good duplicates.

By Lemma A.10, the only case left is when awᾱ′ = awβ̄′ = awφ = awψ holds for all non-dominated pairs of

good duplicates (ᾱ′, β̄′). Below we take ᾱ to be the first ᾱ such that awᾱ = awφ and take β̄ to be the second

one. This implies (ᾱ, β̄) dominates all other non-dominated pairs of good duplicates (if there are other such

pairs). Thus it must be the unique non-dominated pair of good duplicates. Therefore, (ᾱ, β̄) is not only the

pair with the minimum ᾱ, but also the pair with the minimum β̄.

By Lemma A.10, there is no collision between p(ᾱ− 1) and p(β̄− 1). Thus we can apply Corollary A.6

to ᾱ− 1 and β̄ − 1 and get α and β such that:

• there is no collision between p(φ− 1), p(ψ − 1), p(α − 1), p(β − 1), and (44)

• (a(α− 1), level(α− 1)) = (a(ᾱ− 1), level(ᾱ− 1)) and (a(β − 1), level(β − 1)) = (a(β̄ − 1), level(β̄ − 1)).
(45)

We now consider the following three cases.

Case 1: ᾱ 6= φ. Since ᾱ < β̄ ≤ ψ, we also know that ᾱ 6= ψ. By Corollary A.9 and ᾱ /∈ {φ,ψ}, we have

a(ᾱ − 1) 6= a(φ − 1) and a(ᾱ − 1) 6= a(ψ − 1), meaning that a(ᾱ − 1) /∈ {a(φ − 1), a(ψ − 1)}. Since

a(α − 1) = a(ᾱ − 1) from (45), it also follows that a(α − 1) /∈ {a(φ − 1), a(ψ − 1)}, and consequently

α 6∈ {φ,ψ}. Thus, we have {α, β} 6= {φ,ψ}.
Case 2: ᾱ = φ and β 6= ψ. In this case, we will prove that β 6∈ {φ,ψ}.

88

par(τ)

β̄ − 1

τ

γ0 − 1 β̄ − 1 γ1 − 1 ψ − 1

Figure 10: The structure of τ , par(τ), and γ0, γ1

Since ᾱ 6= β̄ and there is no collision between p(ᾱ − 1) and p(β̄ − 1) from (44), we know that (a(ᾱ −
1), level(ᾱ− 1)) 6= (a(β̄ − 1), level(β̄ − 1)).

Then we also know ᾱ 6= β since (a(ᾱ − 1), level(ᾱ − 1)) 6= (a(β̄ − 1), level(β̄ − 1)) = (a(β −
1), level(β − 1)), where the last equality follows from (45). Therefore, β 6= φ = ᾱ. By our assumption of

such case, β 6= ψ. Thus {α, β} 6= {φ,ψ}.
Case 3: ᾱ = φ and β = ψ. This is the trickiest case. We will prove that we can still find two nodes γ′0 and

γ′1 to satisfy the requirements of this lemma.

Let τ be the node argmaxτ{(level(τ),−τ)|τ ∈ [β̄, ψ − 2]}. Intuitively, τ is the node separating β̄ − 1
from p(ψ − 1). Note here β̄ < ψ by the definition of a pair of good duplicates.

We first show the existence of τ and it has higher level than ψ − 1.

Claim 4. Node τ exists and level(τ) > level(ψ − 1).

Proof. Since by (45) and the assumption of this case, level(β̄ − 1) = level(β − 1) and β = ψ, we know

level(β̄ − 1) = level(ψ − 1). For the sake of contradiction, suppose that τ does not exist or level(τ) ≤
level(ψ − 1), we would have β̄ − 1 ∈ p(ψ − 1). Then by the definition of our extended walk, (a(β̄ −
1), level(β̄ − 1)) 6= (a(ψ − 1), level(ψ − 1)).

On the other hand, the assumption β = ψ and (45) imply that (a(β̄ − 1), level(β̄ − 1)) = (a(β −
1), level(β − 1)) = (a(ψ − 1), level(ψ − 1)), a contradiction. This proves the claim.

By β = ψ and (45), we have level(β̄−1) = level(β−1) = level(ψ−1). Since level(τ) > level(ψ−1) =
level(β̄ − 1), the parent of τ must be before β̄ − 1, namely par(τ) < β̄ − 1.

Let γ0 ∈ [par(τ) + 1, β̄ − 1] and γ1 ∈ [τ + 1, ψ − 1] be the pair of good duplicates (i.e., awγ0 = awγ1)

within such range that minimizes γ1. See Figure 10.

We prove the following two claims about γ0 and γ1.

Claim 5. γ0 and γ1 exist.

Proof. From β = ψ and (45), we know a(β̄ − 1) = a(β − 1) = a(ψ − 1). By Lemma A.8 and our choice

of (ᾱ, β̄), we know a(β̄ − 1) 6= ⋆∗. Together with β̄ − 1, ψ − 1 < ψ, we can apply Fact A.1 (b), and get

awβ̄−1
= awψ−1

. Therefore, γ0 and γ1 must exists

Claim 6. There is no collision between p(γ0 − 1) and p(γ1 − 1).

Proof. Here the proof idea is similar to that of Lemma A.10.

Suppose there is π0 ∈ p(γ0−1)\p(γ1−1) and π1 ∈ p(γ1−1)\p(γ0−1) such that (a(π0), level(π0)) =
(a(π1), level(π1)). Since π0 ≤ γ0 − 1 ≤ β̄ − 1, by Lemma A.8, we know a(π0) 6= ⋆∗. Then together with

π0, π1 ≤ γ1 ≤ ψ − 1 = µ
~k2 , we can apply Fact A.1 (b) to get awπ0 = awπ1 .

89

We then prove π0 ∈ [par(τ) + 1, β̄ − 1] and π1 ∈ [τ + 1, ψ − 1]. Together with awπ0 = awπ1 and

π1 ≤ γ1 − 1, this contradicts the minimality of γ1.
Since γ0−1 ∈ [par(τ), τ], we know par(τ) ∈ p(γ0−1). Also we have par(τ) ∈ p(τ) ⊆ p(γ1−1) because

by the definition of τ it has the maximum level among nodes in [τ, ψ− 1]. (Note level(τ) > level(ψ− 1) by

Claim 5.) Thus we have π0 ≥ par(τ) + 1 by π0 ∈ p(γ0 − 1) \ p(γ1 − 1). This implies level(π0) < level(τ)
since otherwise par(τ) would have been π0. Hence by level(π1) = level(π0) and π1 ∈ p(γ1−1)\p(γ0−1),
we know π1 ≥ τ + 1.

Since there is no collision between p(γ0 − 1) and p(γ1 − 1), we can apply Corollary A.6 to γ0 − 1 and

γ1 − 1 to get γ′0 and γ′1 such that:

• there is no collision between p(γ′0 − 1), p(γ′1 − 1), p(φ − 1), p(ψ − 1), and (46)

• (a(γj − 1), level(γj − 1)) = (a(γ′j − 1), level(γ′j − 1)) for every j ∈ {0, 1}. (47)

From Lemma 7.4 and (47), for j ∈ {0, 1}, we have

wγ′j = rlevel(γ′j−1)(a(γ
′
j − 1)) = rlevel(γj−1)(a(γj − 1)) = wγj . (48)

So from awγ0 = awγ1 and (48), we also have awγ′0
= awγ′1

.

Finally, we show that the pair (γ′0, γ
′
1) satisfies the requirements of the lemma.

Claim 7. γ′1 6∈ {φ,ψ}.

Proof. Since γ1 − 1 ≥ τ ≥ β̄, and β̄ > ᾱ. We know γ1 − 1 6= ᾱ − 1. By Corollary A.9 and our

choice of (ᾱ, β̄), we have a(ᾱ − 1) 6= a(γ1 − 1). From our assumption φ = ᾱ and (47), it follows that

a(φ− 1) 6= a(γ1 − 1) = a(γ′1 − 1). Therefore, γ′1 6= φ.

If γ′1 = ψ, we would have (a(γ1−1), level(γ1−1)) = (a(γ′1−1), level(γ′1−1)) = (a(ψ−1), level(ψ−1))
from (47). On the other hand, from our assumption β = ψ and (45), we also know (a(ψ−1), level(ψ−1)) =
(a(β − 1), level(β − 1)) = (a(β̄ − 1), level(β̄ − 1)).

Thus a(γ1 − 1) = a(β̄ − 1). By Lemma A.8, we have a(β̄ − 1) 6= ⋆∗. Together with γ1 − 1, β̄ − 1 ≤ ψ
and Fact A.1 (b), it follows that awγ1−1 = awβ̄−1

.

Moreover, in this case, γ1 − 1 6= τ since level(τ) > level(ψ − 1) while level(γ1 − 1) = level(ψ − 1).
Thus, γ1 − 1 ∈ [τ + 1, ψ − 1]. Together with awγ1−1 = awβ̄−1

, this contradicts the minimality of γ1. Hence

γ′1 6= ψ and consequently γ′1 6∈ {φ,ψ}.

Therefore, we found (γ′0, γ
′
1) 6= (φ,ψ) such that (1) there is no collision between p(γ′0 − 1), p(γ′1 −

1), p(φ − 1), p(ψ − 1), (2) awγ′
0
= awγ′

1
, and (3) {γ′0, γ′1} 6= {φ,ψ}. This completes the whole proof.

B Proof of Lemma 7.26

Reminder of Lemma 7.26. In probability space (w
~k1,~k2 ,T), it holds that

Pr[Elong] ≤ n2ℓ/2τ/4.

90

Proof. For every i ∈ [ℓ], we define event E ilong as

E ilong :=
[
∃k ∈ Nℓ s.t. ki > τ/4 and µ

~k exists
]
.

Then we can see Elong =
⋃ℓ
i=1 E ilong.

In the following, we will show that for each i ∈ [ℓ], Pr[E ilong] is small. Now we fix i ∈ [ℓ], suppose there

exists ~k ∈ Nℓ such that µ
~k exists and ki > τ/4. We are going to fix (r≤i−1, g≤i−1) ∈ supp((r≤i−1,g≤i−1))

and conditioning on the event r≤i−1 ∧ g≤i−1.

Now, µ
~k exists and ki > τ/4. Let ~k′ = (0, . . . , 0, 0, ki+1, . . . , kℓ). This implies, there exists a starting

point s0 ∈ [n], such that consider the walk walk
~k1,~k2(s0, i,~k

′), it visits at least τ/4 level-i nodes with corre-

sponding vertices {xj}j∈[τ/4], which can be determined by xj+1 = walk(sj, i− 1) based on r≤i−1, g≤i−1.

Case 1: [∃j ∈ [i+1, ℓ], kj 6= k2j]∨ [∀j ∈ [i+1, ℓ], k1j = k2j]∨ [k2i = 0]. In this case, we knowC0 ← ∅. Then

walk
~k1,~k2(s0, i,~k

′) visits the same vertices xj as walk(s0, i− 1). With the same argument as Lemma 6.1, for

each i ∈ [ℓ], we know probability of existing such µ
~k is bounded by n/2τ/4.

Case 2: [∀j ∈ [i + 1, ℓ], kj = k2j] ∧ [∃j ∈ [i + 1, ℓ], k1j 6= k2j] ∧ [k2i > 0]. In this case, C0 = Ci,
~k1 where

Ci,
~k1 is {ai(µ)} for all level i nodes µ

~k1
i,j (1 ≤ j ≤ k1i) visited by walk(s̄, i) for some starting point s̄. Note

here we use walk(s̄, i) since these nodes are not on p∗(~k2) and therefore falls into the previous case where

walk
~k1,~k2 visits the same vertices as walk.

Suppose the vertices corresponds to the first k1i level i nodes walk(s̄, i) visits are µ̄1, µ̄2, . . . , µ̄k1i
. Each

x(µ̄j) is determined by x(µ̄j) = last(next(µ̄j−1), i − 1) where next(µ̄0) = s̄. Fixing r≤i−1, g≤i−1, from s̄,

we can uniquely determine Ci,
~k1 by making k1i adaptive queries to gi, ri.

Then after determine Ci,
~k1 , for walk

~k1,~k2(s0, i,~k
′), we can determine each ai(µ

~k
i,j), j ∈ [τ/4] similarly

by making τ/4 adaptive queries to gi, ri, and by definition they are distinct from those in Ci,
~k1.

Note that gi, ri is independent of (g≤i−1, r≤i−1). Hence fixing s̄0 ∈ [n] and s0 ∈ [n], we have that

Pr[gi(ai(µ
~k
i,j)) = 1 for all j ∈ [τ/4]] ≤ 2−τ/4.

Hence, by a union bound, we have that

Pr[E ilong] ≤ n2/2τ/4.

The lemma follows from another union bound over i ∈ [ℓ].

91

	1 Introduction
	1.1 Our Results
	1.2 Related Work
	1.3 Open Questions
	1.4 Organization

	2 Overview of Techniques
	2.1 Review of the BCM Algorithm
	2.2 Overcoming the (n)-wise Independence Barrier
	2.3 An Alternative Analysis of the BCM Algorithm
	2.4 Pseudorandom Hash Functions, the Dependency Tree, and the Indexing Scheme
	2.5 A Coupling-based Approach Based on the Dependency Tree
	2.6 Designing the Extended Random Walk

	3 Preliminaries
	4 Properties of the Pseudorandom Family and their Implications
	4.1 Construction of the Pseudorandom Family
	4.2 Proofs of the Main Results

	5 The Extended Walk and the Dependency Tree
	5.1 The Extended Walk
	5.2 Dependency Tree and Node Indexing
	5.3 Existence Condition of a Root-to-node Path

	6 Warm Up Analysis for One Target Vertex
	6.1 Notation
	6.2 Proof of Lemma 4.2
	6.3 Counting All Occurrences of a Vertex
	6.4 Counting All Bad Occurrences of a Vertex
	6.5 Proof of Lemma 6.1

	7 The Case of Two Target Vertices
	7.1 The Relaxed Extended Walk Walk1,2,m,n,a
	7.2 Proof of lem:hit-lower-bound
	7.3 Counting Total Occurrences
	7.4 Upper Bounding the Bad Occurrences

	A Proof of lem:structure-2
	A.1 Useful Facts about the Relaxed Extended Walk walk1, 2
	A.2 Some Structure Lemmas
	A.3 Proof of lem:structure-2

	B Proof of Lemma 7.26

