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Abstract

This paper studies multi-label classification problem in which data instances are associated with 

multiple, possibly high-dimensional, label vectors. This problem is especially challenging when 

labels are dependent and one cannot decompose the problem into a set of independent 

classification problems. To address the problem and properly represent label dependencies we 

propose and study a pairwise conditional random Field (CRF) model. We develop a new approach 

for learning the structure and parameters of the CRF from data. The approach maximizes the 

pseudo likelihood of observed labels and relies on the fast proximal gradient descend for learning 

the structure and limited memory BFGS for learning the parameters of the model. Empirical 

results on several datasets show that our approach outperforms several multi-label classification 

baselines, including recently published state-of-the-art methods.

1 Introduction

In standard binary classification problem data instances are assigned to one of the two 

classes (or labels). In multi-label classification (MLC) problems data instances are 

associated with subsets of labels selected from a set of possible labels L. Multi-label 

classification problems may arise in text categorization, where text documents are associated 

with topics the document covers; or in image analysis and retrieval where individual image 

can be associated with multiple labels reflecting, for example, objects shown in the image.

The multi-label classification problem can be cast as an |L| dimensional classification 

problem where each instance x is mapped to an output y defined by a {0, 1} vector of values 

of length |L|, such that the i-th component of the y vector reflects whether the i-th label in L 

is absent or present when labeling x.

In this work, we study the problem of learning multi-label classifiers from data. This 

problem is challenging for two reasons; the number of possible label assignments is 

exponential in the number of labels, and the occurrence of different labels and their 

combinations is not arbitrary and some label combinations may be more or less likely 

reflecting the dependencies among labels. This prompts us to find ways of representing the 
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dependencies among labels in a compact and tractable form, and to devise algorithms 

capable of learning such dependencies from data.

Many different multi-label classification models and methods have been devised in recent 

years. In this work we propose, develop and test a model based on the Conditional Markov 

Random field (CRFs) [16]. Briefly, CRFs define a class of conditional probability models 

representing P(Y |X), where Y is the output label space and X is the input feature space. The 

CRF model is based on the Markov random field (MRF) representation [14] to model 

dependencies/interactions among components of Y using potential functions over subsets of 

variables. However, CRF extends (unconditional) MRF by permitting to condition the 

potential functions on features.

In this work we limit the dependencies expressed by our model to a pairwise conditional 

random Field (CRF) model, where each potential function depends on at most two label 

variables. We develop a new approach for learning the structure and parameters of such a 

CRF from data. The approach maximizes the pseudo likelihood of observed labels and relies 

on the fast proximal gradient descend [2] for learning the structure of the model, and limited 

memory Broyden-Fletcher-Goldfarb-Shanno algorithm (BFGS) [18] for learning the 

parameters of the model. Empirical results on several datasets from different domains show 

that our approach outperforms several multi-label classification baselines, including recently 

published state-of-the-art methods.

1.1 Related work

The majority of existing methods for solving the multi-label classification (MLC) problems 

fall into two main categories: dimensionality-reduction, and probabilistic approaches. Both 

of these methods try to find the inherent structure in data and represent the output label 

space more compactly.

The dimensionality reduction methods, such as singular value decomposition (SVD), 

attempt to reduce the dimensionality of the output space Y by defining an intermediate 

lower dimensional space Y′ that is sufficient to model the relations in between input features 

and output lables. Multiple approaches fall into this category including the work by Tai and 

Lin [22] who applied principal component analysis to find the intermediate lower 

dimensional space, or the work by Zhang and Schneider [31] who applied canonical 

correlation analysis. They also proposed a maximum margin formulation to find a low 

dimensional subspace by optimizing the subspace from both the feature side and the label 

side [32]. That is, the subspace should be easy to predict from the features and at the same 

time should discriminate well between the labels.

The probabilistic multi-label classification methods attempt to model the relation in between 

the input space X and output space Y probabilistically, by modeling the conditional 

distribution P(Y|X). The existing methods include classifier chains (CC) methods [20, 27]. 

Briefly, both of CC methods attempt to model P(Y|X) by decomposing it to a product of 

conditional densities based on the chain rule. The difference is that [20] approached the 

problem by using a random ordering of output variables, while [27] tried to optimize their 

ordering first. Other probabilistic MLC methods include conditional tree structured Bayesian 
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networks (CTBN) [1], and multi-dimensional Bayesian networks [25]. CTBN represents the 

distribution of P(X|Y) by modeling the relations among the labels using a tree structured 

Bayesian network. Multi-dimensional Bayesian networks define the joint probability 

distribution P(X, Y) using a Bayesian network with a restricted structure that puts all class 

variables as ancestors of all feature variables.

Other approaches to multi-label classification include work by Clare et. al. [6] and Boutell 

et. al. [4] who studied methods for learning a set of independent classifiers. Godbole et. al. 

[10] and Cheng et. al. [5] improved these early attempts by introducing a second layer of 

classifiers that combine input features with the outputs of independent classifiers. Zhang et. 

al. proposed several multi-label prediction algorithms, such as RBF neural networks [28], 

multi-label lazy learning approach [30], multi-instance multi-label RBF neural networks 

[26], multi-label BP neural networks [29]. Ji et. al. [13] used matrix decomposition to 

generate orthogonal linear prediction functions. Hsu et. al. [12] proposed to use compressed 

sensing in the label space for multi-label prediction. Liu et. al. [19] formulated the problem 

as a constrained Non-negative Matrix Factorization (NMF) problem. Although these 

methods work well for a small number of labels, they do not scale-up well to higher 

dimensional input and output space.

In this paper, we propose a new MLC algorithm that learns a prediction model by modeling 

the structure of the output space using Conditional Random Fields (CRF). Our method 

learns jointly the structure and parameters of the CRF from data. CRF has been used for 

multi-label classification of text and image data [9, 21, 11]. Compared to our approach, 

these applications make additional simplifying assumptions; for example, they rely on an a 

priori fixed structure of the output space, and/or assume a discrete set of features.

2 Proposed Model

We first describe the parametrization of the proposed multi-label classification model in 

Section 2.1. Section 2.2 defines the log-pseudo likelihood as the objective function and 

formulates the optimization problem. Finally, Section 2.3 describes the optimization 

methods we use to learn the model.

2.1 Model Parametrization

Our multi-label classification model uses pairwise potential conditional random fields 

(CRF). CRF directly models the conditional distribution p(y|x) with an associated graphical 

structure [16]. A CRF under graph  = (V, E) with node potentials and pairwise potentials 

can be characterized as follows:

(2.1)

where x ∈ ℝm is the feature vector for the input instance of multi-label classification model 

and y = (y1,…, yd) is its corresponding output labels. Also, ϕi is the node potential for every 

node (label) in V and ϕij is the edge potential for each edge (pair of labels) in E. Let d 
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denotes the number of ys and Z denotes the partition (normalization) function Z(x) = 

Σy1,…,yd Πi∈V ϕi(yi, x) Πij∈E ϕij(yi, yj, x).

In this paper we assume that node potentials and the edge potentials have the following 

form:

(2.2)

(2.3)

where ( ) are the node parameters for node i and ( ) are the edge 

parameters for edge (i, j). Also, fi(x) and fij(x) are row vectors of local features 

corresponding to node i and edge (i, j). These features can be extracted using any feature 

extraction method such as (kernel) linear discriminant analysis, L1 regularization, etc. 

However, for the simplicity we used all input features x as both local node and edge 

features. In addition, for the identifiability of the model we set .

2.2 Objective Function

The most common objective function used in probabilistic modeling is the log-likelihood 

function of training data. However, learning CRF parameters using log-likelihood requires 

inference in computing the gradient of the log-likelihood. If exact inference is used, it would 

be exponential in the tree width which is intractable for dense graphs [15]. To address this 

problem, one can either use approximate inference [17] or optimize a surrogate function that 

is easier to deal with.

The other objective function that is commonly used in probabilistic modeling is the log-

pseudo likelihood of training data, which is known to give a consistent estimator of model 

parameters when the number of training data is sufficiently large [3]. Assume we have a set 

of N multi-label training instances . Defining θ= {vi, wi,j} as the 

set of all node and edge parameters of the model, the log-pseudo likelihood of training data 

is defined as follow:

(2.4)

Using our model parameterizations in Equations 2.2,2.3 we have:
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where Zi is the local partition function which normalizes with respect to yi. Consequently, 

lpl is computed as following:

(2.5)

We can see in the above equation that lpl(D; θ) is a concave function in both node and edge 

parameters.

To prevent model overfitting we use a regularization term R(θ) that penalizes model 

complexity. In our method R(θ) is defined as following:

(2.6)

where . The first term in R(θ) is the ridge penalty (ℓ2 norm 

regularization) over node parameters. The second term (inside the parentheses) is the elastic-

net penalty [34], which is a compromise between the ridge regression penalty (η = 0) and the 

group lasso penalty (η = 1). This penalty imposes block sparsity effect over the edge 

parameters of the CRF model. That is, for a specific edge in the graph, either all its 

parameters go to zero (the edge is absent from the graph) or not (the edge exists in the 

graph). For setting the regularization parameters λvi, λw, η, we apply the following 

sequential cross validation process. We first set λvi separately for each node (yi) using cross-

validation over independent logistic regression models. After that, we apply the LARS (or 

homotopy) method [8] to set λw and η, using a k-fold cross validation and a warm start 

procedure.

By defining nlpl ≜ −lpl as the corresponding loss function, we can learn the structure and 

parameters of the model by minimizing the regularized loss function as following:

(2.7)

Since both nlpl(D; θ) and R(θ) are convex functions, the above optimization program is a 

convex optimization program in which all local minima are global minima.

2.3 Optimization

In this section we describe the proposed optimization method for solving the optimization 

program in Equation 2.7. In order to use any gradient-based optimization, we should be able 

to compute the gradient of nlpl. Taking derivative with respect to  (the parameters of node 

i), we would have the following:
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(2.8)

where superscript T denotes the transpose. Also taking the derivative of the nlpl with respect 

to  (the parameters of edge (i, j) and values (bi, bj)), we would have the following:

(2.9)

Fast Proximal Gradient Descent—Although the minimization problem in equation 2.7 

is a convex optimization problem, the objective function is non-smooth due to the non-

smoothness of the ℓ1,2-norm induced by the elastic-net regularization term in R(θ). To 

overcome this difficulty, we use the fast proximal gradient decent algorithm [2] to solve this 

non-smooth optimization problem.

The unconstrained problem in Equation 2.7 can be optimized with two approaches. The first 

approach directly defines proximal mapping for the non-smooth part of the elastic-net 

penalty i.e. the L2 penalty over the edge variables. The second approach converts the 

unconstrained program to an equivalent constraint optimization program by defining slack 

variables αe as in Equation 2.10. These two approaches are very similar and they both have 

the same order of computations. However, we use the latter one mainly because in this case 

we can use the slack variables αe for monitoring existence of edges in the CRF model and 

for early termination of the structure learning phase (having αe = 0 means that edge e is not 

present in the graph structure). In the following, for the simplicity of representation, we use 

θk to denote the parameters vector {α, w, v} at iteration k and f(θk) to denote its 

corresponding objective function.

(2.10)

For solving the optimization program in Equation 2.10, we use FPGD with backtracking line 

search. The high level idea of proximal gradient descend methods for minimizing a non-

smooth function f is to write it as two separate parts f = g + h, in which g is a smooth 

differentiable function and h is a simple non-differentiable convex function. In our case, 

 and the non-smooth 

function h = IΩ(θ), where Ω = {(α, w, v)|∀e ∈ E : ||we||2 ≤ αe} is the set of feasible solutions 

(a convex set) and IΩ is the indicator function defined as follows:
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Proximal gradient based optimization methods use a proximal function defined as 

 to optimize a second order approximation of the 

objective function f. In our case, the proximal function is the projection operator Π(we, αe) 

of the parameters onto the convex set of feasible solutions Ω (defined above). Interestingly, 

the the above projection operator can be decoupled and solved separately over different 

edges of CRF model which gives following simple program for each edge:

(2.11)

For solving the above optimization program we used the linear-time projection algorithm 

proposed in [24]. Algorithm 1 outlines the optimization method. In this algorithm the 

termination condition is defined based on the maximum number of iterations (50 in our 

experiments), the norm of the changes in value of α, or the change in the function values |

f(θk) f(θk−1)|.

Algorithm 1

Fast proximal gradient descend with line search.

t0 ∈ ℝ+

θ0 = θ−1 ∈ ℝn

k ← 1

repeat

  

 tk = tk−1

 θk = proxtk(tk∇g(y))

 while 

 do

  tk ← βtk

  θk = proxtk (y − tk ∇g(y))

 end while

 k ← k+ 1

until (termination condition)

Parameter Tuning—After fixing the structure of the CRF model by termination of FPGD 

optimization method, we remove the L1 penalty term and use limited memory BFGS [18], a 

quasi-newton optimization method, to tune the model parameters. We found this step 
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necessary for having a high performance predictive model and it can affect the final results, 

up to 10% in terms of exact match between the predicted and the true labels.

3 Experimental Setting

In this section, we will discuss the baseline methods as well as the measures used to evaluate 

the performance of MLC.

3.1 Methods

We compare our proposed method, which we refer to as MLCRF, with simple binary 

relevance (BR) independent classification (as in [6, 4]) as well as several state-of-the-art 

multi-label learning methods. These methods include the most recent dimensionality 

reduction based approach: maximum margin output coding (MMOC) [32], two probabilistic 

approaches: classifier chains (CC) [20] and probabilistic classifier chains (PCC) [7], and 

three other methods: classification with heterogenous features (CHF) [10], multi-label k-

nearest neighbor (MLKNN) [30] and instance-based with logistic regression (IBLR) [5].

For all methods, we use the same parameter settings as suggested in their papers: For 

MMOC, λ (decoding parameter) is set to 1 [32]; For CC we we set the order of classes to Y1 

< Y2, … < Yd [20]; For MLKNN and IBLR, Euclidean distance is used to measure 

similarity of instances, and the number of nearest neighbours is set to 10 [30, 5]. Also, note 

that all baseline methods except MMOC, are kind of meta-learners because they can work 

with several base classifiers. We use L2-penalized logistic regression for all of these 

methods and choose their regularization parameters by cross validation.

3.2 Evaluation Measures

Evaluating the performance of MLC methods is more difficult than evaluation of simple 

classification methods. The most suitable performance measure is the exact match accuracy 

(EMA), which computes the percentage of instances whose predicted label vectors are 

exactly the same as their true label vectors. However, this measure could be too harsh, 

specially when the output dimensionality is high. The other evaluation measure is the log-

likelihood loss (LL) which computes the negative conditional log-likelihood of the test 

instances:

LL is very insightful in evaluating the performance of probabilistic MLC methods because it 

evaluate how much probability mass is given to the true label vectors (the higher the 

probability, the smaller the loss). Micro F1 and Macro F1 are two other intuitive measures 

for evaluation MLC methods [23]. Macro F1 computes the F1 score for each class label 

separately and averages them over all labels. On the other hand, micro F1 aggregates the 

true positives, false positives, true negatives and false negatives over all labels, and then 

calculates the overall F1 score. Note that these two measures do not account for the 
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correlations between labels (see [7, 27]). However, we report them in our results because 

they have been used in several other papers [32, 33].

4 Experimental Results

We perform two sets of experiments to evaluate the proposed model. First, in order to 

evaluate the predictive performance of MLCRF, which is the main point of this paper, we 

perform experiments on several real-world data. In addition, we perform some experiments 

on synthetic data to verify that the FPGD-based structure learning algorithm of MLCRF also 

performs reasonably well in finding the true conditional dependencies among output labels.

4.1 Real data

We use five real-world benchmark datasets to evaluate the performance of the MLC models. 

These datasets are obtained from different domains including image labeling (image and 

scene), biology (yeast), music recognition (emotions) and text classification (rcv1). Note 

that many labels in rcv1 data are rare, so we select the 10 most common labels to study. 

Table 1 shows the characteristics of these datasets. For each multi-label dataset, we use N, 

m, d to represent the number of instances, number of features (input dimension) and number 

of labels (output dimension), respectively. In addition, we show two statistics of the data: 1) 

label cardinality (LC), which measures the average number of labels per instance and 2) 

distinct label set (DLS), which is the number of all possible label combinations that appear 

in data.

Tables 2, 3, 4 and 5 show the results of experiments in terms of different evaluation metrics. 

Standard tenfold cross validation is applied for all methods and the mean metric value is 

reported. Furthermore, to statistically measure the significance of performance difference, 

paired t-tests at 0.05 significance level are conducted between MLCRF and the other 

methods. Specifically, whenever MLCRF achieves significantly better/worse performance 

than the compared method on any dataset, a marker */⊛ is shown in the table. Note that the 

results of MMOC is not shown on rcv1 data because it did not finish in the time limit of 24 

hours for one iteration of learning.

Table 2 shows the exact match accuracy of the methods on the benchmark datasets. We can 

see that MLCRF outperforms all the other methods for most datasets.

Table 3 shows the performance of each method in terms of log-likelihood loss (LL). Since 

the output dimensionality of the datasets is relatively small, we use exact inference in the 

prediction time to obtain accurate probabilistic estimates1. We can see that MLCRF is 

significantly superior to all other methods in terms of LL. This shows that the pseudo 

likelihood, which MLCRF optimizes, is a good surrogate for the likelihood of the data. 

Notice that CC performs poorly because of its ad-hoc classification heuristic [7]. Also, note 

that we cannot compute LL for MMOC because it is not a probabilistic method.

1When the output dimensionality is large, we should resort to approximate inference using either variational approximation or Gibbs 
sampling
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Tables 4 and 5 show that MLCRF also produces competitive results in terms of the micro 

and macro F1 scores.

4.2 Synthetic data

We perform simple experiments on synthetic data to verify that the structure learning part of 

the proposed method is performing reasonably well. In the following, we describe four 

different scenarios, each corresponds to a different graph topology with three output nodes, 

as shown in Figure 1. We generate 500 data instances: , where x(n) ∈ ℝ6 

and y(n) ∈ {0, 1}2. The feature vectors are generated uniformly from [−1, 1]6. On the other 

hand, the class vectors are generated based on the following strategies:

Independent (SD1)—For each instance x(n), we first generate random variables μ1, μ2, μ3 

that depends on the features as follows: 

 where σ is the logistic 

(sigmoid) function.  will be bernoulli random variables generated using μ1, 

μ2, μ3. Note that all three classes are conditionally independent of each other.

Single Edge (SD2)—For each instance x(n), we first generate random variables μ1, μ2 that 

depend on the features as follows: . y3, z will be 

bernoulli random variables generated using μ1, μ2. If the value of z is zero, we assign (y1, 

y2)(n) = (0, 0) (both classes are absent). Otherwise (the value of z is one), we assign (y1, 

y2)(n) to either (1, 0) or (0, 1) with equal probability (only one of the two classes is present). 

Note that we do not have any instance where both classes are present.

Chain Structure (SD3)—For each instance x(n), we first generate random variables μ1, μ2 

that depends on the features as follows: . 

will be bernoulli random variables generated using μ1, μ2. If both  and  are equal to 

one we set ; Otherwise, we set .

Complete Graph (SD4)—For each instance x(n), we first generate a random variable μ1 

that depends on the features as follows: . z will be bernoulli random 

variables generated using μ1. If z is equal to one we set (y1, y2, y3)(n) = (0, 0, 0); Otherwise, 

we set (y1, y2, y3)(n) randomly (with equal probability) to one of the three configurations (1, 

0, 0); (0, 1, 0); (0, 0, 1).

The results on synthetic data are shown in Figure 2. For each dataset, we profile the value of 

the auxiliary edge variables (the αe variables in Equation 2.10) over the course of the 

optimization algorithm. Note that these variables imply the graph structure because having a 

positive αi,j means having an edge between class Yi and class Yj in the graph. As we can see, 

for all four datasets, the algorithm succeeds in finding the correct dependency relations 

among the outputs.
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5 Conclusions and Future Work

In this paper, we proposed a novel probabilistic approach for classifying multi-label data. 

Our approach uses a special conditional random field to map the input to the multilabel 

output space. We use elastic net group sparsity penalty and Fast Proximal Gradient Descend 

(FPGD) optimization method to learn the CRF structure, and the L-BFGS optimization 

method to tune the parameters of the fixed-structure CRF. Our experimental evaluation on a 

broad range of real datasets showed that our approach outperforms several state-of-the-art 

methods and is able to produce reliable probabilistic estimates.

By using pseudo-likelihood for learning the parameters of the model we avoid the need of 

exact inference in the learning phase which would otherwise be intractable even for small 

size problems. However, since we use exact inference for finding the MAP output in test 

time, it would be still intractable when the number of outputs is very large. In the future we 

plan to develop and test a variational approximation to accomplish this step.

This paper has focused mainly on showing that our method can achieve a good predictive 

performance on many multi-label classification problems. We have also shown that the 

proposed structure learning method works reasonably well and recovers the structure of 

known CRFs from synthetic data. However, we believe a more extensive study will help us 

to gain additional insights on the performance of the structure learning method on more 

complex datasets. Another possible direction for future work is to use a max margin loss 

function (e.g. Hinge loss) in order to define a max-margin CRF for multi-label classification 

[23, 24, 26]. We conjecture that the max margin approach for learning of a CRF will lead to 

a more accurate MLC model when considering the exact label match, while our CRF model 

would perform better in terms of the conditional log-likelihood loss.
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Figure 1. 
Graphical model representation of four synthetic data sets.
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Figure 2. 
Profile of auxiliary edge variables over running iterations of FPGD optimization method for 

four simulation dataset SD1,…, SD4, where all of these variables are initialized to a random 

number between 0 and 1. A positive value for αij indicates the presence of an edge between 

Yi and Yj in the CRF model.
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