
An Improved Local Search Algorithm for k-Median

Vincent Cohen-Addad∗ Anupam Gupta† Lunjia Hu‡ Hoon Oh†

David Saulpic§

Abstract
We present a new local-search algorithm for the k-median clustering problem. We show

that local optima for this algorithm give a (2.836+ ε)-approximation; our result improves upon
the (3+ε)-approximate local-search algorithm of Arya et al. [AGK+01]. Moreover, a computer-
aided analysis of a natural extension suggests that this approach may lead to an improvement
over the best-known approximation guarantee for the problem.

The new ingredient in our algorithm is the use of a potential function based on both the
closest and second-closest facilities to each client. Specifically, the potential is the sum over
all clients, of the distance of the client to its closest facility, plus (a small constant times) the
truncated distance to its second-closest facility. We move from one solution to another only
if the latter can be obtained by swapping a constant number of facilities, and has a smaller
potential than the former. This refined potential allows us to avoid the bad local optima given
by Arya et al. for the local-search algorithm based only on the cost of the solution.
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1 Introduction

The k-median problem is a classic optimization problem for metric spaces, and has been widely
studied by the algorithm-design community with a two-fold motivation: on the one hand getting
good algorithms for the k-median problem immediately yields important practical implications
in operations research, bioinformatics, or data analysis. On the other hand, the study of the
approximability of k-median has given us a deeper understanding of key algorithmic ideas like
primal-dual techniques and Lagrangian-multiplier preserving algorithms, sophisticated dependent
LP roundings, local search, iterative rounding, and algorithmic notions of stability.

Concretely, given a finite metric space (X , d), where the point set X is partitioned into client
locations C and possible facility locations F , with X := C ∪ F , and a parameter k, the k-median
problem asks to pick k “medians” F ⊆ F to minimize

kmed(F ) :=
∑
c∈C

d(c, F ).(1.1)

Throughout the paper, given a set S ⊆ X , and point x ∈ X we let d(x, S) denote mins∈S d(x, s).

An interesting perspective on the k-median problem is to view it as a “metric set cover” problem,
where one needs to find k medians (seen as “sets”) to cover the clients (seen as the universe) – with
the relaxation that each client pays a cost that is a function of how well it is covered and this cost
function is a metric. This perspective has long been known (see e.g. [GK99, JMS02]), but although
the complexity of the classic set cover problem is well-understood since the 90s, the approximability
of this metric variant is still quite open.

The current-best result is the 2.675-approximation of Byrka et al. [BPR+15], improving on a break-
through 2.732-factor of Li and Svensson [LS16]. These papers use the clever idea of finding pseudo-
approximations (i.e., solutions with good cost but opening a few extra facilities) by first giving
bi-point solutions (i.e., a feasible fractional solution that is the convex combination of two integer
solutions) using the primal-dual framework, and then rounding these bi-point solutions carefully
into integer solutions. Nevertheless, the gap between these results and the current best hardness
bound of 1 + 2/e remains large. While various techniques can give good approximations for k-
median in specific metrics, the current arsenal for getting a better approximation bound for the
general case is not very rich. E.g., a significant improvement using the bi-point rounding approach
seems challenging, since it requires either improving the quality of the bi-point solution computed
(on which no progress has been made over the last 20 years), or improving on the rounding scheme.
Other techniques to obtain O(1)-approximations are primal-dual, or greedy-plus-pruning, but the
best bounds using these techniques do not even give a 3-approximation. Finally, the best result
before [LS16] was an analysis of the p-swap local-search algorithm that tries to improve the current
solution by closing some p facilities and opening p others. Arya et al. [AGK+01] showed that any
local optimum was a (3+2/p)-approximation. However, they also showed instances with a matching
“locality gap” for this algorithm (see §A.2 for a simple example showing a gap arbitrarily close to
3). In summary, the only known way to do better than a factor of 3 remains bi-point rounding.

In this paper, we draw on parallels with set cover and submodular optimization problems and
propose an extension of the simple local-search paradigm that has the potential to improve the
current best-known approximation factor. While our current analysis does not improve the best
approximation it provides the first alternative to bi-point solutions to go below a 3-approximation—
namely, to 2.836—and offers the possibility of better results. The new idea is to perform the local
search with respect to some other “surrogate” potential Φ(F ) instead of the k-median objective
function. This allows us to avoid the bad local minima present in the standard local search. Of
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course, this Φ needs to be easily computable, and also to be close enough to the original objective
function so that finding a local-optimum with respect to Φ implies a good approximation for k-
median objective as well. Such local-search procedures are called non-oblivious in the literature,
and have been successful in several settings [Ali94, KMSV98, FW12, FW14, GGK+18].

1.1 Our Approach and Results

Let di(c, F ) be the distance between the client c and the facility in F that is ith-closest to it, so
that d1(c, F ) = d(c, F ) as defined above. Define the potential function

Φ(F ) :=
∑
c∈C

(
d1(c, F )︸ ︷︷ ︸
closest

+βmin
{
d2(c, F ), α d1(c, F )︸ ︷︷ ︸
truncated second-closest

})
.(1.2)

For almost all of the paper, we choose α = 3 and β = 1/5. While we motivate the potential in detail
in §1.2, consider two clients whose closest facilities are both at distance D: one with its second-
closest facility at the same distance D pays (1+β)D ≈ 1.2D, whereas another whose second-closest
facility is much farther away pays (1 + αβ)D ≈ 1.6D. Hence a lower potential prefers solutions
with good “backup” facilities, so that local moves can then explore a richer space. Our main result
is the following:

Theorem 1.1 (Pseudo-approximation). Let α = 3, β = 1/5, and let p(ε), r(ε) be sufficiently large
constants that depend only on ε. If F is a local minimum of our non-oblivious local-search procedure
with |F | = k facilities and swap size p(ε), then

kmed(F ) ≤ (2.836 + ε) · kmed(F ∗)

for any solution F ∗ with k − r(ε) facilities.

We can convert this pseudo-approximation into a regular approximation using ideas from [LS16,
ABS10]. Indeed, if the original instance is “stable” (i.e., if reducing the number of facilities by r(ε))
causes the optimal cost to increase by more than (1 + ε)), we can get a PTAS [ABS10] in time
poly(|X |r(ε)). Hence, this reduction of the number of facilities does not change the optimal cost
much, and then the pseudo-approximation of Theorem 1.1 is also a true approximation.

We are yet to understand the limitations of this specific potential function, and of this general
approach. The best lower bound for this potential function we currently know is the following:

Theorem 1.2 (Lower Bound for Φ). There exists ε > 0 and an infinite family of instances on which
the local-minimum F of our non-oblivious local-search function with constant-sized swaps satisfies

kmed(F ) ≥ min{max{(3− 2β − ε, 1 + 4β − ε)},max{2, α− ε}} · kmed(F ∗).

Balancing the two terms gives us a locality gap lower bound of 2 · kmed(F ∗) for all values of α, β.

This lower bound holds even if F is allowed to have more facilities than F ∗. The gap between the
two results above suggests that local-search with respect to Φ still has the possibility of beating the
current-best approximation bounds.

Extending our Potential Function. We consider extending this non-oblivious approach using
more expressive potentials. E.g., we can look at the q = 3 closest facilities, as follows: (we use di
as shorthand for di(c, F ), and (a ∧ b) := min(a, b))

Φ3(F ) =
∑
c∈C

(
d1 + β2 (α2d1 ∧ d2)︸ ︷︷ ︸

truncated second-closest

+β3 (α3d1 ∧ d3)︸ ︷︷ ︸
truncated third-closest

)
.
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Again αi, βi are constants, discussed in §7. A preliminary implementation of this LP discussed in
that section suggests that we can get an approximation ratio of 2.69. However, these are based on
experiments, and since we do not have a formal proof, computer-assisted or otherwise, these should
just be considered circumstantial evidence and promising first steps. We hope that we (or others)
will be able to extend these to a formal proof.

1.2 Our Techniques

Since the algorithm is just the p-swap local search algorithm, all the work is in the analysis of the
local optima.

The choice of the objective function. Our potential function is inspired by the work of Filmus
and Ward [FW12, FW14], who improved the local-search algorithm for submodular maximization
from a 1/2-factor to the optimal (1 − 1/e)-factor. We describe their idea in the context of max-k-
coverage: the potential gets a bonus if it covers elements multiple times. I.e., for each element, we
get a value of 1 if we cover it once, a small bonus β2 if we cover it at least twice, a smaller additional
bonus β3 if we cover it at least thrice, etc. The total overall bonus is small compared to the gain
in covering it once (so that the potential remains close to the true objective), but enough to evade
the bad local minima. Indeed, if an element is covered twice, the algorithm has more flexibility in
choosing local-search steps, since any single-set swap will leave this element still covered.

The k-median problem is a minimization problem, so the natural objective is
∑
c d1(c)+

∑
i≥2 βidi(c),

where di(c) is the distance from c to its ith-closest facility: this penalty term can incentivize each
facility to have “backup” facilities close to it. Indeed, just using d1 + β2d2 (for small constant
β2 > 0) side-steps the standard bad examples with respect to the objective function d1. However,
this potential penalizes us too heavily for not having backups. So if the instance has k widely-
separated clusters, the penalty term overwhelms the original cost. This suggests the potential (1.2)
we eventually use:

∑
c

d1(c)

[
1 + (small constant)×min

(
1,

d2(c)

(large constant)× d1(c)

)]
.

However, the introduction of the minimum in the objective function makes the analysis more
involved, since it forces a case distinction between clients which pay the truncated and untruncated
values.

Important Swaps. The standard approach to analyze the quality of local optima for clustering
problems is to define a subset of swaps we call important. Since all swaps are non-improving, these
important ones are too. This non-improvement gives linear inequalities that relate the cost of the
solution Fnew after the swap to the cost of the local optimum F . To relate Fnew to the optimal
solution F ∗, we define important swaps to be ones that replace a constant number of local facilities
P ⊆ F with the same number of optimal facilities Q ⊆ F ∗. Hence, the cost of Fnew is the sum
of the costs for (1) “happy” clients that are now served optimally (or even better) in Fnew because
their optimal facility is in Q, (2) the “sad” clients which were previously assigned to the facilities
in P that were swapped out, but which are not happy and hence require reassignment, and (3) the
remaining “indifferent” clients. The art in these proofs is to define the important swaps to control
the reassignment cost for the sad clients.

For example, we can pair each optimal facility with its closest local facility (assume for now this is
a bijection), and form the important swaps by swapping some constant-sized subset of these pairs.
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This ensures:∑
c happy

d(c, F ∗)+
∑
c sad

(d(c, F ) + 2d(c, F ∗))+
∑

c indifferent

d(c, F ) ≥ cost(Fnew) ≥ cost(F ) =
∑
c

d(c, F ).

(see [GT08] for details). Simplifying gives∑
c happy

d(c, F ∗) +
∑
c sad

2d(c, F ∗) ≥
∑

c happy

d(c, F ).

Summing over important swaps (one per local facility) means each client appears on the left at
most twice (once when happy, and once when sad) and on the right exactly once, which means
ALG ≤ 3OPT . Handling the non-bijective case loses another ε factor, so the local optimum is at
most (3 + ε) times the global optimum. The important lessons are that (a) important swaps need
to be “rich” enough to infer the small locality gap, and (b) “simple” enough to be able to reason
about.

However, the important swaps used in past works [AGK+01, GT08] do not work with the new
potential: Figures B.11 and B.12 in Appendix B show instances and local solutions that cost three
times the optimum but are not locally optimal with respect to the new objective function. Yet
previously-used important swaps are not rich/expressive enough to deduce non-local-optimality,
and only prove a 3-approximation.

New Swaps. Given a local solution F , we distinguish the far clients c with d2(c, F ) ≥ αd(c, F )
from the close ones with d2(c, F ) < αd(c, F ). The type of a client determines which value attains
the minimum in the potential function (1.2): a far client c pays (1 + αβ)d(c, F ) while a close one
pays d(c, F ) + βd2(c, F ). The two types of clients require different analysis.

Far Clients. Consider a facility `2 of F closest to the optimal facility f∗ for far client c. If `2 is also
the local facility that is closest to c, and if we pair it with f∗, client c is a happy client (as described
above) and we get a good bound on the cost of client c (so we should always associate f∗ with
`2). Else if `2 is not a facility that is the closest to c, then a simple argument using the triangle-
inequality shows there exists a second facility in the local solution at distance 2d(c, f∗) + d(c, F ) to
c. But c is a far client, so this facility cannot be too close: 2d(c, f∗) + d(c, F ) ≥ αd(c, F ), and so
d(c, F ) ≤ 2

α−1d(c, f∗), which is an excellent bound.

Close Clients. On the other hand, the close clients, may now be sad both when their closest facility
closes, and also when their second-closest closes. E.g., consider a client whose closest optimal facility
is far from the rest of the instance, but which has two local facilities at the same distance to it
(with d1 ≈ d2). (See Figure 1.1.) In this case, moving from two facilities to one in the local solution
without opening the optimal facility incurs a large reassignment cost. Hence, such clients want the
swap which opens the optimal facility to also close both local facilities close to them. If not, closing
any one of these close local facilities would mean reassigning them to the other, and suffering a cost
of (1 + αβ)d1. These woud be very sad clients. So we would like to close both the facilities for the
close clients at the same time. Else the potential that was helping the far clients now hurts these
close ones when they become very sad.

Our approach mitigates the risks: we define two different swap structures and take a linear com-
bination of the inequalities obtained from these. Since the local-search algorithm tries all possible
swaps, the resulting inequalities remain valid. The two swaps structures can be viewed as follows.
One of them, referred to as simple swaps, is similar to the one described by [GT08], where each
facility of F ∗ is mapped to its closest facility in F . The other one, which resolves the “bad example”
described in Figure B.11 for single swaps, is to also consider the reverse map: i.e., to map each

4



1 1

Figure 1.1: Illustration of the tension between clients for defining the swap structure. In order to get a
good bound for the right client, we need to open OPT1 and close both local facilities ALG1 and ALG2.
However, closing both facilities and opening OPT1 increases potential value of the left client to (1 + αβ)7
from (1 + β)3.

facility of F to its closest one in F ∗. These two maps induce a directed graph G where the vertices
are F ∗ ∪ F , with an arc from f1 to f2 if f1 is mapped to f2 in the appropriate map. This graph G
has outdegree-1 and hence has a nice structure. We show how to break it into pieces of bounded
size; these define tree swaps. We then work with all the inequalities coming from these two families
of swaps.

A final ingredient is randomization: instead of always mapping each facility f in one of the solutions
to its closest facility f ′ in the other solution, we randomize these maps—we map f to its second-
closest facility in the other solution with some probability that depends on their relative distances.
This allows us to again mitigate bad and good scenarios for different types of clients that are in
tension.

In summary, here’s what we do: we flip a coin to either consider simple swaps or tree swaps.
In either case, we randomly map some facilities to the closest or second-closest facilities in the
other solution, and use this to build a set of important swaps. Since all these are non-improving,
this gives us linear inequalities that relate the local cost to the optimum. Finally, we deduce the
approximation ratio from these linear inequalities.

1.3 Related Work

The first O(1)-approximation for the k-median problem was given by Charikar et al. [CGTS99].
After many developments using, e.g., the primal-dual schema [JV01, CG99], greedy algorithms
(and dual fitting) [JMM+03], improved LP rounding [CL12], local-search [AGK+01], and pseudo-
approximations [LS16], the current best approximation guarantee is 2.675 [BPR+15]. The best
hardness result is (1 + 2/e) [GK99, JMS02]. Local-search algorithms have been widely used for
clustering problems. Despite their simplicity, they often give good theoretical guarantee: the
(3 + ε)-approximation result of [AGK+01] was the best factor for some time; a simplified proof
is given in [GT08]. The best results for the closely related k-means problem are by Ahmadian et
al. [ANSW17], who give a 6.35+ε-approximation for Euclidean metrics and 9+ε for general metrics,
both using the primal-dual method: these improve on results of Kanungo et al. [KMN+02] who show
that the simple local-search with respect to the objective function gives a (9 + ε)-approximation for
Euclidean k-means.

Ahmadian et al. [AFS13] give a local-search algorithm for mobile k-median, where they also con-
struct a 1-tree using the optimal and algorithm’s centers (and the original centers, which play a role
for that problem), and consider swaps based on its subtrees. However, the details of the analysis
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seem to be different from ours, since the concerns in the two problems are quite different.

The use of an alternate potential function instead of the objective function in local-search was
termed non-oblivious by [Ali94, KMSV98]. Filmus and Ward [FW12, FW14] used non-oblivious
local-search for the maximum coverage and submodular maximization problems, getting 1 − 1/e-
approximations in both cases. (A further simplification of the submodular algorithm/analysis ap-
pears in [FFSW17].)

1.4 Paper Outline

We formally define the algorithm in §2, and the set of important swaps in §3. We classify the clients
into types in §4, and bound the expected change in potential for each client type in §6; combining
them proves Theorem 1.1. In §7, we present how to construct a linear program that mimics our
analysis. In Appendix A, we prove the lower bound from Theorem 1.2. Details of calculations, as
well as deferred proofs, appear in the appendix.

2 The Local Search Algorithm

The algorithm performs swaps of constant size p = p(ε) > 1/ε: given any solution F (initially
arbitrarily chosen) of k facilities from F , it tries to find an improving valid swap. Here, a swap
(P,Q) ∈

( F
≤p
)
×
( F
≤p
)
is valid if P ⊆ F , Q ⊆ F \F , and |P | = |Q|, so that we close as many facilities

as we open. A valid swap is improving if

Φ((F \ P ) ∪Q) < Φ(F ),

where Φ is as defined in (1.2). If the algorithm finds an improving valid swap (P,Q), it sets
F ← (F \ P ) ∪Q, and continues; if there are no such swaps it returns the local optimum F .

This algorithm can be made to run in polynomial time by only considering swaps that improve the
potential by (1 + δn−O(p))-factor; standard techniques (presented e.g. in Arya et al. [AGK+01])
show that this changes the approximation factor by at most (1 + δ), since there are nO(p) many
different swaps. Observe that checking whether we are at a (near)-local optimum, or finding an
improving valid swap can be done in nO(p) time. In the rest of the paper we show the pseudo-
approximation claimed in Theorem 1.1, i.e., the cost of a local optimum is comparable to the cost
of any solution F ∗ with k − r(ε) facilities, where r(ε) is the number of extra local facilities.

Throughout the paper, we choose the swap size p(ε) to be M(d1/εe + 1)4d1/εed1/εe , and choose the
number of extra local facilities to be r(ε) = M(d1/εe+1)1+16d1/εed1/εe for a sufficiently large absolute
constant M .

2.1 Proof Strategy

Let us fix some notation: fix a local optimum F of size k and a global optimum F ∗ of size k− r(ε);
we call the former the local and the latter the optimal facilities. For a client c, let

• d∗(c) := d(c, F ∗) be its cost and f∗ its closest facility in the optimal solution F ∗,
• d1(c) and d2(c) be its distances to the closest and second-closest facilities, and f1 and f2 be

these facilities in F , and
• Φc := d1(c) + βmin(d2(c), αd1(c)) be client c’s contribution to the potential. From now on,

we fix α = 3 and β = 1/5.

Our proof of Theorem 1.1 is based on the fact that at the local optimum F , the potential change
induced by a valid swap (P,Q) is non-negative, i.e., Φ((F \ P ) ∪ Q) − Φ(F ) ≥ 0. Defining the
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potential change of client c on swap (P,Q) to be

δ(P,Q)(c) := Φc((F \ P ) ∪Q)− Φc(F ),(2.3)

we have
0 ≤

∑
c∈C

δ(P,Q)(c).

This inequality holds for all valid swaps (P,Q); it remains true even if we extend the definition
of valid swaps to allow Q to intersect F and/or to have a size smaller than P , because doing so
never decreases the potential change. We can thus take linear combinations of the inequality over
all valid swaps (P,Q). In particular, for any random set P of valid swaps,

0 ≤ EP
[ ∑

(P,Q)∈P

∑
c∈C

δ(P,Q)(c)
]

=
∑
c∈C

EP
[ ∑

(P,Q)∈P

δ(P,Q)(c)
]
.

Theorem 1.1 is thus implied by the following lemma (and observing that 2.5203
0.8888 ≤ 2.836):

Lemma 2.1. There is a distribution over sets P of valid swaps such that for all clients c ∈ C,

E
[ ∑

(P,Q)∈P

δ(P,Q)(c)
]
≤ 2.5203 d∗(c)− 0.8888 d1(c) +O(ε) (d∗(c) + d1(c)).

In order to prove this lemma, we build a randomized procedure generating the set P of swaps (where
we call elements of P important swaps), and divide our analysis into two cases: the amenable case
and the defiant case. In particular, given a client c, we define a suitable amenable event A and
its complement defiant event D, and show the following two lemmas, which immediately imply
Lemma 2.1.

Lemma 2.2 (Defiant Case). There is a distribution over sets P of valid swaps such that for all
clients c ∈ C,

E
[
1D

∑
(P,Q)∈P

δ(P,Q)(c)
]
≤ O(ε) (d∗(c) + d1(c)).(2.4)

Lemma 2.3 (Amenable Case). For the distribution over valid swap sets from Lemma 2.2, for any
c ∈ C,

E
[
1A

∑
(P,Q)∈P

δ(P,Q)(c)
]
≤ 2.5203 d∗(c)− 0.8888 d1(c) +O(ε) (d∗(c) + d1(c)).(2.5)

In §3, we define the distribution over sets P of important swaps. In §4 we classify the clients into
types. We define the amenable and defiant events for clients of each type and prove Lemma 2.2 in
§5, and then prove Lemma 2.3 in §6.

3 Generating the Important Swaps

In this section, we describe our randomized procedure generating P, the set of important swaps,
that proves Lemmas 2.2 and 2.3. P contains valid swaps (P,Q), where P ⊆ F has size at most
p(ε), and Q is an arbitrary set of facilities with size at most |P |. Every swap we generate has Q
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being a subset of F ∗, the set of optimal facilities. We say swap (P,Q) closes the local facilities in
P , and opens the optimal facilities in Q. (By duplicating points in the metric space, we assume F
and F ∗ are disjoint, and so are P,Q.) Sometimes we say the swap contains the local facilities in P
and the optimal facilities in Q.

In order to prove Lemmas 2.2 and 2.3, we want to minimize the potential change of every client by
always opening a “nearby” optimal facility whenever we close a local facility. Roughly, we generate
both simple and tree swap sets by constructing a directed graph G over the vertex set F ∪F ∗, where
every edge connects “nearby” local and optimal facilities. We perform some surgery on this graph if
needed: we remove vertices in F , duplicate vertices in both F and F ∗, and remove some edges, so
that every connected component of the resulting graph has a small size. Finally, we combine these
connected components of G into small-sized groups so that the number of local facilities in each
group is no smaller than the optimal facilities in it. The swap set P consists of the swap defined
by each of these groups, closing/opening all the local/optimal facilities in it. In the following
subsections, we describe in detail our procedures generating the simple and tree swap sets. (Again,
recall this is all in the analysis, since the algorithm is just the p-swap local search that attempts to
improve the potential.)

3.1 Generating the Important Simple Swaps

We start by constructing a random directed graph G0 over vertices F ∪ F ∗. The graph is defined
by a random function τ : F ∗ → F that maps each optimal facility to a local facility: this gives
a bipartite graph with F ∗ vertices have out-degree one, and F vertices having no out-degree. In
previous analyses, τ(f∗) was defined as the closest local facility to f∗, but in our analysis, we choose
τ(f∗) randomly from the two closest local facilities to f∗ in order to cover a larger neighborhood
with good balance. Indeed, independently for every optimal facility f∗, we choose τ(f∗) from η1

and η2, where η1 = η1(f∗) and η2 = η2(f∗) ∈ F are the first and second closest local facilities to
f∗. The probability of choosing ηi depends on the value of ρ = ρ(f∗) := d(f∗,η1)

d(f∗,η2) ∈ [0, 1]. When
ρ(f∗) ≤ 3/4, we choose τ(f∗) = η1 with probability 1; when ρ(f∗) > 3/4, we choose τ(f∗) = η1 with
probability (5/2− 2ρ) and τ(f∗) = η2 with the remaining probability (2ρ− 3/2).

Intuitively, τ(f∗) is the facility used as a fallback to serve clients of f∗’s cluster when their closest
local facility is swapped out. More precisely, we design the swaps such that either f∗ or τ(f∗) is open.
To bound the reassignment cost to τ(f∗), we therefore must ensure that τ(f∗) is as close as possible
to f∗. When ρ(f∗) is small, there is therefore a huge incentive in choosing τ(f∗) = η1. However,
when ρ(f∗) is close to 1, there is no difference between η1 or η2. Our probability distribution
is chosen such as to implement that intuition. It has been tuned experimentally: using our LP
formulation, we were able to look for a choice of of τ that gives a good approximation guarantee
while being simple enough to prove that guarantee.

This defines the graph G0. We wish to generate swaps according to the connected components of
G0, i.e., every swap closes all the local facilities in a connected component and opens all the optimal
facilities in the same connected component. However, such swaps may not be valid because 1) the
size of a connected component may be much larger than p, and 2) there may be more optimal
facilities in a connected component than local facilities (since every connected component of G0

contains exactly one local facility). We solve these issues by two procedures: degree reduction and
balancing.

Degree reduction. The size of a connected component of G0 being too large is caused by local
facilities with high in-degree. We solve the problem by removing all local facilities that could
potentially have high in-degree from the graph. We call these the heavy local facilities. To keep
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the number of local facilities in the graph unchanged, we duplicate other local facilities, which we
call local surrogates. We formally define heavy local facilities and local surrogates as follows. We
first define N(f∗) ⊆ {η1, η2} and call it the set of local neighbors of f∗. If ρ(f∗) ≤ 2/3, we define
N(f∗) = {η1}; otherwise, we define N(f∗) = {η1, η2}. We choose td = d1/εe as the degree threshold.
Now the heavy local facilities are as follows:

Definition 3.1 (heavy local facility). A local facility f ∈ F is heavy if it is a local neighbor of more
than td + 1 optimal facilities.

Note that τ(f∗) must be a local neighbor of f∗ because 3/4 > 2/3. Therefore, only heavy local
facilities can have in-degree more than td + 1 in G0. For every heavy local facility, we choose a local
surrogate uniformly at random from the local candidates defined as follows:

Definition 3.2 (local candidate). A local facility f ∈ F is a local candidate if it is not heavy and
every optimal facility in τ−1(f) has a heavy local neighbor.

Note that, unlike our definition of heavy local facilities, the definition of local candidates depends
on the random function τ . The following claim (proved in Appendix E.1) shows that there are
enough local candidates from which the heavy local facilities can choose:

Claim 3.3. The number of local candidates is at least td/2 times the number of heavy local facilities.

We are ready to describe our degree reduction procedure:

1. Remove all the edges incident to heavy local facilities;
2. Replace each heavy local facility f by its local surrogate s, chosen uniformly at random without

replacement from the local candidates. Hence, in the graph the vertex labeled f (and now
having no in-edges due to step 1) is replaced by one labeled s. So a local surrogate appears
twice now: the original copy of s, and a single isolated vertex as a surrogate for f .

Let G1 denote the graph after degree reduction. Clearly, every local facility has degree at most
td + 1 in G1, and thus every connected component has size at most td + 2. The next claim follows
directly from Claim 3.3:

Claim 3.4. The constructed graph G1 satisfies following properties:

i. Heavy local facilities do not appear in G1.
ii. Local facilities chosen as local surrogates appear twice: once as the original copy and once
as an isolated vertex.
iii. Other local facilities and all optimal facilities appear once.
vi. Every optimal facility f∗ points to the original copy of τ(f∗) unless τ(f∗) is heavy.
v. Any local facility is chosen as a local surrogate with probability at most 2/td, and only when
it is a local candidate.

Balancing. Since a connected component of G1 may contain more optimal facilities than local
ones we combine connected components together to form groups with at least as many local facilities
as optimal ones, using the following claim (proved in Appendix E.2):

Claim 3.5 (Balancing Procedure). Consider a universe U = R ∪ G of red points R and green
points G, with |G| = |R|+ r. Let the collection of sets S1, . . . , SN partition U , and let |Si| ≤ x for
all i. Moreover, let H be a graph on the vertices [N ] with maximum degree at most θ ≤ r. Lastly,
r ≥ Ω

(
x5θ3

ε

)
for some 0 ≤ ε ≤ 1. Then we can merge these sets together into new sets T0, . . . , TM

such that
9



(i) each Tj has size |Tj | ≤ O(x2),
(ii) |Tj ∩R| ≤ |Tj ∩G|,
(iii) if there is an edge {i, j} for i, j ∈ [N ], then Si is not merged with Sj, and
(iv) for all i 6= j, Si is merged with Sj with probability at most ε.

Recall that our degree reduction step did not change the total number of local and optimal facilities,
so there are still r(ε) more local facilities than optimal facilities. We identify F ∗, F with R,G in
Claim 3.5 respectively, and define every Si as the set of facilities in every connected component of
G1. Note that |Si| ≤ td + 2. Si and Sj are connected by an edge in H if and only if they contain
two copies of the same local facility: one contains the original copy of a local facility and the other
contains a new copy created as a local surrogate. The maximum degree of H is at most 1 due to
Claim 3.4 and the fact that there is at most one local facility in each connected component. Since
r(ε) ≥ Ω((td + 2)5/ε), we use Claim 3.5 to combine components of G1 into balanced groups, where
every group contains at most O((td + 2)2) ≤ p(ε) facilities. Every group thus defines a valid swap,
and we define P as the set of these swaps. Figure 3.2 shows an example of the simple swap set P
we generate.

F ∗

F

Figure 3.2: An example of a simple swap set P. Edges correspond to τ(f∗)’s. Dashed edges are removed.
The black facility is a local surrogate replacing a heavy local facility. The original copy of the black surrogate
is the facility with red boundary, chosen randomly from the local candidates (blue), assuming every yellow
optimal facility has a heavy local neighbor. Gray boxes correspond to the swaps in P.

3.2 Generating the Important Tree Swaps

Again, we start by constructing a directed graph G0. Unlike simple swaps where only optimal
facilities have out-edges, tree swaps require every local facility to also have an out-edge to an
optimal facility in G0. In particular, every local facility f has an out-edge to π(f), the optimal
facility closest to it. Every optimal facility still has an out-edge to τ(f∗) ∈ {η1, η2}, but we
pick τ(f∗) from a different distribution: if ρ(f∗) ≤ 2/3, then τ(f∗) = η1 with probability 1; else
τ(f∗) = η1 with probability 1/2 and τ(f∗) = η2 otherwise.

10



Figure 3.3: Every connected component of G0 is a 1-tree. Local facilities are represented by squares, while
optimal facilities are represented by triangles.

Since every vertex of G0 has out-degree one, G0 is a 1-forest, with every connected component
being a 1-tree, i.e., a directed tree with a directed cycle as its root (see Figure 3.3), hence the name
tree swaps. Having constructed G0, we generate the tree swap set P by three procedures: degree
reduction, edge deletion, and balancing. The balancing step remains essentially the same as in
simple swaps, but the degree reduction step requires a new ingredient to deal with optimal facilities
with high in-degree, which did not exist in the simple swaps case. The edge deletion step is also
unique to tree swaps. Next, we describe these three steps in detail.

Degree reduction. We first modify G0 so that every vertex has in-degree bounded by td + 1. In
the same way as simple swaps, we can remove local facilities with high in-degree by removing heavy
local facilities, but we need an additional procedure to deal with heavy optimal facilities with high
in-degree. Specifically, we say f∗ is a heavy optimal facility if it has in-degree more than td after
heavy local facilities are removed, in other words, |π−1(f∗)\{heavy local facilities}| > td. For such
a heavy optimal facility f∗ with in-degree s, we partition its children into ds/tde groups. Every
group, except sometimes the last one, contains exactly td children. We make sure that the first
group contains the td closest children to f∗. For each group other than the first one, we create a new
copy of f∗ and change the out-edges from the children in the group to point to the new copy of f∗.
The new copy of f∗ has an out-edge pointing to a new copy of a local facility f chosen uniformly at
random from the previous group. We call the new copy of f an optimal surrogate. They are needed
to keep the difference between the number of local and optimal facilities unchanged. We also add
an out-edge from f pointing back to the new copy of f∗, as illustrated in Figure 3.4.

In summary, the degree reduction procedure for tree swaps consists of the following steps:

1. Remove edges incident to all heavy local facilities;
2. Replace every heavy local facility by its local surrogate, chosen uniformly at random without

replacement from the local candidates;
3. Deal with heavy optimal facilities as above;
4. Add self-loops to vertices with no out-edge (due to step 1) to retain the 1-forest structure

(this facilitates a cleaner presentation of our next procedure: edge deletion).

Let G1 denote the graph after degree reduction. G1 is still a 1-forest, and every vertex in G1 now
has in-degree at most td+1. Moreover, the following claim is apparent (by observing that Claim 3.3

11



T

f∗

a b c d e

Ta Tb Tc Td Te

→

T a d

f∗ f∗ f∗

a b c d e

Ta Tb Tc Td Te

Figure 3.4: The figure shows the decomposition of high in-degree optimal facility f∗ for td = 2. Shaded
rectangular boxes correspond to part of the original tree that does not change. Since the degree of f∗ is 5
≥ td, we create d5/tde trees. The first tree stays in the original tree. Each remaining tree gets a f∗’s child
chosen uniformly at random from the previous tree. f∗ gets open 2 extra times, but we also close a and d
to balance the number of opening and closure. In this example a and d are chosen as optimal surrogates.
And a and b are two closest children to f∗ among {a, b, c, d, e}.

still holds in the tree swaps case because its proof is completely independent of the distribution of
τ(f∗)):

Claim 3.6. Constructed graph G1 follows following properties:

i. Every optimal facility appears in G1 at least once.
ii. Every local facility appears in G1 at most three times: once as the original copy, once as a
local surrogate, and once as an optimal surrogate.
iii. Heavy local facilities do not appear in G1.
iv. No two copies of the same facility appear in the same connected component.
v. The original copy of any optimal facility f∗ points to the original copy of τ(f∗), unless τ(f∗)
is heavy.
vi. The original copy of any local facility f points to π(f), although it might be a new copy of
π(f).
vii. Any local facility is chosen as a local surrogate with probability at most 2/td, and as an
optimal surrogate with probability at most 1/td.
viii. Every local surrogate is a local candidate.

The degree-reduction step ensures that vertices in G1 have bounded in-degree, but a connected
component of G1 could still have large size (it could have large height or contain a long cycle). We
deal with this problem in our next procedure: edge deletion.

Edge deletion. Next, we remove edges from G1 to ensure that every connected component in the
resulting graph is a tree of height at most th−1, where we choose the height threshold th uniformly
at random from 2d1/εe, 2d1/εe2, · · · , 2d1/εed1/εe. Specifically, for each connected component T of G1,
if the root cycle has length less than th, we insert dummy vertices into the cycle to make the length
exactly th. Then we pick a vertex r in the root cycle uniformly at random, and delete the out-edge
from r. This makes T a directed tree rooted at r. We then delete edges on the a · th-th levels for
all a ∈ N. See Figure 3.5 for an example.
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r

Figure 3.5: Example for th = 4. Nodes with the same color correspond to nodes in the same connected
component after edge deletion. We start from r (randomly chosen), and repeatedly cut edges on a · th steps
away from r (dashed edges).

Let G2 be the graph after the edge deletion step. It is clear that every connected component of G2

is a directed tree with height at most th − 1, possibly containing some dummy vertices. Moreover,
every vertex v has in-degree at most td + 1 due to the degree reduction procedure. Therefore, the
number of vertices in every connected component of G2 is at most (td +1)th . Moreover, we have the
following claim for every connected component T of G1, which is apparent from our edge deletion
procedure:

Claim 3.7. After dummy vertices are added into T , the edge out of vertex v ∈ T is deleted if and
only if the (unique) simple path from v to r has length divisible by th.

If the cycle length of T is at most th, vertices on the cycle are still connected after edge deletion.
Indeed, we delete only one edge in the cycle in this case. Therefore, after edge deletion, we ignore
all the dummy vertices and still consider all the edges on the original cycle as not deleted by
convention. This doesn’t change the (non-dummy) vertices in every connected component of G2,
and thus doesn’t change P we eventually generate. With this convention, we have the following
corollary of Claim 3.7:

Corollary 3.8. Any edge in G1 is deleted with probability at most 2/th. Moreover, if the cycle length
is at most th, edges on the cycle are never deleted.

Proof. The second part is assumed by our convention. We thus assume henceforth that the edge is
not on the cycle, or the cycle length is more than th. Suppose the edge is the out-edge of vertex v.
By Claim 3.7, the edge is deleted if and only if the simple path p∗ from v to r has length divisible by
th. Suppose the cycle length after dummy vertices are added to it is ` ≥ th, and let ` = uth +w for
u,w ∈ Z with 0 ≤ w < th. There are at most u+1 choices of r such that p∗ has length divisible by th.
Therefore, the edge is deleted with probability at most (u+1)/` = u/`+1/` ≤ 1/th+1/th = 2/th.

After edge deletion, each connected component of G2 contains at most (td + 1)th ≤ p(ε) vertices.
However, the number of local and optimal facilities in the component may not match (e.g., the blue
tree containing r in Figure 3.5 has three extra local facilities, whereas the rightmost tree has one
extra optimal facility). We fix this in the same way as in the simple swaps case using the balancing
procedure.
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Balancing. The balancing procedure is essentially the same as in the simple swaps case, based
on Claim 3.5 again. The only difference is that the size of every connected component is now much
larger ((td + 1)th), and the maximum degree of H is also much larger. Since optimal facilities may
now have new copies, we may combine two connected components each containing a copy of the
same optimal facility in the balancing step; this is fine because it only decreases the number of
optimal facilities in a swap. However, we still need to make sure that no two copies of the same
local facility are combined together, again by adding edges into H between connected components
containing copies of the same local facility. Since a local facility can have at most 3 copies by
Claim 3.6, the maximum degree of H is at most 2(td +1)th . Since we kept the number of extra local
facilities unchanged, it’s still r(ε) ≥ Ω(((td + 1)th)5(2(td + 1)th)3/ε), so Claim 3.5 gives balanced
groups each containing at most O((td + 1)2th) ≤ p(ε) facilities. Every group thus defines a valid
swap, and we define P as the set of these tree swaps.

4 Client Types

f∗

η2(f∗)

η1(f∗)

c

f1

f2

d∗

d2

d1d(f∗, η1)

d(f∗, η2)

Figure 4.6: The squares are local fa-
cilities, triangles are optimal facili-
ties, circle are clients. The thick red
edge out of c goes to its closest local
facility f1; the thick red edge out of f∗

goes to its closest local facility η1(f∗).

We now classify the clients into a small number of types (based
on how the client connects to facilities in the local and global
solutions). The classification allows us to give a client-by-client
analysis instead of a swap-by-swap analysis used in prior works.
We make this change in perspective because the potential Φ
depends on the two closest facilities, and so we need a better
handle on the local neighborhood of a client to bound the
reassignment costs when closing one of the close facilities.

For a client c, recall that f1(c) and f2(c) are the closest and
second-closest local facilities; we say f1 and f2 when there is
no ambiguity. Figure 4.6 shows a picture of a generic client c
and its related facilities.

We partition the set of clients into types based on the rela-
tionships between their local and optimal facilities, as follows.
The far clients are those for which d2 ≥ αd1, and hence the
potential just depends on the closest facility (f1); the other
kinds of clients are called close, for which both f1 and f2 are
relevant.

• Far case (where d2 ≥ αd1). Note that f2 does not play
any role in the far case, so the clients are classified according to how f1 and f∗ are related.

– Type A: η1(f∗) = f1.

– Type B: η2(f∗) = f1.

– Type E: f1 6∈ {η1(f∗), η2(f∗)}.
14



f∗

η2

η1 = f1

c

(a) Type A

f∗

η2 = f1

η1

c

(b) Type B

f∗

η2

η1

c
f1

(c) Type E

Figure 4.7: Far Case

• Close case (where d2 ≤ αd1); now clients are classified
according to how f1, f2 and f∗ are related.

– Type A: η1(f∗) = f1 and η2(f∗) 6= f2.

– Type B: η1(f∗) 6= f2 and η2(f∗) = f1.

– Type C: η1(f∗) = f1 and η2(f∗) = f2.

– Type D: η1(f∗) = f2 and η2(f∗) = f1.

– Type E: f1 6∈ {η1(f∗), η2(f∗)}.

f∗

η2

η1 = f1

c

f2

(a) Type A

f∗

η2 = f1

η1

c

f2

(b) Type B

f∗

η2 = f2

η1 = f1

c

(c) Type C

f∗

η2 = f1

η1 = f2

c

(d) Type D

f∗

η2

η1

c

f1

(e) Type E

Figure 4.8: Close Case. For Type E, the client’s f2 can be any one of dashed edges.
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5 Amenable and Defiant Events

Not all swaps are easy to argue about. Having fixed a client c, we define the amenable event and
defiant event for this client—the former captures the case where the swaps in P are easy to reason
about, and the latter the case where we throw up our hands and use a crude bound on the potential
change. Thankfully, the latter happens very rarely, so the loss is small.

Recall that f1(c), f2(c) are the two closest local facilities to c. Let f∗ = f∗(c) be the optimal facility
that c is assigned to; then η1(f∗), η2(f∗) are the two closest local facilties to f∗. We define the
amenable and defiant events as follows:

Definition 5.1 (Amenable/Defiant). The defiant event D for a client c of type A, B or E is the
union of the following events:

(i) f1, f2, or τ(f∗) is chosen as a local or optimal surrogate in the degree reduction step;
(ii) P is a tree swaps set, and the out-edge from the original copy of f∗, f1 or f2 is deleted in
the edge deletion step.
(iii) P is a simple swaps set, and two connected components each containing a facility in
{f∗} ∪ {f1, f2} ∪ {η1, η2} are grouped together in the balancing step.

The amenable event A is the complement of D.

For type C and D clients, we enlarge the defiant event slightly to include g∗ := π(f1) and

g := argminh∈F\{f1,f2} d(h, g∗)

as follows:

Definition 5.2 (Amenable/Defiant for type C and D). The defiant event D for a client c of type
C or D is the union of the events (i), (ii), (iii) in Definition 5.1 and the following events:

(i’) τ(g∗) is chosen as a local or optimal surrogate in the degree reduction step;
(ii’) P is a tree swaps set, and the out-edge from the original copy of g∗ is deleted in the edge
deletion step.
(iii’) P is a simple swaps set, and two connected components each containing a facility in
{f1, g} are grouped together in the balancing step.

The amenable event A is the complement of D.

The events A and D depend on the client c, but we choose to omit c in our notation because we will
always focus on a fixed client c in our proof. We now turn to proving Lemma 2.2 on the potential
change due to defiant events. The approach is simple: we first show a crude upper bound that
holds for all swap sets P that we generate, and then show that the probability of the defiant event
is small enough so that we can afford to apply this crude upper bound.

Claim 5.3. There is an absolute constant γ > 0 such that for any client c, and any swap set P
that we generate, we have

∑
(P,Q)∈P δ(P,Q)(c) ≤ γ(d∗(c) + d1(c)).

Claim 5.4. Pr[D] ≤ O(ε) for all clients c.

The proof of Claim 5.4 follows from Claims 3.4 to 3.6, Corollary 3.8, and a trivial union bound.
We defer the proof of Claim 5.3 to Appendix E.3. The two claims above imply Lemma 2.2, and
hence control the effect of the defiant events. We focus next on the amenable events and the proof
of Lemma 2.3.
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6 The Potential Change due to Amenable Events

Having bounded the potential change due to defiant events, we now turn to bounding the potential
change due to amenable events. Let us recall the claim we want to prove:

Lemma 2.3 (Amenable Case). For the distribution over valid swap sets from Lemma 2.2, for any
c ∈ C,

E
[
1A

∑
(P,Q)∈P

δ(P,Q)(c)
]
≤ 2.5203 d∗(c)− 0.8888 d1(c) +O(ε) (d∗(c) + d1(c)).(2.5)

This section gives an explicit proof that can be verified by hand. In §7 we show how to generate a
much larger set of valid inequalities. Solving the resulting linear program gives improved bounds,
but these are more tedious to verify manually.

6.1 Implications of Amenability

Claim 6.1 (Implications of amenability). For any client, swap sets P generated on the amenable
event A have the following properties:

(i) Any local facility f ∈ {f1, f2} is closed in at most one swap in P;
(ii) Any swap in P closing τ(f∗) must open the original copy of f∗;
(Tii) If P is a tree swap set, any swap in P closing f ∈ {f1, f2} must open π(f);
(Siii) If P is a simple swap set, no swap in P closes two local facilities in {f1, f2} ∪ {η1, η2}
simultaneously;
(Siv) If P is a simple swap set, any swap in P closing a local facility in {f1, f2}\{τ(f∗)} does
not open f∗.

For clients of type C or D, we additionally have the following: (recall that we defined g∗ as π(f1),
and g as the local facility closest to g∗ other than f1 and f2):

(ii’) Any swap in P closing τ(g∗) must open the original copy of g∗;
(Siii’) If P is a simple swap set, no swap in P closes both f1 and g.

Proof of Claim 6.1. Recall that the amenable event A is the complement of the defiant event D,
defined in Definition 5.1.

Implication (i) follows from item (i) of Definition 5.1 directly.

Implication (ii) follows from items (i) and (ii) of Definition 5.1. Without loss of generality, we
assume τ(f∗) is not heavy, since heavy local facilities are never closed. On the amenable event,
τ(f∗) is closed only as its original copy, by item (i) of Definition 5.1. The edge to τ(f∗) from the
original copy of f∗ is never deleted by item (ii) of Definition 5.1, so the original copies of f∗ and
τ(f∗) must be in the same swap.

Implication (Tii) also follows from items (i) and (ii) of Definition 5.1, for a similar reason. Again,
assume without loss of generality that neither f1 nor f2 is heavy. On the amenable event, f1 and
f2 are closed only as their original copies by item (i) of Definition 5.1, and the edges fi → π(fi) are
never deleted by item (ii).

Implications (Siii) and (Siv) both follow from item (iii) of Definition 5.1. When we generate the
simple swap set, every connected component of the graph G1 contains at most one local facility,
and thus different facilities in {f1, f2} ∪ {η1, η2} must be in different connected components, which
are not combined in the balancing step due to item (iii) of Definition 5.1. This proves implication
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(Siii). Moreover, the connected component of f∗ doesn’t contain any local facility other than
τ(f∗) ∈ {η1, η2}. This proves implication (Siv).

(ii’) and (Siii’) can be proved in the same way as (ii) and (Siii) using Definition 5.2.

6.2 Notation and Useful Inequalities

Let ∆E(c) denote the expected potential change on client c restricted to some generic event E :

∆E(c) := E
[
1E

∑
(P,Q)∈P

δ(P,Q)(c)
]
.

Our goal in Lemma 2.3 is thus to upper bound ∆A(c) for the amenable event A. In our proof, we
consider sub-events E of A, and prove worst-case upper-bounds for the potential change restricted
to each sub-event E . Formally, given a suitable partition A = E1 ∪ · · · ∪ Et, we define δE(c) :=∑

(P,Q)∈P δ(P,Q)(c) to be the worst-case (maximum) value for each event E , and then use:

(6.6) ∆A(c) =

t∑
i=1

∆Ei(c) ≤
t∑
i=1

Pr[Ei] δEi(c).

For technical reasons, it is more convenient to assume δE(c) is no smaller than, say, −10d1(c). We
thus re-define δE(c) as −10d1(c) when δE(c) < −10d1(c). This doesn’t affect our analysis, as all our
upper bounds for δE(c) are larger than −10d1(c). Also, Claim 5.3 implies that δE(c) ≤ O(d∗ + d1).

To apply (6.6), we need to understand Pr[E ] and δE(c) for the following events (and their inter-
sections): the amenable event A and its complement defiant event D, the simple event S and its
complement tree event T . The simple event S is further partitioned into S1 and S2, and the tree
event T is partitioned into T1 and T2, representing whether f∗ points to η1 or η2. These events are
defined for a fixed client c, and we omit c in our notations for brevity.

Recall that f∗ is the optimal facility closest to c, and ρ = ρ(f∗) := d(f∗,η1(f∗))
d(f∗,η2(f∗)) . To generate the

set P of important swaps, we choose τ(f∗) from different distributions depending on the value of
ρ(f∗), and thus the probability of the events S1,S2, T1, T2 depends on ρ(f∗) as follows:

Ratio-types Pr[S1] Pr[S2] Pr[T1] Pr[T2]
0 ≤ ρ(f∗) ≤ 2/3 1/2 · 1/2 ·

2/3 < ρ(f∗) ≤ 3/4 1/2 · 1/4 1/4
3/4 < ρ(f∗) ≤ 1 5/4− ρ ρ− 3/4 1/4 1/4

Table 1: Probability distribution for each ratio-type.

Since Pr[D] = O(ε) due to Claim 5.4, the probability of any event E ∩ A is at least Pr[E ]−O(ε).

Bounding the worst-case change δE(c). We fix an arbitrary swap set P generated under event
E , and analyze the effect of each swap in P. Let 〈〈f∗〉〉 denote the swap in P that opens f∗; such a
swap always exists. There may be multiple such swaps in P when we perform tree swaps, in which
case we let 〈〈f∗〉〉 be the swap that opens the original copy of f∗. For a local facility f ∈ {f1, f2},
let 〈〈¬f〉〉 denote the swap in P that closes f . By implication (i) of amenability, there is at most
one such swap as long as E is a sub-event of the amenable event A. When there is no swap closing
f (which happens when f is a heavy facility), we are often in a better situation because our bound
for δ〈〈¬f〉〉(c) is often non-negative, so we will mostly focus on the case where 〈〈¬f〉〉 does exist.
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Before we begin giving bounds for the various client types, let us record in Table 2 some inequalities
we will frequently use. Recall that η1(f∗) and η2(f∗) are the closest and second-closest local facilities
to f∗, and π(f) is the closest optimal facility to f . These inequalities are proven in Appendix C.

Bound Conditions (if any)
d2 ≤ 2d∗ + d1 (6.7) η1(f∗) 6= f1

d(c, π(f1)) ≤ 2d1 + d∗ (6.8)
max{d(c, η1(f∗)), d(c, η2(f∗))} ≤ 2d∗ + d1 (6.9) η1(f∗) 6= f1

min(d∗, d1) + βmax(d∗, d1) ≤ (1− β) d∗ + 2β d1 (6.10)

Table 2: Useful Inequalities

6.3 Bounds for Clients of Type E

We now give an upper bound for the expected potential change ∆A(c) for any client c of type E.
We give the entire proofs here; for clients of other types we will defer the proofs to the appendices.

Lemma 6.2. For any client c of type E, we have

∆A(c) ≤ 2.5 d∗(c)− 0.9 d1(c) +O(ε)(d∗ + d1).

In our proof, we partition the amenable event A = (S ∩ A) ∪ (T ∩ A) depending on whether we
have a simple swap or a tree swap, and then bound ∆A(c) by

∆A(c) ≤Pr[S ∩ A] · δS∩A(c) + Pr[T ∩ A] · δT ∩A(c)

≤Pr[S] · δS∩A(c) + Pr[T ] · δT ∩A(c) +O(ε)(d∗ + d1).(6.11)

The second inequality is implied by Claim 5.4 and our assumption that δE(c) ≥ −10d1. To use (6.11)
we give upper bounds for δS∩A(c) and δT ∩A(c) for clients of both subtypes (close and far) in the
next subsections. In other words, we pick an arbitrary swap set P generated under these events,
and bound the potential change for client c due to the swaps in P.

6.3.1 Far Clients of Type E: d2(c) ≥ αd1(c)

Simple Swaps. We fix a “far” client c and an arbitrary swap set P generated conditioned on the
event S ∩ A for this client, and bound the sum

∑
(P,Q)∈P δ(P,Q)(c).

• Given the swap 〈〈f∗〉〉 ∈ P (which is not 〈〈¬f1〉〉 by implication (Siv) of amenability), c has an
additional option of going to f∗, giving

δ〈〈f∗〉〉(c) ≤ (d1 + β d∗)− (1 + αβ) d1.

• Next, by implication (i) of amenability, the set P contains at most one swap 〈〈¬f1〉〉. If 〈〈¬f1〉〉
does exist, both η1 and η2 are open (by implication (Siii) of amenability), and both at distance
≤ 2d∗ + d1 from c. Therefore,

δ〈〈¬f1〉〉(c) ≤ (1 + β)(2d∗ + d1)− (1 + αβ) d1.

This quantity is non-negative: since c has type E, η1 6= f and also d(c, η1) ≤ 2d∗ + d1. But c
is a far client, then d(c, η1) ≥ αd1. Putting the two together:

(1 + β)(2d∗ + d1)− (1 + αβ) d1 ≥ d1 + β(2d∗ + d1)− (1 + αβ) d1 ≥ 0.
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• Finally, all other swaps in P leave f1 open, and thus they cannot increase the potential for c.

Combining these, when the swap 〈〈¬f1〉〉 exists,

(6.12)
∑

(P,Q)∈P

δ(P,Q)(c) ≤ δ〈〈f∗〉〉(c) + δ〈〈¬f1〉〉(c) ≤ (2 + 3β) d∗ − (2αβ − β) d1.

In case 〈〈¬f1〉〉 does not exist, (6.12) still holds since our bound for δ〈〈¬f1〉〉 is non-negative. Since P
was a generic swap set conditioned on being amenable,

δS∩A(c) ≤ (2 + 3β) d∗ − (2αβ − β) d1 .

Tree Swaps. We now turn to tree swaps, and fix an arbitrary swap set P generated on the event
T ∩A. Again, P contains at most one swap 〈〈¬f1〉〉 that closes f1, by amenability. We first consider
the case where 〈〈¬f1〉〉 exists and is the same as 〈〈f∗〉〉. In this case, all other swaps in P have
non-positive potential changes, so

(6.13)
∑

(P,Q)∈P

δ(P,Q)(c) ≤ δ〈〈¬f1〉〉(c) ≤ (1 + αβ)d∗ − (1 + αβ)d1.

Next, consider the case where 〈〈¬f1〉〉 6= 〈〈f∗〉〉. On swap 〈〈f∗〉〉, client c can go to both d∗ and
d1. On swap 〈〈¬f1〉〉, c can go to π(f1) at distance ≤ 2d1 + d∗, and also to τ(f∗) ∈ {η1, η2} at
distance ≤ 2d∗ + d1. Both these facilities π(f1) and τ(f∗) must be open after the swap 〈〈¬f1〉〉
due to implications (ii) and (Sii) of amenabilityx. All other swaps in P have non-positive potential
changes, so ∑

(P,Q)∈P

δ(P,Q)(c) ≤ δ〈〈f∗〉〉(c) + δ〈〈¬f1〉〉(c)

≤ d1 + β d∗ − (1 + αβ) d1(δ〈〈f∗〉〉)
+ (2d∗ + d1) + β(2d1 + d∗)− (1 + αβ) d1(δ〈〈¬f1〉〉)

= (2 + 2β) d∗ − (2αβ − 2β) d1.(6.14)

In the case where 〈〈¬f1〉〉 doesn’t exist, (6.14) still holds, because our bound for δ〈〈¬f1〉〉(c) is non-
negative. By our choice of α = 3 and β = 1/5, (6.13) is dominated by (6.14). Since P is a generic
swap set,

δT ∩A(c) ≤ (2 + 2β) d∗ − (2αβ − 2β) d1 .

Summarizing the simple swaps case and the tree swaps case, we have

δS∩A(c) ≤(2 + 3β) d∗ − (2αβ − β) d1 ≤ 2.6 d∗ − d1,

δT ∩A(c) ≤(2 + 2β) d∗ − (2αβ − 2β) d1 ≤ 2.4 d∗ − 0.8 d1.

Now substituting into (6.11), we get a bound for all type E far clients c:

∆A(c) ≤ 1/2 · δS∩A(c) + 1/2 · δT ∩A(c) +O(ε)(d∗ + d1)

≤ 2.5 d∗ − 0.9 d1 +O(ε)(d∗ + d1).(6.15)

This proves Lemma 6.2 for far clients of type E. The proof for all other types of clients will have a
similar structure: we will identify which swaps affect client c, then we sum up the inequalities with
the right probabilities. In some cases we will need to look at cases depending on ρ.
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6.3.2 Close Clients of Type E: d2(c) ≥ αd1(c)

Simple swaps. Now we consider the case of close clients c. We fix an arbitrary swap set P, and
focus on 〈〈f∗〉〉, 〈〈¬f1〉〉, and 〈〈¬f2〉〉 (All other swaps cause a non-positive potential change). Suppose
these three swaps are different. When f∗ opens, the client c can be served by both f∗ and f1. When
f1 closes, c can be served by f2 and η1, and when f2 closes, c can be served by f1 and η1: in both
these cases, we use implication (Siii) of amenability to ensure that both the corresponding facilities
are open. We know that d2 ≤ d(c, η1) because c has type E; by (6.9) we get d(c, η1) ≤ 2d∗ + d1.
Putting everything together, the three swaps yield:

δS∩A(c) ≤ d∗ + β d1 − d1 − β d2(δ〈〈f∗〉〉)
+ d2 + β(2d∗ + d1)− d1 − β d2(δ〈〈¬f1〉〉)
+ d1 + β(2d∗ + d1)− d1 − β d2(δ〈〈¬f2〉〉)

= (1 + 4β) d∗ − (2− 3β) d1 + (1− 3β) d2 .

We address the assumption that the three swaps are different. As argued above, condition (Siv) of
amenability for type E clients means that for simple swaps, 〈〈¬f1〉〉 6= 〈〈f∗〉〉. However, f2 could be
τ(f∗), so it may happen that 〈〈¬f2〉〉 = 〈〈f∗〉〉, and hence that δS∩A(c) ≤ δ〈〈f∗〉〉+ δ〈〈¬f1〉〉. Moreover,
〈〈¬f1〉〉 may not exist, in which case δS∩A(c) ≤ δ〈〈f∗〉〉 + δ〈〈¬f2〉〉 or even δS∩A(c) ≤ δ〈〈f∗〉〉. But since
our bounds above for both δ〈〈¬f1〉〉 and δ〈〈¬f2〉〉 are non-negative, we infer that the boxed upper
bound remains valid in all these cases.

Tree swaps. We now consider tree swaps. Fix an arbitrary swap set P generated on the event
T ∩A. For a client c in the close case, there are three swaps that are relevant to c—those containing
f∗, f1, and f2—although some of these swaps may coincide. (Also, no other swaps can increase the
potential.)

When f1 and f2 belong to the same swap. First suppose that f1 and f2 belong to the same
swap in P. We start from the case where 〈〈f∗〉〉 6= 〈〈¬f1,¬f2〉〉. For the swap 〈〈f∗〉〉, the client c can
be served by both f∗ and f1. And when f1 and f2 are both closed, c can be served by τ(f∗) (which
is either η1 or η2) and π(f1). By (6.9) we get that d(c, τ(f∗)) is at most 2d∗ + d1, and by (6.8) we
get d(c, π(f1)) ≤ 2d1 + d∗. Hence,∑

(P,Q)∈P

δ(P,Q)(c) ≤ δ〈〈f∗〉〉 + δ〈〈¬f1,¬f2〉〉

≤ (d∗ + β d1)− (d1 + β d2)(δ〈〈f∗〉〉)
+ (2d∗ + d1) + β(2d1 + d∗)− (d1 + β d2)(δ〈〈¬f1,¬f2〉〉)

= (3 + β) d∗ − (1− 3β) d1 − 2β d2 .

On the other hand, if f∗, f1, and f2 all belong to the same swap, we can assign c to f∗∑
(P,Q)∈P

δ(P,Q)(c) ≤ δ〈〈f∗,¬f1,¬f2〉〉

≤ (1 + αβ) d∗ − d1 − β d2(δ〈〈f∗,¬f1,¬f2〉〉)
+ β(2d∗ + d1 − d2)(since 2d∗ + d1 ≥ d2)

= (1 + αβ + 2β) d∗ − (1− β) d1 − 2β d2

≤ 3.2 d∗ − 0.4 d1 − 0.4 d2.

These two bounds are identical for our choices of α = 3 and β = 1/5.
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When f1 and f2 belong to different swaps. Next, consider the case when f1 and f2 belong
to different swaps in P. Let us first assume 〈〈f∗〉〉 is neither 〈〈¬f1〉〉 nor 〈〈f2〉〉. In the swap 〈〈f∗〉〉 the
client can served by f∗ and f1. When one of f1 or f2 is closed, the client c can be served by the
other facility, and by τ(f∗), which is at distance at most 2d∗ + d1 from c (by (6.8)). Hence,∑

(P,Q)∈P

δ(P,Q)(c) ≤ (1− β) d∗ + 2β d1 − d1 − β d2(δ〈〈f∗〉〉 with (6.10))

+ d2 + β(2d∗ + d1)− d1 − β d2(δ〈〈¬f1〉〉)
+ d1 + β(2d∗ + d1)− d1 − β d2(δ〈〈¬f2〉〉)

= (1 + 3β) d∗ − (2− 4β) d1 + (1− 3β) d2 .

Our bound for δ〈〈f∗〉〉 does not require f2 to remain open after the swap, and our bound for δ〈〈¬f2〉〉 is
non-negative. Therefore, the above bound also holds when 〈〈¬f2〉〉 = 〈〈f∗〉〉. When 〈〈¬f1〉〉 = 〈〈f∗〉〉,
we still have the above bound:∑

(P,Q)∈P

δ(P,Q)(c) ≤ d∗ + β d2 − d1 − β d2(δ〈〈f∗,¬f1〉〉)

+ d1 + β(2d∗ + d1)− d1 − β d2(δ〈〈¬f2〉〉)
+ β d∗ + β d1 + (1− 2β)(d2 − d1)(non-negative terms)

= (1 + 3β) d∗ − (2− 4β) d1 + (1− 3β) d2 .

Summarizing all these bounds (using that α = 3 and β = 0.2),

δS∩A(c) ≤ (1 + 4β) d∗ − (2− 3β) d1 + (1− 3β) d2 = 1.8 d∗ − 1.4 d1 + 0.4 d2

δT ∩A(c) ≤ max{3.2 d∗ − 0.4 d1 − 0.4 d2, 1.6 d
∗ − 1.2 d1 + 0.4 d2}.

Combining and using (6.7) to get d2 ≤ 2d∗ + d1 if the d2 terms do not cancel out, we get for close
clients c:

∆A(c) ≤ 1/2 · δS∩A + 1/2 · δT ∩A +O(ε)(d∗ + d1)

≤ 2.5 d∗ − 0.9 d1 +O(ε)(d∗ + d1).(6.16)

Lemma 6.2 follows from the bound in (6.15) for the far clients and the one from (6.16) for the close
clients.

6.4 All Other Client Types

Similarly, we can bound ∆A(c) for every other client type A–D. We summarize this in the following
theorem: the calculations behind the expressions can be found in Appendix D.

Lemma 6.3. For any far client c of type A or B, we have

∆A(c) ≤ 2.47 d∗(c)− 1.13 d1(c) +O(ε)(d∗ + d1)(6.17)

For any close client ci of type i ∈ {A,B,C,D}, we have

∆A(cA) ≤ 2.375 d∗(cA)− 0.9 d1(cA) +O(ε)(d∗ + d1)(6.18)
22



∆A(cB) ≤ 2.4 d∗(cB)− 0.9 d1(cB) +O(ε)(d∗ + d1)(6.19)
∆A(cC) ≤ 2.2 d∗(cC)− 0.8888 d1(cC) +O(ε)(d∗ + d1)(6.20)
∆A(cD) ≤ 2.5203 d∗(cD)− 0.8888 d1(cD) +O(ε)(d∗ + d1)(6.21)

Lemmas 6.2 and 6.3 imply that every client c satisfies

∆A(c) ≤ 2.5203 d∗(c)− 0.8888 d1(c) +O(ε)(d∗ + d1).

This proves Lemma 2.3, and hence Lemma 2.1 and Theorem 1.1.

7 A Computer-Aided Analysis using Linear Programming

In this section we show how to generate a set of valid inequalities, then solve the resulting linear
program to find an upper bound on our approximation ratio. We describe the ideas for the potential
Φ2 that only takes the second-closest facility into account, and indicate how to extend it to Φq for
higher values of q ≥ 2. Of course, the size of the LP increases exponentially as q increases.

To recall, our proof strategy in the previous section was to consider a local optimum, and then:

1. define a (randomized) collection of important swaps that are contained within our actual set
of swaps;

2. for every client type, write constraints that apply to all clients of that type;
3. carefully combine those constraints to have only a few remaining constraints; and
4. manually check these remaining contraints.

An automated proof could avoid the last two steps by directly checking the entire set of constraints.
Since every constraint we derive is a linear inequality on the distances, a linear program can be
used for this automated proof. Put differently, our goal is to write a linear program that constructs
a “worst-case example” for our potential function. Specifically, the program seeks values of the
distances d1, d2, and d∗ for each client type, so as to maximize the ratio between the costs of the
optimum and local solutions, while respecting the set of constraints. 1

Variables and constraints of the LP. Let us focus on simple swaps, the constraints for tree
swaps are similar. We want to express the fact that simple swaps at a local optimum do not
decrease the potential. We first classify facilities into types according to their ratio ρ; we consider
only a fine net of values for ρ, and use continuity of the potential to control the loss due to this
discretization. All facilities with a given ratio are treated the same way in the proof: our LP
considers that all facilities of the same type are swapped at the same time. Specifically, we have a
variable sρ corresponding to the difference in the potential function after applying simple swaps for
all facilities with ratio ρ. The constraint saying that simple swaps do not decrease the potential is
therefore

∑
ρ sρ ≥ 0.

The value of the variable sρ is controlled by the clients connected to facilities having ratio ρ: each
client type i has a contribution to it. In an Sj-swap (where j ∈ {1, 2}), let δSj (i;x, y1, y2) be
the potential change due to all clients of type-i connected to facilities with ratio ρ, in function of
x, y1 and y2, respectively the total distance from those clients to the optimal solution, their closest
and their second closest facility of the local solution. This difference of potential is described in

1In fact, it does not come up with a concrete example, since we do not maintain all the triangle inequalities between
the clients, but only the triangle inequalities in some local neighborhood around each client. It is conceivable that
using more triangle inequalities would lead to an even better result, but that increases the complexity even further.
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Section 6: we illustrate it with clients of type A, in the far case. We denote AF those clients. As
presented in D.1.1, the S1 and S2 swaps for those clients show

δS1∩A(c) ≤(1 + αβ) d∗ − (1 + αβ) d1

δS2∩A(c) ≤((1 + 1/ρ)(1 + αβ) + β) d∗ − ((1− 1/ρ)(1 + αβ) + αβ) d1

For bounding δS2∩A(c), we upper bounded the potential value of the swap by d∗ + βd1 when f∗

is opened. However, we could be more precise: it could be the case that d∗ ≤ d1 or d1 ≤ αd∗.
Therefore, this lead to 3 other possible upperbounds, namely (1 +αβ)d∗, d∗+βd1, and (1 +αβ)d1.

This translates to three other inequalities, one for each of those cases:

δS2∩A(c) ≤ ((2 + 1/ρ)(1 + αβ)) d∗ − ((2− 1/ρ)(1 + αβ)) d1(when we choose (1 + αβ)d∗)
δS2∩A(c) ≤ ((1 + 1/ρ)(1 + αβ) + 1) d∗ − ((2− 1/ρ)(1 + αβ)− β) d1(when we choose d∗ + βd1)
δS2∩A(c) ≤ ((1 + 1/ρ)(1 + αβ)) d∗ − ((1− 1/ρ)(1 + αβ)) d1.(when we choose (1 + αβ)d1)

More generally, the LP encodes all possible combinations of variables giving valid bound on the
potential after a swap. Note that then number of such inequalities grows exponentially with q,
because each term min(αjd1(c), dj(c)) doubles the number of valid inequalities.

Going back to type A, this gives rise to the constraints

δS1
(AF;xAF,ρ, y

1
AF,ρ, y

2
AF,ρ) ≤ (1 + αβ)xAF,ρ − (1 + αβ)y1

AF,ρ(7.22)

δS2(AF;xAF,ρ, y
1
AF,ρ, y

2
AF,ρ) ≤ ((1 + 1/ρ)(1 + αβ) + β)xAF,ρ − ((1− 1/ρ)(1 + αβ) + αβ) y1

AF,ρ(7.23)

δS2
(AF;xAF,ρ, y

1
AF,ρ, y

2
AF,ρ) ≤ ((2 + 1/ρ)(1 + αβ))xAF,ρ − ((2− 1/ρ)(1 + αβ)) y1

AF,ρ(7.24)

δS2
(AF;xAF,ρ, y

1
AF,ρ, y

2
AF,ρ) ≤ ((1 + 1/ρ)(1 + αβ) + 1)xAF,ρ − ((2− 1/ρ)(1 + αβ)− β) y1

AF,ρ(7.25)

δS2
(AF;xAF,ρ, y

1
AF,ρ, y

2
AF,ρ) ≤ ((1 + 1/ρ)(1 + αβ))xAF,ρ − ((1− 1/ρ)(1 + αβ)) y1

AF,ρ,(7.26)

where the variables xi,ρ denote the total cost of clients of type i connected to facilities with ratio
ρ in the optimal solution, and yji,ρ denote the total distance from those clients to their j-th closest
facility in the local solution. This definition of δSj (i) yields the following constraint on sρ : for
j = 1, 2, ∑

i∈ST
δSj (i;xi,ρ, y

1
i,ρ, y

2
i,ρ) ≥ sρ,

where ST is the set of client types.

Moreover, the triangle inequality gives constraints on the variables xi,ρ, y1
i,ρ, y

2
i,ρ: for instance, for

type AF, we would have

y2
AF,ρ ≤ xAF,ρ + (1/ρ)(≤ xAF,ρ + y1

AF,ρ).(7.27)

The constraints due to tree swaps are defined analogously, with a variable tρ being the potential
change after applying tree swaps for all facilities of type ρ, and δTj (i) being the potential change
due to all clients of type-i connected to facilities with ratio ρ. For q > 2, we need to consider more
than one ratio, so we let ρ be the vector of size q − 1 that describes ratio of all two consecutive
ηj and ηj+1 for all j ∈ {1, ..., q − 1}. Let R be the set of values of ρ after discretization: we use
R := { i

100 | i ∈ {0, . . . , 100}}q−1. In that case, all clients with ratio in [i · 10−2, (i + 1) · 10−2) are
considered to have ρ = i ·10−2 for each index. This means that our bounds for δ are slightly relaxed
to cover an interval instead of a precise ρ. The jth index of a ratio correspond to d(f∗(c),ηj(f

∗(c)))
d(f∗(c),ηj−1(f∗(c))) .
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Let C be the set of client types. For q = 2, each i ∈ C contains client type (A,B,C,D,E), ratio
ρ, underlying form of tree-graph (e.g. f1 and f2 belong to same tree in η1-swap), and whether
d2 ≤ αd1 or not. For j ∈ {2, ..., q}, let Cj be the set of clients with dj ≤ αjd1. For q = 2, C2 is the
set of close clients (i.e., d2 ≤ αd1). Let Cρ denote set of clients with ratio ρ. The general structure
of the LP is the following:

max
∑
i∈C

y1
i(7.28)

s.t.
∑
i∈C

xi = 1(7.29)

yji ≤ αjy
1
i ∀j ∈ {2, . . . , q}, i ∈ Cj(7.30)

yji ≥ αjy
1
i ∀j ∈ {2, . . . , q}, i 6∈ Cj(7.31) ∑

i∈Cρ
δSj (i;xi, y

1
i , . . . , y

q
i ) ≥ sρ ∀ρ ∈ R, j ∈ {1, . . . , q}(7.32) ∑

i∈Cρ
δTj (i;xi, y

1
i , . . . , y

q
i ) ≥ tρ ∀ρ ∈ R, j ∈ {1, . . . , q}(7.33) ∑

ρ∈R
sρ ≥ 0(7.34)

∑
ρ∈R

tρ ≥ 0(7.35)

Triangle-inequalities(7.36)

δSj (i;xi, y
1
i , . . . , y

q
i ) ≤ enumerated-upperbounds ∀i ∈ C, j ∈ {2, ..., q}(7.37)

δTj (i;xi, y
1
i , . . . , y

q
i ) ≤ enumerated-upperbounds ∀i ∈ C, j ∈ {2, ..., q}(7.38)

yji ≥ 0, xi ≥ 0 ∀i ∈ C, j ∈ {1, . . . , q}(7.39)

Note that
∑
i∈C y

1
i /
∑
i∈C xi =

∑
i∈C y

1
i is the locality gap. Constraints (7.30) and (7.31) restrict

each distance based on whether they are ‘far’ client or ‘close’ client. Constraints (7.32) can be
seen as the following: for each ratio ρ we pick j ∈ {1, ..., q} that minimizes the sum of potential
difference after performing Sj swap, then make τ(f∗) = ηj for all f∗ with ratio ρ. Similarly, (7.33)
chooses τ(·) for tree swaps. Then (7.34) and (7.35) ensure the potential difference is non-negative
after performing simple swap and tree swap respectively. We also add triangle inequalities (e.g.,
(7.27)). Lastly, we add upperbounds for each potential difference in (7.37) and (7.38) (e.g., (7.22)
- (7.26)).

Implementing this approach, and then solving the resulting LP for for potential Φ2 and Φ3 gives
us the following numbers:

Potential Bound
Φ2 2.7786
Φ3 2.6861

For Φ2, the LP finds that taking α = 3, β = 0.2 yields the best result, whereas for Φ3 we set manually
α = 2.5, β = 0.3, β2 = β · 0.34. As always, we get an additive ε term because of the defiant swaps.
However, let us emphasize that these implementations should be considered preliminary, since they
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have not been formally verified. We hope that formal proofs of these results can be given in the
near future.

A Locality Gap for Potential Φ2

In this section, we give lower bounds on the locality gap, and prove Theorem 1.2. We show locality
gap examples of max{2, α}, 3−2β, and 1+4β for the potential function Φ2. Putting these together,
the locality gap is minβ∈[0,1],α∈[1,∞) max{3− 2β, 1 + 4β},max{2, α}. Note max{3− 2β, 1 + 4β} is
2 1

3 , when we set β = 1/3. Therefore we show a locality gap of 2.

In this section, we show a locality gap of 2 for Φ2. We divide the cases into three main cases:

• When α ≤ 2
• When α > 2 and β ≤ 1/3
• When α > 2 and β > 1/3

We mainly use two types of example that we call “bi-clique” and “double-bi-clique” described in
Figure A.9 Figure A.10 respectively. In bi-clique we have k + r local facilities on the right, where
r = O(1) is the number of extra local facilities, and k optimal facilities are on the left. There is a
client between every (local, optimal) facility pair, at unit distance from the optimal facility, and at
distance d from the local facility.

...
...

1 d

Figure A.9: An illustration of the bi-clique example with r = 0.

In double-bi-clique, we have two back-to-back bi-cliques as in Figure A.10. Each bi-clique is con-
structed the same way as Figure A.9 except the number of facilities are halved. Consider a client c
with an edge going into fi, create an edge at distance d between c and ith local facility in the other
bi-clique. Now every client has an optimal facility at distance 1, and two local facilities at distance
d.

1 d

d 1
d

d

Figure A.10: The double-bi-clique example with k = 4 and r = 0.
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For all cases we calculate the potential difference after performing a swap of size p. There are
mainly 4 different types of clients.

• Co: the set of clients with their f∗ opened.
• C1: Clients with their f1 closed and f∗ not opened
• C2: Clients with its f2 closed and f∗ not opened
• C3: Clients with its f∗ closed, f1 opened, and f2 opened.

We use co, c1, c2, c3 to denote generic client for sets Co, C1, C2, and C3 respectively. We first
calculate potential difference for each client type, then sum them over.

We assume there is no client with their f1 and f2 both closed: those clients can only hurt the
quality of the solution, and given a swap that closes f1 and f2 of some clients it is easy to construct
a strictly better set of swaps with no such client.

A.1 When α ≤ 2

We first give lower bound examples when α ≤ 2. We divide the case further into two cases: when
α ≤ 4/3 + 1/(3β) and when α > 4/3 + 1/(3β).

Subcase I: α ≤ 4/3 + 1/(3β). We create a bi-clique presented in Figure A.9 with d = 2− ε′, where
ε′ ≈ O(1/k) is a small quantity to be specified later. Note that every client has k + r − 1 local
facilities at distance 2 + d, thus the second closest facility is never closed for any client. Then for
each client we get the potential differences:

∆Φco = 1 + αβ − (2− ε′)− (2− ε′)αβ = −1− αβ + ε′ + ε′αβ

∆Φc1 = (4− ε′) + (4− ε′)β − (2− ε′)− (2− ε′)αβ ≥ 2 + 4β − 2αβ

∆Φc2 = 0

∆Φc3 = 0

Note |Co| = p(k + r) and |C1| = p(k − p).

Summing up gives ∑
c∈C

∆Φc ≥ p(k + r)(−1− αβ + ε′ + ε′αβ) + p(k − p)(2 + 4β − 2αβ)

≥ pk(1 + 4β − 3αβ) + pkε′ + rp(−1− αβ)− p2(2 + 4β − 2αβ)

≥ pk(1 + 4β − 3αβ) ≥ 0(for α ≤ 4/3 + 1/(3β))

The second inequality holds for any ε′ ≥ p2(2+4β−2αβ)+rp(1+αβ)
pk = O(1/k). Hence, this example

shows a locality gap of 2− o(1) when α ≤ min(2, 4/3 + 1/(3β)).

Subcase II: α > 4/3 + 1/(3β). Since we focus on α ≤ 2 and β ≤ 1, this subcase implies that
β > 1/2 and α > 5/3. To deal with it, we create a double-bi-clique presented in Figure A.10 with
d = 2. Note that every client has two local facilities at distance 2, and k+r−2 facilities at distance
4. Then for each client, we get the following potential differences:

∆Φco = 1 + αβ − 2− 2β = −1 + αβ − 2β

∆Φc1 = 2 + 2αβ − 2− 2β ≥ 2αβ − 2β

∆Φc2 = 2 + 2αβ − 2− 2β ≥ 2αβ − 2β
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∆Φc3 = 0

Let p1 and p2 be the number of optimal facilities in the first clique that belong to the swap. Let
p2 be the number of optimal facilities in the second clique that belong to the swap. Then we have
|Co| = k+r

2 p1 + k+r
2 p2 = k+r

2 p. Similarly let p′1 and p′2 be the number of local facilities in the first
and second clique that belong to the swap. Then we have |C1| = p′1(k2 −p1)+p′2(k2 −p2) ≥ (k2 −p)p.
Also note that |C2| ≥ (k2 − p)p. Summing up gives∑

c∈C
∆Φc ≥ p/2(k + r)(−1 + αβ − 2β) + 2p(k/2− p)(2αβ − 2β)

≥ pk/2(−1 + 5αβ − 6β)− rp/2(1 + 2β − αβ)− 2p2(2αβ − 2β)

≥ pk(1/12)− r/2p(1 + 2β − αβ)− 2p2(2αβ − 2β) ≥ 0(for α > 5/3 and β > 1/2.)

The last inequality holds for r ≤ k
24(1+2β−αβ) and p ≤ k

48(2αβ−2β) . Since r and p are absolute
constant (i.e, o(k)), the inequality is valid for big enough k. Hence, this example shows a locality
gap of 2 when 4/3 + 1/3β ≤ α ≤ 2, in particular when β > 1/2 and 2 ≥ α ≥ 5/3 This concludes
therefore the case α ≤ 2.

A.2 When β ≤ 1/2 and α > 2

In this section we give a bi-clique example showing a locality gap when β ≤ 1/3 and α > 2. for
constant-sized swap. Consider the bi-clique graph in Figure A.9 with distance d = min{3 − 2β −
ε′, α}. We divide the case into two subcases. In first case we consider when 3− 2β ≤ α. Then we
consider when 3− 2β > α.

Subcase I: 3−2β ≤ α. We will first consider the case when 3−2β ≤ α. In that case, the current
potential value of a client in the local solution is Φc(F ) = (3 − 2β − ε′) + β(5 − 2β − ε′) (since
α > 2 ≥ 5−2β

3−2β for β ≤ 1/2).

For the p(k+ r) clients in Co, where k+ r is the number of local facilities, if 3− 2β − ε′ ≤ α we get
the following potential difference:

∆Φco ≥ 1 + β(3− 2β − ε′)− (3− 2β − ε′)− β(5− 2β − ε′) = −2 + ε′

Note that if a client’s f∗ is opened but its f1 is closed, the client contributes 1 + β(5− 2β − ε′) ≥
1 + β(3− 2β − ε′), and hence the above inequality is still valid for those clients.

There are p(k − p) clients in C1, and they induce the following potential difference:

∆Φc1 = (5− 2β − ε′) + β(5− 2β − ε′)− (3− 2β − ε′)− β(5− 2β − ε′) = 2

Finally, clients in C3 and C4 do not induce a change in the potential value.

The sum over all clients yields∑
c∈C

∆Φc ≥ p(k + r)(ε′ − 2) + 2p(k − p)

= pk(0) + p(k + r)(ε′)− 2(pr)− 2p2 ≥ 0.

The last inequality holds for any ε′ ≥ 2pr+2p2

p(k+r) = O(1/k).

Hence, in the case where α ≥ 2, β ≤ 1/2 and 3 − 2β ≤ α, this example shows a locality gap of
3− 2β − o(1) ≥ 2.
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Case II: 2 ≤ α ≤ 3 − 2β. When 2 ≤ α ≤ 3 − 2β, client’s closest distance is now α. Thus the
potential value of a client before any swap is Φc(F ) = α+(2+α)β. Note that 2+α ≤ α2 for α ≥ 2.
We have the same number of clients in each set. Furthermore, we get the potential differences:

∆Φco ≥ 1 + αβ − α− (2 + α)β ≥ 1− α− 2β

∆Φc1 = (2 + α) + (2 + α)β − α− (2 + α)β = 2

∆Φc2 = 0

∆Φc3 = 0

The sum over all clients yields∑
c∈C

∆Φc ≥ p(k + r)(1− α− 2β) + p(k − p)(2)

≥ pk(3− 2β − α) + pr(1− α− 2β)− 2p2

≥ pkε′ − pr(α+ 2β − 1)− 2p2 ≥ 0.(α ≤ 3− 2β − ε′)

The last inequality holds for any ε′ ≥ pr(α−1−2β)+2p2

pk = O(1/k).

Hence, in the case where α ≤ 3−2β, α ≥ 2 and β ≤ 1/3, this example shows a locality gap of α ≥ 2.

A.3 When β > 1/2 and α > 2

Finally we give lower bound examples when β > 1/2 and α > 2. We use double-bi-clique in described
Figure A.10 with d = min{1 + 4β − ε′, α}.

Subcase I: 1 + 4β ≤ α. Here, the current potential function value for a client is Φc(F ) =
(1 + 4β − ε′) + β(1 + 4β − ε′).

There are p(k+r
2 ) clients in Co, and the potential difference for a client co ∈ Co is

∆Φco = 1 + β(1 + 4β − ε′)− (1 + β)(1 + 4β − ε′) = −4β + ε′.

There are at least p(k2 − p) clients in C1. Recall α > 2 ≥ 3+4β−ε′
1+4β−ε′ for β > 1/2. The potential

difference for c1 ∈ C1 is

∆Φc1 = (1 + 4β − ε′) + β(3 + 4β − ε′)− (1 + β)(1 + 4β − ε′) = 2β

There are p(k2 − p) clients in C2, and they get the same swap value as clients in C1. Clients in C3
do not induce any change in the potential.

Then sum over all clients yields

∑
c∈C

∆Φc ≥ −4βp

(
k + r

2

)
+ ε′p

(
k + r

2

)
+ 4β

(
pk

2
− p2

)
= ε′

(
p(k + r)

2

)
− 4βp (p+ r/2) ≥ 0

The difference in potential function is therefore positive for all ε′ > 4βr+8βp
(k+r) = O

(
1
k

)
. Hence, this

example shows a locality gap of 1 + 4β − o(1) ≥ 2− o(1) when α ≥ max(2, 1 + 4β) and β ≥ 1/2.
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Case II: 2 ≤ α ≤ 1 + 4β. When α ≤ 1 + 4β, clients’ closest and the second closest local facilities
are both at distance α. Thus the current potential value for a client is Φc(F ) = α + αβ. We have
the same number of clients in each set. We get the following potential differences:

∆Φco = 1 + αβ − α− αβ ≥ 1− α
∆Φc1 = α+ (2 + α)β − α− αβ = 2β(Note 2 ≤ α implies (2 + α) ≤ α2.)
∆Φc2 = α+ (2 + α)β − α− αβ = 2β

∆Φc3 = 0

The sum over all clients yields∑
c∈C

∆Φc ≥ p
(
k + r

2

)
(1− α) + 2(pk/2− p2)(2β)

≥ pk

2
(1− α+ 4β)− pr

2
(α− 1)− 2p2(2β)

≥ pk

2
(ε′)− pr

2
(α− 1)− 2p2(2β) ≥ 0(α ≤ 1 + 4β − ε′)

The last inequality holds for any ε′ ≥ pr(α−1)+8p2β
pk = O(1/k). Hence, this example shows a locality

gap of α− o(1) ≥ 2− o(1) when 2 ≤ α ≤ 1 + 4β and β ≥ 1/2.

B Motivating our Swaps

In this section we present examples that motivate our choice of potential function and our swaps.
In particular they show that the swap structures defined in previous works are not powerful enough
to prove our results.

100 clients

1 client
ALG1

ALG2

OPT2 OPT1

3 3

11

3.99 0 3.99

ALG3

ALG4

OPT4 OPT3

3 3

11

3.99 0 3.99

Figure B.11: A bad scenario for the swap structures defined by [GT08].

The analysis in [GT08] matches each optimal facility to its closest local facility. So it matches
both OPT1, OPT2 to ALG2 and both OPT3, OPT4 to ALG4, leaving ALG1 and ALG3 with no
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facility of opt matched to them. Hence, two swaps are defined: (1) swapping in OPT1 and OPT2
and removing ALG2 and ALGj for some j ∈ {1, 3} that remains unspecified in their analysis, and
(2) swapping in OPT3 and OPT4 and removing ALG4 and ALG(4-j). Now, if we consider the
swaps defined by choosing j = 3, the set of equations obtained does not allow us to deduce that
the solution is not a local optimum, as long as α > 5/3 and for any β < 1.

Figure B.12: A bad scenario for the swap structures defined by Arya et al. [AGK+01].

The definition of the swap structure in [AGK+01] does not uniquely identify which local facility is
matched to which optimal facility. Hence, if the analysis matches ALG1 with OPT4, ALG2 with
OPT3, ALG3 with OPT2 and ALG4 with OPT1, the set of linear equations obtained does not
allow us to deduce that the instance is not a local optimum.

C Useful Inequalities

In this section, we prove the inequalities in Table 2. We also give some more inequalities in Table 3;
these will be used in §D.

Bound Coundition
d2 ≥ (1/ρ) d1 − (1 + 1/ρ) d∗ (C.40) η1(f∗) = f1

d2 ≤ d∗ + (1/ρ)(d1 + d∗) (C.41) η1(f∗) = f1

d(c, η2(f∗)) ≤ d∗ + 1/ρ(d∗ + d1) (C.42) η1(f∗) = f1

d2 ≤ d∗ + ρ(d1 + d∗) (C.43) η1(f∗) 6= f1

d(c, η1(f∗)) ≤ d∗ + ρ(d∗ + d1) ≤ 2d∗ + d1 (C.44) η1(f∗) 6= f1

d(c, η2(f∗)) ≤ 2d∗ + d1 (C.45) η1(f∗) 6= f1

d(c, π(f2)) ≤ 2d2 + d∗ (C.46) η1(f∗) 6= f1

Table 3: More useful inequalities
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For clients c with η1(f∗) = f1:

d2 ≥ d(f∗, η2)− d∗ = 1
ρd(f∗, η1)− d∗ ≥ (1/ρ) d1 − (1 + 1/ρ) d∗, (proving (C.40))

d2 ≤ d∗ + d(f∗, η2) = d∗ + 1
ρd(f∗, η1) ≤ d∗ + 1

ρ (d1 + d∗). (proving (C.41))

d(c, η2) ≤ d(c, f∗) + d(f∗, η2) = d∗ + (1/ρ)d(f∗, f1) ≤ d∗ + 1/ρ(d∗ + d1). (proving (C.42))

Else when η1(f∗) 6= f1:

d(c, η1) ≤ d(c, f∗) + d(f∗, η1) = d(c, f∗) + ρ d(f∗, η2) ≤ d∗ + ρ(d∗ + d1) (proving (C.44))
d(c, η2) ≤ d(c, f∗) + d(f∗, η2) ≤ d∗ + (d∗ + d1). (proving (C.45))

d2 ≤ d(c, η1)
(C.44)
≤ d∗ + ρ(d1 + d∗), (proving (C.43) and (6.7))

Combining (C.44) and (C.45) gives (6.9).

Recalling that π(f) is the closest optimal facility to f , we get for any client c,

d(c, π(f1)) ≤ d(c, f1) + d(f1, π(f1)) ≤ d1 + d(f1, f
∗) ≤ 2d1 + d∗ (proving (6.8))

d(c, π(f2)) ≤ d(c, f2) + d(f2, π(f2)) ≤ d2 + d(f2, f
∗) ≤ 2d2 + d∗. (proving (C.46))

To prove (6.10), we use that for any a, b ≥ 0 and β ≤ 1, the expression min(a, b) + β max(a, b) =
min(a+βb, b+βa) is smaller than any convex combination (1−λ)(a+βb)+λ(b+βa) with λ ∈ [0, 1].
Setting λ = β

1−β and simplifying gives (1−β)a+2βb. Using a = d∗ and b = d1 completes the proof.

D Proof of Lemma 6.3

We now present the proof of Lemma 6.3, giving bounds for all the client types other than type E.
The idea is the same for each one: First we fix a client c of some type. We partition the amenable
event into some sub-events, and look on some sub-event E . We consider a generic swap set P
generated under that event, and give an upper bound for the maximum potential change for client
c due to these swaps. Combining over all sub-events (with the correct probability values) gives the
expected potential change. The largest such change for each client type is then shown to be the
one recorded in Lemma 6.3.

When we prove upper bounds for the potential change caused by a swap set P, we assume that both
〈〈¬f1〉〉 and 〈〈¬f2〉〉 exist in P (if f is heavy 〈〈¬f〉〉 does not exist). As we mentioned in Section 6.2,
our bounds also hold in cases where either of them does not exist, because our upper bounds for
δ〈〈¬f〉〉 is non-negative as long as 〈〈f∗〉〉 6= 〈〈¬f〉〉 for any f ∈ {f1, f2}.
In the rest of this section, we prove each inequality from Lemma 6.3.

Lemma 6.3. For any far client c of type A or B, we have

∆A(c) ≤ 2.47 d∗(c)− 1.13 d1(c) +O(ε)(d∗ + d1)(6.17)

For any close client ci of type i ∈ {A,B,C,D}, we have

∆A(cA) ≤ 2.375 d∗(cA)− 0.9 d1(cA) +O(ε)(d∗ + d1)(6.18)
∆A(cB) ≤ 2.4 d∗(cB)− 0.9 d1(cB) +O(ε)(d∗ + d1)(6.19)
∆A(cC) ≤ 2.2 d∗(cC)− 0.8888 d1(cC) +O(ε)(d∗ + d1)(6.20)
∆A(cD) ≤ 2.5203 d∗(cD)− 0.8888 d1(cD) +O(ε)(d∗ + d1)(6.21)
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D.1 Proof of (6.17): Far Clients of Type A and B

In this section, we show that for any far case client c of type A or B, we have

∆A(c) ≤ 2.467 d∗(c)− 1.13085 d1(c) +O(ε)(d∗ + d1).

We give different analysis depending on whether f∗ points to η1 or η2; this is different from our
type E analysis, where our bounds are the same in both cases. Formally, we partition the amenable
event A as the union of S1 ∩ A, S2 ∩ A, T1 ∩ A, and T2 ∩ A. We upper-bound ∆A(c) by

∆A(c) ≤ Pr[S1 ∩ A]δS1∩A(c) + Pr[S2 ∩ A]δS2∩A(c) + Pr[T1 ∩ A]δT1∩A(c) + Pr[T2 ∩ A]δT2∩A(c)

≤ Pr[S1]δS1∩A(c) + Pr[S2]δS2∩A(c) + Pr[T1]δT1∩A(c) + Pr[T2]δT2∩A(c) +O(ε)(d∗ + d1).(D.47)

The probabilities Pr[S1],Pr[S2],Pr[T1],Pr[T2] are given in Table 1. We proceed by showing upper-
bounds for the δ values, the potential changes of client c on the worst-case swap set P, for far clients
of type A and B in the following subsections.

D.1.1 Far clients of type A: f1 = η1

Simple swaps with τ(f∗) = η1 Type A clients have f1 = η1, which is the same as τ(f∗), so we
have 〈〈f∗〉〉 = 〈〈¬f1〉〉 in P by implication (ii) of amenability. On that swap, the client can be served
by f∗. Therefore,

δS1∩A(c) ≤ (1 + αβ) d∗ − (1 + αβ) d1 .(δ〈〈f∗,¬f1〉〉)

Simple swaps with τ(f∗) = η2 Since τ(f∗) = η2 6= f1, we know 〈〈f∗〉〉 6= 〈〈¬f1〉〉 by implication
(Siv) of amenability. On swap 〈〈f∗〉〉, c can be served by both f∗ and f1. On swap 〈〈¬f1〉〉, c can
be served by η2 (by implication (Siii) of amenability). Note that d(c, η2) ≤ d∗ + 1/ρ · (d∗ + d1) by
(C.42). Therefore,

δS2∩A(c) ≤ d1 + β d∗ − (1 + αβ) d1(δ〈〈f∗〉〉)
+ (1 + αβ)(d∗ + 1/ρ · (d∗ + d1))− (1 + αβ) d1(δ〈〈¬f1〉〉)

= ((1 + 1/ρ)(1 + αβ) + β) d∗ − ((1− 1/ρ)(1 + αβ) + αβ) d1 .

Tree swaps with τ(f∗) = η1 We have 〈〈f∗〉〉 = 〈〈¬f1〉〉 by implication (ii) of amenability. On
that swap, the client can be served by 〈〈f∗〉〉. Therefore,

δT1∩A(c) ≤ (1 + αβ) d∗ − (1 + αβ) d1 .(δ〈〈f∗,¬f1〉〉)

Tree swaps with τ(f∗) = η2 If 〈〈f∗〉〉 = 〈〈¬f1〉〉, then we have the same bound as above:∑
(P,Q)∈P

δ(P,Q)(c) ≤ (1 + αβ) d∗ − (1 + αβ) d1.(D.48)

If 〈〈f∗〉〉 6= 〈〈¬f1〉〉, then on swap 〈〈¬f1〉〉, c can be served by η2 and π(f1), by implications (ii) and (Tii)
of amenability. We already showed d(c, η2) ≤ d∗+1/ρ ·(d∗+d1). We also have d(c, π(f1)) ≤ 2d1 +d∗

by (6.8). Therefore,∑
(P,Q)∈P

δ(P,Q)(c) ≤ d1 + β d∗ − (1 + αβ) d1(δ〈〈f∗〉〉)
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+ (d∗ + 1/ρ · (d∗ + d1)) + β(2d1 + d∗)− (1 + αβ) d1(δ〈〈¬f1〉〉)
= (1 + 1/ρ + 2β) d∗ − (1 + 2αβ − 2β − 1/ρ) d1.(D.49)

For our choice of α, β, (D.49) is larger than (D.48), so we have

δT2∩A(c) ≤ (1 + 1/ρ + 2β) d∗ − (1 + 2αβ − 2β − 1/ρ) d1 .

Summarizing, we have

δS1∩A(c) ≤(1 + αβ) d∗ − (1 + αβ) d1 = 1.6 d∗ − 1.6 d1

δS2∩A(c) ≤((1 + 1/ρ)(1 + αβ) + β) d∗ − ((1− 1/ρ)(1 + αβ) + αβ) d1

= (1.8 + 1.6/ρ) d∗ − (2.2− 1.6/ρ) d1

δT1∩A(c) ≤(1 + αβ) d∗ − (1 + αβ) d1 = 1.6 d∗ − 1.6 d1

δT2∩A(c) ≤(1 + 1/ρ + 2β) d∗ − (1 + 2αβ − 2β − 1/ρ) d1 = (1.4 + 1/ρ) d∗ − (1.8− 1/ρ) d1

We now combine these inequalities using (D.47). If ρ(f∗) ≤ 2/3, we have Pr[S1] = Pr[T1] = 1/2 and
Pr[S2] = Pr[T2] = 0. Therefore,

∆A(c) ≤ 1/2 · δS1∩A(c) + 1/2 · δT1∩A(c) +O(ε)(d∗ + d1)

≤ 1.6 d∗ − 1.6 d1 +O(ε)(d∗ + d1).

If 2/3 < ρ(f∗) ≤ 3/4, we have Pr[S1] = 1/2,Pr[S2] = 0,Pr[T1] = 1/4,Pr[T2] = 1/4. Therefore,

∆A(c) ≤ 1/2 · δS1∩A(c) + 1/4 · δT1∩A(c) + 1/4 · δT2∩A(c) +O(ε)(d∗ + d1)

≤ 3/4 · (1.6 d∗ − 1.6 d1) + 1/4 · ((1.4 + 3/2)d∗ − (1.8− 3/2)d1) +O(ε)(d∗ + d1)

= 1.925 d∗ − 1.275 d1 +O(ε)(d∗ + d1).

If ρ(f∗) > 3/4, we have Pr[S1] = 5/4− ρ,Pr[S2] = ρ− 3/4,Pr[T1] = Pr[T2] = 1/4. Therefore,

∆A(c) ≤ (5/4− ρ) · δS1∩A(c) + (ρ− 3/4) · δS2∩A(c) + 1/4 · δT1∩A(c) + 1/4 · δT2∩A(c) +O(ε)(d∗ + d1)

≤ (3 + 0.2ρ− 0.95/ρ) d∗ − (0.6ρ+ 0.95/ρ− 0.4) d1 +O(ε)(d∗ + d1)

≤ (3 + 0.2− 0.95) d∗ − (0.6 + 0.95− 0.4) d1 +O(ε)(d∗ + d1)

= 2.25 d∗ − 1.15 d1 +O(ε)(d∗ + d1).

D.1.2 Far clients of type B: f1 = η2

When c is a far client of type B, we have 〈〈f∗〉〉 = 〈〈¬f1〉〉 on S2 ∩A and T2 ∩A. This is exactly the
situation for type A clients on S1 ∩ A and T1 ∩ A. Therefore, we have the same bound for all of
these cases:

δS2∩A(c) ≤ (1 + αβ) d∗ − (1 + αβ) d1 ,(δ〈〈f∗,¬f1〉〉)

δT2∩A(c) ≤ (1 + αβ) d∗ − (1 + αβ) d1 .(δ〈〈f∗,¬f1〉〉)

We continue to bound δS1∩A(c) and δT1∩A(c).
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Simple swaps with τ(f∗) = η1 By implication (Siv) of amenability, we have 〈〈f∗〉〉 6= 〈〈¬f1〉〉.
On swap 〈〈f∗〉〉, the client can be served by f∗ and f1. On swap 〈〈¬f1〉〉, the client can be served by
η1 (by implication (Siii) of amenability). Also, d(c, η1) ≤ d∗ + ρ(d∗ + d1) by (C.44). Therefore,

δS1∩A(c) ≤ d1 + β d∗ − (1 + αβ) d1(δ〈〈f∗〉〉)
+ (1 + αβ)(d∗ + ρ(d∗ + d1))− (1 + αβ) d1(δ〈〈¬f1〉〉)

= ((1 + ρ)(1 + αβ) + β) d∗ − ((1− ρ)(1 + αβ) + αβ) d1 .

Tree swaps with τ(f∗) = η1 If 〈〈f∗〉〉 = 〈〈¬f1〉〉, then we have∑
(P,Q)∈P

δ(P,Q)(c) ≤ (1 + αβ) d∗ − (1 + αβ) d1.(D.50)

If 〈〈f∗〉〉 6= 〈〈¬f1〉〉, then on swap 〈〈¬f1〉〉, c can be served by η1 and π(f1) by implications (ii) and
(Tii) of amenability. We showed d(c, η1) ≤ d∗ + ρ(d∗ + d1). We also have d(c, π(f1)) ≤ 2d1 + d∗ by
(6.8). Therefore, ∑

(P,Q)∈P

δ(P,Q)(c) ≤ d1 + β d∗ − (1 + αβ) d1(δ〈〈f∗〉〉)

+ (d∗ + ρ(d∗ + d1)) + β(2d1 + d∗)− (1 + αβ) d1(δ〈〈¬f1〉〉)
= (1 + ρ+ 2β) d∗ − (1 + 2αβ − 2β − ρ) d1.(D.51)

Taking the maximum of (D.50) and (D.51) using α = 3, β = 0.2, we have

δT1∩A(c) ≤ (1.4 + max{ρ, 0.2}) d∗ − (1.8−max{ρ, 0.2}) d1 .

Summarizing, we have

δS1∩A(c) ≤ ((1 + ρ)(1 + αβ) + β) d∗ − ((1− ρ)(1 + αβ) + αβ) d1

= (1.8 + 1.6ρ) d∗ − (2.2− 1.6ρ) d1

δS2∩A(c) ≤ (1 + αβ) d∗ − (1 + αβ) d1 = 1.6 d∗ − 1.6 d1

δT1∩A(c) ≤ (1.4 + max{ρ, 0.2}) d∗ − (1.8−max{ρ, 0.2}) d1

δT2∩A(c) ≤ (1 + αβ) d∗ − (1 + αβ) d1 = 1.6 d∗ − 1.6 d1

We now combine these inequalities using (D.47). If ρ(f∗) ≤ 2/3, we have Pr[S1] = Pr[T1] = 1/2 and
Pr[S2] = Pr[T2] = 0. Therefore,

∆A(c) ≤ 1/2 · δS1∩A(c) + 1/2 · δT1∩A(c) +O(ε)(d∗ + d1)

≤ 1/2 · ((1.8 + 1.6× 2/3)d∗ − (2.2− 1.6× 2/3)d1)

+ 1/2 · ((1.4 + 2/3)d∗ − (1.8− 2/3)d1)

+O(ε)(d∗ + d1)

≤ 2.46667d∗ − 1.13333d1 +O(ε)(d∗ + d1).

If 2/3 < ρ(f∗) ≤ 3/4, we have Pr[S1] = 1/2,Pr[S2] = 0,Pr[T1] = 1/4,Pr[T2] = 1/4. Therefore,

∆A(c) ≤ 1/2 · δS1∩A(c) + 1/4 · δT1∩A(c) + 1/4 · δT2∩A(c) +O(ε)(d∗ + d1)
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≤ 1/2 · ((1.8 + 1.6× 3/4)d∗ − (2.2− 1.6× 3/4)d1)

+ 1/4 · ((1.4 + 3/4)d∗ − (1.8− 3/4)d1)

+ 1/4 · (1.6d∗ − 1.6d1)

+O(ε)(d∗ + d1)

= 2.4375d∗ − 1.1625d1 +O(ε)(d∗ + d1).

If ρ(f∗) > 3/4, we have Pr[S1] = 5/4− ρ,Pr[S2] = ρ− 3/4,Pr[T1] = Pr[T2] = 1/4. Therefore,

∆A(c) ≤ (5/4− ρ) · δS1∩A(c) + (ρ− 3/4) · δS2∩A(c) + 1/4 · δT1∩A(c) + 1/4 · δT2∩A(c) +O(ε)(d∗ + d1)

≤ (1.8 + 2.05ρ− 1.6ρ2)d∗ − (2.4− 2.85ρ+ 1.6ρ2)d1 +O(ε)(d∗ + d1)

≤ (1.8 + 2.05 · 3/4− 1.6 · (3/4)2)d∗ − (2.4− 2.85 · 2.85/3.2 + 1.6 · (2.85/3.2)2)d1 +O(ε)(d∗ + d1)

≤ 2.4375d∗ − 1.13085d1 +O(ε)(d∗ + d1).

D.2 Proof of (6.18): Close Clients of Type A

In this section, we show that for any close case client c with type A, we have

∆A(c) ≤ 2.375 d∗(c)− 0.9 d1(c).

D.2.1 Clients with ρ(f∗) ≤ 2/3

We first consider the case where ρ(f∗) ≤ 2/3. Our analysis for this case is very simple: we directly
use ∆A(c) ≤ Pr[A]δA(c) ≤ δA(c) +O(ε)(d∗ + d1) without considering sub-events of A.

Let us fix a generic swap set P generated on the amenable event A. ρ(f∗) ≤ 2/3 implies that
τ(f∗) always equals to η1 = f1. By implication (ii) of amenability, we have 〈〈f∗〉〉 = 〈〈¬f1〉〉 in P.
Therefore,

δA(c) ≤ (1 + αβ) d∗ − d1 − β d2(δ〈〈f∗,¬f1〉〉)
+ (1 + αβ) d1 − d1 − β d2(δ〈〈¬f2〉〉)

= (1 + αβ) d∗ − (1− αβ) d1 − 2β d2.

Note that this bound also holds when 〈〈¬f2〉〉 = 〈〈f∗,¬f1〉〉, because our bound for 〈〈f∗,¬f1〉〉 does
not require f2 to remain open after the swap and δ〈〈¬f2〉〉 is non-negative.

If d1 ≤ d∗, then we have

δA(c) ≤ (1 + αβ + β) d∗ − (1− αβ + β) d1 − 2β d2(d1 ≤ d∗)
≤ (1 + αβ + β) d∗ − (1− αβ + 3β) d1(d2 ≥ d1)

= 1.8 d∗ − d1 .

If d1 ≥ d∗, we have

δA(c) ≤ (1 + αβ) d∗ − (1− αβ) d1 − 2β d2

≤ (1 + αβ) d∗ − (1− αβ) d1 − 2β

(
1 + 1/ρ

2
d1 −

1 + 1/ρ

2
d∗
)

(averaging (C.40) with d2 ≥ d1)
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≤ (1 + αβ) d∗ − (1− αβ) d1 − 2β

(
5

4
d1 −

5

4
d∗
)

(ρ ≤ 2/3 and d∗ ≤ d1)

= (1 + αβ + 2.5β) d∗ − (1− αβ + 2.5β) d1

= 2.1 d∗ − 0.9 d1 .

D.2.2 Clients with ρ(f∗) > 2/3

Now we turn to close clients of type A with ρ(f∗) > 2/3. Our analysis for simple swaps adopts the
usual strategy:

∆S∩A(c) ≤ Pr[S1 ∩ A]δS1∩A(c) + Pr[S2 ∩ A]δS2∩A(c)

≤ Pr[S1]δS1∩A(c) + Pr[S2]δS2∩A(c) +O(ε)(d∗ + d1).

However, we will be a little more careful in our tree swaps analysis. We further partition the tree
events T1 and T2 as T1 = T11 ∪ T12 and T2 = T21 ∪ T22 in the following way. T11 is defined as the
intersection of T1 and the event that 〈〈f∗〉〉 is the only swap closing any facility in {f1, f2}. T21 is
defined as the intersection of T2 and the event that there is a swap which closes both f1 and f2

but does not open the original copy of f∗. T12 and T22 are defined accordingly: T12 = T1\T11 and
T22 = T2\T21.

Recall that ρ(f∗) > 2/3 implies Pr[T1] = Pr[T2] = 1/4. The naive way to bound ∆T ∩A(c) is by the
following:

∆T ∩A(c) ≤ Pr[T1]δT1∩A(c) + Pr[T2]δT2∩A(c) +O(ε)(d∗ + d1)

= 1/4 ·max{δT11∩A(c), δT12∩A(c)}+ 1/4 ·max{δT21∩A(c), δT22∩A(c)}+O(ε)(d∗ + d1).

If we ignore the O(ε)(d∗+ d1) term, the above bound is equal to 1/4 times the maximum of all four
sums: δT11∩A(c) + δT21∩A(c), δT11∩A(c) + δT22∩A(c), δT12∩A(c) + δT21∩A(c), δT12∩A(c) + δT22∩A(c).
However, by relating the probabilities of T11 and T21, we have the following lemma (proved in Ap-
pendix E.4), which gives an improved bound by not taking δT12∩A(c)+δT21∩A(c) into the maximum.

Lemma D.1 (Type A averaging). For a close client of type A with ρ(f∗) > 2/3, we have

∆T ∩A(c) ≤ 1/4 ·max{δT11∩A + δT21∩A, δT11∩A + δT22∩A, δT12∩A + δT22∩A}+O(ε)(d∗ + d1).

We now proceed to show upper bounds for the worst-case potential change on each event.

Simple swaps with τ(f∗) = η1 We have 〈〈f∗〉〉 = 〈〈¬f1〉〉 6= 〈〈¬f2〉〉 by implications (ii) and (Siv)
of amenability. On swap 〈〈f∗〉〉, the client can be served by f∗, and on 〈〈¬f2〉〉, the client can be
served by f1 (at distance d1) and η2 (at distance ≤ d∗ + 1/ρ · (d∗ + d1)), by implication (Siii) of
amenability. Therefore,

δS1∩A(c) ≤ (1 + αβ) d∗ − d1 − β d2(δ〈〈f∗,¬f1〉〉)
+ d1 + β(d∗ + 1/ρ · (d∗ + d1))− d1 − β d2(δ〈〈¬f2〉〉)

= (1 + αβ + β + β/ρ) d∗ − (1− β/ρ) d1 − 2β d2 .

Simple swaps with τ(f∗) = η2 By implications (Siii) and (Siv) of amenability, the three swaps
〈〈f∗〉〉,〈〈¬f1〉〉, 〈〈¬f2〉〉 are all different. On swap 〈〈f∗〉〉, the client can be served by f∗ and f1. On
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swap 〈〈¬f1〉〉, the client can be served by f2 and η2. On swap 〈〈¬f2〉〉, the client can be served by f1

and η2. Therefore,

δS2∩A(c) ≤ d∗ + β d1 − d1 − β d2(δ〈〈f∗〉〉)
+ d2 + β(d∗ + 1/ρ · (d∗ + d1))− d1 − β d2(δ〈〈¬f1〉〉)
+ d1 + β(d∗ + 1/ρ · (d∗ + d1))− d1 − β d2(δ〈〈¬f2〉〉)

= (1 + 2β + 2β/ρ) d∗ − (2− β − 2β/ρ) d1 + (1− 3β) d2 .

Tree swaps with τ(f∗) = η1 On T11 ∩ A, 〈〈f∗〉〉 is the only swap closing any facility in {f1, f2}
by the definition of T11. In other words, both 〈〈¬f1〉〉 and 〈〈¬f2〉〉 coincide with 〈〈f∗〉〉 as long as they
exist. Therefore,

δT11∩A(c) ≤ (1 + αβ) d∗ − d1 − β d2 .(δ〈〈f∗,¬f1,¬f2〉〉)

On T12∩A, we have 〈〈f∗〉〉 = 〈〈¬f1〉〉 6= 〈〈¬f2〉〉 by implication (ii) of amenability. On swap 〈〈f∗〉〉, the
client can be served by f∗. On swap 〈〈¬f2〉〉, the client can be served by f1 and π(f2) by implication
(Tii) of amenability. We have d(c, π(f2)) ≤ 2d2 + d∗ by (C.46). Therefore,

δT12∩A(c) ≤ (1 + αβ) d∗ − d1 − β d2(δ〈〈f∗,¬f1〉〉)
+ d1 + β(2 d2 + d∗)− d1 − β d2(δ〈〈¬f2〉〉)

= (1 + αβ + β) d∗ − d1 .

Tree swaps with τ(f∗) = η2 On T21 ∩ A, we have 〈〈¬f1〉〉 = 〈〈¬f2〉〉 6= 〈〈f∗〉〉. On swap 〈〈f∗〉〉,
the client can be served by f∗ and f1. On swap 〈〈¬f1,¬f2〉〉, the client can be served by η2 and
π(f1) by implications (ii) and (Tii) of amenability. We have d(c, η2) ≤ d∗ + 1/ρ · (d∗ + d1) and
d(c, π(f1)) ≤ 2d1 + d∗. Therefore,

δT21∩A(c) ≤ d∗ + β d1 − d1 − β d2(δ〈〈f∗〉〉)
+ (d∗ + 1/ρ(d∗ + d1)) + β(2d1 + d∗)− d1 − β d2(δ〈〈¬f1,¬f2〉〉)

= (2 + β + 1/ρ) d∗ − (2− 3β − 1/ρ) d1 − 2β d2 .

On T22 ∩A, we first consider the case where all three swaps 〈〈f∗〉〉, 〈〈¬f1〉〉, 〈〈¬f2〉〉 are different. On
swap 〈〈f∗〉〉, the client can be served by f∗. On swap 〈〈¬f1〉〉, the client can be served by f2 and
π(f1) (at distance ≤ 2d1 + d∗), by implication (Tii) of amenability. On swap 〈〈¬f2〉〉, the client
can be served by f1 and π(f2) (at distance ≤ 2d2 + d∗), again by implication (Tii) of amenability.
Therefore,

δT22∩A(c) ≤ (1 + αβ) d∗ − d1 − β d2(δ〈〈f∗〉〉)
+ d2 + β(2d1 + d∗)− d1 − β d2(δ〈〈¬f1〉〉)
+ d1 + β(2d2 + d∗)− d1 − β d2(δ〈〈¬f2〉〉)

≤ (1 + αβ + 2β) d∗ − (2− 2β) d1 + (1− β) d2 .

Since our bound for δ〈〈f∗〉〉(c) doesn’t require either f1 or f2 to remain open after the swap, and
both δ〈〈¬f1〉〉 and δ〈〈¬f2〉〉 are non-negative, the above bound also holds when 〈〈¬f1〉〉 and/or 〈〈¬f2〉〉
coincides with 〈〈f∗〉〉.
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Summarizing, we have

δS1∩A(c) ≤(1 + αβ + β + β/ρ) d∗ − (1− β/ρ) d1 − 2β d2

= (1.8 + 0.2/ρ) d∗ − (1− 0.2/ρ) d1 − 0.4 d2

δS2∩A(c) ≤(1 + 2β + 2β/ρ) d∗ − (2− β − 2β/ρ) d1 + (1− 3β) d2

= (1.4 + 0.4/ρ) d∗ − (1.8− 0.4/ρ) d1 + 0.4 d2

δT11∩A(c) ≤(1 + αβ) d∗ − d1 − β d2 = 1.6 d∗ − d1 − 0.2 d2

δT12∩A(c) ≤(1 + αβ + β) d∗ − d1 = 1.8 d∗ − d1

δT21∩A(c) ≤(2 + β + 1/ρ) d∗ − (2− 3β − 1/ρ) d1 − 2β d2

= (2.2 + 1/ρ) d∗ − (1.4− 1/ρ) d1 − 0.4 d2

δT22∩A(c) ≤(1 + αβ + 2β) d∗ − (2− 2β) d1 + (1− β) d2

= 2 d∗ − 1.6 d1 + 0.8 d2

We now combine these bounds to show an upper bound for ∆A(c) using Lemma D.1. Note that our
bound for δT11∩A(c) is smaller than our bound for δT12∩A(c), so we only need to consider cases where
the maximum in Lemma D.1 is attained at either δT11∩A(c) + δT21∩A(c) or δT12∩A(c) + δT22∩A(c).

When 2/3 < ρ(f∗) ≤ 3/4, we have Pr[S1] = 1/2 and Pr[S2] = 0. Therefore, if the maximum in
Lemma D.1 is attained at δT11∩A(c) + δT21∩A(c), we have

∆A(c) ≤ 1/2 · δS1∩A(c) + 1/4 · (δT11∩A(c) + δT21∩A(c)) +O(ε)(d∗ + d1)

≤ (1.85 + 0.35/ρ)d∗ − (1.1− 0.35/ρ)d1 − 0.35d2 +O(ε)(d∗ + d1)

≤ (1.85 + 0.35× 3/2)d∗ − (1.45− 0.35× 3/2)d1 +O(ε)(d∗ + d1)(d2 ≥ d1)

= 2.375d∗ − 0.925d1 +O(ε)(d∗ + d1).

If the maximum in Lemma D.1 is attained at δT12∩A(c) + δT22∩A(c), we have

∆A(c) ≤ 1/2 · δS1∩A(c) + 1/4 · (δT12∩A(c) + δT22∩A(c)) +O(ε)(d∗ + d1)

≤ (1.85 + 0.1/ρ)d∗ − (1.15− 0.1/ρ)d1 +O(ε)(d∗ + d1)

≤ (1.85 + 0.1× 3/2)d∗ − (1.15− 0.1× 3/2)d1 +O(ε)(d∗ + d1)

= 2 d∗ − d1 +O(ε)(d∗ + d1).

When ρ(f∗) > 3/4, we have Pr[S1] = 5/4 − ρ and Pr[S2] = ρ − 3/4. Therefore, if the maximum in
Lemma D.1 is attained at δT11∩A(c) + δT21∩A(c), we have

∆A(c) ≤ (5/4− ρ) · δS1∩A(c) + (ρ− 3/4) · δS2∩A(c) + 1/4 · (δT11∩A(c) + δT21∩A(c)) +O(ε)(d∗ + d1)

≤ (2.35 + 0.2/ρ− 0.4ρ)d∗ − (0.3− 0.2/ρ+ 0.8ρ)d1 − (0.95− 0.8ρ)d2 +O(ε)(d∗ + d1)

≤ (2.35 + 0.2/ρ− 0.4ρ)d∗ − (1.25− 0.2/ρ)d1 +O(ε)(d∗ + d1)
(d2 ≥ d1)

≤ (2.35 + 0.2× 4/3− 0.4× 3/4)d∗ − (1.25− 0.2× 4/3)d1 +O(ε)(d∗ + d1)

≤ 2.31667 d∗ − 0.98333 d1 +O(ε)(d∗ + d1).

If the maximum in Lemma D.1 is attained at δT12∩A(c) + δT22∩A(c), we have

∆A(c) ≤ (5/4− ρ) · δS1∩A(c) + (ρ− 3/4) · δS2∩A(c) + 1/4 · (δT12∩A(c) + δT22∩A(c)) +O(ε)(d∗ + d1)
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≤ (2.35− 0.05/ρ− 0.4ρ)d∗ − (0.35 + 0.05/ρ+ 0.8ρ)d1 + (0.8ρ− 0.6)d2 +O(ε)(d∗ + d1)

≤ (2.55− 0.65/ρ+ 0.4ρ)d∗ − (0.65/ρ+ 0.8ρ− 0.45)d1 +O(ε)(d∗ + d1)
(d2 ≤ d∗ + 1/ρ · (d∗ + d1))

≤ (2.55− 0.65 + 0.4)d∗ − (0.65 · 4/√13 + 0.8 ·
√

13/4− 0.45)d1 +O(ε)(d∗ + d1)

≤ 2.3 d∗ − 0.99222 d1 +O(ε)(d∗ + d1).

D.3 Proof of (6.19): Close Clients of Type B

In this section, we show that for any close case client c with type B, we have

∆A(c) ≤ 2.4 d∗(c)− 0.9 d1(c).

In our type A analysis, we further partitioned the tree events T1 and T2 as T1 = T11 ∪ T12 and
T2 = T21 ∪ T22. We require this partitioning also in our type B analysis, with the roles of η1 and η2

flipped. Specifically, we define T11 as the intersection of T1 and the event that there is a swap which
closes both f1 and f2 but does not open the original copy of f∗. We define T21 as the intersection
of T2 and the event that 〈〈f∗〉〉 is the only swap closing any facility in {f1, f2}. We define T12 and
T22 accordingly as T12 = T1\T11 and T22 = T2\T21. Similar to Lemma D.1, we have the following
lemma for type B:

Lemma D.2 (Type B averaging). For a close client of type B with ρ(f∗) > 2/3, we have

∆T ∩A(c) ≤ 1/4 ·max{δT11∩A + δT21∩A, δT12∩A + δT21∩A, δT12∩A + δT22∩A}+O(ε)(d∗ + d1).

We now proceed to bound the worst-case potential changes in different events.

Simple swaps with τ(f∗) = η1 By implications (Siii) and (Siv), all three swaps 〈〈f∗〉〉, 〈〈¬f1〉〉, 〈〈¬f2〉〉
are different. On swap 〈〈f∗〉〉, the client can be served by f∗ and f1. On swap 〈〈¬f1〉〉, the client
can be served by f2 and η1 by implication (Siii) of amenability. On swap 〈〈¬f2〉〉, the client can be
served by f1 and η1, again by implication (Siii) of amenability. Note that d(c, η1) ≤ d∗+ ρ(d∗+ d1)
by (C.44). Therefore,

δS1∩A(c) ≤ d∗ + β d1 − d1 − β d2(δ〈〈f∗〉〉)
+ d2 + β(d∗ + ρ(d∗ + d1))− d1 − β d2(δ〈〈¬f1〉〉)
+ d1 + β(d∗ + ρ(d∗ + d1))− d1 − β d2(δ〈〈¬f2〉〉)

= (1 + 2β + 2ρβ) d∗ − (2− β − 2ρβ) d1 + (1− 3β) d2 .

Simple swaps with τ(f∗) = η2 By implications (ii) and (Siv), we have 〈〈f∗〉〉 = 〈〈¬f1〉〉 6= 〈〈¬f2〉〉.
On swap 〈〈f∗〉〉, the client can be served by f∗. On swap 〈〈¬f2〉〉, the client can be served by f1 and
η1, by implication (Siii) of amenability. Therefore,

δS2∩A(c) ≤ (1 + αβ) d∗ − d1 − β d2(δ〈〈f∗,¬f1〉〉)
+ d1 + β(d∗ + ρ(d∗ + d1))− d1 − β d2(δ〈〈¬f2〉〉)

= (1 + αβ + β + ρβ) d∗ − (1− ρβ) d1 − 2β d2 .
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Tree swaps with τ(f∗) = η1 On T11 ∩A, we have 〈〈¬f1〉〉 = 〈〈¬f2〉〉 6= 〈〈f∗〉〉. On swap 〈〈f∗〉〉, the
client can be served by f∗ and f1. On swap 〈〈¬f1,¬f2〉〉, the client can be served by η1 and π(f1) by
implication (ii) and (Tii) of amenability. We have d(c, η1) ≤ d∗+ρ(d∗+d1) and d(c, π(f1)) ≤ 2d1+d∗

by (6.8). Therefore,

δT11∩A(c) ≤ d∗ + β d1 − d1 − β d2(δ〈〈f∗〉〉)
+ (d∗ + ρ(d∗ + d1)) + β(2d1 + d∗)− d1 − β d2(δ〈〈¬f1,¬f2〉〉)

≤ (2 + β + ρ) d∗ − (2− 3β − ρ) d1 − 2β d2 .

On T12 ∩A, we first consider the case where all three swaps 〈〈f∗〉〉, 〈〈¬f1〉〉, 〈〈¬f2〉〉 are different. On
swap 〈〈f∗〉〉, the client can be served by f∗. On swap 〈〈¬f1〉〉, the client can be served by f2 and η1.
On swap 〈〈¬f2〉〉, the client can be served by f1 and η1. After both 〈〈¬f1〉〉 and 〈〈¬f2〉〉, η1 is open
by implication (ii) of amenability. Therefore,

δT12∩A(c) ≤ (1 + αβ) d∗ − d1 − β d2(δ〈〈f∗〉〉)
+ d2 + β(d∗ + ρ(d∗ + d1))− d1 − β d2(δ〈〈¬f1〉〉)
+ d1 + β(d∗ + ρ(d∗ + d1))− d1 − β d2(δ〈〈¬f2〉〉)

≤ (1 + αβ + 2β + 2ρβ) d∗ − (2− 2ρβ) d1 + (1− 3β) d2 .

Since our bound for δ〈〈f∗〉〉(c) doesn’t require either f1 or f2 to remain open after the swap, the
above bound also holds when 〈〈¬f1〉〉 and/or 〈〈¬f2〉〉 coincides with 〈〈f∗〉〉.

Tree swaps with τ(f∗) = η2 On T21 ∩ A, 〈〈f∗〉〉 is the only swap closing any facility in {f1, f2}
by the definition of T21. In other words, both 〈〈¬f1〉〉 and 〈〈¬f2〉〉 coincide with 〈〈f∗〉〉 as long as they
exist. Therefore,

(δ〈〈f∗,¬f1,¬f2〉〉) δT21∩A(c) ≤ (1 + αβ) d∗ − d1 − β d2 .

On T22∩A, we have 〈〈f∗〉〉 = 〈〈¬f1〉〉 6= 〈〈¬f2〉〉 by implication (ii) of amenability. On swap 〈〈f∗〉〉, the
client can be served by f∗. On swap 〈〈¬f2〉〉, the client can be served by f1 and π(f2). Therefore,

δT22∩A(c) ≤ (1 + αβ) d∗ − d1 − β d2(δ〈〈f∗,¬f1〉〉)
+ d1 + β(2d2 + d∗)− d1 − β d2(δ〈〈¬f2〉〉)

= (1 + αβ + β) d∗ − d1 .

Summarizing, we have

δS1∩A(c) ≤(1 + 2β + 2ρβ) d∗ − (2− β − 2ρβ) d1 + (1− 3β) d2

= (1.4 + 0.4ρ) d∗ − (1.8− 0.4ρ) d1 + 0.4 d2

δS2∩A(c) ≤(1 + αβ + β + ρβ) d∗ − (1− ρβ) d1 − 2β d2 = (1.8 + 0.2ρ) d∗ − (1− 0.2ρ) d1 − 0.4 d2

δT11∩A(c) ≤(2 + β + ρ) d∗ − (2− 3β − ρ) d1 − 2β d2 = (2.2 + ρ) d∗ − (1.4− ρ) d1 − 0.4 d2

δT12∩A(c) ≤(1 + αβ + 2β + 2ρβ) d∗ − (2− 2ρβ) d1 + (1− 3β) d2

= (2 + 0.4ρ) d∗ − (2− 0.4ρ) d1 + 0.4 d2

δT21∩A(c) ≤(1 + αβ) d∗ − d1 − β d2 = 1.6 d∗ − d1 − 0.2 d2

δT22∩A(c) ≤(1 + αβ + β) d∗ − d1 = 1.8 d∗ − d1
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Now we combine these inequalities to get an upper bound for ∆A(c). When ρ(f∗) ≤ 2/3, we have
Pr[S1] = Pr[T1] = 1/2 and Pr[S2] = Pr[T2] = 0. Therefore,

∆A(c) ≤ 1/2 · δS1∩A(c) + 1/2 ·max{δT11∩A(c), δT12∩A(c)}+O(ε)(d∗ + d1).

If the maximum is attained at δT11∩A(c), we have

∆A(c) ≤ 1/2 · δS1∩A(c) + 1/2 · δT11∩A(c) +O(ε)(d∗ + d1)

≤ (1.8 + 0.7ρ)d∗ − (1.6− 0.7ρ)d1 +O(ε)(d∗ + d1)

≤ (1.8 + 0.7× 2/3)d∗ − (1.6− 0.7× 2/3)d1 +O(ε)(d∗ + d1)

= 2.26667d∗ − 1.13333d1 +O(ε)(d∗ + d1).

If the maximum is attained at δT12∩A(c), we have

∆A(c) ≤ 1/2 · δS1∩A(c) + 1/2 · δT12∩A(c) +O(ε)(d∗ + d1)

≤ (1.7 + 0.4ρ)d∗ − (1.9− 0.4ρ)d1 + 0.4d2 +O(ε)(d∗ + d1)

≤ (1.9 + 0.6ρ)d∗ − (1.3− 0.6ρ)d1 +O(ε)(d∗ + d1)
(d2 ≤ 1/2 · (d∗ + ρ(d∗ + d1)) + 1/2 · αd1)

≤ (1.9 + 0.6× 2/3)d∗ − (1.3− 0.6× 2/3)d1 +O(ε)(d∗ + d1)

= 2.3 d∗ − 0.9 d1 +O(ε)(d∗ + d1).

When ρ(f∗) > 2/3, we apply Lemma D.2 to combine the inequalities. Note that our bound for
δT21∩A(c) is smaller than our bound for δT22∩A(c), so we only need to consider cases where the
maximum in Lemma D.2 is attained at either δT11∩A(c) + δT21∩A(c) or δT12∩A(c) + δT22∩A(c).

When 2/3 < ρ(f∗) ≤ 3/4, we have Pr[S1] = 1/2,Pr[S2] = 0,Pr[T1] = Pr[T2] = 1/4. If the maximum in
Lemma D.2 is attained at δT11∩A(c) + δT21∩A(c), we have

∆A(c) ≤ 1/2 · δS1∩A(c) + 1/4 · (δT11∩A(c) + δT21∩A(c)) +O(ε)(d∗ + d1)

≤ (1.65 + 0.45ρ) d∗ − (1.5− 0.45ρ) d1 + 0.05 d2 +O(ε)(d∗ + d1)

≤ (1.65 + 0.45ρ) d∗ − (1.35− 0.45ρ) d1 +O(ε)(d∗ + d1)(d2 ≤ αd1)
≤ (1.65 + 0.45× 3/4)d∗ − (1.35− 0.45× 3/4)d1 +O(ε)(d∗ + d1)

= 1.9875d∗ − 1.0125d1 +O(ε)(d∗ + d1).

If the maximum in Lemma D.2 is attained at δT12∩A(c) + δT22∩A(c), we have

∆A(c) ≤ 1/2 · δS1∩A(c) + 1/4 · (δT12∩A(c) + δT22∩A(c)) +O(ε)(d∗ + d1)

≤ (1.65 + 0.3ρ) d∗ − (1.65− 0.3ρ) d1 + 0.3 d2 +O(ε)(d∗ + d1)

≤ (1.95 + 0.6ρ) d∗ − (1.65− 0.6ρ) d1 +O(ε)(d∗ + d1)(d2 ≤ d∗ + ρ(d∗ + d1))
≤ (1.95 + 0.6× 3/4)d∗ − (1.65− 0.6× 3/4)d1 +O(ε)(d∗ + d1)

= 2.4d∗ − 1.2d1 +O(ε)(d∗ + d1).

When ρ(f∗) > 3/4, we have Pr[S1] = 5/4−ρ,Pr[S2] = ρ− 3/4,Pr[T1] = Pr[T2] = 1/4. If the maximum
in Lemma D.2 is attained at δT11∩A(c) + δT21∩A(c), we have

∆A(c) ≤ (5/4− ρ) · δS1∩A(c) + (ρ− 3/4) · δS2∩A(c) + 1/4 · (δT11∩A(c) + δT21∩A(c)) +O(ε)(d∗ + d1)
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≤ (1.35 + ρ− 0.2ρ2) d∗ − (2.1− 1.4ρ+ 0.2ρ2) d1 + (0.65− 0.8ρ) d2 +O(ε)(d∗ + d1).

When ρ < 0.8125 = 0.65/0.8, we use d2 ≤ αd1:

∆A(c) ≤ (1.35 + ρ− 0.2ρ2) d∗ − (0.15 + ρ+ 0.2ρ2) d1 +O(ε)(d∗ + d1)

≤ (1.35 + 0.8125− 0.2× 0.81252)d∗ − (0.15 + 3/4 + 0.2× (3/4)2)d1 +O(ε)(d∗ + d1)

= 2.03047d∗ − 1.0125d1 +O(ε)(d∗ + d1).

When ρ ≥ 0.8125, we use d2 ≥ d1:

∆A(c) ≤ (1.35 + ρ− 0.2ρ2) d∗ − (1.45− 0.6ρ+ 0.2ρ2) d1 +O(ε)(d∗ + d1)

≤ (1.35 + 1− 0.2)d∗ − (1.45− 0.6 + 0.2)d1 +O(ε)(d∗ + d1)

= 2.15 d∗ − 1.05 d1 +O(ε)(d∗ + d1).

If the maximum in Lemma D.2 is attained at δT12∩A(c) + δT22∩A(c), we have

∆A(c) ≤ (5/4− ρ) · δS1∩A(c) + (ρ− 3/4) · δS2∩A(c) + 1/4 · (δT12∩A(c) + δT22∩A(c)) +O(ε)(d∗ + d1)

≤ (1.35 + 0.85ρ− 0.2ρ2) d∗ − (2.25− 1.25ρ+ 0.2ρ2) d1 + (0.9− 0.8ρ) d2 +O(ε)(d∗ + d1)

≤ (2.25 + 0.95ρ− ρ2) d∗ − (2.25− 2.15ρ+ ρ2) d1 +O(ε)(d∗ + d1)

(d2 ≤ d∗ + ρ(d∗ + d1))

≤ (2.25 + 0.95× 3/4− (3/4)2)d∗ − (2.25− 2.15 + 1)d1 +O(ε)(d∗ + d1)

= 2.4d∗ − 1.1d1 +O(ε)(d∗ + d1).

D.4 Proof of (6.20): Clients of Type C

In this section, we show that for any client c with type C, we have

∆A(c) ≤ 2.2 d∗(c)− 0.8888 d1(c).

If the client c satisfies ρ(f∗) ≤ 2/3, we have the same bound as in the type A case in Appendix D.2.1,
where our analysis was independent of whether f2 = η2 or not. That is

∆A(c) ≤ 2.1 d∗(c)− 0.9 d1(c) +O(ε)(d∗ + d1).

We thus focus on clients with ρ(f∗) > 2/3. Compared to our analysis for other client types, our
analysis for type C involves a larger neighborhood of the client. In particular, the optimal facility
g∗ := π(f1) and the local facilities close to it play a crucial role in our analysis. This makes it
important to consider finer-grained events. Recall that we used S1,S2, T1, T2 to denote simple/tree
events restricted to f∗ pointing to η1 or η2. We now also define events S ′1,S ′2, T ′1 , T ′2 similarly,
except that they depend on where g∗ points to, rather than f∗. We classify clients into subtypes
according to the characteristics of the swap sets generated on these events:

Claim D.3 (Subtypes within type C). For a client c of type C, one of the following is true:

(a) f1 is heavy.

(b) f2 is heavy.
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(c) A facility h is open near c after the simple swap closing f1. Formally, a facility h 6= f2 is
open after swap 〈〈¬f1〉〉 at distance d(c, h) ≤ 3d1 + 2d∗ on S ∩ A.

(d) g∗ 6= f∗, ρ(g∗) > 3/4, and for all b = 1, 2, any swap set P generated on S ′b ∩ A, a facility

h 6= f2 is open after swap 〈〈¬f1〉〉 at distance d(c, h) ≤
{

2d1 + d∗, if b = 1
2d1 + d∗ + 4/3(d1 + d∗), if b = 2

.

(e) For any swap set P generated on T2 ∩ A, 〈〈f∗〉〉 closes both f1 and f2.

(f) g∗ 6= f∗, ρ(g∗) > 2/3, and there exists b ∈ {1, 2} such that for any swap set P generated on
T ′b ∩ A, 〈〈f∗〉〉 closes both f1 and f2.

We prove this claim in Appendix E.5. Below we present our bounds for each of these subtypes.

D.4.1 When f1 is a heavy facility

f1 being heavy implies that the swap 〈〈¬f1〉〉 doesn’t exist. We thus focus on 〈〈f∗〉〉 and 〈〈¬f2〉〉.

Simple swaps with τ(f∗) = η1 By implication (Siv) of amenability, we have 〈〈f∗〉〉 6= 〈〈¬f2〉〉.
On swap 〈〈f∗〉〉, the client can be served by f∗, and on swap 〈〈¬f2〉〉, the client can be served by f1.
Therefore,

δS1∩A(c) ≤ (1 + αβ)d∗ − d1 − β d2(δ〈〈f∗〉〉)
+ (1 + αβ)d1 − d1 − β d2(δ〈〈¬f2〉〉)

= (1 + αβ)d∗ − (1− αβ)d1 − 2βd2 .

Tree swaps with τ(f∗) = η1 Let us first assume 〈〈f∗〉〉 6= 〈〈¬f2〉〉. On swap 〈〈f∗〉〉, the client can
be served by f∗, and on swap 〈〈¬f2〉〉, the client can be served by f1 and π(f2) by implication (Tii)
of amenability. Note that d(c, π(f2)) ≤ 2d2 + d∗ by (C.46). Therefore,

δT1∩A(c) ≤ (1 + αβ)d∗ − d1 − β d2(δ〈〈f∗〉〉)
+ d1 + β(2d2 + d∗)− d1 − β d2(δ〈〈¬f2〉〉)

= (1 + αβ + β)d∗ − d1 .

The inequality also holds when 〈〈f∗〉〉 = 〈〈¬f2〉〉 since our bound for δ〈〈f∗〉〉 does not require f2 to
remain open after the swap.

Simple & tree swaps with τ(f∗) = η2 We have 〈〈f∗〉〉 = 〈〈¬f2〉〉 by implication (ii) of amenabil-
ity. On that swap, the client can be served by f∗. Therefore,

δS2∩A(c) ≤ (1 + αβ)d∗ − d1 − β d2 ,(δ〈〈f∗,¬f2〉〉)

δT2∩A(c) ≤ (1 + αβ)d∗ − d1 − β d2 .(δ〈〈f∗,¬f2〉〉)

Summarizing, we have

δS1∩A(c) ≤(1 + αβ) d∗ − (1− αβ)d1 − 2β d2 = 1.6 d∗ − 0.4d1 − 0.4 d2

δS2∩A(c) ≤(1 + αβ) d∗ − d1 − β d2 = 1.6 d∗ − d1 − 0.2 d2

δT1∩A(c) ≤(1 + αβ + β) d∗ − d1 = 1.8 d∗ − d1

δT2∩A(c) ≤(1 + αβ) d∗ − d1 − β d2 = 1.6 d∗ − d1 − 0.2 d2
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We now combine these inequalities to get an upper bound for ∆A(c).

When 2/3 < ρ(f∗) ≤ 3/4, we have Pr[S1] = 1/2,Pr[S2] = 0,Pr[T1] = Pr[T2] = 1/4. Therefore,

∆A(c) ≤ 1/2 · δS1∩A(c) + 1/4 · δT1∩A(c) + 1/4 · δT2∩A(c) +O(ε)(d∗ + d1)

≤ 1.65 d∗ − 0.7 d1 − 0.25 d2 +O(ε)(d∗ + d1)

≤ 1.65 d∗ − 0.95 d1 +O(ε)(d∗ + d1).(d2 ≥ d1)

When ρ(f∗) > 3/4, we have Pr[S1] = 5/4− ρ,Pr[S2] = ρ− 3/4,Pr[T1] = Pr[T2] = 1/4. Therefore,

∆A(c) ≤ (5/4− ρ) · δS1∩A(c) + (ρ− 3/4) · δS1∩A(c) + 1/4 · δT1∩A(c) + 1/4 · δT2∩A(c) +O(ε)(d∗ + d1)

≤ 1.65 d∗ − (0.6ρ+ 0.25) d1 − (0.4− 0.2ρ) d2 +O(ε)(d∗ + d1)

≤ 1.65 d∗ − (0.4ρ+ 0.65) d1 +O(ε)(d∗ + d1)
(d2 ≥ d1)

≤ 1.65 d∗ − (0.4× 3/4 + 0.65) d1 +O(ε)(d∗ + d1)

= 1.65 d∗ − 0.95 d1 +O(ε)(d∗ + d1).

D.4.2 When f2 is a heavy facility

f2 being heavy implies that 〈〈¬f2〉〉 does not exist. We thus focus on 〈〈f∗〉〉 and 〈〈¬f1〉〉.

Simple & tree swaps with τ(f∗) = η1 We have 〈〈f∗〉〉 = 〈〈¬f1〉〉 by implication (ii) of amenabil-
ity. On that swap, the client can be served by f∗. Therefore,

δS1∩A(c) ≤ (1 + αβ)d∗ − d1 − β d2 ,(δ〈〈f∗,¬f1〉〉)

δT1∩A(c) ≤ (1 + αβ)d∗ − d1 − β d2 .(δ〈〈f∗,¬f1〉〉)

Simple swaps with τ(f∗) = η2 Implication (Siv) of amenability implies that 〈〈f∗〉〉 6= 〈〈¬f1〉〉.
On swap 〈〈f∗〉〉, the client can be served by f∗. On swap 〈〈¬f1〉〉, the client can be served by f2.
Therefore,

δS2∩A(c) ≤ (1 + αβ)d∗ − d1 − β d2(δ〈〈f∗〉〉)
+ (1 + αβ)d2 − d1 − β d2(δ〈〈¬f1〉〉)

= (1 + αβ)d∗ − 2 d1 + (1 + αβ − 2β)d2 .(D.52)

Tree swaps with τ(f∗) = η2 We first assume that 〈〈f∗〉〉 6= 〈〈¬f1〉〉. On swap 〈〈f∗〉〉, the client
can be served by f∗. On swap 〈〈¬f1〉〉, the client can be served by f2 and π(f1), by implication (Tii)
of amenability. Note that d(c, π(f1)) ≤ d1 + d(f1, π(f1)) ≤ 2d1 + d∗. Therefore,

δT2∩A(c) ≤ (1 + αβ)d∗ − d1 − β d2(δ〈〈f∗〉〉)
+ d2 + β(2d1 + d∗)− d1 − β d2(δ〈〈¬f1〉〉)

= (1 + αβ + β)d∗ − (2− 2β) d1 + (1− 2β)d2 .

The above inequality also holds when 〈〈f∗〉〉 = 〈〈¬f1〉〉 because our bound for δ〈〈f∗〉〉 does not require
f1 to remain open after the swap. and δ〈〈¬f1〉〉 is non-negative.
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Summarizing, we have

δS1∩A(c) ≤(1 + αβ) d∗ − d1 − β d2 = 1.6 d∗ − d1 − 0.2 d2

δS2∩A(c) ≤(1 + αβ) d∗ − 2 d1 + (1 + αβ − 2β) d2 = 1.6 d∗ − 2 d1 + 1.2 d2

δT1∩A(c) ≤(1 + αβ) d∗ − d1 − β d2 = 1.6 d∗ − d1 − 0.2 d2

δT2∩A(c) ≤(1 + αβ + β) d∗ − (2− 2β) d1 + (1− 2β) d2 = 1.8 d∗ − 1.6 d1 + 0.6 d2

We now combine these inequalities to get an upper bound for ∆A(c).

When 2/3 < ρ(f∗) ≤ 3/4, we have Pr[S1] = 1/2,Pr[S2] = 0,Pr[T1] = Pr[T2] = 1/4. Therefore,

∆A(c) ≤ 1/2 · δS1∩A(c) + 1/4 · δT1∩A(c) + 1/4 · δT2∩A(c) +O(ε)(d∗ + d1)

≤ 1.65 d∗ − 1.15 d1 +O(ε)(d∗ + d1).

When ρ(f∗) > 3/4, we have Pr[S1] = 5/4− ρ,Pr[S2] = ρ− 3/4,Pr[T1] = Pr[T2] = 1/4. Therefore,

∆A(c) ≤ (5/4− ρ) · δS1∩A(c) + (ρ− 3/4) · δS2∩A(c) + 1/4 · δT1∩A(c) + 1/4 · δT2∩A(c) +O(ε)(d∗ + d1)

≤ 1.65 d∗ − (ρ+ 0.4) d1 + (1.4ρ− 1.05) d2 +O(ε)(d∗ + d1)

≤ (2 + 1.4ρ− 1.05/ρ) d∗ − (ρ+ 1.05/ρ− 1) d1 +O(ε)(d∗ + d1)
(ρ > 3/4 and d2 ≤ d∗ + 1/ρ(d∗ + d1))

≤ (2 + 1.4− 1.05) d∗ − (1 + 1.05− 1) d1 +O(ε)(d∗ + d1)

= 2.35 d∗ − 1.05 d1 +O(ε)(d∗ + d1).

D.4.3 There exists h such that d(c, h) ≤ 3d1 + 2d∗ in simple swaps

Simple swaps with τ(f∗) = η1 By implications (ii) and (Siv) of amenablity, we know 〈〈f∗〉〉 =
〈〈¬f1〉〉 6= 〈〈¬f2〉〉. On swap 〈〈f∗,¬f1〉〉, the client can be served by f∗. On swap 〈〈¬f2〉〉, the client
can be served by f1. Therefore,

δS1∩A(c) ≤ (1 + αβ) d∗ − d1 − β d2(δ〈〈f∗,¬f1〉〉)
+ (1 + αβ) d1 − d1 − β d2(δ〈〈¬f2〉〉)

= (1 + αβ) d∗ − (1− αβ) d1 − 2β d2 .

Simple swaps with τ(f∗) = η2 By implications (ii) and (Siv) of amenablity, we know 〈〈f∗〉〉 =
〈〈¬f2〉〉 6= 〈〈¬f1〉〉. On swap 〈〈f∗,¬f2〉〉, the client can be served by f∗. On swap 〈〈¬f1〉〉, the client
can be served by f2 and h. Therefore,

δS2∩A(c) ≤ (1 + αβ) d∗ − d1 − β d2(δ〈〈f∗,¬f2〉〉)
+ d2 + β(3d1 + 2d∗)− d1 − β d2(δ〈〈¬f1〉〉)

= (1 + αβ + 2β) d∗ − (2− 3β) d1 + (1− 2β) d2 .

Tree swaps with τ(f∗) = η1 By implication (ii) of amenability, we know 〈〈f∗〉〉 = 〈〈¬f1〉〉. Let
us first assume that 〈〈¬f2〉〉 6= 〈〈f∗,¬f1〉〉. On swap 〈〈f∗,¬f1〉〉, the client can be served by f∗. On
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swap 〈〈¬f2〉〉, the client can be served by f1 and π(f2) by implication (Tii) of amenability. We have
d(c, π(f2)) ≤ 2d2 + d∗ by (C.46). Therefore,

δT1∩A(c) ≤ (1 + αβ) d∗ − d1 − β d2(δ〈〈f∗,¬f1〉〉)
+ d1 + β(2d2 + d∗)− d1 − β d2(δ〈〈¬f2〉〉)

= (1 + αβ + β) d∗ − d1 .

This inequality also holds when 〈〈¬f2〉〉 = 〈〈f∗,¬f1〉〉, because our bound for δ〈〈f∗,¬f1〉〉 does not
require f2 to remain open after the swap and δ〈〈¬f2〉〉 is non-negative.

Tree swaps with τ(f∗) = η2 By implication (ii) of amenability, we know 〈〈f∗〉〉 = 〈〈¬f2〉〉. Again,
let us first assume that 〈〈¬f1〉〉 6= 〈〈f∗,¬f2〉〉. On swap 〈〈f∗,¬f2〉〉, the client can be served by f∗.
On swap 〈〈¬f1〉〉, the client can be served by f2 and π(f1) by implication (ii) of amenability. We
have d(c, π(f1)) ≤ 2d1 + d∗ by (6.8). Therefore,

δT2∩A(c) ≤ (1 + αβ) d∗ − d1 − β d2(δ〈〈f∗,¬f2〉〉)
+ d2 + β(2d1 + d∗)− d1 − β d2(δ〈〈¬f1〉〉)

= (1 + αβ + β) d∗ − (2− 2β) d1 + (1− 2β) d2 .

This inequality also holds when 〈〈¬f1〉〉 = 〈〈f∗,¬f2〉〉, because our bound for δ〈〈f∗,¬f2〉〉 does not
require f1 to remain open after the swap and δ〈〈¬f1〉〉 is non-negative.

Summarizing, we have

δS1∩A(c) ≤(1 + αβ) d∗ − (1− αβ) d1 − 2β d2 = 1.6 d∗ − 0.4 d1 − 0.4 d2

δS2∩A(c) ≤(1 + αβ + 2β) d∗ − (2− 3β) d1 + (1− 2β) d2 = 2d∗ − 1.4 d1 + 0.6 d2

δT1∩A(c) ≤(1 + αβ + β) d∗ − d1 = 1.8 d∗ − d1

δT2∩A(c) ≤(1 + αβ + β) d∗ − (2− 2β) d1 + (1− 2β) d2 = 1.8 d∗ − 1.6 d1 + 0.6 d2

We now combine these inequalities to get an upper bound for ∆A(c).

When 2/3 < ρ(f∗) ≤ 3/4, we have Pr[S1] = 1/2,Pr[S2] = 0,Pr[T1] = Pr[T2] = 1/4. Therefore,

∆A(c) ≤ 1/2 · δS1∩A(c) + 1/4 · δT1∩A(c) + 1/4 · δT2∩A(c) +O(ε)(d∗ + d1)

≤ 1.7 d∗ − 0.85 d1 − 0.05 d2 +O(ε)(d∗ + d1)

≤ 1.7 d∗ − 0.9 d1 +O(ε)(d∗ + d1).(d2 ≥ d1)

When ρ(f∗) > 3/4, we have Pr[S1] = 5/4− ρ,Pr[S2] = ρ− 3/4,Pr[T1] = Pr[T2] = 1/4. Therefore,

∆A(c) ≤ (5/4− ρ) · δS1∩A(c) + (ρ− 3/4) · δS2∩A(c) + 1/4 · δT1∩A(c) + 1/4 · δT2∩A(c) +O(ε)(d∗ + d1)

≤ (1.4 + 0.4ρ) d∗ − (0.1 + ρ) d1 + (ρ− 0.8) d2 +O(ε)(d∗ + d1).

When ρ ≤ 0.8, we use d2 ≥ d1:

∆A(c) ≤ (1.4 + 0.4ρ) d∗ − 0.9 d1 +O(ε)(d∗ + d1)

≤ 1.72 d∗ − 0.9 d1 +O(ε)(d∗ + d1).
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When ρ > 0.8, we use d2 ≤ d∗ + d(f∗, d2) ≤ d∗ + 1/ρ · (d∗ + d1):

∆A(c) ≤ (1.6 + 1.4ρ− 0.8/ρ) d∗ − (ρ+ 0.8/ρ− 0.9) d1 +O(ε)(d∗ + d1)

≤ (1.6 + 1.4− 0.8) d∗ − (2
√

0.8− 0.9) d1 +O(ε)(d∗ + d1)

≤ 2.2 d∗ − 0.88885 d1 +O(ε)(d∗ + d1).

D.4.4 d(c, h) ≤ 2d1 + d∗ or d(c, h) ≤ 2d1 + d∗ + 4/3(d∗ + d1) in simple swaps

We have the same bound for ∆A(c) in this case as the previous case. Indeed, our previous bounds
for δS1∩A(c), δT1∩A(c) and δT2∩A(c) remain valid. We replace our bound for δS2∩A(c) by a bound
for

(D.53) δ′S2∩A(c) := Pr[S ′1|S2]δS′1∩S2∩A(c) + Pr[S ′2|S2]δS′2∩S2∩A(c).

We show that we can upper-bound δ′S2∩A(c) by the same expression as in (D.52). Our previous
bound for δS2∩A(c) is linear in d(c, h) with a non-negative coefficient: δS2∩A(c) ≤ A · d(c, h) + B
with A ≥ 0, so

δS′1∩S2∩A(c) ≤ A · (2d1 + d∗) +B

δS′2∩S2∩A(c) ≤ A · (2d1 + d∗ + 4/3(d∗ + d1)) +B.

Plugging them into (D.53), we have

δ′S2∩A(c) ≤ A · (Pr[S ′1|S2] · (2d1 + d∗) + Pr[S ′2|S2] · (2d1 + d∗ + 4/3(d∗ + d1))) +B

≤ A · (1/2 · (2d1 + d∗) + 1/2 · (2d1 + d∗ + 4/3(d∗ + d1))) +B

≤ A · (3d1 + 2d∗) +B.

D.4.5 〈〈f∗〉〉 closes f1 and f2 on T2 ∩ A

If τ(f∗) = η1, we get the same bounds as before:

δS1∩A(c) ≤ (1 + αβ) d∗ − (1− αβ) d1 − 2β d2 ,

δT1∩A(c) ≤ (1 + αβ + β) d∗ − d1 .

We continue to bound δS2∩A(c) and δT2∩A(c).

Simple swaps with τ(f∗) = η2 By implications (ii) and (Siv), we have 〈〈f∗〉〉 = 〈〈¬f2〉〉 6= 〈〈¬f1〉〉.
On swap 〈〈f∗,¬f2〉〉, the client can be served by f∗. On swap 〈〈¬f1〉〉, the client can be served by
f2. Therefore,

δS2∩A(c) ≤(1 + αβ) d∗ − d1 − β d2(δ〈〈f∗,¬f2〉〉)
+ (1 + αβ) d2 − d1 − β d2(δ〈〈¬f1〉〉)

= (1 + αβ) d∗ − 2 d1 + (1 + αβ − 2β) d2 .

Tree swaps with τ(f∗) = η2 On T2 ∩ A, we know 〈〈f∗〉〉 closes both f1 and f2. Therefore,

δT2∩A(c) ≤ (1 + αβ) d∗ − d1 − β d2 .(δ〈〈f∗,¬f1,¬f2〉〉)
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Summarizing, we have

δS1∩A(c) ≤(1 + αβ) d∗ − (1− αβ) d1 − 2β d2 = 1.6 d∗ − 0.4 d1 − 0.4 d2

δS2∩A(c) ≤(1 + αβ) d∗ − 2 d1 + (1 + αβ − 2β) d2 = 1.6 d∗ − 2 d1 + 1.2 d2

δT1∩A(c) ≤(1 + αβ + β) d∗ − d1 = 1.8 d∗ − d1

δT2∩A(c) ≤(1 + αβ) d∗ − d1 − β d2 = 1.6 d∗ − d1 − 0.2 d2

We now combine these inequalities to get an upper bound for ∆A(c).

When 2/3 < ρ(f∗) ≤ 3/4, we have Pr[S1] = 1/2,Pr[S2] = 0,Pr[T1] = Pr[T2] = 1/4. Therefore,

∆A(c) ≤ 1/2 · δS1∩A(c) + 1/4 · δT1∩A(c) + 1/4 · δT2∩A(c) +O(ε)(d∗ + d1)

≤ 1.65 d∗ − 0.7 d1 − 0.25 d2 +O(ε)(d∗ + d1)

≤ 1.65 d∗ − 0.95 d1 +O(ε)(d∗ + d1).(d2 ≥ d1)

When ρ(f∗) > 3/4, we have Pr[S1] = 5/4− ρ,Pr[S2] = ρ− 3/4,Pr[T1] = Pr[T2] = 1/4. Therefore,

∆A(c) ≤ (5/4− ρ) · δS1∩A(c) + (ρ− 3/4) · δS2∩A(c) + 1/4 · δT1∩A(c) + 1/4 · δT2∩A(c) +O(ε)(d∗ + d1)

≤ 1.65 d∗ − (1.6ρ− 0.5) d1 + (1.6ρ− 1.45) d2 +O(ε)(d∗ + d1).

When ρ ≤ 1.45/1.6, we use d2 ≥ d1:

∆A(c) ≤ 1.65 d∗ − 0.95 d1 +O(ε)(d∗ + d1).

When ρ > 1.45/1.6, we use d2 ≤ d∗ + 1/ρ · (d∗ + d1):

∆A(c) ≤ (1.8 + 1.6ρ− 1.45/ρ) d∗ − (1.6ρ+ 1.45/ρ− 2.1) d1 +O(ε)(d∗ + d1)

≤ (1.8 + 1.6− 1.45) d∗ − (2
√

1.6× 1.45− 2.1) d1 +O(ε)(d∗ + d1)

≤ 1.95 d∗ − 0.94630 d1 +O(ε)(d∗ + d1).

D.4.6 〈〈f∗〉〉 closes f1 and f2 on T ′b ∩ A for some b ∈ {1, 2}

Bounds for simple swaps remain the same as before:

δS1∩A(c) ≤ (1 + αβ) d∗ − (1− αβ) d1 − 2β d2 ,

δS2∩A(c) ≤ (1 + αβ) d∗ − 2 d1 + (1 + αβ − 2β) d2 .

For tree swaps, we partition T ∩ A as the union of T1 ∩ T ′3−b ∩ A, T2 ∩ T ′3−b ∩ A and T ′b ∩ A. On
the first two events, our bounds are the same as in Appendix D.4.3:

δT1∩T ′3−b∩A(c) ≤ (1 + αβ + β) d∗ − d1 ,

δT2∩T ′3−b∩A(c) ≤ (1 + αβ + β) d∗ − (2− 2β) d1 + (1− 2β) d2 .

On T ′b ∩ A, we have 〈〈f∗〉〉 closes both f1 and f2. Therefore,

δT ′b∩A(c) ≤ (1 + αβ) d∗ − d1 − β d2 .(δ〈〈f∗,¬f1,¬f2〉〉)
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Summarizing, we have

δS1∩A(c) ≤(1 + αβ) d∗ − (1− αβ) d1 − 2β d2 = 1.6 d∗ − 0.4 d1 − 0.4 d2

δS2∩A(c) ≤(1 + αβ) d∗ − 2 d1 + (1 + αβ − 2β) d2 = 1.6 d∗ − 2 d1 + 1.2 d2

δT1∩T ′3−b∩A(c) ≤(1 + αβ + β) d∗ − d1 = 1.8 d∗ − d1

δT2∩T ′3−b∩A(c) ≤(1 + αβ + β) d∗ − (2− 2β) d1 + (1− 2β) d2 = 1.8 d∗ − 1.6 d1 + 0.6 d2

δT ′b∩A(c) ≤(1 + αβ) d∗ − d1 − β d2 = 1.6 d∗ − d1 − 0.2 d2

We now combine these inequalities to get an upper bound for ∆A(c).

When 2/3 < ρ(f∗) ≤ 3/4, we have Pr[S1] = 1/2,Pr[S2] = 0,Pr[T1 ∩ T ′3−b] = Pr[T2 ∩ T ′3−b] =
1/8,Pr[T ′b ] = 1/4. Therefore,

∆A(c) ≤ 1/2 · δS1∩A(c) + 1/8 · δT1∩T ′3−b∩A(c) + 1/8 · δT2∩T ′3−b∩A(c) + 1/4 · δT ′b∩A(c) +O(ε)(d∗ + d1)

≤ 1.65 d∗ − 0.775 d1 − 0.175 d2 +O(ε)(d∗ + d1)

≤ 1.65 d∗ − 0.95 d1 +O(ε)(d∗ + d1).

(d2 ≥ d1)

When ρ(f∗) > 3/4, we have Pr[S1] = 5/4 − ρ,Pr[S2] = ρ − 3/4,Pr[T1 ∩ T ′3−b] = Pr[T2 ∩ T ′3−b] =
1/8,Pr[T ′b ] = 1/4. Therefore,

∆A(c) ≤ (5/4− ρ) · δS1∩A(c) + (ρ− 3/4) · δS2∩A(c) + 1/8 · δT1∩T ′3−b∩A(c) + 1/8 · δT2∩T ′3−b∩A(c)

+ 1/4 · δT ′b∩A(c) +O(ε)(d∗ + d1)

≤ 1.65 d∗ − (1.6ρ− 0.425) d1 + (1.6ρ− 1.375) d2 +O(ε)(d∗ + d1).

When ρ ≤ 1.375/1.6, we use d2 ≥ d1:

∆A(c) ≤ 1.65 d∗ − 0.95 d1 +O(ε)(d∗ + d1).

When ρ > 1.375/1.6, we use d2 ≤ d∗ + 1/ρ(d∗ + d1):

∆A(c) ≤ (1.875 + 1.6ρ− 1.375/ρ) d∗ − (1.6ρ+ 1.375/ρ− 2.025) d1 +O(ε)(d∗ + d1)

≤ (1.875 + 1.6− 1.375) d∗ − (2
√

1.6× 1.375− 2.025) d1 +O(ε)(d∗ + d1)

≤ 2.1 d∗ − 0.94147 d1 +O(ε)(d∗ + d1).

D.5 Proof of (6.21): Clients of Type D

In this section, we show that for any client c with type D, we have

∆A(c) ≤ 2.5203 d∗(c)− 0.8888 d1(c).

Similar to Claim D.3 for type C clients, we also have the following claim classifying type D clients
into subtypes. The only change is in item (e), where we replace T2 by T1 because the roles of η1

and η2 are now swapped.

Claim D.4 (Type D subcases). For a client c of type D, one of the following is true:
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(a) f1 is heavy.

(b) f2 is heavy.

(c) A facility h is open near c after the simple swap closing f1. Formally, a facility h 6= f2 is
open after swap 〈〈¬f1〉〉 at distance d(c, h) ≤ 3d1 + 2d∗ on S ∩ A.

(d) g∗ 6= f∗, ρ(g∗) > 3/4, and for all b = 1, 2, any swap set P generated on S ′b ∩ A, a facility

h 6= f2 is open after swap 〈〈¬f1〉〉 at distance d(c, h) ≤
{

2d1 + d∗, if b = 1
2d1 + d∗ + 4/3(d1 + d∗), if b = 2

.

(e) For any swap set P generated on T1 ∩ A, 〈〈f∗〉〉 closes both f1 and f2;

(f) g∗ 6= f∗, ρ(g∗) > 2/3, and there exists b ∈ {1, 2} such that for any swap set P generated on
T ′b ∩ A, 〈〈f∗〉〉 closes both f1 and f2.

D.5.1 When f1 is a heavy facility

f1 being heavy implies that 〈〈¬f1〉〉 doesn’t exist. We thus focus on 〈〈f∗〉〉 and 〈〈¬f2〉〉.

Simple & tree swaps with τ(f∗) = η1 We have 〈〈f∗〉〉 = 〈〈¬f2〉〉 by implication (ii) of amenabil-
ity. Therefore,

δS1∩A(c) ≤ (1 + αβ)d∗ − d1 − β d2 ,(δ〈〈f∗,¬f2〉〉)

δT1∩A(c) ≤ (1 + αβ)d∗ − d1 − β d2 .(δ〈〈f∗,¬f2〉〉)

Simple swaps with τ(f∗) = η2 By implication (Siv) of amenability, we have 〈〈f∗〉〉 6= 〈〈¬f2〉〉.
On swap 〈〈f∗〉〉 the client can be served by f∗. On swap 〈〈¬f2〉〉, the client can be served by f1.
Therefore,

δS2∩A(c) ≤ (1 + αβ)d∗ − d1 − β d2(δ〈〈f∗〉〉)
+ (1 + αβ)d1 − d1 − β d2(δ〈〈¬f2〉〉)

= (1 + αβ)d∗ − (1− αβ) d1 − 2β d2

Tree swaps with τ(f∗) = η2 Let us first assume that 〈〈f∗〉〉 6= 〈〈¬f2〉〉. On swap 〈〈f∗〉〉, the client
can be served by f∗. On swap 〈〈¬f2〉〉, the client can be served by f1 and π(f2), by implication (Tii)
of amenability. We have d(c, π(f2)) ≤≤ 2d2 + d∗ by (C.46). Therefore,

δT2∩A(c) ≤ (1 + αβ)d∗ − d1 − β d2(δ〈〈f∗〉〉)
+ d1 + β(2d2 + d∗)− d1 − β d2(δ〈〈¬f2〉〉)

= (1 + αβ + β)d∗ − d1

This inequality also holds when 〈〈¬f2〉〉 = 〈〈f∗〉〉, because our bound for δ〈〈f∗〉〉 does not require f2

to remain open after the swap and δ〈〈¬f2〉〉 is non-negative.

δS1∩A(c) ≤(1 + αβ) d∗ − d1 − β d2 = 1.6 d∗ − d1 − 0.2 d2

δS2∩A(c) ≤(1 + αβ) d∗ − (1− αβ) d1 − 2β d2 = 1.6 d∗ − 0.4 d1 − 0.4 d2

δT1∩A(c) ≤(1 + αβ) d∗ − d1 − β d2 = 1.6 d∗ − d1 − 0.2 d2

δT2∩A(c) ≤(1 + αβ + β) d∗ − d1 = 1.8 d∗ − d1
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We now combine these inequalities to get an upper bound for ∆A(c).

When ρ(f∗) ≤ 2/3, we have Pr[S1] = Pr[T1] = 1/2,Pr[S2] = Pr[T2] = 0. Therefore,

∆A(c) ≤ 1/2 · δS1∩A(c) + 1/2 · δT1∩A(c) +O(ε)(d∗ + d1)

≤ 1.6 d∗ − 1.2 d1 +O(ε)(d∗ + d1).(d1 ≤ d2)

When 2/3 < ρ(f∗) ≤ 3/4, we have Pr[S1] = 1/2,Pr[S2] = 0,Pr[T1] = Pr[T2] = 1/4. Therefore,

∆A(c) ≤ 1/2 · δS1∩A(c) + 1/4 · δT1∩A(c) + 1/4 · δT2∩A(c) +O(ε)(d∗ + d1)

≤ 1.65 d∗ − d1 − 0.15 d2 +O(ε)(d∗ + d1)

≤ 1.65 d∗ − 1.15 d1 +O(ε)(d∗ + d1).(d1 ≤ d2)

When ρ(f∗) > 3/4, we have Pr[S1] = 5/4− ρ,Pr[S2] = ρ− 3/4,Pr[T1] = Pr[T2] = 1/4. Therefore,

∆A(c) ≤ (5/4− ρ) · δS1∩A(c) + (ρ− 3/4) · δS2∩A(c) + 1/4 · δT1∩A(c) + 1/4 · δT2∩A(c) +O(ε)(d∗ + d1)

≤ 1.65 d∗ − (1.45− 0.6ρ) d1 − (0.2ρ) d2 +O(ε)(d∗ + d1)

≤ 1.65 d∗ − (1.45− 0.4ρ) d1 +O(ε)(d∗ + d1)
(d1 ≤ d2)

≤ 1.65 d∗ − 1.05 d1 +O(ε)(d∗ + d1)

D.5.2 When f2 is a heavy facility

f2 being heavy implies that the swap 〈〈¬f2〉〉 doesn’t exist. We thus focus on 〈〈f∗〉〉 and 〈〈¬f1〉〉.

Simple swaps with τ(f∗) = η1 We have 〈〈f∗〉〉 6= 〈〈¬f1〉〉 by implication (Siv) of amenability. On
swap 〈〈f∗〉〉, the client can be served by f∗ and f1. On swap 〈〈¬f1〉〉, the client can be served by f2.
Therefore,

δS1∩A(c) ≤ d∗ + βd1 − d1 − β d2(δ〈〈f∗〉〉)
+ (1 + αβ)d2 − d1 − β d2(δ〈〈¬f1〉〉)

= d∗ − (2− β) d1 + (1 + αβ − 2β)d2 .

We can also use (1− β)d∗ + 2β d1 to upper-bound δ〈〈f∗〉〉 (by (6.10)) and get

δS1∩A(c) ≤ (1− β) d∗ − (2− 2β) d1 + (1 + αβ − 2β)d2 .

Tree swaps with τ(f∗) = η1 Let us first assume that 〈〈f∗〉〉 6= 〈〈¬f1〉〉. On swap 〈〈f∗〉〉, the client
can be served by f∗ and f1. On swap 〈〈¬f1〉〉, the client can be served by f2 and π(f1) by implication
(Tii) of amenability. We have d(c, π(f1)) ≤ 2d1 + d∗ by (6.8). Therefore,

δT1∩A(c) ≤ d∗ + β d1 − d1 − β d2(δ〈〈f∗〉〉)
+ d2 + β(2d1 + d∗)− d1 − β d2(δ〈〈¬f1〉〉)

= (1 + β)d∗ − (2− 3β)d1 + (1− 2β) d2 .
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If 〈〈¬f1〉〉 = 〈〈f∗〉〉, we still have the same bound:

δT1∩A(c) ≤ d∗ + β d2 − d1 − β d2(δ〈〈f∗,¬f1〉〉)
+ (1− 2β)(d2 − d1) + β d∗ + β d1(non-negative terms)

= (1 + β)d∗ − (2− 3β)d1 + (1− 2β) d2.

Simple & tree swaps with τ(f∗) = η2 We have 〈〈f∗〉〉 = 〈〈¬f1〉〉 by implication (ii) of amenabil-
ity. Therefore,

δS2∩A(c) ≤ (1 + αβ)d∗ − d1 − β d2 ,(δ〈〈f∗,¬f1〉〉)

δT2∩A(c) ≤ d∗ + βd2 − d1 − β d2(δ〈〈f∗,¬f1〉〉)

= d∗ − d1 .

Summarizing, we have

δS1∩A(c) ≤d∗ − (2− β) d1 + (1 + αβ − 2β) d2 = d∗ − 1.8 d1 + 1.2 d2

δS1∩A(c) ≤(1− β) d∗ − (2− 2β) d1 + (1 + αβ − 2β)d2 = 0.8 d∗ − 1.6 d1 + 1.2 d2

δS2∩A(c) ≤(1 + αβ)d∗ − d1 − βd2 = 1.6 d∗ − d1 − 0.2 d2

δT1∩A(c) ≤(1 + β)d∗ − (2− 3β)d1 + (1− 2β)d2 = 1.2 d∗ − 1.4 d1 + 0.6 d2

δT2∩A(c) ≤d∗ − d1 = d∗ − d1

We now combine these inequalities to get an upper bound for ∆A(c).

When ρ(f∗) ≤ 2/3, we have Pr[S1] = Pr[T1] = 1/2,Pr[S2] = Pr[T2] = 0. In this case we use the
second inequality for δS1∩A(c). Therefore,

∆A(c) ≤ 1/2 · δS1∩A(c) + 1/2 · δT1∩A(c) +O(ε)(d∗ + d1)

≤ d∗ − 1.5 d1 + 0.9 d2 +O(ε)(d∗ + d1)

≤ (1.9 + 0.9ρ) d∗ − (1.5− 0.9ρ) d1 +O(ε)(d∗ + d1)(d2 ≤ d∗ + ρ(d∗ + d1))
≤ (1.9 + 0.9 · 2/3)d∗ − (1.5− 0.9 · 2/3) d1 +O(ε)(d∗ + d1)

≤ 2.5 d∗ − 0.9 d1 +O(ε)(d∗ + d1).

When 2/3 < ρ(f∗) ≤ 3/4, we have Pr[S1] = 1/2,Pr[S2] = 0,Pr[T1] = Pr[T2] = 1/4. In this case we use
the first inequality for δS1∩A(c). Therefore,

∆A(c) ≤ 1/2 · δS1∩A(c) + 1/4 · δT1∩A(c) + 1/4 · δT2∩A(c) +O(ε)(d∗ + d1)

≤ 1.05 d∗ − 1.5 d1 + 0.75 d2 +O(ε)(d∗ + d1)

≤ (1.8 + 0.75ρ) d∗ − (1.5− 0.75ρ) d1 +O(ε)(d∗ + d1)(d2 ≤ d∗ + ρ(d∗ + d1))
≤ (1.8 + 0.75 · 3/4)− (1.5− 0.75 · 3/4) d1 +O(ε)(d∗ + d1)

≤ 2.3625 d∗ − 0.9375 d1 +O(ε)(d∗ + d1).

When ρ(f∗) > 3/4, we have Pr[S1] = 5/4− ρ,Pr[S2] = ρ− 3/4,Pr[T1] = Pr[T2] = 1/4. In this case we
use the first inequality for δS1∩A(c). Therefore,

∆A(c) ≤ (5/4− ρ) · δS1∩A(c) + (ρ− 3/4) · δS2∩A(c) + 1/4 · δT1∩A(c) + 1/4 · δT2∩A(c) +O(ε)(d∗ + d1)
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≤ (0.6 + 0.6ρ) d∗ − (2.1− 0.8ρ) d1 + (1.8− 1.4ρ) d2 +O(ε)(d∗ + d1)

≤ (2.4 + ρ− 1.4ρ2) d∗ − (2.1− 2.6ρ+ 1.4ρ2) d1 +O(ε)(d∗ + d1)

(d2 ≤ d∗ + ρ(d∗ + d1))

≤ (2.4 + 3/4− 1.4(3/4)2) d∗ − (2.1− 2.6 · 13/14 + 1.4(13/14)2) d1 +O(ε)(d∗ + d1)

≤ 2.3625 d∗ − 0.8928 d1 +O(ε)(d∗ + d1).

D.5.3 There exists a facility h such that d(c, h) ≤ 3d1 + 2d∗ in simple swaps

Simple swaps with τ(f∗) = η1 Implications (ii) and (Siv) of amenability imply 〈〈f∗〉〉 = 〈〈¬f2〉〉 6=
〈〈¬f1〉〉. On swap 〈〈f∗,¬f2〉〉, the client can be served by f∗ and f1. On swap 〈〈¬f1〉〉, the client can
be served by f2 and h. Therefore,

δS1∩A(c) ≤ d∗ + β d1 − d1 − β d2(δ〈〈f∗,¬f2〉〉)
+ d2 + β(3d1 + 2d∗)− d1 − β d2(δ〈〈¬f1〉〉)

= (1 + 2β) d∗ − (2− 4β) d1 + (1− 2β) d2 .

In δ〈〈f∗,¬f2〉〉, we can use 0.776(1 + αβ)d∗ + 0.224(d∗ + β d1) instead of d∗ + β d1. This gives

δS1∩A(c) ≤ (1 + 2β + 0.776αβ) d∗ − (2− 3.224β) d1 + (1− 2β) d2 .

Simple swaps with τ(f∗) = η2 Implications (ii) and (Siv) of amenability imply 〈〈f∗〉〉 = 〈〈¬f1〉〉 6=
〈〈¬f2〉〉. On swap 〈〈f∗,¬f1〉〉, the client can be served by f∗. On swap 〈〈¬f2〉〉, the client can be
served by f1. Therefore,

δS2∩A(c) ≤ (1 + αβ) d∗ − d1 − β d2(δ〈〈f∗,¬f1〉〉)
+ (1 + αβ) d1 − d1 − β d2(δ〈〈¬f2〉〉)

= (1 + αβ) d∗ − (1− αβ) d1 − 2β d2 .

Tree swaps with τ(f∗) = η1 We have 〈〈f∗〉〉 = 〈〈¬f2〉〉 by implication (ii) of amenability. Let
us first assume that 〈〈¬f1〉〉 6= 〈〈f∗,¬f2〉〉. On swap 〈〈f∗,¬f2〉〉, the client can be served by f∗. On
swap 〈〈¬f1〉〉, the client can be served by f2 and π(f1) by implication (Tii) of amenability. Note
that d(c, π(f1)) ≤ 2d1 + d∗ by (6.8). Therefore,

δT1∩A(c) ≤ (1 + αβ) d∗ − d1 − β d2(δ〈〈f∗,¬f2〉〉)
+ d2 + β(2d1 + d∗)− d1 − β d2(δ〈〈¬f1〉〉)

= (1 + αβ + β) d∗ − (2− 2β) d1 + (1− 2β) d2 .

This inequality also holds when 〈〈¬f1〉〉 = 〈〈f∗,¬f2〉〉, because our bound for δ〈〈f∗,¬f2〉〉 does not
require f1 to remain open after the swap and δ〈〈¬f1〉〉 is non-negative.

In δ〈〈f∗,¬f2〉〉, we can use d∗ + β d1 instead of (1 + αβ) d∗. This gives

δT1∩A(c) ≤ (1 + β) d∗ − (2− 3β) d1 + (1− 2β) d2 .

This bound also holds when 〈〈¬f1〉〉 = 〈〈f∗,¬f2〉〉 because in this case we have

δT1∩A(c) ≤ d∗ + β d1 − d1 − β d2(δ〈〈f∗,¬f2,¬f1〉〉)
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+ (1− β)(d2 − d1) + βd1 + βd∗(non-negative terms)
= (1 + β) d∗ − (2− 3β) d1 + (1− 2β) d2.

Tree swaps with τ(f∗) = η2 We have 〈〈f∗〉〉 = 〈〈¬f1〉〉 by implication (ii) of amenability. Let
us first assume that 〈〈¬f2〉〉 6= 〈〈f∗,¬f1〉〉. On swap 〈〈f∗,¬f1〉〉, the client can be served by f∗. On
swap 〈〈¬f2〉〉, the client can be served by f1 and π(f2) by implication (Tii) of amenability. Note
that d(c, π(f2)) ≤ d2 + d(f2, π(f2)) ≤ d2 + d(f2, f

∗) ≤ d2 + ρd(f1, f
∗) ≤ d2 + ρ(d1 + d∗). Therefore,

δT2∩A(c) ≤ (1 + αβ) d∗ − d1 − β d2(δ〈〈f∗,¬f1〉〉)
+ d1 + β(d2 + ρ(d∗ + d1))− d1 − β d2(δ〈〈¬f2〉〉)

= (1 + αβ + ρβ) d∗ − (1− ρβ) d1 − β d2 .

This inequality also holds when 〈〈¬f2〉〉 = 〈〈f∗,¬f1〉〉, because our bound for δ〈〈f∗,¬f1〉〉 does not
require f2 to remain open after the swap and δ〈〈¬f2〉〉 is non-negative.

Summarizing, we have

δS1∩A(c) ≤(1 + 2β) d∗ − (2− 4β) d1 + (1− 2β) d2 = 1.4 d∗ − 1.2 d1 + 0.6 d2

δS1∩A(c) ≤(1 + 2β + 0.776αβ) d∗ − (2− 3.224β) d1 + (1− 2β) d2 = 1.8656 d∗ − 1.3552 d1 + 0.6 d2

δS2∩A(c) ≤(1 + αβ) d∗ − (1− αβ) d1 − 2β d2 = 1.6 d∗ − 0.4 d1 − 0.4 d2

δT1∩A(c) ≤(1 + αβ + β) d∗ − (2− 2β) d1 + (1− 2β) d2 = 1.8 d∗ − 1.6 d1 + 0.6 d2

δT1∩A(c) ≤(1 + β) d∗ − (2− 3β) d1 + (1− 2β) d2 = 1.2 d∗ − 1.4 d1 + 0.6 d2

δT2∩A(c) ≤(1 + αβ + ρβ) d∗ − (1− ρβ) d1 − β d2 = (1.6 + 0.2ρ) d∗ − (1− 0.2ρ) d1 − 0.2 d2

We now combine these inequalities to get an upper bound for ∆A(c).

When ρ(f∗) ≤ 2/3, we have Pr[S1] = Pr[T1] = 1/2,Pr[S2] = Pr[T2] = 0. We use the first bound for
δS1∩A(c) and the second bound for δT1∩A(c). Therefore,

∆A(c) ≤ 1/2 · δS1∩A(c) + 1/2 · δT1∩A(c) +O(ε)(d∗ + d1)

≤ 1.3 d∗ − 1.3 d1 + 0.6 d2 +O(ε)(d∗ + d1)

≤ (1.9 + 0.6ρ) d∗ − (1.3− 0.6ρ) d1 +O(ε)(d∗ + d1)(d2 ≤ d∗ + ρ(d∗ + d1))
≤ (1.9 + 0.6 · 2/3) d∗ − (1.3− 0.6 · 2/3) d1 +O(ε)(d∗ + d1)

≤ 2.3 d∗ − 0.9 d1 +O(ε)(d∗ + d1)

When 2/3 < ρ(f∗) ≤ 3/4, we have Pr[S1] = 1/2,Pr[S2] = 0,Pr[T1] = Pr[T2] = 1/4. We use the first
bound for both δS1∩A(c) and δT1∩A(c). Therefore,

∆A(c) ≤ 1/2 · δS1∩A(c) + 1/4 · δT1∩A(c) + 1/4 · δT2∩A(c) +O(ε)(d∗ + d1)

≤ (1.55 + 0.05ρ) d∗ − (1.25− 0.05ρ) d1 + 0.4 d2 +O(ε)(d∗ + d1)

≤ (1.95 + 0.45ρ) d∗ − (1.25− 0.45ρ) d1 +O(ε)(d∗ + d1)(d2 ≤ d∗ + ρ(d∗ + d1))
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≤ (1.95 + 0.45 · 3/4) d∗ − (1.35− 0.45 · 3/4) d1 +O(ε)(d∗ + d1)

= 2.2875 d∗ − 0.9125 d1 +O(ε)(d∗ + d1).

When ρ(f∗) > 3/4, we have Pr[S1] = 5/4 − ρ,Pr[S2] = ρ − 3/4,Pr[T1] = Pr[T2] = 1/4. We use the
second bound for δS1∩A(c) and the first bound for δT1∩A(c). Therefore,

∆A(c) ≤ (5/4− ρ) · δS1∩A(c) + (ρ− 3/4) · δS2∩A(c) + 1/4 · δT1∩A(c) + 1/4 · δT2∩A(c) +O(ε)(d∗ + d1)

≤ (1.982− 0.2156ρ) d∗ − (2.044− 1.0052ρ) d1 + (1.15− ρ) d2 +O(ε)(d∗ + d1)

≤ (3.132− 0.0656ρ− ρ2) d∗ − (2.044− 2.1552ρ+ ρ2) d1 +O(ε)(d∗ + d1)

(d2 ≤ d∗ + ρ(d∗ + d1))

≤ (3.132− 0.0656 · 3/4− 3/42) d∗ − (2.044− 2.1552 + 12) d1 +O(ε)(d∗ + d1)

≤ 2.5203 d∗ − 0.8888 d1 +O(ε)(d∗ + d1).

D.5.4 d(c, h) ≤ 2d1 + d∗ or d(c, h) ≤ 2d1 + d∗ + 4/3(d∗ + d1) in simple swaps

Similarly to Appendix D.4.4, our bound for ∆A(c) in the previous case remains valid in this case.

D.5.5 〈〈f∗〉〉 closes f1 and f2 on T1 ∩ A

If τ(f∗) = η2, we get the same bounds as before:

δS2∩A(c) ≤ (1 + αβ) d∗ − (1− αβ) d1 − 2β d2 ,

δT2∩A(c) ≤ (1 + αβ + ρβ) d∗ − (1− ρβ) d1 − β d2 .

We proceed to bound δS1∩A(c) and δT1∩A(c).

Simple swaps with τ(f∗) = η1 Implications (ii) and (Siv) of amenability implies 〈〈f∗〉〉 =
〈〈¬f2〉〉 6= 〈〈¬f1〉〉. On swap 〈〈f∗,¬f2〉〉, the client can be served by f∗ and f1. On swap 〈〈¬f1〉〉, the
client can be served by f2. Therefore,

δS1∩A(c) ≤ d∗ + β d1 − d1 − β d2(δ〈〈f∗,¬f2〉〉)
+ (1 + αβ) d2 − d1 − β d2(δ〈〈¬f1〉〉)

= d∗ − (2− β) d1 + (1 + αβ − 2β) d2 .

Tree swaps with τ(f∗) = η1 On T1 ∩ A, we assumed that 〈〈f∗〉〉 closes f1 and f2. Therefore,

(δ〈〈f∗,¬f1,¬f2〉〉) δT1∩A(c) ≤ (1 + αβ) d∗ − d1 − β d2 .

Summarizing, we have

δS1∩A(c) ≤d∗ − (2− β) d1 + (1 + αβ − 2β) d2 = d∗ − 1.8 d1 + 1.2 d2

δS2∩A(c) ≤(1 + αβ) d∗ − (1− αβ) d1 − 2β d2 = 1.6 d∗ − 0.4 d1 − 0.4 d2

δT1∩A(c) ≤(1 + αβ) d∗ − d1 − β d2 = 1.6 d∗ − d1 − 0.2 d2

δT2∩A(c) ≤(1 + αβ + ρβ) d∗ − (1− ρβ) d1 − β d2 = (1.6 + 0.2ρ) d∗ − (1− 0.2ρ) d1 − 0.2 d2
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We now combine these inequalities to get an upper bound for ∆A(c).

When ρ(f∗) ≤ 2/3, we have Pr[S1] = Pr[T1] = 1/2,Pr[S2] = Pr[T2] = 0. Therefore,

∆A(c) ≤ 1/2 · δS1∩A(c) + 1/2 · δT1∩A(c) +O(ε)(d∗ + d1)

≤ 1.3 d∗ − 1.4 d1 + 0.5 d2 +O(ε)(d∗ + d1)

≤ (1.8 + 0.5ρ) d∗ − (1.4− 0.5ρ) d1 +O(ε)(d∗ + d1)(d2 ≤ d∗ + ρ(d∗ + d1))
≤ (1.8 + 0.5× 2/3) d∗ − (1.4− 0.5× 2/3) d1 +O(ε)(d∗ + d1)

≤ 2.13334 d∗ − 1.06666 d1 +O(ε)(d∗ + d1).

When 2/3 < ρ(f∗) ≤ 3/4, we have Pr[S1] = 1/2,Pr[S2] = 0,Pr[T1] = Pr[T2] = 1/4. Therefore,

∆A(c) ≤ 1/2 · δS1∩A(c) + 1/4 · δT1∩A(c) + 1/4 · δT2∩A(c) +O(ε)(d∗ + d1)

≤ (1.3 + 0.05ρ) d∗ − (1.4− 0.05ρ) d1 + 0.5 d2 +O(ε)(d∗ + d1)

≤ (1.8 + 0.55ρ) d∗ − (1.4− 0.55ρ) d1 +O(ε)(d∗ + d1)(d2 ≤ d∗ + ρ(d∗ + d1))
≤ (1.8 + 0.55× 3/4) d∗ − (1.4− 0.55× 3/4) d1 +O(ε)(d∗ + d1)

= 2.2125 d∗ − 0.9875 d1 +O(ε)(d∗ + d1).

When ρ(f∗) > 3/4, we have Pr[S1] = 5/4− ρ,Pr[S2] = ρ− 3/4,Pr[T1] = Pr[T2] = 1/4. Therefore,

∆A(c) ≤ (5/4− ρ) · δS1∩A(c) + (ρ− 3/4) · δS2∩A(c) + 1/4 · δT1∩A(c) + 1/4 · δT2∩A(c) +O(ε)(d∗ + d1)

≤ (0.85 + 0.65ρ) d∗ − (2.45− 1.45ρ) d1 + (1.7− 1.6ρ) d2 +O(ε)(d∗ + d1)

≤ (2.55 + 0.75ρ− 1.6ρ2) d∗ − (2.45− 3.15ρ+ 1.6ρ2) d1 +O(ε)(d∗ + d1)

(d2 ≤ d∗ + ρ(d∗ + d1))

≤ (2.55 + 0.75× 3/4− 1.6× (3/4)2) d∗ − (2.45− 3.15× 3.15/3.2 + 1.6× (3.15/3.2)2) d1

+O(ε)(d∗ + d1)

≤ 2.2125 d∗ − 0.89960 d1 +O(ε)(d∗ + d1).

D.5.6 〈〈f∗〉〉 closes f1 and f2 on T ′b ∩ A

Bounds for simple swaps remain the same as before:

δS1∩A(c) ≤ d∗ − (2− β) d1 + (1 + αβ − 2β) d2 ,

δS2∩A(c) ≤ (1 + αβ) d∗ − (1− αβ) d1 − 2β d2 .

For tree swaps, we partition T ∩ A as the union of T1 ∩ T ′3−b ∩ A, T2 ∩ T ′3−b ∩ A and T ′b ∩ A. On
the first two events, our bounds are the same as in Appendix D.5.3:

δT1∩T ′3−b∩A(c) ≤ (1 + αβ + β) d∗ − (2− 2β) d1 + (1− 2β) d2 ,

δT2∩T ′3−b∩A(c) ≤ (1 + αβ + ρβ) d∗ − (1− ρβ) d1 − β d2 .

On T ′b ∩ A, we assumed that 〈〈f∗〉〉 closes f1 and f2. Therefore,

(δ〈〈f∗,¬f1,¬f2〉〉) δT ′b∩A ≤ (1 + αβ) d∗ − d1 − β d2 .
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Summarizing, we have

δS1∩A(c) ≤d∗ − (2− β) d1 + (1 + αβ − 2β) d2 = d∗ − 1.8 d1 + 1.2 d2

δS2∩A(c) ≤(1 + αβ) d∗ − (1− αβ) d1 − 2β d2 = 1.6 d∗ − 0.4 d1 − 0.4 d2

δT1∩T ′3−b∩A(c) ≤(1 + αβ + β) d∗ − (2− 2β) d1 + (1− 2β) d2

= 1.8 d∗ − 1.6 d1 + 0.6 d2

δT2∩T ′3−b∩A(c) ≤(1 + αβ + ρβ) d∗ − (1− ρβ) d1 − β d2 = (1.6 + 0.2ρ) d∗ − (1− 0.2ρ) d1 − 0.2 d2

δT ′b∩A(c) ≤(1 + αβ) d∗ − d1 − β d2 = 1.6 d∗ − d1 − 0.2 d2

We now combine these inequalities to get an upper bound for ∆A(c).

When ρ(f∗) ≤ 2/3, we have Pr[S1] = 1/2,Pr[T1 ∩ T ′3−b] = Pr[T ′b ] = 1/4,Pr[S2] = Pr[T2 ∩ T ′3−b] = 0.
Therefore,

∆A(c) ≤ 1/2 · δS1∩A(c) + 1/4 · δT1∩T ′3−b∩A(c) + 1/4 · δT ′b∩A(c) +O(ε)(d∗ + d1)

≤ 1.35 d∗ − 1.55 d1 + 0.7 d2 +O(ε)(d∗ + d1)

≤ (2.05 + 0.7ρ) d∗ − (1.55− 0.7ρ) d1 +O(ε)(d∗ + d1)(d2 ≤ d∗ + ρ(d∗ + d1))
≤ (2.05 + 0.7× 2/3) d∗ − (1.55− 0.7× 2/3) d1 +O(ε)(d∗ + d1)

≤ 2.51667 d∗ − 1.08333 d1 +O(ε)(d∗ + d1).

When 2/3 < ρ ≤ 3/4, we have Pr[S1] = 1/2,Pr[S2] = 0,Pr[T1 ∩ T ′3−b] = Pr[T2 ∩ T ′3−b] = 1/8,Pr[T ′b ] =
1/4. Therefore,

∆A(c) ≤ 1/2 · δS1∩A(c) + 1/8 · δT2∩T ′3−b∩A(c) + 1/8 · δT2∩T ′3−b∩A(c) + 1/4 · δT ′b∩A(c) +O(ε)(d∗ + d1)

≤ (1.325 + 0.025ρ) d∗ − (1.475− 0.025ρ) d1 + 0.6 d2 +O(ε)(d∗ + d1)

≤ (1.925 + 0.625ρ) d∗ − (1.475− 0.625ρ) d1 +O(ε)(d∗ + d1)
(d2 ≤ d∗ + ρ(d∗ + d1))

≤ (1.925 + 0.625× 3/4) d∗ − (1.475− 0.625× 3/4) d1 +O(ε)(d∗ + d1)

= 2.39375 d∗ − 1.00625 d1 +O(ε)(d∗ + d1).

When ρ > 3/4, we have Pr[S1] = 5/4−ρ,Pr[S2] = ρ−3/4,Pr[T1∩T ′3−b] = Pr[T2∩T ′3−b] = 1/8,Pr[T ′b ] =
1/4. Therefore,

∆A(c) ≤ (5/4− ρ) · δS1∩A(c) + (ρ− 3/4) · δS2∩A(c) + 1/8 · δT2∩T ′3−b∩A(c) + 1/8 · δT2∩T ′3−b∩A(c)

+ 1/4 · δT ′b∩A(c) +O(ε)(d∗ + d1)

≤ (0.875 + 0.625ρ) d∗ − (2.525− 1.425ρ) d1 + (1.8− 1.6ρ) d2 +O(ε)(d∗ + d1)

≤ (2.675 + 0.825ρ− 1.6ρ2) d∗ − (2.525− 3.225ρ+ 1.6ρ2) d1 +O(ε)(d∗ + d1)

(d2 ≤ d∗ + ρ(d∗ + d1))

≤ (2.675 + 0.825× 3/4− 1.6× (3/4)2) d∗ − (2.525− 3.225 + 1.6) d1 +O(ε)(d∗ + d1)

= 2.39375 d∗ − 0.9 d1 +O(ε)(d∗ + d1).
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E Omitted Proofs

E.1 Proof of Claim 3.3: There are enough local candidates

Claim 3.3. The number of local candidates is at least td/2 times the number of heavy local facilities.

Proof. Let Fh be the set of heavy local facilities, Fp ⊆ F \ Fh be the set of local facilities pointed
to by at least one optimal facility with no heavy local neighbor, and Fc be the remaining local
facilities, which are exactly the local candidates. |Fh|+ |Fp|+ |Fc| = the number of local facilities,
which in turn is at least the number of optimal facilities. There are at least (td + 2)|Fh|/2 many
optimal facilities having a heavy local neighbor because 1) a heavy local facility is a neighbor of at
least td + 2 optimal facilities, and 2) each optimal facility has at most 2 local neighbors. Finally,
each local facility in Fp is pointed to by an optimal facility with no heavy local neighbor, so the
total number of optimal facilities is at least (td + 2)|Fh|/2 + |Fp|. In other words, |Fc| ≥ td

2 |Fh|.

E.2 Proof of Claim 3.5: Balancing Procedure

Claim 3.5 (Balancing Procedure). Consider a universe U = R ∪ G of red points R and green
points G, with |G| = |R|+ r. Let the collection of sets S1, . . . , SN partition U , and let |Si| ≤ x for
all i. Moreover, let H be a graph on the vertices [N ] with maximum degree at most θ ≤ r. Lastly,
r ≥ Ω

(
x5θ3

ε

)
for some 0 ≤ ε ≤ 1. Then we can merge these sets together into new sets T0, . . . , TM

such that

(i) each Tj has size |Tj | ≤ O(x2),
(ii) |Tj ∩R| ≤ |Tj ∩G|,
(iii) if there is an edge {i, j} for i, j ∈ [N ], then Si is not merged with Sj, and
(iv) for all i 6= j, Si is merged with Sj with probability at most ε.

Proof of Claim 3.5. Recall |G| = |R| + r, where r ≥ 16x5θ2(θ+1)
ε suffices. For each integer s ∈

{−x, . . . , x} let Ds be the sets S with discrepancy |S ∩G| − |S ∩R|. Each set in D0 can be output
immediately. If for some i, j we have |Di| ≥ j/ε and |D−j | ≥ i/ε, and there is no edge in H, then
we can choose some j sets uniformly at random from Di, and i sets from D−j , and merge these
together.

However, since there are forbidden sets (a set S1 and S2 are forbidden if there is an edge between
them in H), we need one more ingredient. We claim that if some Di, D−j have ≥ 8x2θ sets, then
we can find j sets from Di and i sets from D−j that are not forbidden for each other. Indeed, pick
a random collection of j sets from Di and i sets from D−j . The probability that any one set has an
edge to any of the other i+ j − 1 sets is ≤ (i+j−1)θ

8x2θ < 1
4x . Hence, a union bound over all the i+ j

sets says that with probability at least a half, this collection does not have any edges of H within
it, and hence we can merge this collection together.

However, above procedure does not ensure two sets are combined with probability at most ε. To do
so, if we find some pair Di, D−j with ≥ 8x2θ

ε sets, then we can randomly partition each of Di and
D−j into 1/ε equal-sized subgroups with 8x2θ sets each. Now we can merge some j sets from any
subgroup from Di with some i sets from a randomly chosen subgroup of D−j to form a set with
equal number of greens and reds, exactly as above. Henceforth, we assume that for each Di, D−j ,
at least one has fewer than 8x2θ

ε sets.

Finally, since the greens outnumber the reds by r, we know there exists a value j > 0 such that
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|Dj | ≥ r/x = 16x4θ2(θ + 1)/ε. Thus, we know each Ds with s < 0 has at most 8x2θ
ε sets each. We

randomly divide Dj into 16x3θ2

ε parts of of size x(θ+ 1) sets each. Note any two sets Sa and Sb fall
in the same part with probability at most ε

16x3θ2 ≤ ε. From each part pick x sets that have no edge
in H between themselves and call them a positive group; this can be done because the maximum
degree of H is at most θ. Each such positive group has at least x extra green points. On the other
hand, there are at most x · 8x2θ

ε = 8x3θ
ε negative sets, i.e., in {Di}i<0. Each negative set has edges

to at most θ sets, so there are at most 8x3θ2

ε sets with an edge to some negative set. Since there are
16x3θ2

ε positive groups, there are at least 8x3θ2

ε positive groups with no edge to any negative set,
so we can merge each negative set with a randomly-chosen such positive group. This ensures that
each new set has more green points than red, and two sets are combined with probability at most
ε

8x3θ2 ≤ ε. The newly-created sets have of size at most O(x2). Finally, each remaining set can form
a group by itself, because they have more green points.

E.3 Proof of Claim 5.3: Crude Upper Bound of Potential Change

Claim 5.3. There is an absolute constant γ > 0 such that for any client c, and any swap set P
that we generate, we have

∑
(P,Q)∈P δ(P,Q)(c) ≤ γ(d∗(c) + d1(c)).

Proof. Since every local facility is closed by at most 3 swaps in P, there are at most 6 swaps in P
that closes any facility in {f1, f2}. Thus, it suffices to show that δ(P,Q)(c) ≤ O(d∗ + d1) for these 6
swaps (P,Q).

If f∗ has a heavy local neighbor h, the client can be served by h at distance ≤ d∗ + 3/2(d∗ + d1).
We assume henceforth that f∗ has no heavy local neighbor, which means τ(f∗) is not heavy and
never closed as a local surrogate.

When P is a simple swap set, the client can be served by either f∗ (at distance ≤ d∗) or τ(f∗) (at
distance ≤ d∗+ 4/3(d∗+d1)). When P is a tree swap set, we show that one of the following facilities
must be open after every swap in P:

f∗ at distance ≤ d∗,
τ(f∗) at distance ≤ d∗ + 3/2(d∗ + d1),

π(τ(f∗)) at distance ≤ d∗ + 2 · 3/2(d∗ + d1).

It suffices to show that any swap closing τ(f∗) must open either f∗ or π(τ(f∗)). If τ(f∗) is closed
as an optimal surrogate, π(τ(f∗)) must be open because edges on short cycles are not deleted in
the edge deletion step (Corollary 3.8). We thus focus on the swap closing the original copy of τ(f∗)
henceforth.

Consider the 1-forest G1 before edge deletion. The edges in G1 from f∗ to τ(f∗) and from τ(f∗) to
π(τ(f∗)) cannot both be deleted in the edge deletion step, because we always choose th as an even
number and G1 is bipartite (when self-loops are ignored). Therefore, either f∗ or π(τ(f∗)) must be
in the same swap with τ(f∗), as desired.

E.4 Proof of Lemma D.1: Combining Type A Inequalities

Lemma D.1 (Type A averaging). For a close client of type A with ρ(f∗) > 2/3, we have

∆T ∩A(c) ≤ 1/4 ·max{δT11∩A + δT21∩A, δT11∩A + δT22∩A, δT12∩A + δT22∩A}+O(ε)(d∗ + d1).

We first prove Lemma D.1 assuming the following lemma, which we prove later.
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Lemma E.1. For a close client of type A with ρ(f∗) > 2/3, we have

Pr[T21] ≤ Pr[T11] +O(ε).

Proof of Lemma D.1. Define pij := Pr[Tij ]. Note that ρ(f∗) > 2/3 implies that p11 + p12 = p21 +
p22 = 1/4. Define p∆ := p11 − p21 = p22 − p12. Lemma E.1 implies p∆ ≥ −O(ε). Define δmax :=
max{δT11∩A + δT21∩A, δT11∩A + δT22∩A, δT12∩A + δT22∩A}. Claim 5.3 implies δmax ≤ O(d∗ + d1).
Lemma D.1 is proved by the following chain of inequalities:

∆T ∩A(c) ≤ Pr[T11 ∩ A]δT11∩A(c) + Pr[T12 ∩ A]δT12∩A(c)

+ Pr[T21 ∩ A]δT21∩A(c) + Pr[T22 ∩ A]δT22∩A(c)

≤ p11δT11∩A(c) + p12δT12∩A(c)

+ p21δT21∩A(c) + p22δT22∩A(c)

+O(ε)(d∗ + d1)
(Claim 5.4 and δE(c) ≥ −10d1)

= p21δT11∩A(c) + p∆δT11∩A(c) + p12δT12∩A(c)

+ p21δT21∩A(c) + p∆δT22∩A(c) + p12δT22∩A(c)

+O(ε)(d∗ + d1)

≤ p21δmax + p∆(δT11∩A(c) + δT22∩A(c)) + p12δmax +O(ε)(d∗ + d1)

≤ p21δmax + p∆δmax + p12δmax +O(ε)(d∗ + d1)
(p∆ ≥ −O(ε), δE(c) ≥ −10d1 and δmax ≤ O(d∗ + d1))

= (p21 + p∆ + p12)δmax +O(ε)(d∗ + d1)

= 1/4 · δmax +O(ε)(d∗ + d1).

We now turn to proving Lemma E.1. Before doing so, we need some deeper understandings of
the edge deletion procedure, which we establish in Appendix E.4.1. The proof of Lemma E.1 is
presented in Appendix E.4.2.

E.4.1 Probability of Surviving Edge Deletion

Let T be a 1-tree in the 1-forest G1 before the edge deletion procedure. The edge deletion procedure
splits T into several connected components by deleting some edges from T . In this section, we prove
upper and lower bounds on the probabilities that paths in T remain connected after edge deletion.

Let ` > 0 denote the cycle length of T . Condition on the height threshold th being fixed. We prove
the following two lemmas:

Lemma E.2 (Upper bound). Suppose p is a directed simple path in T of length s. If ` ≥ th, then
the probability that no edge in p is deleted is at most max{ th−sth , 0}(1 + th/`). If ` ≤ th, and we
further assume that p doesn’t contain any cycle edge, then the probability is exactly max{ th−sth , 0}.

Proof. If s ≥ th, the lemma is trivial because any path after edge deletion has length at most th−1.
We assume s < th henceforth.

Suppose vertices on p are v0 ← v1 ← · · · ← vs. We first consider the case where ` ≥ th. We prove
that as long as the (unique) simple path p∗ from v0 to r has length equal to −1,−2, · · · ,−s modulo
th, some edge on path p is deleted. Indeed, suppose p∗ has length −i modulo th. If p∗ doesn’t
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contain any vertex in {v1, · · · , vs}, then the edge out of vi is deleted by Claim 3.7. Otherwise, r
must be one of v1, v2, · · · , vs, in which case the edge out of r is deleted.

Suppose ` = uth + w for u,w ∈ Z where 0 ≤ w < th. There are at most (th − s)(u + 1) choices of
r such that p∗ has length not in {−1, · · · ,−s} modulo th. Therefore, when ` ≥ th, the probability
that no edge in p is deleted is at most (th − s)(u+ 1)/` = th−s

th
· (uth` + th

` ) ≤ th−s
th
· (1 + th/`).

When ` ≤ th and p doesn’t contain a cycle edge, an edge on the path p is deleted if and only if
p∗ has length −1,−2, · · · ,−s modulo th by Claim 3.7. Since the cycle length is exactly th after
dummy vertices are inserted on it, the probability that no edge on p is deleted is exactly th−s

th
.

Lemma E.3 (Lower bound). Let v1, v2, v
∗ be vertices in T and p1, p2 be directed simple paths in T

from v1 and v2 to v∗, respectively. Suppose both p1 and p2 have lengths no greater than s. If ` ≥ th,
then the probability that no edge on either path p1, p2 is deleted is at least max{ th−sth , 0}(1− 2th/`).
If ` ≤ th, and we further assume that v1 is on the cycle, then the probability is at least max{ th−sth , 0}.

Proof. Again, the lemma is trivial if s ≥ th. Assume s < th henceforth.

Let us first consider the case where ` ≥ th. Consider the vertices on the cycle that are different
from v∗ but have paths to v∗ with length at most s. There are at most s such vertices, and they
form a contiguous part of the cycle. If r is not among these vertices, then the simple path p∗ from
v∗ to r contains no vertex on p1 or p2 except v∗ itself. If we further assume that p∗ has length not
in −1,−2, · · · ,−s modulo th, then by Claim 3.7 no edge on either path p1, p2 is deleted. Therefore,
assuming ` − s = uth + w for u,w ∈ Z where 0 ≤ w < th, the probability that no edge on either
path is deleted is at least u(th − s)/` = th−s

th
· uth` = th−s

th
· (1− s+w

` ) ≥ th−s
th
· (1− 2th/`).

When ` ≤ th and v1 is on the cycle, every edge on p1 must be on the cycle. Since no edge on the
cycle is deleted by our convention, the probability that no edge on either path is deleted is lower
bounded by the probability that no edge on the shortest path p′ from v2 to the cycle is deleted. p′ is
a part of p2, so p′ has length at most s. By the second part of the previous lemma, the probability
that no edge on p′ is deleted is at least max{ th−sth , 0}.

E.4.2 Proof of Lemma E.1

We are now ready to prove Lemma E.1. Define D′ as the union of the defiant event D (Definition 5.1)
and the following events:

(i) P is a tree swap set, and, before edge deletion, the cycle in the 1-tree containing the original
copy of f∗ has length ` in the range (th, d1/εe · th);

(ii) P is a tree swap set, and two connected components each containing a facility in {f1, f2} are
combined in the balancing procedure.

Event (i) happens with probability O(ε) because our height threshold th is chosen uniformly at
random from 2d1/εe, 2d1/εe2, · · · , 2d1/εed1/εe. Event (ii) happens with probability O(ε) as well due
to Claims 3.5 and 3.6. By a union bound with Claim 5.4, we have

Claim E.4. The event D′ happens with probability O(ε).

Proof of Lemma E.1. If either f1 or f2 is heavy, then T21 never happens. Indeed, T21 assumes the
existence of a swap closing both f1 and f2, but heavy local facilities are never closed. Hence, we
assume neither f1 nor f2 is heavy.

By Claim E.4 and the union bound, it suffices to prove Pr[T21\D′] ≤ (1 + O(ε)) Pr[T11 ∪ D′]. By
law of total probability, it suffices to prove

(E.54) Pr[T21\D′|Ei] ≤ (1 +O(ε)) Pr[T11 ∪ D′|Ei]
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for a partition E1, E2, · · · , Et of the entire probability space.

If Ei = S, then both sides of (E.54) become zero. Let us condition on the tree event T henceforth.
Conditioned on T , the probabilities of τ(f∗) = η1 and τ(f∗) = η2 are both 1/2 since ρ(f∗) >
2/3. Note that the set of heavy local/optimal facilities doesn’t depend on the random function τ .
Therefore, if we condition on the τ ’s of all optimal facilities except f∗, the out-edges of the original
copies of all facilities in G1 except f∗ are determined, where G1 is the 1-forest after degree reduction
but before edge deletion. Let G∗1 be G1 with the out-edge of the original copy of f∗ removed. If
we ignore the identity of the local and optimal surrogates, everything else in G∗1 is determined.
Moreover, the conditioning we did is independent of τ(f∗), so the conditional probabilities of
τ(f∗) = η1 and τ(f∗) = η2 are both still 1/2.

Note that f∗ may be a heavy optimal facility, in which case f∗ has new copies in G1. We use f∗
to refer to only the original copy. τ(f∗) may also be a heavy local facility when τ(f∗) = η2 (note
that we assumed η1 = f1 is not heavy), in which case f∗ points to itself in G1. If either f1 or f2 is
chosen as a surrogate, then T21\D′ cannot happen because D′ happens. We thus assume f1 and f2

only appear as their original copies in G1. Since f∗ is the only vertex in G∗1 that doesn’t have an
out-edge, f∗ is the root of a tree, and all other connected components of G∗1 are 1-trees.

We divide our proof into five cases depending on the structure of G∗1:

1. f∗, f1, f2 are all in the different connected components;
2. f∗, f1 are in the same tree, different from f2;
3. f∗, f2 are in the same tree, different from f1;
4. f1, f2 are in the same 1-tree (denoted by T ), different from f∗;
5. all three are in the same tree (denoted by T ∗).

Let E1 denote the event that f1 and f2 are in the same connected component in G2, where G2 is
the graph after the edge deletion procedure. Since D′ includes the case where the edge from f∗

to η1 = f1 is deleted in the edge deletion step, we have E1 ∩ T1 ⊆ T11 ∪ D′. Let E0 denote the
event that f1 and f2 are in the same connected component in G2 but different from f∗. Since
subtracting D′ rules out the possibility of f1 and f2 being combined in the balancing step, we have
T21\D′ ⊆ E0 ⊆ E1.
In case 1, T21\D′ never happens because E1 never happens. Indeed, f1, f2 must be in different
connected components in G1 and thus must be in different connected components in G2.

In cases 2&3, T21\D′ never happens either because E0 never happens. Indeed, the only way f1 can
connect to f2 (by an undirected path in G1) is through f∗, and in the edge deletion procedure,
there is no way to put f1, f2 in the same connected component of G2 without also putting f∗ in it.

In case 4, f∗ is not on the cycle part of T , so the height threshold th and the choice of r ∈ T in the
edge deletion step are both independent of τ(f∗). Once conditioned on th, r, whether or not f1 and
f2 are in the same connected component in G2 is determined. We assume that f1 and f2 are in the
same connected component of G2 because otherwise T21\D′ never happens. If τ(f∗) = η1(= f1),
then we know T11 ∪ D′ must happen, because E1 ∩ T1 happens. Moreover, T21\D′ happens only
when τ(f∗) = η2 simply because T21 ⊆ T2. Therefore, if we let E be the event summarizing all the
conditioning we did so far, we have

Pr[T11 ∪ D′|E ] = Pr[τ(f∗) = η1|E ] = 1/2,

Pr[T21\D′|E ] ≤Pr[τ(f∗) = η2|E ] = 1/2,

and thus (E.54) holds for Ei = E .
Case 5 is a little tricky since the cycle structure of T , the 1-tree in G1 containing all of f∗, f1, f2,

63



may depend on where f∗ points to. Condition on the height threshold th being fixed, and let E be
the event summarizing all the conditioning we did so far. Let fa be the least common ancestor of
f1 and f2 in T ∗, and let s denote the path length from fi to fa maximized over i = 1, 2.

Conditioned on τ(f∗) = η1, or equivalently T1, the probability of T11 ∪ D′ is 1 if the cycle length `
of T is in the range (th, d1/εe · th), and if ` is not in the range, the conditional probability of T11∪D′
is at least the conditional probability of E1, which is at least max{ th−sth , 0}(1−O(ε)) by Lemma E.3
(Observe that f1 = η1 is on the cycle of T because f∗ points to it on event T1). Therefore,

Pr[T11 ∪ D′|E ] ≥ Pr[τ(f∗) = η1|E ] ·max
{ th − s

th
, 0
}

(1−O(ε))

= 1/2 ·max
{ th − s

th
, 0
}

(1−O(ε)).(E.55)

On the other hand, T21\D′ happens only when τ(f∗) = η2. Condition on τ(f∗) = η2. If the cycle
length ` is in the range (th, d1/εe · th), then T21\D′ never happens. If ` ≤ th, and fa is on the cycle,
then T21\D′ never happens either because E0 never happens. Indeed, the only possible undirected
path in T connecting f1 with f2 without passing through f∗ intersects the cycle, so f1, f2 have to
connect to the cycle after edge deletion to make E0 happen, but the cycle contains f∗ and remains
connected after edge deletion (because ` ≤ th). Therefore, we assume either ` ≥ d1/εe · th, or
` ≤ th and fa is not on the cycle. In this case, the conditional probability of T21\D′ is at most the
conditional probability of E0, which is at most max

{
th−s
th
, 0
}

(1 +O(ε)) by Lemma E.2. Therefore,

Pr[T21\D′|E ] ≤ Pr[τ(f∗) = η2|E ] ·max
{ th − s

th
, 0
}

(1 +O(ε))

= 1/2 ·max
{ th − s

th
, 0
}

(1 +O(ε)).(E.56)

Combining (E.55) and (E.56), we know (E.54) holds for Ei = E .

E.5 Proof of Claim D.3: Subtypes within Type C

Claim D.3 (Subtypes within type C). For a client c of type C, one of the following is true:

(a) f1 is heavy.

(b) f2 is heavy.

(c) A facility h is open near c after the simple swap closing f1. Formally, a facility h 6= f2 is
open after swap 〈〈¬f1〉〉 at distance d(c, h) ≤ 3d1 + 2d∗ on S ∩ A.

(d) g∗ 6= f∗, ρ(g∗) > 3/4, and for all b = 1, 2, any swap set P generated on S ′b ∩ A, a facility

h 6= f2 is open after swap 〈〈¬f1〉〉 at distance d(c, h) ≤
{

2d1 + d∗, if b = 1
2d1 + d∗ + 4/3(d1 + d∗), if b = 2

.

(e) For any swap set P generated on T2 ∩ A, 〈〈f∗〉〉 closes both f1 and f2.

(f) g∗ 6= f∗, ρ(g∗) > 2/3, and there exists b ∈ {1, 2} such that for any swap set P generated on
T ′b ∩ A, 〈〈f∗〉〉 closes both f1 and f2.

Proof. Recall that g∗ is π(f1) and S ′b is the event that P is a simple swap and g∗ points to ηb(g∗).
Similarly T ′b is the event that P is a tree swap and g∗ points to ηb(g∗).
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If either f1 or f2 is heavy, then condition (a) or (b) holds. We assume neither f1 nor f2 is heavy
henceforth. In other words, the swaps 〈〈¬f1〉〉 and 〈〈¬f2〉〉 both exist.

Let g be the closest local facility to g∗ that is different from f1 and f2. Intuitively, we show that
either a client is close to g or there is a tree that contains all f1, f2, and f∗.

If d(g, g∗) ≤ d(f1, g
∗), then we have d(c, g) ≤ d1 + d(f1, g

∗) + d(g, g∗) ≤ d1 + 2d(f1, g
∗) ≤ 3d1 + 2d∗.

Furthermore, when we generate tree swaps, f1 points to g∗ = π(f1) in the 1-forest G1 after degree
reduction. If f1 points to a new copy of g∗, we know that f1 is not among the td closest local
facilities to g∗ in π−1(g∗). Therefore, we know d(g, g∗) ≤ d(f1, g

∗). Note that g and f1 are not
closed in the same simple swap by implication (Siii’) of amenability, so condition (c) holds in this
case.

We can now assume that f1 points to the original copy of g∗ and d(g, g∗) > d(f1, g
∗). If g∗ = f∗,

we know condition (e) holds, because both edges f1 → f∗, f∗ → f2 remain after the edge deletion
step by amenability. We assume g∗ 6= f∗ henceforth.

If ρ(g∗) ≤ 2/3, we know τ(g∗) = η1(g∗) deterministically. Moreover, d(g, g∗) > d(f1, g
∗) implies that

τ(g∗) is either f1 or f2. If η1(g∗) = f1, then 〈〈¬f1〉〉 must open g∗ by implication (ii’) of amenability,
so condition (c) holds in this case since d(c, g∗) ≤ d1 +d(f1, g

∗) ≤ 2d1 +d∗. Otherwise, η1(g∗) = f2,
and then condition (e) holds, because the edges f1 → g∗, g∗ → f2, f

∗ → f2 all survive edge deletion
by amenability, so f1, f2, f

∗ must all be in the same swap.

It remains to consider the case where ρ(g∗) > 2/3. If f2 = ηb(g
∗) ∈ {η1(g∗), η2(g∗)}, then condition

(f) holds because the edges f1 → g∗, g∗ → f2, f
∗ → τ(f∗) ∈ {f1, f2} all survive edge deletion on

T ′b ∩ A (see the left graph in Figure E.13). Otherwise, f2 /∈ {η1(g∗), η2(g∗)}, and in this case we
know η1(g∗) = f1 and η2(g∗) = g because d(g, g∗) > d(f1, g

∗). We show that condition (c) or (d)
holds, depending on whether ρ(g∗) ≤ 3/4. Indeed, on S ′1 ∩ A, we know 〈〈¬f1〉〉 opens g∗ at distance
≤ 2d1 + d∗ by implication (ii’) of amenability, and on S ′2 ∩A, we know either g∗ or g is open after
swap 〈〈¬f1〉〉, again by implication (ii’) of amenability, and d(c, g) ≤ 2d1 + d∗ + 1/ρ(g∗) · (d∗ + d1)
(see the right graph in Figure E.13).

f∗ c f1
g∗ g

f2

d∗ d1 d∗ + d1
4/3 · (d∗ + d1)

f∗ c f1
g∗

f2

Figure E.13: In the figure, dashed edges represent the random function τ . In the left graph, whenever g∗

points to f2, f1, f2, f∗ are all in the same swap, so condition (f) holds. In the right graph, condition (d)
holds.
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