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Abstract

Numerous recent papers have studied the tension between thickening and clearing a market
in (uncertain, online) long-time horizon Markovian settings. In particular, (Aouad and Saritaç
EC’20, Collina et al. WINE’20, Kessel et al. EC’22) studied what the latter referred to as the
Stationary Prophet Inequality Problem, due to its similarity to the classic finite-time horizon
prophet inequality problem. These works all consider unit-demand buyers. Mirroring the long
line of work on the classic prophet inequality problem subject to combinatorial constraints,
we initiate the study of the stationary prophet inequality problem subject to combinatorially-
constrained buyers.

Our results can be summarized succinctly as unearthing an algorithmic connection between
contention resolution schemes (CRS) and stationary prophet inequalities. While the classic
prophet inequality problem has a tight connection to online CRS (Feldman et al. SODA’16, Lee
and Singla ESA’18), we show that for the stationary prophet inequality problem, offline CRS
play a similarly central role. We show that, up to small constant factors, the best (ex-ante)
competitive ratio achievable for the combinatorial prophet inequality equals the best possible
balancedness achievable by offline CRS for the same combinatorial constraints.

1 Introduction

A core challenge in economics is tackling the tension between thickening the market and clearing it.
More broadly, in decision-making under uncertainty, a recurring theme is deciding between using
scarce resources now, or keeping these resources for use for unknown later opportunities.

One problem capturing such tension is the (classic) prophet inequality problem, introduced in
the 70s by Krengel and Sucheston [28, 29]. Here, a seller has a single item, and buyers arrive
sequentially, and then announce their bid for the item, drawn from a priori known distributions.
When a buyer arrives, the seller must immediately either reject their bid or sell them the item at
the bid price, thus forgoing all future buyers’ bids. The objective is to maximize the competitive
ratio, i.e., the ratio of the algorithm’s expected reward to that of the “prophetic” offline algorithm,
who can foretell the bid realizations.

The above basic problem has been generalized significantly, and (near-)optimal competitive
ratios are known for sellers with varying combinatorial constraints, including multi-unit [3, 6, 25],
matroid [27], polymatroid [19], matching [20, 24], knapsack [22], and arbitrary downward-closed sets
[36].1 Similarly, there has been growing interest in generalizing from linear rewards (i.e., sum of bids)
to more involved set functions, such as subadditive, submodular and XOS valuations [16, 18, 37, 43].

∗Part of this work done while the author was at Stanford University and at Google Research. Supported by a
Taub Family Foundation “Leader in Science and Technology” fellowship.

1Recall that a set family F ⊆ 2G is downward-closed if whenever A ∈ F and B ⊆ A, then B ∈ F .
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Finally, some recent work has considered this family of problems from the perspective of poly-time
approximation of the (computationally unbounded) optimal online algorithm [4, 10, 17, 31, 32, 33].

Despite the breadth of work on prophet inequality problems, one key aspect of markets was
overlooked: over sufficiently long time horizons, the seller may obtain additional goods to sell.

This gap in the literature was addressed by a number of recent works, the most relevant of which
to our work are [5, 13, 26]. In particular, [26] introduced the stationary prophet inequality, where
items of different goods are produced and perish according to a Poisson time process, and buyers of
different preference types similarly arrive according to a Poisson point process, and the algorithm
must immediately decide what good to sell an item of to each buyer on arrival. The goal is to
maximize the algorithm’s infinite-time-horizon average reward. (See Section 2.) Kessel et al. [26]
provide optimal 1

2 -competitive algorithms for the single-good problem, and algorithms improving
on the multi-good algorithm by [13], and the approximation of the optimal online algorithm by [5]
for the single-good problem.2

While the preceding papers provide a good first treatment of infinite-time-horizon two-sided
markets, these papers are all restricted to unit-demand buyers. In this work, we extend this study
to combinatorial-demand buyers, who are interested in subsets of items belonging to a downward-
closed set family, and may stipulate non-linear valuations for such sets. (See Section 2.1.) Our goal
is to similarly develop a rich theory of achievable competitive and approximation ratios for infinite
time horizons, mirroring the rich literature on the (finite time horizon) classic prophet inequality.

1.1 Results

Our main result ties the combinatorial stationary prophet inequality problem to a central tool in
the study of this problem’s classic counterpart: contention resolution schemes (CRSes).

Definition 1.1 ([41]). Let (G,F ⊆ 2G) be a set system and let polytope PF be a relaxation of
convexhull{1F | F ∈ F}.3 A Contention Resolution Scheme (CRS) π for (G,F) and PF is an
algorithm that takes as input a point x ∈ PF and a set of active elements R(x) ⊆ G, including each
element i ∈ G independently with probability xi, and outputs a feasible subset πx(R(x)) ∈ F ∩2R(x).
The CRS π is c-balanced (a.k.a, π has balance ratio c) if for every x ∈ PF ,

Pr[i ∈ πx(R(x)) | i ∈ R(x)] ≥ c.

Contention resolution schemes, originating in the study of submodular maximization [11], have
found wide-ranging applications including mathematical programming [41], combinatorial sparsifi-
cation [15] and online rounding schemes [31], among others. Online CRSes (OCRSes), that observe
online for each element i whether i ∈ R(x), and must decide before observing the next element
whether i ∈ πx(R(x)), likewise have far-reaching applications to online optimization and beyond,
including prophet inequalities [22, 24], stochastic probing [1, 7, 22], oblivious posted pricing mech-
anisms [20, 22, 34] and algorithmic delegation [8]. Most relevant to our work is OCRSes’ tight
connection to the classic prophet inequality problem: OCRSes yield prophet inequalities with the
same balance ratio [22], while ex-ante prophet inequalities (yielding an approximation of the ex-ante
relaxation) imply OCRSes with the same value, as proven by Lee and Singla [30].

In contrast to the above, our main result is a proof that offline contention resolution plays a
similar central role for the (online) stationary prophet inequality problem.

2It should be noted that [5, 13] study more broadly a dynamic stochastic matching problem, which allows buyers
to depart stochastically but not immediately, and to be sold items at any point until their departure.

3Polytope P is a relaxation of another polytope Q if it contains the same {0, 1}-points, i.e. P∩{0, 1}n ⊇ Q∩{0, 1}n.
Throughout, all polytopes we work with are solvable, i.e., there exist efficient separation oracles for these polytopes.
Moreover, to avoid clutter, we often implicitly assume a fixed such polytope PF when discussing a constraint F .



Theorem 1.2. Let F be a downward-closed set family for which the maximum achievable CRS
balance ratio is c. Then, stationary prophet inequality for F-constrained buyers admits a (ex-ante)
(c/2)-competitive algorithm, while no ex-ante (c+ε)-competitive algorithm is possible, for any ε > 0.

At the cost of decreasing the competitive ratio by a factor of (1−1/e−ε)2, or only (1−1/e−ε)
if we ignore computational aspects (but not uncertainty about the future), our results also extend
to monotone submodular objectives (and worse constants for arbitrary non-negative submodular
functions), provided the CRS used is monotone.

The algorithmic part of Theorem 1.2 yields a plethora of results for rich families of constraints
on buyers’ demands (and also extend to settings where different buyers have different constraints).
One prominent example is the multi-good setting, where buyers are again unit-demand. For this
problem, the best known competitive ratio is 0.267 [26], improving on a previous 1

8 = 0.125 of [13].
Our general result beats these bounds, giving a 1

2(1 − 1/e) ≈ 0.316-competitive algorithm for this
special case. Our next result further improves on the above bound for this basic problem.

Theorem 1.3. The multi-good (unit-demand) stationary prophet inequality problem admits an
algorithm wich competitive ratio (1− 1/

√
e) ≈ 0.393.

Finally, we focus our attention on matroid-constrained stationary prophet inequalities. For this
problem, Theorem 1.2 gives a 1

2(1− 1/e)-competitive algorithm. Echoing a growing interest in the
question of efficiently approximating the optimum online algorithm, we show that (slightly) better
approximation is achievable by a polytime algorithm by extending our approach.

1.2 Technical Overview

Our starting point is the observation that some prior algorithms for single/multi-good SPI [13, 26]
can be interpreted as repeatedly applying offline contention resolution schemes when buyers arrive.
In hindsight, this is natural: by the central PASTA property from queueing theory (Lemma 2.1),
an arriving buyer observes a set of available items drawn from the stationary distribution. So,
intuitively, “proposing” each available good to the buyer independently with probability derived
from some LP relaxation, and then applying a CRS to choose proposed good(s) to sell should yield
high average reward.

While the above approach sounds simple enough, it does not quite work as stated, since goods’
availabilities are not independent, due to contention of different goods for previously-arrived buyers.
Nonetheless, via stochastic coupling arguments (see Lemma C.1), for unit-demand buyers in both
single-good and multi-good problems, one can couple the goods’ availabilities in this process and
those in a process in which goods face no contention, resulting in independent availability. This
allowed [13, 26] to effectively appeal to contention resolution schemes, though sub-optimal ones,
and not used in a black-box manner, as the proposals’ distribution only dominates an independent
distribution. In contrast, our improved multi-good algorithm of Theorem 1.3 does rely on contention
resolution schemes in a black-box manner, but explicitly relies on optimal CRSes for single items
subject to dependent distributions (Theorem 2.4).

Our main divergence from prior work concerns combinatorially-constrained buyers. Here, each
buyer may be sold items of multiple different goods, which can create positive correlations between
different items’ availabilities, resulting in poor balance ratio of any CRS for the obtained distribution
[14]. To overcome this challenge, rather having buyers get proposals from available items, we let
them get proposals from present items – i.e., items that have not perished, but may have been sold.
This then gives us independent distributions (as presence is independent across goods), and allows
us to use an optimal CRS for the constraint family in a black-box manner. Following this step, we



then sell the buyer the subset of items selected by the CRS that are also available. Our lower bounds
on our algorithm’s average reward (for linear objectives) then follow from linearity of expectation,
once we lower bound the probability of a selected (present) item to also be available, which is the
crux of the analysis. For this last step, we essentially reduce to the analysis of the single-item case
in [26]. Thus, we obtain our main result of Theorem 1.2 from a “two-pronged” reduction: reducing
to black-box use of optimal CRS on the one hand and to the single-good problem on the other.

Our approximation of the optimum online algorithm for matroid-constrained buyers follows the
above approach, with the following twist: there, we may afford to propose goods more frequently
(by virtue of additional LP constraints), and so our algorithm requires an extension of CRS for
points slightly outside the matroid polytope (Lemma 5.2).

Our analysis for submodular objectives is more intricate, as linearity of expectation is no longer
applicable. Instead, we lower bound the expected marginal contribution of each element to the
set selected (and then to the subset sold) of the CRS, relating it to the multilinear extension of
the selling rates x that approximately maximize the multlinear extension (using known constant-
approximation for such objectives subject to solvable polytopes). As the multilienar extension
provides a constant approximation for the concave extension, or the highest-valued distribution
with given marginals, this yields a constant-approximate SPI, with the constant again depending
linearly on the best balance ratio of a CRS for the underlying constraint.

Finally, our asymptotically tight lower bound of Theorem 1.2 similarly builds on focusing on
allocation to present items, and then obtains its bound by known connections between the highest
balance ratio of a CRS and the correlation gap.

2 Preliminaries

2.1 Problem statement

In the stationary prophet inequality problem (SPI), a seller wishes to sell items of n types of goods
G to m types of buyers B, while (approximately) maximizing the seller’s average gain over an
infinite time horizon. Buyers and items arrive and depart according to independent Poisson point
processes, with arrival and departure times only observed by the seller as they occur, as follows.

Items of good i ∈ G are homogeneous, supplied according to a Poisson process with rate λi > 0,
and perish at an exponential rate µi > 0. Thus, in any interval [t, t+∆], in expectation λi ·∆ items
of good i are supplied, and an item that is supplied at time t′ perishes at a time t′′ ∼ t′ +Exp(µi).
An item is present if it has been supplied but has not yet perished, and a present item is also
available if it has not been sold to a buyer. Similarly, a good i ∈ G is present or available if an item
of said good is present or available, respectively. We denote the sets of present and of available
goods at time t > 0 by P t ⊆ G and At ⊆ G, respectively. We similarly denote by P = P∞ and
A = A∞ the “stationary” set of present and available goods.

Buyers of type j ∈ B arrive according to a Poisson process with rate γj > 0. Each buyer type
j ∈ B offers a value for sets of items, given by valuation function fj : G → R≥0. In the basic case,
fj is linear, fj(S) =

∑

i∈S vij . Upon arrival of a buyer of type j ∈ B, the seller must irrevocably
decide which available set of goods S ⊆ G to sell an item of to the buyer, where S must belong
to some known downward-closed family Fj ⊆ 2G (e.g., independent sets in matroids, matchings in
graphs, etc). The seller then gains fj(S) value, and the buyer immediately departs.

The seller has as objective the maximization of the average infinite-time reward on the input
SPI instance I. We measure the algorithm’s reward in terms of (i) its competitive ratio, i.e., its
approximation of the average reward OPToff(I) of the optimal offline algorithm (the “prophet”),
which knows the arrival and departure times up front or (ii) its approximation of the average reward



OPTon(I) of the optimal online algorithm, which does not know future arrival and departure times,
but is computationally unbounded.

We refer to an SPI instance where buyers are constrained by F as F-SPI for short.

Notation. Throughout, for a set U and vector x ∈ [0, 1]U , we denote by U(x) a random set
containing each element i ∈ U independently with probability xi.

Queuing theory background. We recall the following fundamental PASTA property (“Poisson
Arrivals See Time Averages”).

Lemma 2.1 (PASTA [42]). The fraction of Poisson arrivals who observe a stochastic process in a
state is equal to the fraction of time the stochastic process is in this state, provided that the Poisson
arrivals and the history of the stochastic process are independent.

The above implies, for example, that the fraction of arriving buyers observing that i is present
is precisely Pr[i ∈ P ]. The following lemma asserts that this latter probability, Pr[i ∈ P ], upper
bounds the probability of i being present at any given time t ≥ 0 during the process. For a proof
of this standard fact about birth-death processes, see e.g., [35, Proposition 9.2.4].

Proposition 2.2. Pr[i ∈ P t] is monotonically increasing in t ≥ 0, and in particular for any t ≥ 0,

Pr[i ∈ P t] ≤ Pr[i ∈ P∞] = Pr[i ∈ P ].

2.2 Further background on CRS

A key tool we use in our algorithms are contention resolution schemes of high balance ratio. The
highest possible such balance ratio of any CRS for a constraint polytope PF is known to be tightly
related to the correlation gap of this polytope, which is the worst-case ratio between the value of the
best correlated and independent distributions satisfying a given set of marginals in said polytope.

Proposition 2.3 ([2, 12]). If the highest balance ratio of a CRS for family of constraints C over the
set of elements G is α, then for any ǫ > 0 there exists a constraint F ∈ C, vector x ∈ PF ∩ [0, ε]|G|

and weight vector y s.t.
E
[

maxS⊆R(x),S∈F
∑

i∈S yi
]

∑

i∈G yi · xi
≤ α.

Finally, we require a CRS for rank-one uniform matroids with correlated distributions, which in
particular does not require independence across the events {i ∈ R}i∈G .
Theorem 2.4 ([21]). Let D be a distribution over 2G such that for all S ⊆ G,

Pr
R∼D

[S ∩R 6= ∅] ≥
∑

i∈S
βi · Pr

R∼D
[i ∈ R].

Then there exists a poly-time algorithm that selects a subset π(R) of R ∼ D of size at most one,
satisfying

Pr[i ∈ π(R)] ≥ βi · Pr[i ∈ R].

Finally, we also need the notion of monotone CRS for our results for SPI with submodular
objectives (see Section 4 for background on submodularity).

Definition 2.5. A CRS π is monotone if for every S ⊆ T ⊆ G,

Pr[i ∈ π(S) | i ∈ S] ≥ Pr[i ∈ π(T ) | i ∈ T ].



2.3 The (ex-ante) relaxations

So far, previous works [5, 13, 26] proposed LP benchmarks for the multi-good (unit-demand buyers)
stationary prophet inequality problem. We generalize these LPs to buyers with combinatorial
demands in this section (and to buyers with submodular valuations in Section 4).

Lemma 2.6. Let xij be the rate at which some algorithm A sells items of good i ∈ G to buyers of
type j ∈ B. Then x := (xij)i∈G,j∈B with xj := (xij)i∈G satisfies the following constraints:

∑

j∈B
xij ≤ λi ∀i ∈ G (1)

xij ≥ 0 ∀i ∈ G, j ∈ B (2)

xij ≤ γj ·
(

1− exp

(

−λi

µi

))

∀i ∈ G, j ∈ B (3)

xj

γj
∈ PF . ∀j ∈ B (4)

If A is an online algorithm, then x also satisfies the following constraint:

xij ≤ γj ·
(

λi −
∑

ℓ∈B xiℓ

µi

)

. ∀i ∈ G, j ∈ B (5)

Proof. Constraints (1) and (2) are immediate, since Algorithm A cannot sell a good i ∈ G at a rate
higher than i’s arrival rate, or at a negative rate. Next, as used by [26], since a buyer of type j
can only be sold an item of good i if i is available, and hence present, Constraint (3) follows from
the PASTA property (Proposition 2.1) and Pr[i ∈ P ] = 1 − exp (−λi/µi), (see Proposition A.2).
The (new) Constraint (4) follows from each arrival of buyer j being sol a set in F , and so

xj

γj
is

a distribution over indicator vectors of sets in F , and thus belongs to the relaxed polytope PF .
Finally, Constraint (5) holds for any online algorithm for unit-demand single-good SPI, as proven
by [5], and so if we restrict our attention to rates (xij)j∈B, we find that this constraint holds for
combinatorial-demand SPI as well.

Thus, for any combinatorial stationary prophet inequality instance I, the above constraints
define two relaxations, that are solvable by the ellipsoid method if PF is solvable (as assumed).

Poff(I) :=
{

x ∈ R
B×G ∣

∣ x satisfies (1)− (4)
}

,

Pon(I) :=
{

x ∈ R
B×G ∣

∣ x satisfies (1)− (5)
}

.

Corollary 2.7. For all instances I of the combinatorial stationary prophet inequality problem,

1. max
{

∑

i,j vij · xij
∣

∣

∣ x ∈ Poff(I)
}

≥ OPToff(I), and

2. max
{

∑

i,j vij · xij
∣

∣

∣ x ∈ Pon(I)
}

≥ OPTon(I).

Both programs on the LHS of the above are solvable in polynomial time if PF is a solvable polytope.

Proof. The inequalities follow directly from Lemma 2.6. The polytime solvability follows from the
fact that Poff and Pon consists of intersections of polynomial many linear constraints and constraint
sets of copies of PF . Hence, if PF is solvable then Poff and Pon are also solvable.



3 Additive Stationary Prophet Inequalities

In this section, we introduce and analyze our main combinatorial-demand SPI algorithm under
linear valuation functions. For notational simplicity, we assume that all buyers have the same
combinatorial constraint over goods, F ⊆ 2G , though our analysis extends seamlessly to the case
of different constraints for different buyer types, with the competitiveness guarantees modified
appropriately. In what follows we let PF be some fixed relaxation of convexhull{1F | F ∈ F}.

3.1 The main algorithm

Our combinatorial stationary prophet inequality algorithm, Algorithm 1, works as follows. It takes
as input a vector x ∈ R

|G|×|B|,4 and some per-good scaling vector w ∈ R
G . It further uses a c-

balanced CRS, π. The algorithm then attempts to (approximately) follow the sell rate prescribed
by x as follows. When a buyer of type j ∈ B arrives at time t, we have each present good propose
to buyer j with probability qij :=

xij

γj ·wi
independently. Denote the set of proposers to buyer j ∈ B

by Rt
j . Then, to allocate feasible subsets, we use a CRS π for constraint F and polytope PF , and

allocate an item of each available good in the selected subset π(Rt
j) ⊆ Rt

j to the buyer.

Algorithm 1 The combinatorial stationary prophet inequality algorithm

Require: x ∈ R
|G|×|B|, w ∈ R

|G|, a CRS π for PF
1: for all arrivals of buyer of type j ∈ B at time t do
2: Let Rt

j ⊆ G contain each present good i ∈ G independently with probability qij :=
xij

γj ·wi
.

3: Allocate an item of all available goods i ∈ π(Rt
j) to the current buyer.

As we will show, invocations of Algorithm 1 with appropriately-chosen x and w obtain constant
competitive ratio and approximation of the optimum online algorithm for a wide range of “nicely”
behaved combinatorial constraints—those admitting balanced contention resolution schemes. The
following is the main theorem of this section.

Theorem 3.1. Algorithm 1 run on x∗ ∈ argmax{v · x | x ∈ Poff(I)} and equipped with a c-
balanced CRS for polytope PF is a (c/2)-competitive algorithm for stationary prophet inequality
with F-constrained buyers.

For our analysis, we require the following notation.

Algorithm-specific notation. Recall that At ⊆ G and P t ⊆ G denote the sets of available and
of present goods at time t ≥ 0. We let A and P denote the sets of available and present goods at
the stationary distribution of the stochastic process induced by Algorithm 1. Similarly, we denote
by Rj the set of proposals to a buyer of type j if the buyer arrives at time t → ∞.

Before laying the groundwork for analyzing the competitive/approximation ratio of Algorithm 1,
we note that it is well-defined for the choices of x and w we will use.

Lemma 3.2. Algorithm 1 is well-defined and outputs a feasible allocation if run on x ∈ Poff(I)
and w with wi = 1− exp(−λi/µi) for all i ∈ G.

Proof. Line 2 is well-defined, as qij ∈ [0, 1], by constraints (3). Next, we note that presence of
different goods is independent, as are the Ber(qij) coins in Line 2, and so Rt

j is drawn from a

4For concreteness, this vector can be argmax{v · x | x ∈ Poff(I)}.



product distribution over G for all buyer j ∈ B. Moreover, upon buyer j’s arrival, each present
good i ∈ G is added to the set of goods Rt

j with probability qij.

qij =
xij

γj · wi
· Pr[i ∈ P t] ≤ xij

γj · wi
· Pr[i ∈ P ] =

xij
γj

,

where the inequality holds by definition of qij and Proposition2.2, while the final equality follows
by Pr[i ∈ P ] = wi due to Proposition A.2. Furthermore, Equation (4) ensures that xj ∈ γj · PF ,
which implies that ztj ∈ PF , where ztij = Pr[i ∈ Rt]. Consequently, by the properties of a CRS
(Definition 1.1), the CRS π outputs a feasible set π(Rt

j) ∈ F in Line 3. Therefore, by downward
closedness of F , Line 3 allocates a feasible subset to each buyer j ∈ B upon arrival, π(Rt

j) ⊆ R,
π(Rt

j) ∈ F .

Our competitive and approximation ratios will follow from linearity together with a lower bound
on the sell rate of good i ∈ G to buyer j ∈ B, which are easily expressed using the PASTA property
(Lemma 2.1):

Lemma 3.3. Let sij be the selling rate of good i ∈ G to buyer type j ∈ B by Algorithm 1. Then,

sij = γj · Pr[i ∈ A ∩ π(Rj)].

Proof. Upon arrival of a buyer of type j, Algorithm 1 allocates a set of available goods from
π(Rj) ⊆ Rj. We first observe that the buyer’s arrival is independent of the randomness of CRS
π, as well as of the presence and availability of items, and of the Ber(qij) random variables. The
PASTA property (Lemma 2.1) then ensures that the fraction of time buyer j ∈ B (Poisson arrivals
independent of the history due to momemorylessness of Poisson arrivals) observes that good i ∈ G
is both available and belongs to set π(Rj) is equal to the fraction of time that this latter event
occurs. Therefore, the rate sij at which an item of good i ∈ G is sold to buyer j ∈ B can be
expressed as:

sij = γj · Pr[i ∈ A ∩ π(Rj)].

Motivated by Lemma 3.3, we turn to lower bounding Pr[i ∈ A ∩ π(Rj)].

3.2 Lower bounding Pr[i ∈ A ∩ π(Rj)]

In this section we prove a lower bound on Pr[i ∈ A∩π(Rj)] for a class of combinatorial constraints
with bounded correlation gap and complete the proof of this section’s main theorem. Throughout
the section, we set wi = Pr[i ∈ P ] = 1 − exp(−λi/µi) (the last equality follows from Proposition

A.2). Naturally, we take x to be an optimal solution to max
{

∑

i,j vij · xij | x ∈ Poff(I)
}

.

Challenging correlations. We note that availability of good i may be positively correlated
with availability (“presence”) of other goods, e.g., if xij and xi′j are low/high for similar j. This
may in turn result in positive correlations between availability of good i and presence (and hence
proposals) of other goods. Therefore, availability of i may be positively correlated with higher
contention (larger R \{i}), and so i ∈ A may be negatively correlated with selection i ∈ π(Rj). See
Appendix D.

The above negative correlation poses a challenge when lower bounding Pr[i ∈ A ∩ π(Rj)]. To
overcome this, we study a subset S ⊆ A such that i ∈ S is independent of other goods’ presence
(and hence proposals), from which we obtain that Pr[i ∈ π(Rj) | i ∈ S] = Pr[i ∈ π(Rj) | i ∈ P ],
which allows us to then lower bound Pr[i ∈ A∩π(Rj)] ≥ Pr[i ∈ S ∩π(Rj)]. We turn to defining S.



Definition 3.4 (Saved goods and items). We say each item is saved (for future buyers) upon its
arrival. We say good i ∈ G is saved if it has a saved item, and we denote the set of saved goods at
time t by St ⊆ G. Next, we associate each proposal of a saved good i ∈ G to buyer j ∈ B at time t
(i.e., i ∈ St ∩ Rt

j) with a saved item of this good, after which this item is used (i.e., is no longer
saved), and we sell this proposing item of good i at time t if i ∈ π(Rt

j) upon buyer j ∈ B’s arrival
at time t.

As we shall see later, the definition of saved items allows us to analyze the probability of a
saved good i being selected by the CRS by reducing to the single-good problem, analyzed in [26].
The following observation implies that saved goods are also available, and hence this single-good
“reduction” is useful to lower bound selection of an available good.

Observation 3.5. St ⊆ At at every time t ≥ 0.

Proof. Since allocated items are used by the time they are allocated, saved items are available.

Similarly to our use of A,P for the stationary counterparts of At, P t, we use S to denote the
saved set St as t → ∞. The preceding observation motivates lower bounding the probability of
a proposing good being saved (thus lower bounding the probability of a proposing good being
available, by Observation 3.5), as in the following.

Lemma 3.6. Pr[i ∈ S | i ∈ Rj ] ≥ 1
2 for all good i ∈ G.

The proof, which follows by a standard exercise in analysis of birth-death processes, is deferred
to Appendix A. We present a brief sketch below.

Proof. First, since (i ∈ Rj) = (i ∈ P )∧(Xij = 1), for Xij ∼ Ber(qij) independent of i ∈ P , together
with Bayes’ Law, we have that Pr[i ∈ S | i ∈ Rj ] = Pr[i ∈ S | i ∈ P ]. So, we wish to lower bound
Pr[i ∈ S | i ∈ P ]. Since S ⊆ P , this requires bounding Pr[i ∈ S] and Pr[i ∈ P ]. Bounding both
terms is a simple exercise in the analysis of birth-death processes’ stationary distributions, with
the ratio of the two lower bounded by 1

2 in [26].

Now, we recall that good i being available (or saved) and proposing to buyer j is not a sufficient
condition for i to be allocated. Instead, the good must be available, it must propose, and it must be
selected by the CRS π, i.e., we must have i ∈ π(Rj). Therefore, we need to bound the probability
of i being available (again, we will focus on i being saved) and having a particular competing set
of goods Rj \{i}. The following lemma gives us such a bound, relying on independence of different
goods’ presence and of the Bernoulli coin tosses in Line 2.

Lemma 3.7. For any good i ∈ G and buyer j ∈ B,

Pr[i ∈ π(Rj) | i ∈ S] = Pr[i ∈ π(Rj) | i ∈ P ].

Proof. The event that i is saved (i ∈ S) is determined by previous arrivals and departures of good
i and buyers, and outcomes of Ber(qij′) random variables, all of which are independent of arrivals
and departures as well as outcomes of the Ber(qi′j) random variables of all goods in i′ ∈ G \ {i}.
Therefore i ∈ S is independent of the proposals of any subset of other goods at time t. On the
other hand, S is independent from the Ber(qij) that determines if present good i ∈ P also proposes,
i.e., if i ∈ Rj . Thus,

Pr[(R = T ) ∧ (i ∈ S)] = Pr[R = T ] · Pr[i ∈ S | i ∈ Rj ] = Pr[Rj = T ] · Pr[i ∈ S | i ∈ P ].



So, by total probability over deterministic CRS π̃ drawn from the randomized CRS π, we have

Pr[i ∈ π(Rj) | i ∈ S] =
1

Pr[i ∈ S]
·
∑

π̃

Pr[π = π̃] ·
∑

T :π̃(T )∋i
Pr[(Rj = T ) ∧ (i ∈ S)]

=
1

Pr[i ∈ P ]
·
∑

π̃

Pr[π = π̃] ·
∑

T :π̃(T )∋i
Pr[Rj = T ]

= Pr[i ∈ π(Rj) | i ∈ P ].

We are now ready to lower bound Pr[i ∈ A ∩ π(Rj)].

Lemma 3.8. For any good i ∈ G and buyer j ∈ B,

Pr[i ∈ A ∩ π(Rj)] ≥
c

2
· xij
γj

.

Proof. Let π̃ be a deterministic CRS drawn from the randomized CRS π.

Pr[i ∈ A ∩ π(Rj)] ≥ Pr[i ∈ S ∩ π(Rj)] (Observation 3.5)

= Pr[i ∈ π(Rj) | i ∈ S] · Pr[i ∈ S | i ∈ P ] · Pr[i ∈ P ] (Bayes)

= Pr[i ∈ π(Rj) | i ∈ P ] · Pr[i ∈ S | i ∈ P ] · Pr[i ∈ P ] (Lemma 3.7)

≥ 1

2
· Pr[i ∈ π(Rj) | i ∈ P ] · Pr[i ∈ P ] (Lemma 3.6)

≥ 1

2
· Pr[i ∈ π(Rj)] (π(Rj) ⊆ P )

≥ c

2
· Pr[i ∈ Rj ] (π is c-balanced)

=
c

2
· xij
γj

.

(

Pr[i ∈ Rj] =
xij
γj

)

With the above we are now ready to prove this section’s main result: competitive stationary
prophet inequalities from balanced CRS for the same constraints, as stated in Theorem 3.1.

Proof of Theorem 3.1. Let x∗ = {x∗ij}i,j be the optimal solution to the LP

max







∑

i,j

vij · xij

∣

∣

∣

∣

∣

∣

x ∈ Poff(I)







.

Corollary 2.7 implies that OPToff(I) ≤
∑

i,j vij · x∗ij. Now combining Lemmas 3.2, 3.3 and 3.8, we
conclude that running Algorithm 1 with inputs x∗, wi = 1− exp(−λi/µi) and c-balanced CRS for
F , the algorithm allocates good i to buyer j at rate sij ≥ c

2 · x∗ij . The theorem then follows by
linearity of expectation and Corollary 2.7.

Remark 3.9. Algorithm 1 runs in polytime as long as the CRS π and selling rates x∗ are com-
putable in polynomial time, e.g., if PF is solvable 5 and the CRS π is polytime, as known for several
constraints including Matroids, Matchings, Knapsack and their intersections [11].

5Above, by a solvable polytope we mean a polytope which admits an efficient separation oracle, and in particular
any linear objective can be optimized over such, using the ellipsoid method. This includes a polytope expressed via
polynomially many linear constraints, matching polytopes, matroid polytopes, the intersections of the previous, etc.



3.3 Tight connection to offline CRS

In this section, we show that constant competitive ex-post stationary prophet inequality for con-
straints F implies constant balanced contention resolution schemes for the constraint polytope
PF .We define ex-ante stationary prophet inequality in the following definition.

Definition 3.10. An α-approximate ex-ante stationary prophet inequality (ex-ante SPI) for com-
binatorial constraints F is an SPI algorithm that on SPI instance I for F-constrained buyers has
expected value at least

α ·max







∑

i,j

vij · xij

∣

∣

∣

∣

∣

∣

x ∈ Poff (I)







.

Theorem 3.11. If class of constraints C does not admit c-balanced CRS, then there does not exist
c-competitive SPI for the class of constraints C.

Proof. First, for any ǫ > 0, by Proposition 2.3, if C does not admit c-balanced CRS, then there
exist constraints F ∈ C, vector z ∈ PF with zi ≤ ǫ for all i and positive weights {vi}i∈G such that

E[maxS⊆R(z),S∈F v(S)]
∑n

i=1 vi · zi
≤ c. (6)

Consider an SPI instance with n goods and a single buyer constrained by F . This buyer arrives at
rate γ = 1, and has value vi for each good i ∈ G. Let each good i arrive at rate λi = zi. Now, we
consider the following solution to the LP:

xi = 1− exp(−λi) = 1− exp(−zi) ≥ zi − z2i ≥ (1− ǫ) · zi,

where the last inequality holds because zi ≤ ǫ. Moreover, xi = 1 − exp(−zi) ≤ zi and z ∈ PF ,
hence x ∈ PF . By linearity of expectation, this solution yields the following lower bound on the
LP’s optimal solution.

max







∑

i,j

vij · xij

∣

∣

∣

∣

∣

∣

x ∈ Poff (I)







≥ (1− ε) ·
∑

i∈G
vi · zi. (7)

Now, we upper bound the performance of any algorithm as follows: we first observe that any
algorithm allocates a subset of available goods to the arriving buyer. To relax the problem, we
allow algorithms to allocate a subset of present goods. For this relaxed problem, an optimal
algorithm can be easily characterized as follows: upon arrival of the buyer, the algorithm allocates
a subset of feasible present goods S that maximizes y(S), since allocating goods does not impact
the presence of goods in the future. Now, the probability of each good i ∈ G being present is
Pr[i ∈ P ] = 1 − exp(−zi) ≤ zi, independently of the presence of any other goods. Therefore, by
P ∼ G(z) and equations 6 and 7, we find that indeed

E

[

max
S⊆P,S∈F

v(S)

]

= E

[

max
S⊆G(z),S∈F

v(S)

]

≤ c ·
∑

i∈G
vi · zi ≤

c

(1− ǫ)
·OPT(LP) .

4 Submodular Stationary Prophet Inequalities

In this section, we prove that Algorithm 1 leads to constant competitive SPI for a wide class of
constraints when buyer’s utilities are submodular functions.



Here, we recall that a set function f : 2U → R≥0 is submodular if it captures the notion of
diminishing returns. More formally, denoting by f(i | A) := f(A ∪ {i}) − f(A) the marginal
contribution of i to set A ⊆ U , we have the following.

Definition 4.1. A set function f : 2U → R is submodular if for every i ∈ U and A ⊆ B ⊆ U ,

f(i | A) ≥ f(i | B).

To generalize our results to submodular valuations, we first need to generalize our relaxations
of the optimal algorithms’ average reward. For linear valuations, this is trivial (given Lemma 2.6),
using linearity. For more general valuation functions fj : G → R≥0, we need some way to capture
the value for fractional rates xij/γj ∈ [0, 1]G , and agreeing with the value if xij/γj ∈ {0, 1}G . That
is, we need some extension of the set function to real vectors. For this, our starting point will be
the maximum concave extension of f , also known as its concave closure.

Definition 4.2. The concave closure f+ : [0, 1]U → R≥0 of set function f : 2U → R≥0 is given by

f+(x) = max







∑

A⊆G
αA · f(A)

∣

∣

∣

∣

∣

∣

∑

A

αA = 1, αS ≥ 0 and
∑

A:j∈A
αA ≤ xj ∀j







.

Proposition 4.3 ([21]). The concave closure is (as its name suggests) concave.

Unfortunately, it is NP-Hard to optimize f+(x) over (even uniform) matroid polytopes [39]. A
more easily approximable extension is the multilinear extension, which is the value obtained from
a random set drawn from a product distribution with marginals x.

Definition 4.4. The multilinear extension F : [0, 1]U → R≥0 of set function f : 2U → R≥0 is given by

F (x) := E[f(U(x)] =
∑

S⊆U
f(S)

∏

i∈S
xi
∏

i 6∈S
(1− xi).

Our interest in the multilinear extension is that it is efficiently approximable subject to solvable
polytopes [11, 39, 40] and that moreover it approximately upper bounds the concave closure for
submodular functions [37, 38]. (We make these statements precise later, as we use them.) This will
allow us to analyze Algorithm 1 for submodular utilities.

We start by using the concave closure to upper bound the optimal average reward, as follows.
We emphasize that our upper bound relies on the concavity of f+.

Lemma 4.5. Let A be a stationary prophet inequality algorithm with selling rates x := (xij)i∈G,j∈B.
Then the expected average gain of A is at most

∑

j∈B
γj · f+

j

(

1

γj
· xj

)

.

Proof. Let τj(T ) be the set of arrival points of buyer j ∈ B by time T , and let nj(T ) = |τj(T )|.
For any t ∈ τj(T ), let T

j
t be the set of goods allocated by Algorithm A to the buyer of type j ∈ B

arriving at time t ∈ τj(T ).
Fix a buyer j ∈ B. We observe that for T > 0, nj(T ) ∼ Poi(γjT ). By standard concentration

bounds for Poisson random variables [23, Proposition 11.15], Pr[|nj(T ) − γjT | ≤ γjT
2
3 ] ≥ 1 −

O
(

exp(−γj · T 1/3)
)

. We define the event Ej := 1[|nj(T )−γj | ≤ γjT
2
3 ]. As f∗ = maxS⊆G f(S) < ∞,



and Pr[Ec
j ] is exponentially small in T , taking T → ∞, we can focus on the event when Ej occurs,

as follows.

lim inf
T→∞

E





1

T
·
∑

t∈τj(T )

fj(T
j
t )



 = lim inf
T→∞

1

T
E





∑

t∈τj (T )

f+
j (1

T j
t
)

∣

∣

∣

∣

∣

∣

Ej



 (lim inf
T→∞

Pr[Ej ] = 1.)

≤ lim inf
T→∞

1

T
E



nj(T ) · f+
j





1

nj(T )

∑

t∈τj(T )

1

T j
t





∣

∣

∣

∣

∣

∣

Ej



 (f+
j is concave)

= lim inf
T→∞

E

[

γj · f+
j

(∑

t∈τj(T ) 1T j
t

γj · T

) ∣

∣

∣

∣

∣

Ej
]

≤ lim inf
T→∞

γj · f+
j

(

1

γj
E

[∑

t∈τj(T ) 1T j
t

T

∣

∣

∣

∣

∣

Ej
])

. (f+
j is concave)

= γj · f+
j

(

1

γj
· x
)

.

Above, the last equality holds because lim infT→∞ E

[
∑

t∈τj(T ) 1T
j
t

T

∣

∣

∣

∣

Ej
]

= x

Pr[Ej ] .

Using the above lemma combined with constraints from Lemma 2.6, we define natural relax-
ations of the combinatorial stationary prophet inequalities with submodular valuations.

Lemma 4.6. For all instances I of the combinatorial stationary prophet inequality problem,

1. max
{

∑

j∈B γj · f+
j

(

1
γj
xj

) ∣

∣

∣
x ∈ Poff(I)

}

≥ OPToff(I), and

2. max
{

∑

j∈B γj · f+
j

(

1
γj
xj

) ∣

∣

∣ x ∈ Pon(I)
}

≥ OPTon(I).

We now turn to analyzing Algorithm 1 for submodular SPI instances. We start by relating the
gain of an average buyer of type j ∈ B with the buyer would obtain if they could obtain value from
all proposing buyers, which will later tie back to the multilinear extension.

Next, we prove the following key lemma which lower bounds the gain of any buyer in terms of
the gain the buyer would obtain if they could accept all proposing items.

Lemma 4.7. For any buyer j ∈ B with monotone submodular utility fj,

E[fj(A ∩ π(Rj))] ≥
c

2
· E[fj(Rj)].

Proof. We will prove the following, which implies the lemma by summation over i and telescoping.

E[fj(A ∩ π(Rj) ∩ [i])− fj(A ∩ π(Rj) ∩ [i− 1])] ≥ c

2
· (E[fj(Rj ∩ [i])− fj(Rj ∩ [i− 1])]) .

And indeed, we can lower bound the LHS, which can be restated as follows, by using monotonicity,
and hence positivity of marginals of fj.

6

E[1i∈A∩π(Rj) · fj(i | A ∩ π(Rj) ∩ [i− 1])]

6As we show below, a standard pruning process allows us to extend the following to non-monotnoe functions.



≥E[1i∈S∩π(Rj) · fj(i | A ∩ π(Rj) ∩ [i− 1])] A ⊇ S

≥E[1i∈S∩π(Rj) · fj(i | Rj ∩ [i− 1])] f submod., Rj ⊇ A ∩ π(Rj)

=E[1i∈S · 1i∈π(Rj) · fj(i | Rj ∩ [i− 1]) | i ∈ Rj ] · Pr[i ∈ Rj] Bayes

=E[1i∈S | i ∈ Rj ] · E[1i∈π(Rj) · fj(i | Rj ∩ [i− 1]) | i ∈ Rj] · Pr[i ∈ Rj ] (i ∈ Rj), (i ∈ S) ⊥ (Rj \ {i})

≥1

2
· E[1i∈π(Rj) · fj(i | Rj ∩ [i− 1]) | i ∈ Rj] · Pr[i ∈ Rj ] Lemma 3.6

≥1

2
· E[1i∈π(Rj) | i ∈ Rj ] · E[fj(i | Rj ∩ [i− 1]) | i ∈ Rj] · Pr[i ∈ Rj ] π is monotone, f is submod.

≥ c

2
· (E[f(Rj ∩ [i]) − f(Rj ∩ [i− 1])]) . π is c-balanced

Essentially all steps of the above derivation are proven inline, but we elaborate on two of these:
The second equality follows because the events {i ∈ Rj}, {i ∈ S} and the random set Rj ∩ [i−1] are
independent. Notice that the positive correlation of i ∈ π(Rj) and fj(i | Rj∩[i−1]) (conditioned on
i), as these are decreasing events in the (independent) indicators [i′ ∈ Rj | i ∈ Rj ], by monotonicity
of the CRS π and submodularity of f . Therefore, the second-to-last inequality follows by Harris’
inequality.7

Remark 4.8. For non-monotone utilities, we can run a pruning process η on the allocated set
π(R) ∩ A similar to [41, Theorem 1.3] such that for the ordered set of goods G = [n] satisfies
fj(i | η(π(R) ∩ A) ∩ [i − 1]) ≥ 0. We further modify Algorithm 1 for non-monotone submodular
utilities by allocating the set η(π(R) ∩ A) to the arrived buyer. Following the arguments from
Lemma 4.7, we obtain

E[fj(η(A ∩ π(Rj)) ∩ [i])− fj(η(A ∩ π(Rj)) ∩ [i− 1])] ≥ c

2
· (E[fj(Rj ∩ [i])− fj(Rj ∩ [i− 1])]) .

This implies that for non-monotone submodular utilities, E[fj(η(A ∩ π(R)))] ≥ c
2 · E[fj(R)].

Next, we relating the gain from proposing items (if one could accept them all) to the ex-ante
relation, we can use the preceding lemma to obtain the following lower bound on the expected
reward gained from different buyer types.

Lemma 4.9. For any buyer j ∈ B and T > 0:

lim inf
T→∞

1

T
· E





∑

t∈τj(T )

fj(A
t ∩Rt

j)



 ≥ c

2
· γj · Fj

(

1

γj
xj

)

.

Proof. For any buyer j ∈ B,

lim inf
T→∞

1

T
· E





∑

t∈τj (T )

fj(A
t ∩ π(Rt

j))



 = γj · E [fj(A ∩ π(Rj))] (PASTA Lemma 2.1)

≥ c

2
· γj · E [fj(R)] (Lemma 4.7)

=
c

2
· γj · Fj

(

1

γj
xj

)

. (Def. Rj and Fj(·))
7Harris’ inequality states that for any two increasing functions f, g on a partially ordered product probability

space (i.e., independence of each element) Ω, such as in the space Ω = [Rj | i ∈ Rj ], we have

E[f · g] ≥ E[f ] · E[g].



The preceding lemma, together with solvability of our relaxation and known correlation gap
results yield this section’s main result, given by the following theorem.

Theorem 4.10. Algorithm 1 run with a c-balanced monotone CRS for polytope PF yields the
following SPI for F-constrainted buyers:

1. A polytime c
2 · (1− 1/e− ε)2-competitive SPI for monotone submodular utilities.

2. A polytime c
2 · 0.3

200-competitive SPI for non-negative submodular utilities.

3. A c
2 · (1− 1/e − ε)-competitive SPIs for monotone submodular utilities.

4. A c
2 · 1

200 -competitive SPIs for non-negative submodular utilities.

Proof. By [39], for any ε > 0, there exists a polytime algorithm that
(

1− 1
e − ε

)

-approximates
the multilinear extensions of a monotone non-negative submodular function subjec to any solvable
poltyope, e.g., Poff (I), provided that PF is solvable. On the other hand, by the correlation gap
result of [38], for every x ∈ [0, 1]n, we have F (x) ≥

(

1− 1
e

)

· f+(x). Therefore, by applying the

algorithm of [39] to approximately maximize max
{

∑

j∈B Fj

(

1
γj
xj

) ∣

∣

∣
x ∈ Poff(I)

}

, we obtain a

polynomial time algorithm that computes x ∈ Poff(I) such that

∑

j∈B
γj · Fj

(

1

γj
xj

)

≥
(

1− 1

e

)2

max







∑

j∈B
f+
j

(

1

γj
xj

)

∣

∣

∣

∣

∣

∣

x ∈ Poff(I)







≥
(

1− 1

e

)

·
(

1− 1

e
− ǫ

)

OPToff(I). (Lemma 4.6) (8)

Therefore, by running Algorithm 1 with selling rates obtained in Equation 8 and c-balanced mono-
tone CRS for F and relaxation PF we obtain the claimed competitive ratio of the first part of the
theorem, as the obtained algorithm has average reward at least

lim inf
T→∞

1

T
·
∑

j∈B
E





∑

t∈τj(T )

fj(A
t ∩Rt

j)



 ≥ c

2
·
∑

j∈B
γj · Fj

(

1

γj
xj

)

(Lemma 4.9)

≥ c

2

(

1− 1

e

)2

·OPToff . (Equation 8)

The remaining parts of the theorem follow in much the same way as the first, with minor
modifications. For example, for non-negative submodular functions, the best known approximation
of the multilinear extension subject to solvable polytopes is 0.3 [40] and using that for any x ∈
[0, 1]n, we have F (x/2) ≥ 1

200 · f+(x) [37]. Similar to part one, applying the algorithm of [40]

to approximately maximize max
{

∑

j∈B Fj

(

1
γj
xj

) ∣

∣

∣ x ∈ Poff(I)
}

and using x/2 as an input and a

monotone CRS π for F yields a polynomial time algorithm for non-negative submodular SPIs that
is c

2 · 0.3
200 approximate.

Finally, the computationally unbounded algorithms follow the exact logic of the preceding
algorithms, but avoid the use of the polytime approximation algorithms of [39] and [40], and instead
use a vector x exactly maximizing the multilinear extension. Hence, we can compute selling rates x

(with unbounded computations) which approximate
∑

j∈B γj · Fj

(

1
γj
xj

)

within (1− 1/e − ǫ) and
1

200 . This concludes the proof of the last two parts of the theorem.



5 Approximating Online OPT for Matroids

Relying on optimal CRS for matroids [41], Algorithm 1 yields a 1
2(1− 1

e )-competitive matroid-SPI
i.e., it yields a 1

2 (1− 1
e ) approximation of the optimum offline algorithm. In this section, we show

that Algorithm 1 (alebit with different parameters) yields a better approxiomation (in polytime)
of the optimum online algorithm for matroid-SPI.

Theorem 5.1. There exists a polynomial-time algorithm for SPI with matroid-constrained buyers
that

(

1
2 ·
(

1− 1
e

)

+ ǫ0
)

-approximates the optimum online algorithm, for some ǫ0 ≥ 0.0019.

To motivate our algorithm, we first recall that by (the proof of) Lemma 3.2, Algorithm 1 run
with wi = 1− exp(−λi/µi) (which is equal to Pr[i ∈ P ], by Proposition A.2) results in each good
i proposing independently to buyer j with probability Pr[i ∈ Rj ] ≤ xij/γj , and so by Constraint 4
the set of proposers is chosen from a product distribution with marginals in PF . This allows us to
appeal to CRS for the constraint set F .

To approximate the optimum online algorithm, we take x to be a solution to Pon(I), and note
that we can now pick any smaller wi ≥ min(1 − exp(−λi/µi), (λi −

∑

ℓ∈B xiℓ)/µi), and let goods
propose with probability xij/(γj ·wi) ≤ 1, where the inequality follows by Constraint (5). However,
proposing with higher marginal probability than xij/γj results in a vector of proposals that can
exceed the relaxation polytope PF . A key ingredient in the proof of Theorem 5.1 are therefore
extended CRS for matroids, yielding a bound on the probability of selecting an item even if the
input vector (slightly) exceeds the relaxed polytope.

Lemma 5.2. Let M = (G,F) be a matroid and let x ∈ [0, 1]|G| ∩ c · PF for some c ≥ 1. Then,
there exists a function πx : 2G → F that satisfies the following, for R ∼ G(x).

1. πx(R) ⊆ R,

2. πx(R) ∈ F , and

3. Pr[i ∈ πx(R) | i ∈ R] ≥ 1
c · (1− e−c).

The proof of Lemma 5.2 is similar to the proof of the correlation gap of monotone submodular
functions from [11] and is presented in Appendix B for completeness.

Given the above, we want the marginal proposal probabilities to lie within a slightly scaled up
version of the polytope PF , else we would obtain too little from the extended CRS. Consequently,

we wish to avoid letting goods with presence probability much larger than
λi−

∑

ℓ∈B
xiℓ

µi
which leads

marginal probability of proposals farther away from the polytope PF . We will therefore use different
forms for wi for goods i, depending on whether their presence probability is higher or lower than

c ·
(

λi−
∑

ℓ∈B
xiℓ

µi

)

, for c ≥ 1 optimized later. We therefore define the following partition of the goods.

1. GL :=
{

i ∈ G
∣

∣

∣
Pr[i ∈ P ] ≤ c ·

(

λi−
∑

ℓ∈B
xiℓ

µi

)}

,

2. GH :=
{

i ∈ G
∣

∣

∣ Pr[i ∈ P ] > c ·
(

λi−
∑

ℓ∈B
xiℓ

µi

)}

= G \ GL.

We now define our variant of Algorithm 1 used in this section, and show that it outputs valid
allocations.



Lemma 5.3. For any matroid SPI instance I, consider Algorithm 1 run on x ∈ Pon(I) with the
extended CRS π from Lemma 5.2 and w with

wi =

{

min
(

Pr[i ∈ P ],
λi−

∑

ℓ∈B
xiℓ

µi

)

i ∈ GL

Pr[i ∈ P ]/c i ∈ GH .

Then, this algorithm is well-defined and outputs a feasible allocation for each arriving buyer.

Proof. Fix time t ≥ 0 and buyer j. We observe that wi ≥ Pr[i ∈ P ]/c for all i ∈ G. It is clear from
the definition that above holds for i ∈ GH . For i ∈ GL, if wi = Pr[i ∈ P ] then again wi ≥ Pr[i ∈ P ]/c

as c ≥ 1. Next, if wi =
λi−

∑

ℓ∈B
xiℓ

µi
then by the definition of GL, we have wi ≥ Pr[i ∈ P ]/c.

First we need to show that qij ∈ [0, 1]. Clearly qij ≥ 0. Now, for i ∈ GL, qij =
xij

γj ·wi
≤ 1, since

x satisfies Constraints (3) and (5). For i ∈ GH , we similarly have:

qij =
c · xij

γj · Pr[i ∈ P ]
≤ c

Pr[i ∈ P ]
·
(

λi −
∑

ℓ∈B xiℓ

µi

)

< 1.

Next, we note that presence of different goods is independent, as are the Ber(qij) coins in
Line 2, and so Rt

j is drawn from a product distribution over G. We argue that the marginalls of
this distribution at each time t ≥ 0, denoted by ztij := Pr[i ∈ Rt

j], lie within c · PF . For any good
i ∈ G, by Proposition 2.2 and wi ≥ Pr[i ∈ P ]/c,

ztij =
xij

γj · wi
· Pr[i ∈ P t] ≤ xij

γj · wi
· Pr[i ∈ P ] ≤ c · xij

γj
.

On the other hand, Constraint (4) ensures that xj ∈ γj ·PF , and so ztj ∈ c·PF . Consequently, by
properties of the extend CRS (Lemma 5.2), π outputs a feasible set π(Rt

j) ∈ F in Line 3. Therefore,

by downward closedness of F , Line 3 allocates a feasible subset to each buyer, π(Rt
j) ∈ F ∩2R

t
j .

By Lemma 3.3, the selling rate of items of good i to buyers of type j by Algorithm 1 is
sij = Pr[i ∈ A∩π(R)], where S denotes the saved goods (see Definition 3.4). Similar to Lemma 3.8,
we can lower bound Pr[i ∈ A ∩ π(R)] as follows.

Claim 5.4. For any good i ∈ G and buyer j ∈ B,

Pr[i ∈ A ∩ π(R)] ≥ 1

c
· (1− exp(−c)) · Pr[i ∈ S]

wi
· xij
γj

.

Proof. Following the proof of Lemma 3.8, we get,

Pr[i ∈ A ∩ π(R)] ≥ Pr[i ∈ S ∩ π(Rj)] (Observation 3.5)

= Pr[i ∈ π(Rj) | i ∈ S] · Pr[i ∈ S] (Bayes)

= Pr[i ∈ π(Rj) | i ∈ P ] · Pr[i ∈ S] (Lemma 3.7)

= Pr[i ∈ π(R) | i ∈ R] · xij
γj · wi

· Pr[i ∈ S] (Bayes)

≥ 1

c
· (1− exp(−c)) · Pr[i ∈ S]

wi
· xij
γj

.

Above, the last inequality holds due to zi = Pr[i ∈ Rj] ∈ c · PF and Lemma 5.2.



To complete the proof of Theorem 5.1, we need to lower bound the ratio Pr[i∈S]
wi

for all goods

i ∈ G. We will analyse the ratio Pr[i∈S]
wi

for goods in GL and GH separately. For goods in GL, we
leverage [26, Claims 4.4 and 4.5] and obtain the following lemma, whose proof (similar in spirit to
the first part of Lemma 3.6) is deferred to Appendix A.

Lemma 5.5. For i ∈ GL, we have
Pr[i ∈ S]

wi
≥ 0.656.

On the other hand, the ratio Pr[i∈S]
wi

for goods in the set GH is slightly more challenging. First,

we note that in Lemma 3.6 we bounded Pr[i∈S]
Pr[i∈P ] ≥ 1

2 when qij =
xij

γj ·Pr[i∈P ] . However, for goods in

GH , qij =
c·xij

γj ·Pr[i∈P ] for c ≥ 1 which sells goods more aggressively which creates backward pressure

on the number of saved items of good i. In the next lemma, we precisely capture this trade-off
between selling goods aggressively (parametrized by c) and their saving for future buyers. More

formally, we show that for goods in GH , Pr[i∈S]
Pr[i∈P ] ≥ 1

1+c which recovers the lower bound obtained in
Lemma 3.6 when c = 1. We delegate the proof of the lemma to appendix.

Lemma 5.6. For i ∈ GH , we have

Pr[i ∈ S]

wi
= c · Pr[i ∈ S]

Pr[i ∈ P ]
≥ c

1 + c
.

We are now ready to prove Theorem 5.1.

Proof of Theorem 5.1. Let x∗ = {x∗ij}i,j be the optimal solution to the LP

max







∑

i,j

vij · xij

∣

∣

∣

∣

∣

∣

x ∈ Pon(I)







.

Corollary 2.7 implies that OPTon(I) ≤
∑

i,j vij · x∗ij. We can lower bound the performance of the
Algorithm 1 for matroids with parameters w defined in Lemma 5.3 as:

∑

i∈G

∑

j∈B
γjvij · Pr[i ∈ π(Rj) ∩A]

≥
∑

i∈G

∑

j∈B
γjvij ·

Pr[i ∈ S]

wi
·
x∗ij
γj

(Claim 5.4)

≥1

c
· (1− exp(−c)) ·



0.656 ·
∑

i∈GL

∑

j∈B
vij · x∗ij +

c

1 + c
·
∑

i∈GH

∑

j∈B
vij · x∗ij



 ,

where the last inequality follows from Lemma 5.5 and Lemma 5.6. Now setting c = 1.14 and
Corollary 2.7, we obtain:

∑

i∈G

∑

j∈B
γjvij · Pr[i ∈ π(Rj) ∩A] ≥ 0.318 ·

∑

i∈G

∑

j∈B
vij · x∗ij ≥

(

1

2
·
(

1− 1

e

)

+ 0.0019

)

·OPTon.



6 Multi-Good Stationary Prophet Inequality

In this section, we provide an improved algorithm for the multi-good stationary prophet inequality
problem, proving the following theorem.

Theorem 6.1. There exists a
(

1− 1√
e

)

≈ 0.393-approximate policy for the multi-good unit-demand

stationary prophet inequality problem.

The algorithm for multi-unit SPI is similar to the algorithm for combinatorial SPI defined in
Algorithm 1. The only difference is in the multi-good setting, each “available” good instead of a
“present” good proposes to the arrived buyer. Then we resolve contention in the proposals using
single choice CRS defined in Theorem 2.4 and allocate an item of some good i ∈ G from the set of
proposed good. Its difference compared to previous algoirthms for multi-good SPI is that we (will)
use an optimal CRS. The algorithm’s pseudocode is given in Algorithm 2.

Algorithm 2 The multi-good stationary prophet inequality algorithm

Require: x∗ ∈ R
|G|×|B|, w ∈ R

|G| and CRS π.
1: for arrival of buyer of type j ∈ B do

2: Let Rt ⊆ G contain each available good i ∈ G independently with probability qij :=
xij

γj ·wi
.

3: Allocate an item of good selected by π(Rt) to buyer j.

Our competitive ratio for multi-good SPI follow from linearity, together with a lower bound on
the sell rate of good i ∈ G to buyer j ∈ B, which are easily expressed using the PASTA property
(Lemma 2.1), as follows.

Lemma 6.2. Let sij be the selling rate of good i ∈ G to buyer j ∈ B by Algorithm 2. Then,

sij = γj · Pr[i ∈ π(Rj)].

Proof. Upon the arrival of the buyer j, Algorithm 1 allocates a random set of available goods
π(Rj) ⊆ Rj. The PASTA property (Lemma 2.1) ensures that the fraction of time buyer j ∈ B
(Poisson arrivals independent of the history) observes that good i ∈ G is available and belongs to
set π(Rj) is equal to the fraction of time that this latter event occurs. Therefore, the rate at which
an item of good i ∈ G is sold to buyer j ∈ B can be expressed as:

sij = γj · Pr[i ∈ π(Rj)].

Next, we present a key lemma that shows that the CRS used in Algorithm 2 (in Line 3) is
(

1− 1√
e

)

-balanced.

Lemma 6.3. For any subset of goods S ⊆ G, Pr[S ∩Rj 6= ∅] ≥
(

1− 1√
e

)

·∑i∈S
xij

γj
. Moreover, for

all i ∈ G, Pr[i ∈ π(Rj)] ≥
(

1− 1√
e

)

· xij

γj
.

We note that lower bounding the probability Pr[S ∩ R 6= ∅] directly is challenging, as the
availability of good i ∈ G may depend on the availability of other goods. In fact, for any goods i, i′,
events i ∈ A and i′ ∈ A can be negatively correlated. Earlier works [5, 13, 26] resolved unfavorable
correlation issues by considering several independent Poisson processes, which they showed to either
stochastically dominate or be dominated by the processes of interest.



Relaxed Process {Si}i∈G. We similarly introduce a stochastic dominance relation where the
arrivals and departure of each good are independent of each other. We define stochastic process Si

for each good i where we only sell good i ∈ G at a higher rate than sij. More formally, we consider
Si where items of good i are supplied according to the Poisson process with rate λi > 0 and perish
at exponential rate µi, Buyer of type j arrives at rate γj and an arrived buyer receives an item of
good i (if available) with probability qij. Crucially, the stochastic processes {Si}i∈G are mutually
independent. We denote the set of available goods in the relaxed process by Ã, i.e. goods with at
least one item available in their respective processes. We also let R̃j be the set that includes each
available good in the relaxed process i ∈ Ã with probability qij independently. Next, we show that
the probability Pr[S ∩ Rj 6= ∅] can be lower bounded by Pr[S ∩ R̃j 6= ∅]. The proof of the lemma
is similar to that of [26, Lemma 3.2 and Claim 3.1], and is therefore deferred to Appendix C.1.

Lemma 6.4. For any set of goods S ⊆ G,

Pr[S ∩Rj 6= ∅] ≥ Pr[S ∩ R̃j 6= ∅] ≥
(

1− 1√
e

)

·
∑

i∈S

xij
γj

.

Lemma 6.4 combined with Theorem 2.4 implies Lemma 6.3. We are now ready to prove Theo-
rem 6.1.

Proof of Theorem 6.1. Let sij be the selling rate of Algorithm 2. We can lower bound Algorithm 2’s
performance as:

∑

j∈B

∑

i∈G
vij · sij =

∑

j∈B
γj ·

∑

i∈G
vij · Pr[i ∈ π(R)] (Lemma 6.2)

≥
∑

j∈B
γj ·

∑

i∈G
vij ·

(

1− 1√
e

)

·
x∗ij
γj

(Lemma 6.3)

=

(

1− 1√
e

)

·
∑

j∈B

∑

i∈G
vij · x∗ij

≥
(

1− 1√
e

)

·OPToff . (Corollary 2.7)

7 Conclusion and Open Questions

We provided a wide range of results for the stationary prophet inequality problem, an infinite time-
horizon counterpart of the classic prophet inequality problem; our main result are asymptotically
tight characterizations for a wide range of combinatorial constraints on the buyers’ demands, for
both linear and submodular valuations. Our work also suggests a wealth of follow-up questions.

Tight Bounds. We provide asymptotically tight characterizations of combinatorial (ex-ante)
SPIs in terms of offline CRS. However, only for the most basic, single-good SPI problem with unit-
demand buyers do we currently know optimal bounds [26]. Can the bound of 1/2 for the simple
problem be achieved for the more general multi-good problem with unit demands, improving our
bound of 1− 1√

e
? What about matroid demands? Alternatively, are these problem strictly harder

than the basic SPI problem? Generally, for what natural constraints can we design optimal SPIs?



Approximating the Optimum Online. We provide polytime algorithms approximating the
optimal matroid-SPI algorithm. What is the best approximation achievable for this (and other)
SPI problems? For which classes can we provide (F)PTASes, and which are APX hard?

Richer valuations classes. Our results extend beyond linear valuations, to submodular valu-
ations. Can similar results be obtained for still richer valuation functions, such as subadditive or
XOS valuations?

Posted-Price Mechanisms. The single-good algorithms of [26] are pricing-based, resulting in
incentive-compatible mechanisms for these dynamics, but only for unit-demand buyers in the single-
good setting. Can similar results be obtained for combinatorially-constrained buyers (with multiple
goods), mirroring the rich work on this question for the classic stationary prophet problem?

Acknowledgements. The authors thank Ziv Scully for pointing out [35] to their attention.

A Deferred Proofs: Reductions to Single-Good SPI

In this section we prove the following lemmas from sections 3 and 5, repsectively.

Lemma 3.6. Pr[i ∈ S | i ∈ Rj ] ≥ 1
2 for all good i ∈ G.

Lemma 5.5. For i ∈ GL, we have
Pr[i ∈ S]

wi
≥ 0.656.

Claim A.1. For i ∈ GH , we have

Pr[i ∈ S]

wi
≥ min

x≥0

1−
(

1 +
∑∞

q=1

∏q
r=1

x
r+c·x/(1−exp(−x))

)−1

1− exp (−x)
.

Effectively, our proof technique for both lemmas is to reduce to the analysis of the single-good
SPI algorithms of [26]. To prove the above, we first need the following standard fact for the kind
of birth-death processes we study. (See, e.g., [26].)

Proposition A.2. For any online algorithm that sells any available item of good i ∈ G to buyers
which arrive at rate γ∗ ≥ 0, the stationary probability of an item of good i being available satisfies

Pr [i ∈ A] = 1−





∞
∑

q=0

q
∏

r=1

λi

r · µi + γ∗





−1

∈



1−





∞
∑

q=0

1

q!

(

λi

µi + γ∗

)q




−1

, 1− exp

(

−λi

µi

)



 .

Proof of Lemma 3.6. First, since i ∈ Rj = i ∈ P ∧ (Xij = 1), for Xij ∼ Ber(qij) independent of
i ∈ P , together with Bayes’ Law, we have that Pr[i ∈ S | i ∈ Rj ] = Pr[i ∈ S | i ∈ P ]. So, we wish
to lower bound Pr[i ∈ S | i ∈ P ]. To this end, we note that the number of present and saved items
of good i follows a birth-death process as described in Proposition A.2, with the former having sale
rate of zero, and the latter having a sale rate of γ∗ upper bounded as follows.

γ∗ ≤
∑

j∈B
γj · qij ≤ λi/wi.



Above, the first inequality follows from proposal being a prerequisite condition for allocation, and
the second inequality follows from Constraint (1). Thus, by Proposition A.2, we have the following

Pr[i ∈ S | i ∈ P ] =
Pr [i ∈ S]

Pr[i ∈ P ]
≥

1−
(

1 +
∑∞

q=1

∏q
r=1

λi
r·µi+λi/(1−exp(−λi/µi))

)−1

1− exp (−λi/µi)
≥ 1

2
,

where the last inequality follows from [26, Claim 4.3 in arXiv version] applied to x = λi/µi.

Proof of Lemma 5.5. The number of saved items of good i follows a birth-death process as described
in Proposition A.2, with the former having sale rate of zero, and the latter having a sale rate of γ∗

upper bounded as follows.

γ∗ ≤
∑

j∈B
γj · qij ≤ λi/wi.

Therefore, by Proposition A.2, we have the following

Pr [i ∈ S]

wi
≥

1−
(

1 +
∑∞

q=1

∏q
r=1

λi
r·µi+λi/wi

)−1

wi
.

The proof follows from [26, Claims 4.4 and 4.5 in arXiv version] applied to the above bound by

letting x = λi/µi and w = min
(

Pr[i ∈ P ],
λi−

∑

ℓ∈B xiℓ

µi

)

.

B Deferred Proofs of Section 5

Lemma 5.2. Let M = (G,F) be a matroid and let x ∈ [0, 1]|G| ∩ c · PF for some c ≥ 1. Then,
there exists a function πx : 2G → F that satisfies the following, for R ∼ G(x).

1. πx(R) ⊆ R,

2. πx(R) ∈ F , and

3. Pr[i ∈ πx(R) | i ∈ R] ≥ 1
c · (1− e−c).

Proof. We denote the rank function of matroid M by rM(). Consider any non-negative weight
vector y of elements of matroid M, for R ∼ G(x), and concave closure r+M, we prove the following
inequality:

E [rM(R)]

r+M(x)
=

E
[

maxS⊆R(x),S∈F
∑

i∈S yi
]

r+M(x)
≥ 1

c
· (1− e−c).

The above equation combined with the characterization of CRSes in [11, 14] shows the existence
of a CRS map that rounds the set R ∼ G(x) to a feasible set in matroid M such that each element
in R is selected by CRS with probability ≥ 1

c (1− exp(−c)).
To prove the above inequality, for each e ∈ G, we set up an independent Poisson clock Ce of

rate x′e = xe
c . We define a random process that starts with an empty set S(0) = ∅ at time t = 0.

At any time when the clock Ce sends a signal, we include element e in S, which increases its value
by f(e | S). (If e is already in S, the marginal value f(e | S) is zero.) Let S(t) be the random
set selected during the process until time t. By the definition of a Poisson clock, S(c) contains
element e independently with probability 1−e−c·xe

c ≤ xe. We have E[rM(S(c))] ≤ ER∼G(x)[rM(R)]
due to monotonicity of the rank function of matroid. Now, we compute the change in rM(S(t)) in



infinitesimal interval [t, t+ dt]. The probability that e ∈ G is added to S is x′edt. Since dt → 0, we
can focus on the case when only one of the clocks sends a signal. Thus the expected increase of
rM(S(t)) in the interval [t, t+ dt] (ignoring O(dt2) terms)

E[rM(S(t+ dt))− rM(S(t)) | S(t) = S] ≥
(

∑

e∈E
rM(e | S) · x′e

)

dt

≥
(

min
S⊆G

{

rM(S)−
∑

e∈E
rM(e | S) · x′e

}

− rM(S)

)

dt.

Above, the last inequality holds by adding and subtracting rM(S) · dt. Now recall the definition of
concave closure of r+M(x′) from Definition 4.2. For any feasible vector αS for the vector x′ and any
T ⊆ G, we have

∑

S⊆G
αS · rM(S) ≤

∑

S⊆G
αS ·

(

rM(T ) +
∑

e∈G
f(e | T )

)

= rM(T )−
∑

e∈E
rM(e | T ) · x′e.

Above the first inequality holds due to the submodularity of rM. This implies that,

min
S⊆G

{

rM(S)−
∑

e∈E
rM(e | S) · x′e

}

≥ r+M(x′).

This further implies that,

E[rM(S(t+ dt))− rM(S(t)) | S(t) = S] ≥ (r+M(x′)− rM(S))dt

=⇒ d

dt
E[rM(S(t))] ≥ r+M(x′)− E[rM(S(t))]

=⇒ E[rM(S(c))] ≥ (1− exp(−c)) · rM(x′)

=⇒ ER∼G(x)[rM(R)] ≥ 1

c
· (1− exp(−c)) · rM(x).

Above, the first step follows by taking expectations over S(t). The second step follows by solving
the differential equation from t = 0 to t = c. The last inequality holds because E[rM(S(c))] ≤
ER∼G(x)[rM(R)] and r+M is concave which implies rM(x′) ≥ 1

c · rM(x). Combining everything, we
conclude the proof.

Lemma 5.6. For i ∈ GH , we have

Pr[i ∈ S]

wi
= c · Pr[i ∈ S]

Pr[i ∈ P ]
≥ c

1 + c
.

Proof. For i ∈ GH , similar to Lemma 5.5 and Lemma 3.6, we obtain

Pr[i ∈ S]

wi
= c · Pr[i ∈ S]

Pr[i ∈ P ]
≥ c ·

1−
(

1 +
∑∞

q=1

∏q
r=1

λi
rµi+c·λi/(1−exp(−λi/µi))

)−1

1− exp (−λi/µi)
.

Above, the first equality follows by the definition of wi for goods i ∈ GH and the last equality
follows due to Proposition A.2. Next, by setting z = λi

µi
we obtain an analytical bound on the ratio

Pr[i∈S]
wi

≥ c ·maxx≥0 hc(x), where

hc(x) :=
1−

(

1 +
∑∞

q=1

∏q
r=1

x
r+c·x/(1−exp(−x))

)−1

1− exp (−x)
.



To complete the proof, next we show that the function hc(x) is lower bounded by 1
1+c . As a first

step, obtain a manageable lower bound on hc(x) as follows:

hc(x) =
1−

(

1 +
∑∞

q=1

∏q
r=1

x
r+c·x/(1−exp(−x))

)−1

1− exp (−x)

≥
1−

(

1 +
∑∞

q=1

∏q
r=1

x
r(1+c·x/(1−exp(−x)))

)−1

1− exp (−x)

=
1− exp

(

− x
1+c·x/(1−exp(−x))

)

1− exp (−x)
.

Above, the inequality holds because r > 1, the last equality holds due to Taylor’s expansion

of ex. For sake of exposition, we let αc(x) :=
1−exp

(

− x
1+c·x/(1−exp(−x))

)

1−exp(−x) . We first observe that

limx→0+ αc(x) =
1

1+c . Next, we show that for any c > 0, the function αc(x) is increasing in x which
will conclude the proof of the claim. We differentiate the function αc(x) and simplify to obtain:

α′
c(x) =

e
x
(

2− ex−1
ex(cx+1)−1

)

(−cx2 + ex(c · x2(c+ 1) + 2cx− 2)− 2cx+ e2x + 1)

(ex − 1)2(ex(cx+ 1)− 1)2
.

We can observe that the above denominator is non-negative, namely that e
x

(

2− ex−1
ex(cx+1)−1

)

(ex−1)2(ex(cx+1)−1)2
≥ 0.

Hence we only analyze the numerator in the preceding equation and show that it too is non-negative.

−cx2 + ex(c · x2(c+ 1) + 2cx− 2)− 2cx+ e2x + 1) = −cx2 + cx2ex + c2x2ex + 2cxex − 2ex + e2x + 1

= cx2 · (ex − 1) + 2cx(ex − 1) + e2x − 2ex − 1

= cx2 · (ex − 1) + 2cx(ex − 1) + (ex − 1)2

≥ 0.

C Deferred Proofs of Section 6: Mutli-Good SPIs

In our analysis of the multi-good problem we will need to prove stochastic dominance between two
processes, for which the following lemma will prove useful. For this lemma, we recall that a set
S ⊆ Y ⊆ R

n is or upward closed if for every y ≥ ỹ with ỹ ∈ S and y ∈ Y, we have that y ∈ S.

Lemma C.1 ([9]). Let Y, Ỹ be two stochastic processes taking values in Y ⊆ R
n, with time-

homogeneous intensity matrices Q, Q̃. Then, Y stochastically dominates Ỹ (Pr[Y ≥ y] ≥ Pr[Ỹ ≥ y]
for all y ∈ Y) if and only if the following holds: for every y, ỹ ∈ Y and upward closed set S ⊆ Y, if
y ≥ ỹ, and either y, ỹ ∈ S or y, ỹ /∈ S, then

∑

z∈S
Q(y, z) ≥

∑

z∈S
Q̃(ỹ, z).

C.1 Proof of Lemma 6.4

We let Y ∈ R
2n be the vector whose elements, which we refer to as YAi and YPi , represent the

number of items of good i available and the negative of the number of items of good i present,



respectively, under Algorithm 2. We use eAi and ePi to denote the vectors with all zeros except at
the elements corresponding to Ai and Pi which are 1. We can think of Y as simply the (augmented)
state of the marketplace under Algorithm 2, where the set Y ⊆ R

2n of valid states is such that for
any y ∈ Y, we have 0 ≤ yAi ≤ C, yPi ≤ 0, and yAi ≤ |yPi |. Under Algorithm 2, the stochastic
process governing Y is described by intensity matrix Q, where for any y, y′ ∈ Y,

Q(y, y′) =































λi y′ = y + eAi − ePi

yAi · µi y′ = y − eAi + ePi

(|yPi | − yAi) · µi y′ = y + ePi
∑

j∈B γj · Pr[i ∈ π(R) | i ∈ A] y′ = y − eAi and yAi > 0

0 o.w.

(9)

and Q(y, y) = −∑y′∈Y :y′ 6=y Q(y, y′).
Although the availability of good i and the presence of other goods i′ 6= i are correlated under

Q, we show that Y stochastically dominates a stochastic process Ỹ under which they are, in fact,
independent across elements. Ỹ can be thought of as a collection of n independent single-good
instances, where each instance consists of a different good i ∈ G and the full set of buyers B.

More specifically, we let Ỹ represent the state of a stochastic process on the same space Y
governed by intensity matrix Q̃, where for any y, y′ ∈ Y,

Q̃(y, y′) =































λi y′ = y + eAi − ePi

yAi · µi y′ = y − eAi + ePi

(|yPi | − yAi) · µi y′ = y + ePi
∑

j∈B γj · b·xij

γj ·wi
y′ = y − eAi and yAi > 0

0 o.w.

(10)

and Q̃(y, y) = −∑y′∈Y :y′ 6=y Q̃(y, y′). Observe that the Q and Q̃ are identical except at the rate at
which they make a transition to the state with one fewer available item.

The execution of Algorithm 2 when a buyer of type j arrives is equivalent to the following: the
seller first determines which goods can be sold to buyer j by sampling a set of permissible goods
from the product distribution Ber(q1j) × · · · × Ber(qnj), denoted as a set Hj. Next, Following the
proof of Lemma 3.2 and Claim A.1 from [26] we conclude that the stochastic process Y | {Hj}j∈B
stochastically dominates the stochastic process Ỹ | {Hj}j∈B. This implies that for any S ⊆ G,

Pr[S ∩Rj 6= ∅] = 1− Pr[S ∩Rj = ∅]

= 1−
∑

Hj⊆G
Pr



Y ≤
∑

i∈Hj∩S
eAi

∣

∣

∣

∣

∣

∣

{Hj}j∈B





≥ 1−
∑

Hj⊆G
Pr



Ỹ ≤
∑

i∈Hj

eAi

∣

∣

∣

∣

∣

∣

{Hj}j∈B



 (Y | {Hj}j∈B � Ỹ | {Hj}j∈B)

= 1− Pr[S ∩ R̃j = ∅]
= Pr[S ∩ R̃j 6= ∅].

Above, the second and the second last equality holds because if all goods in i ∈ Hj ∩ S are not
available then S ∩R = ∅. To complete the proof, we consider

Pr[S ∩ R̃j 6= ∅] = 1− Pr[S ∩ R̃j = ∅] = 1−
∏

i∈S
Pr[i /∈ R̃j ] = 1−

∏

i∈S

(

1− xij
γj · wi

Pr[i ∈ Ã]

)



≥ 1−
∏

i∈S

(

1− xij
2 · γj

)

≥
(

1− 1√
e

)

∑

i∈S

xij
γj

.

Above, the second inequality holds because the events {i ∈ R̃j}i∈S are independent, as {Si}i∈S are

independent. The first inequality holds because Pr[i∈Ã]
wi

≥ 1
2 (follows from Lemma 3.6). The last

inequality holds because 1− exp(−bx) ≥ (1− exp(−b))x by convexity.

D Challenging Correlation for Algorithm 1

In this section we construct an instance where the events {i ∈ π(R)} and {i ∈ A} are (strictly)
negatively correlated due to the positive correlations between the availability of good i and presence
of some other good i′. To make this argument concrete, consider the following example:

Example D.1. Consider an SPI instance with one-uniform matroid constraint with two goods
G = {a, b} and one buyer B = {c}. Items of good a are produced at rate 1 and perish at rate 1

log 1
ǫ

,

and items of good b are produced at rate δ · ǫ and perish at rate ǫ. The valuation for the buyers
are vac = va = 1 + ǫ and vbc = vb = 1. The buyer c arrives at rate γc = 1. We can observe that
the optimal selling rate x∗ ∈ argmax{v · x | x ∈ Poff (I)} is x∗a = 1 − exp(− log 1/ǫ) = 1 − ǫ and
x∗b = ǫ. We consider the CRS scheme as follows: π({a, b}) = a, π({a}) = a, π({b}) = b, π({∅}) = ∅.
We now compute qa and qb as follows:

qa =
x∗a

Pr[a ∈ P ]
= 1 and qb =

x∗b
Pr[b ∈ P ]

.

In addition, the probability of the proposals can be expressed as: Pr[a ∈ R] = x∗a and Pr[b ∈ R] = x∗b .
We also have

Pr[a ∈ P ] = 1− ǫ and Pr[b ∈ P ] = 1− exp(−1/δ).

Lemma D.2. On Example D.1, for δ = 0.3, we have Pr[b ∈ π(Rc)∩A],Pr[b ∈ π(Rc)],Pr[b ∈ A] >
0. Moreover,

Pr[b ∈ π(Rc) ∩A] ≤ 0.81 · Pr[b ∈ π(Rc)] · Pr[b ∈ A].

The intuition here is that when good a is not present then an item or good b are sold to the
buyer with the positive rate in contrast to when the items of good a are present in which case an
item of good b is never sold. Hence, intuitively, Pr[b ∈ A] should be larger than Pr[b ∈ A | a /∈ P ].
This precisely positively correlates the availability of good b with the presence of good a which
leads unfavorable correlation for Algorithm 1.

To formally prove Lemma D.2, we first upper bound the probability Pr[b ∈ π(Rc)∩A] and lower
bound the product of the probabilities Pr[b ∈ π(Rc)] · Pr[b ∈ A].

Claim D.3. On Example D.1, Pr[b ∈ π(R) ∩A] = Pr[b ∈ A | a /∈ P ] · Pr[a /∈ P ] · qb.

Proof. We first notice that when an item of good a is present then it proposes to the buyer with
probability 1. In addition, CRS π outputs good a whenever it proposes. Therefore, b ∈ π(R) iff
a /∈ P and b ∈ R. Hence,

Pr[b ∈ π(R)∩A] = Pr[b ∈ A∧a /∈ P∧b ∈ R] = Pr[b ∈ A∩a /∈ P ]·qb = Pr[b ∈ A | a /∈ P ]·Pr[a /∈ P ]·qb.

Next, we compute the product product of probability Pr[b ∈ π(Rc)] · Pr[b ∈ A].



Claim D.4. On Example D.1,

Pr[b ∈ π(R)] · Pr[b ∈ A] = qb · Pr[a /∈ P ] · Pr[b ∈ A] ·
(

1− exp

(

−1

δ

))

.

Proof. We have,

Pr[b ∈ π(R)] · Pr[b ∈ A] = qb · Pr[b ∈ R ∧ a /∈ P ] · Pr[b ∈ A]

= qb · Pr[a /∈ P ] · Pr[b ∈ A] ·
(

1− exp

(

−1

δ

))

Above, the last inequality holds because events {a /∈ P} and {b ∈ R} are independent. Next, we
lower bound Pr[b ∈ A] and upper bound Pr[b ∈ A | a /∈ P ].

Next, we bound the probabilities Pr[b ∈ A] and Pr[b ∈ A | a /∈ P ] to complete the proof of
Lemma D.2.

Claim D.5. On Example D.1,

Pr[b ∈ A | a /∈ P ] = 1−





∞
∑

q=0

q
∏

r=0

ǫ

r · δ · ǫ+ qb





−1

∈
(

1− exp

(

− 1

qb/ǫ+ δ

)

,
1

δ + qb/ǫ

)

.

Proof. We note that the number of available items of good b conditioned on a /∈ P again follows
a birth-death process with the former having sale rate of zero, and the latter having a sale rate of
γ∗ = γc · qb = ǫ. Here, we note that the an item of available good b is sold whenever it proposes to
the buyer as we conditioned on a /∈ P . Hence, we can upper bound

Pr[b ∈ A | a /∈ P ] = 1−





∞
∑

q=0

q
∏

r=0

ǫ

r · δ · ǫ+ qb





−1

≤ 1−





∞
∑

q=0

q
∏

r=0

ǫ

δ · ǫ+ qb





−1

=
ǫ

δǫ+ qb
(Sum of geometric progression)

=
1

δ + qb/ǫ
.

Next, we obtain a lower bound as follows:

Pr[b ∈ A | a /∈ P ] = 1−





∞
∑

q=0

q
∏

r=0

ǫ

r · δ · ǫ+ qb





−1

≥ 1−





∞
∑

q=0

q
∏

r=0

ǫ

r · (δ · ǫ+ qb)





−1

= 1−





∞
∑

q=0

1

q!
·
(

ǫ

δ · ǫ+ qb

)q




−1

= exp

(

− 1

qb/ǫ+ δ

)

(Taylor Expansion)



Claim D.6. On Example D.1,

Pr[b ∈ A] ≥
(

1− exp

(

− 1
1

1−exp(−1/δ) + δ

))

· ǫ+
(

1− exp

(

−1

δ

))

· (1− ǫ) .

Proof. We note that the number of available items of good b follows a birth-death process as
described in Proposition A.2, with the former having sale rate of zero, and the latter having a sale
rate of γ∗ = γc · qb ·Pr[a /∈ P | a ∈ P ] = 0 Here, we note that the an item of available good b is sold
iff an item of good a is not present. Once we condition on the event a ∈ P then an item of b never
gets sold. This implies that:

Pr[b ∈ A | a ∈ P ] = 1−





∞
∑

q=0

q
∏

r=0

ǫ

r · δ · ǫ





−1

= 1−





∞
∑

q=0

1

q!
·
(

1

δ

)q




−1

= 1− exp

(

−1

δ

)

(Taylor Expansion)

Claim D.5 with above inequality implies that

Pr[b ∈ A] = Pr[b ∈ A | a /∈ P ] · Pr[a /∈ P ] + Pr[b ∈ A | a ∈ P ] · Pr[a ∈ P ]

≥
(

1− exp

(

− 1

qb/ǫ+ δ

))

· ǫ+
(

1− exp

(

−1

δ

))

· (1− ǫ)

=

(

1− exp

(

− 1
1

1−exp(−1/δ) + δ

))

· ǫ+
(

1− exp

(

−1

δ

))

· (1− ǫ) .

Above, the inequality holds because of Claim D.5, Claim D.6 and Pr[a ∈ P ] = 1 − ǫ. The second
equality holds because qb =

ǫ
Pr[b/∈P ] =

ǫ
1−exp(−1/δ) .

Now, we are ready to prove the main lemma.

Proof of Lemma D.2. Using Claim D.5 and Claim D.6, we have all the required probabilities Pr[b ∈
π(Rc) ∩A],Pr[b ∈ π(Rc)],Pr[b ∈ A] are positive. Moreover,

Pr[i ∈ A ∩ π(R)]

Pr[i ∈ A] · Pr[i ∈ π(R)]
=

qb · Pr[b ∈ A | a /∈ P ] · Pr[a /∈ P ]

qe · Pr[b ∈ A] · Pr[a /∈ P ] · (1− exp(−1/δ))

=
1

1− exp(−1/δ)
· Pr[b ∈ A | a /∈ P ]

Pr[b ∈ A]

≤
1

δ+1/(1−exp(−1/δ))

(1− exp(−1/δ)) ·
((

1− exp

(

− 1
1

1−exp(−1/δ)
+δ

))

· ǫ+
(

1− exp
(

−1
δ

))

· (1− ǫ)

) .

Now taking ǫ → 0+, we get,

Pr[i ∈ A ∩ π(R)]

Pr[i ∈ A] · Pr[i ∈ π(R)]
≤

1
δ+1/(1−exp(−1/δ))

(1− exp(−1/δ)) ·
((

1− exp
(

−1
δ

))) .

Now by setting δ = 0.3, we obtain the result.
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[39] Vondrák, J. 2008. Optimal approximation for the submodular welfare problem in the value
oracle model. In Proceedings of the 40th Annual ACM Symposium on Theory of Computing
(STOC). 67–74.
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