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PRECONDITIONED ITERATIVE METHODS FOR HOMOTOPY
CURVE TRACKING*

COLIN DESAt, KASHMIRA M. IRANIt, CALVIN J. RIBBENS, LAYNE T. WATSON,
AND HOMER F. WALKER:

Abstract. Homotopy algorithms are a class of methods for solving systems of nonlinear equa-
tions that are globally convergent with probability one. All homotopy algorithms are based on the
construction of an appropriate homotopy map and then the tracking of a curve in the zero set of
this homotopy map. The fundamental linear algebra step in these algorithms is the computation
of the kernel of the homotopy Jacobian matrix. Problems with large, sparse Jacobian matrices are
considered. The curve-tracking algorithms used here require the solution of a series of very special
systems. In particular, each (n + 1) (n + 1) system is in general nonsymmetric but has a leading
symmetric indefinite n n submatrix (typical of large structural mechanics problems, for example).
Furthermore, the last row of each system may by chosen (almost) arbitrarily. The authors seek
to take advantage of these special properties. The iterative methods studied here include Craig’s
variant of the conjugate gradient algorithm and the SYMMLQ algorithm for symmetric indefinite
problems. The effectiveness of various preconditioning strategies in this context are also investigated,
and several choices for the last row of the systems to be solved are explored.
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1. Introduction. The fundamental problem motivating this work is to solve a
nonlinear system of equations F(x) O, where F En En is a C2 map defined on
real n-dimensional Euclidean space En. The homotopy approach to solving F(x)
0 is to construct a continuous map H(.k,x), the "homotopy," deforming a simple
function s(x) to the given function F(x) as .k varies from 0 to 1. Starting from the
easily obtained solution to H(O,x) s(x) 0, the essence of a homotopy algorithm
is to track solutions of H(,,x) 0 until a solution of g(1, x) F(x) 0 is obtained.
The theoretical and implementational details of such algorithms are nontrivial; see
Rheinboldt and Burkardt [24] and Watson, Billups, and Morgan [36] for summaries
of significant recent progress in this area.

Homotopies are a traditional part of topology and only recently have begun to
be used for practical numerical computation. The homotopies considered here are
sometimes called "artificial-parameter generic homotopies," in contrast to natural-
parameter homotopies, where the homotopy variable is a physically meaningful pa-
rameter. In the latter case, the resulting homotopy zero curves must be dealt with
as they are, bifurcations, ill-conditioning, and all. Therefore, curve tracking becomes
the main focus of the problem-solving effort. Our artificial-parameter generic homo-
topics require that the homotopy zero curves obey strict smoothness conditions. These
conditions generally will not hold if the homotopy parameter represents a physically
meaningful quantity, but they can always be obtained via certain generic constructions
using an artificial (i.e., nonphysical) homotopy parameter.
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The objective is to solve a "parameter-free" system of equations, F(x) O. What
this means is that one can design the homotopy to have paths with nice proper-
ties. Thus extra attention is devoted to constructing the homotopy, and the curve-
tracking algorithm can be limited to a well-behaved class of curves. The goal of using
these artificial-parameter homotopies is to solve fixed-point and zero-finding problems
with homotopies whose zero curves do not have bifurcations or other singular or ill-
conditioned behavior. The mathematical software package HOMPACK [36] used here
for comparative purposes is designed for artificial-parameter generic homotopies.

The theory and algorithms for functions F(x) with small, dense Jacobian matrices
DR(x) are well developed [33], [32]. In this paper we focus on large, sparse DR(x),
a class of problems about which much less is known. Solving large sparse nonlinear
systems of equations via homotopy methods involves sparse rectangular linear systems
of equations. The sparsity suggests the use of iterative solution methods. Precon-
ditioning techniques are used to make the iterative methods more efficient. In this
paper we are particularly interested in problems where the Jacobian matrix DF(x) is
symmetric. Such problems are common, for example, in structural mechanics, where
the Jacobian matrix is often the Hessian of a potential energy function.

Section 2 describes the homotopy approach to zero-finding problems and outlines
the curve-tracking algorithm used in this paper. Section 3 discusses the linear algebra
details of homotopy curve tracking. Several algorithmic possibilities are presented.
Section 4 presents numerical results from the application of the various algorithms to
three test problems. Some general conclusions from these results are drawn in 5.

2. Homotopy algorithm. The philosophy of artificial-parameter homotopy al-
gorithms is to create homotopies whose zero curves are well behaved, with Jacobian
matrices that are well conditioned, and that reach a solution for almost all choices
of a parameter. These homotopies may be used to solve fixed-point and zero-finding
problems.

In this paper we concentrate on the zero-finding problem F(x) O, where F
En -- En is a C2 map. The theoretical basis for the homotopy algorithm can be
summarized as follows (see [7] for details). Suppose there exists a C2 map

p" Em x [O,1) x En En

such that
(a) the n x (m + 1 + n) Jacobian matrix Dp(a, A, x) has rank n on the set

p-i(0)-- { (a,),x)[a e Em,O <_ A < 1, x e En,p(a,A,x)-0},

and for any fixed a e Em, letting pa(A,x) p(a,A,x),
(b) pa(0, x) p(a, 0, x) 0 has a unique solution x0,

(c) Pa (1, x) F(x),
(d) pa--l(0)is bounded.

Then for almost all a E Em there exists a zero curve q, of Pa along which the Jacobian
matrix Dpa has rank n, emanating from (0, x0) and reaching a zero of F at A 1.
Furthermore, - does not intersect itself and is disjoint from any other zeros of p.
Thus, with probability one, picking an a Em (which uniquely determines x0), and
following from (0, x0) to (1,), leads to a zero of F.

There are many different algorithms for tracking the zero curve . HOMPACK
supports three such algorithms: ordinary differential equation-based, "normal flow,"
and "augmented Jacobian matrix." We consider only the normal flow algorithm in
this paper. A brief description of the normal flow algorithm is now given.
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Consider the homotopy map

po(x, +
The matrix Dxpa(X,A) ,kDF(x)+ (1- A)I is symmetric and sparse. (For the
problems of interest, Dxpa(X, ,k) has a "skyline" structure, and is conveniently stored
in a packed skyline format, in which the upper triangle is stored in a one-dimensional
indexed array. An auxiliary array of diagonal indices is also required.) Assuming that
F(x) is C2, a is such that the Jacobian matrix Dpa(X, ) has full rank along 9’, and
9’ is bounded, the zero curve 9’ is C1 and can be parameterized by arc length s. Thus
x x(s), (s) along 9’, and

pa(X(8),,,(8)) "-’0

identically in s.
The zero curve 9’ given by (x(s), A(s)) is the trajectory of the initial value problem

(1) -sPa X(S), )(S) Dpa(x(s), ,k(s)), Dpa(X(S), ,k(s)) O,

dx dA Ids ds

(a) x(0) =0.

Since the Jacobian matrix has rank n along 9’, the derivative (dx/ds, dA/ds) is uniquely
determined by (1), (2), and continuity, and the initial value problem (1-3) can be
solved for x(s), A(s). From (1) it can be seen that the unit tangent (dx/ds, d,k/ds) to

9’ is in the one-dimensional kernel of Dpa.
The normal flow curve tracking algorithm has four phases: prediction, correction,

step size estimation, and computation of the solution at A 1. For the prediction
phase, assume that two points (x(sl),A(Sl)) and (x(82),,,(82))on 9’ with correspond-
ing tangent vectors (dx/ds(s), d/ds(sl)), (dx/ds(s2), d/ds(s2)) have been found,
and h is an estimate of the optimal step (in arc length) to take along 9’. The prediction
of the next point on 9’ is

Z() p(s2 + h),

where p(s) is the Hermite cubic interpolating (x(s), A(s)) at sl and s2. Precisely,

p(81)--(X(81),,’(81)),
dX

(s )’ss(81) (81)

dx dA )
and each component of p(s) is a polynomial in s of degree less than or equal to 3.

Starting at the predicted point Z(), the corrector iteration is

(4) Z(k+i) Z(k) [Dpa(Z(k))] + pa(Z(k)), k=0,1,...
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where [Dpa(Z(k))]+ is the Moore-Penrose pseudoinverse of the n (n + 1) Jacobian
matrix Dpa. Small perturbations of a produce small changes in the trajectory ,
and the family of trajectories for varying a is known as the "Davidenko flow."
Geometrically, the iterates given by (4) return to the zero curve along the flow normal
to the Davidenko flow, hence the name "normal flow algorithm."

A corrector step AZ is the unique minimum norm solution of the equation

(5) [Dpa]/kz

Fortunately, AZ can be calculated at the same time as the kernel of [Dp], and
with just a little more work. The numerical linear algebra details for solving (5), the
optimal step size estimation, and the endgame to obtain the solution at A 1 are
described by Watson [35], [34].

The calculation of the implicitly defined derivative (dx/ds, dA/ds) is done by
computing the one-dimensional kernel of Dp, i.e., by solving the n (n + 1) linear
system

(6) [Dpa]y--O.

This can be elegantly and efficiently done for small dense matrices, but the large
sparse Jacobian matrix presents special difficulties. The difficulty now is that the first
n columns of the Jacobian matrix Dpa(X, ) involving DF(x) are definitely special,
and any attempt to treat all n / 1 columns uniformly would be disastrous from the
point of view of storage allocation. Hence, what is required is a good algorithm for
solving nonsquare linear systems of equations (5) and (6), where the leading n n
submatrix of Dpa is symmetric and sparse. This paper considers various iterative
methods for solving such linear systems of equations.

3. Numerical linear algebra algorithms. As discussed in 2 for the normal
flow curve-tracking algorithm, computing both the corrector step AZ and the tangent
vector (dx/ds, d./ds) requires the solution of a rectangular linear system involving
the n (n+ 1) matrix [Dpa]. This section describes various algorithms for the solution
of such linear systems. In particular, we first consider various ways to construct an

(n + 1) (n + 1) invertible system Ay b whose solution yields a solution to the
rectangular systems (5) and (6). We then describe two general approaches to solving
systems involving this augmented matrix A, and within these approaches we consider
various iterative solution methods. Finally, several preconditioners are suggested for
improving the convergence of the iterative methods.

3.1. Defining an invertible system. Let (2, A) be a point on the zero curve
-, and the unit tangent vector to at (2, ) in the direction of increasing arc length
s. Then the matrix

Dxpa (X, .)A ct

where (c d) is any vector outside a set of measure zero (a hyperplane), is invertible
at (2,/k) and in a neighborhood of (2, A). Thus the kernel of Dpa for (x,)Q near
can be found by solving the linear system of equations

(7) Ay aen+l b,
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where (c d) c, and e,+l is the (n 4- 1)st standard basis vector. Similarly, the
corrector step can be found by solving

The coefficient matrix A in the linear systems of equations (7) and (8) has a very
special structure, which can be exploited in several ways. Recall that the leading
n n submatrix of A is Dxpa, which is symmetric and sparse, but possibly indefinite.
We shall attempt to exploit this property below. The choice of the last row (c d)
is considered first.

From an implementation point of view, the easiest choice for (c d) is probably
the kth standard basis vector e, where the index k is defined by Ikl maxi Iil"
This is the choice made in HOMPACK. It is not difficult to show that with this choice
for (c d), A is invertible, though clearly not symmetric.

A second choice for the last row of A considered here is (c d) . This choice
would seem to be best from a conditioning standpoint, since is orthogonal to the
rows of Dpa(,/k), and hence one expects to be nearly orthogonal to the rows of
Dpa(x,) for (x,) near (,). It is clear that choosing (c d) also makes
A nonsymmetric, and in addition introduces a dense row into the otherwise sparse
matrix A (the last column Dp is also dense).

Since symmetry is advantageous for some algorithms, A can be made symmetric
and invertible by a third choice c D,xpa. The scalar d must still be chosen so that
rank A n 4- 1. It is enough to consider two cases:

1. Suppose rank Dxp n- 1. Then Dpa is not a linear combination of the
columns of Dxpa, because rank [Dp Dp] n by the homotopy theory.
Thus c (D,xpa) is not a linear combination of the rows of the symmetric
matrix Dpa, and we have

row rank (Dpa)t n.

Finally, (c d) is not a linear combination of the first n columns of A, for
any choice of d, so the column rank of A is n 4- 1.

2. Now suppose that rank Dp n. Then

rank (Dpa) n,

and it suffices to choose d to make the last column of A independent from
the first n columns. D,xpa is a unique linear combination of the columns of
Dxpa, and any choice of d other than this combination of the components
of (D_p) will make the (n 4- 1)st column independent. Let

_
denote A

at (,). Since dim[ker()] < 1, y 0 implies y a, and thus with

l (flt, l,+), (Dp(, )) fl+dl,+ O. Choosing any/3 = 0 and solving

(Dpa(,))tfl4-dln+l for d (n+ = 0 since rank Dxpa(,) n) gives
a d such that rank A n + 1 for (x, ) near (,

Observe also that if Dxp is positive definite, choosing d > 0 sufficiently large
guarantees that

Dxpa D,xpa )A= (DApa)t d
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is also positive definite.
Proof. Since A is symmetric, by Sylvester’s theorem A is positive definite if and

only if all its leading principal minors are positive. Since Dzp, is positive definite,
the first n leading principal minors are positive, and it suffices to show det A > 0.
Expanding det A along the last column,

det A d. det Dzpa -4- terms not involving d > 0

for d > 0 sufficiently large. [:]

3.2. Splitting vs. direct approaches. Given a choice for the last row (c d),
we now consider two general approaches to solving systems of the form (7) and (8).
The first approach deals with the entire matrix A directly. As we have seen, depending
on the choice of last row, it may be that A is nonsymmetric. This immediately
eliminates several iterative solvers, at least for these cases. However, we do consider
a few versions of this approach where possible in the experiments reported in 4.

The second general approach is to attack (7) and (8) indirectly as follows. Split
A into the sum of a symmetric matrix M and a low rank modification L:

(9) A M + L,

where

L /\Dpa-C)(11) Ue,n+l U 0

Observe that for almost all choices of (c d) the symmetric part M is also invertible.
Then using the Sherman-Morrison formula, the solution y to the original system
Ay b can be obtained from

Uen+l M-lb.(12) y-- I-
(M_lu)ten+ A- 1

Equation (12) requires the solution of two linear systems involving the sparse (except
possibly for c), symmetric, invertible matrix M. The scheme (9)-(12) was proposed
by Kamat, Watson, and Junkins [20], and further investigated by Chan and Saad [6].

A third general approach, not considered here, would be a block-elimination ap-
proach that depends on solving systems involving the n n matrix Dzpa. Observe that
block elimination will frequently fail in the homotopy context, because even though
rank A n + 1 and rank (Dzpa D,xpa) rank Dpa n, it may very well happen
that Dzpa is singular (i.e., rank n- 1). Block-elimination strategies are considered
by Chan [4], [3] and Chan and Resasco [5].

3.3. Iterative solution methods. In 4 we report results from experiments
using two iterative solution methods: Craig’s method and SYMMLQ. Craig’s method
is nearly equivalent to the method of conjugate gradients (CG) [17] applied to the
normal equations. (Technically, a different norm is minimized over a different Krylov
space than if CG were applied directly to the normal equations.) It has long been
known that one way to apply CG to nonsymmetric problems is to solve the normal
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equations instead of the original system. In particular, given any nonsingular matrix
A, the system of linear equations Ay b can be solved by considering the linear
system (normal equations)

or the related system

AtAy-- Atb,

AA z b, y A z.

Since the coefficient matrix for the latter system is both symmetric and positive
definite, the system can be solved by the CG algorithm. Once a solution vector z
is obtained, the vector y from the original system can be computed as y Atz.
A major disadvantage of this technique is that the convergence rate depends on

cond(AAt) (cond(A))2 rather than cond(A). An implementation of the CG al-
gorithm in which y is computed directly, without reference to z or AAt, is due to
Craig [9] and is described in [13] and [16]. Despite the efficiency of the implementa-
tion, the convergence rate still depends on cond(AAT) (cond(A))2 in general. The
cost per iteration of Craig’s method is dominated by two matrix-vector products, one
involving A and one involving At. Preconditioning (see 3.4) increases the work per
iteration substantially.

The second solution method considered here is the SYMMLQ algorithm described
in Paige and Saunders [23]. SYMMLQ solves symmetric indefinite systems. It is based
on a variant of the Lanczos procedure for tridiagonalizing a symmetric matrix. In [23]
it is shown that for symmetric positive definite systems, SYMMLQ is mathematically
equivalent to CG. However, unlike CG, which can break down when A is indefinite,
SYMMLQ is well defined and numerically stable in this case. Like CG, the cost of
one iteration of unpreconditioned SYMMLQ is primarily in a single matrix-vector
multiplication.

There are many other CG-like methods (i.e., Krylov subspace methods) for solving
nonsymmetric or indefinite problems, but most are not satisfactory in our context.
The generalized conjugate gradient method of Concus and Golub [8] and Widlund [37]
applies only to matrices with positive definite symmetric part (i.e., the matrix must
be positive definite, but not necessarily symmetric), although with preconditioning it
can sometimes be used to solve more general problems. The generalized conjugate
residual method [12] and ORTHOMIN(k) [29] also may break down if the coefficient
matrix is not positive definite. More general systems Ax b, where A is not positive
definite, can sometimes be solved by ORTHOMIN(k) if a nonsingular matrix Z is
known such that ZA is positive definite. ORTHOMIN(k) is then applied to the
transformed system ZAx Zb. A related method known as ORTHODIR [38] does
not break down in case A is indefinite, but it is observed to have stability problems
[26]. ORTHORES is another method with similar properties. GMRES(k) [28], [31],
like ORTHOMIN(k), is guaranteed to converge when the coefficient matrix is positive
definite. However, for an indefinite coefficient matrix, GMRES(k), while it does not
break down, may fail because the residual norms at each step, although nonincreasing,
do not converge to zero. Other Krylov subspace methods are studied by Axelsson [1];
Dennis and Turner [10]; Eisenstat, Elman, and Schultz [11]; Jea [19]; Saad [25]; and
Saad and Schultz [27].

Finally, there are other efficient iterative methods for solving sparse linear systems
based on matrix splittings (see Hageman and Young [15]). Typical of these is the
SSOR method, defined in terms of the splitting A D L U, where D is the
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diagonal of A, L is the strict lower triangle of A, and U is the strict upper triangle
of A. The method requires computations involving D-1. In the homotopy context,
D-1 frequently does not exist, and a diagonal matrix E such that [diag (A + E)] -does exist may not be of low rank. Consequently SSOR and methods based on similar
splittings are of limited utility in the present context.

3.4. Preconditioners. It is widely known that "preconditioning" can dramati-
cally improve the performance of many iterative methods. For example, the solution
to Ax b can also be obtained by solving the system

tx (Q-A)x Q-b ,
where Q is the so-called preconditioner. The goal of preconditioning is to decrease the
computational effort required to solve systems of linear equations by increasing the
rate of convergence of an iterative method. For preconditioning to be effective, faster
convergence must outweigh the costs of applying the preconditioner, so that the total
cost of solving the linear system is lower. The preconditioned coefficient matrix A
usually is not explicitly computed or stored, since although A is sparse, may not
be. The extra work of preconditioning, then, occurs in solving systems involving the
matrix Q. The main storage cost for preconditioning is usually for an extra array to
hold a factorization of Q. In this paper we consider two preconditioners:

Gill-Murray (GM). The preconditioner is taken as the modified Choleksy fac-
torization GG of a symmetric matrix A (see Gill and Murray [14]). In particular, if
A is "sufficiently" positive definite, then GG A. Otherwise GG A + , where

is diagonal with nonnegative diagonal entries. In the matrix splitting approach
described in 3.2, we apply GM preconditioning to the symmetric matrix M; in
the direct approach we apply GM to the entire matrix A (necessitating the choice
c Dpa to make A symmetric). We apply the GM preconditioner on the left when
Craig’s method is used (i.e., if A is the original matrix, (GG)-A is the precondi-
tioned matrix). In the case of SYMMLQ, the preconditioned system is G-1A(Gt)-,
since SYMMLQ requires symmetry.

ILU. The incomplete LU factorization described in [22] computes a lower trian-
gular matrix L and unit upper triangular matrix U satisfying

Li Uiy 0, (i, j) Z,
(LU)ij Ai, (i, j) Z.

Here, Z is the set of indices where A is known to be zero off the diagonal. (This
method is often referred to as ILU(0) to indicate that 0 fill-in is allowed.) It is
possible that Lii 0 in this algorithm. In this case Lii is set to a small positive
number, in which case (LU)ii Aii. The ILU factorization is modified slightly so
that it may be used with SYMMLQ. In this case we compute an incomplete LDLT

factorization, and apply LD/2 symmetrically as a preconditioner as described above.
If during the factorization procedure, an element of the diagonal matrix D is negative,
we simply take its absolute value. This is very similar to the GM factorization, except
with ILU we do no extra work to ensure that the factorization is well conditioned.

4. Numerical experiments. Of the various algorithmic possibilities mentioned
in the previous section, we consider further 22 distinct combinations. Some possibili-
ties do not make sense or are impractical in the homotopy context, and thus are not
considered. Ignoring the choice for the last row of A, and also ignoring the question of
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TABLE 1
Execution time in seconds for turning point problem.

CR
n ek Dpa
20 17 19’ 21
60 167 176 186
125 1117 1132 1384
250 2296 1925 3873
500 4741 3899 8352
1000 11577 9335 20375

CRILU
ek Dpa
4 7 4
13 22 13
38 64 42
66 110 74
129 210 148
323 493 353

CRGM
DApa

5
22
85
134
260
617

TABLE 2
Execution time in seconds for turning point problem.

CR-S
n ek y
20 28 36
60 266 356
125 1635 2310
250 3026 3767
500 6279 7783
1000 14150 17768

CRILU-S
ek
6 6
20 22
54 65
95 109
189 207
434 490

CRGM-S
ek
12 13
41 50
127 170
228 267
448 501
1077 1174

splitting, we have six basic methods: unpreconditioned Craig’s method (CR), Craig’s
method with ILU preconditioning (CRILU), Craig’s method with GM precondition-
ing (CRGM), unpreconditioned SYMMLQ (SY), SYMMLQ with ILU precondition-
ing (SYILU), and SYMMLQ with GM preconditioning (SYGM). Data for all of these
methods, with both the splitting and direct approaches, and for various choices of the
last row, are given in Tables 1-24. In the splitting cases, the method names have an
-S appended (e.g., CR-S, SY-S, ). We report results from all of these methods on
three test problems, which are now briefly described.

Turning point problem. The turning point problem is a relatively simple (and
artificial) example derived from the system of equations

F(x) 0

where

xid-1)F(x) tan-1 (sin[x(i mod 100)]) 2O
i- 1,...,N,

and x0 XNd-1 O. The zero curve - tracked from A 0 to A 1 corresponds to
pc(x, ) (1- .8/k)(x-a)+.8/k F(x), where a is chosen artificially to produce turning
points in -. The Jacobian matrix Dxpa for the turning point problem is tridiagonal.
Tables 1-4 and 13-16 contain the data for this problem.

Shallow arch problem. This is a relatively small but quite difficult problem
from structural mechanics. It results from solving the equilibrium equations for a
discretization of a shallow arch under an externally applied load. See [21] and [18]
for a more complete description. Although this problem is small, it is included in
this study because it is a good test of the accuracy of our methods. To go through
the limit point and along the unloading portion of the equilibrium curve requires
very accurate Jacobian matrices and numerical linear algebra. In fact, the standard
iterative linear equation solver used in HOMPACK is unable to go past the limit
point without tweaking the HOMPACK step size control parameters. Dxpa for the
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TABLE 3
Execution time in seconds for turning point

SY SYILU SYGM
n Dpa Dpa Dpa
20 12 5 5
60 87 17 20
125 405 54 61
250 701 89 104
500 1376 174 199
1000 3270 400 457

problem.

TABLE 4
Execution time in seconds for turning point problem.

SY-S
n ek y
20 20 23
60 134 165
125 594 738
250 1030 1202
500 2109 2421
1000 4872 5500

SYILU-S
ek y
9 9

31 32
98 101
164 165
315 320
736 738

SYGM-S
ek y
9 9
33 34
105 108
175 175
332 337
765 787

shallow arch problem has bandwidth 5. Tables 5-8 and 17-20 contain the data for
this problem.

Shallow dome problem. This is another realistic problem from structural
mechanics, in which the equations of equilibrium for a model of a shallow dome must
be solved. See [18] for a more complete description. Dpa for the shallow dome
problem is block diagonal, with dense 21 x 21 blocks. Tables 9-12 and 21-24 contain
the data for this problem.

The times reported in Tables 1-12 are for tracking the entire zero curve 7 and
thus represent the solution of many linear systems of varying degrees of difficulty.
The average, maximum, and minimum number of iterations for each method (Craig’s
and SYMMLQ) are reported in Tables 13-24. The experiments are done in double
precision using a single processor of a Sequent Symmetry $81 multiprocessor. The
major headings are the acronyms for the algorithms, and the subheadings denote the
choice (c d) for the last row of A. There is asymmetry in the tables because some
possibilities do not make sense. For instance, there is no CRGM with ek because the
Gill-Murray preconditioner requires a symmetric matrix; and there are no methods
based on splitting when c Dpa, since this choice makes A symmetric, so there is
no need to split A into the sum of a symmetric matrix and a low rank modification.

5. Discussion and conclusions. Regarding the choice of last row (c d), Ta-
bles 1-12 show that there is no clear winner between ek, , and Dpa. Furthermore,
there seems to be little correlation between the algorithm and the best choice for c.
If anything, a weak conclusion--that all other things being equal, the best choice
is ekmseems to be indicated by the data. Apparently better conditioning (from )
or symmetry (from Dpa) does not compensate for the extra work involved in these
choices compared with ek.

A comparison of the direct with the splitting approach results in a slight preference
for the direct approach. However, the advantage is not a strong one in most cases.
In fact, there are cases where the splitting approach is better; and on the shallow
arch problem there is virtually no difference. The average number of iterations is
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TABLE 5
Execution time in seconds for shallow arch problem.

CR
n ek Dpa
29 856 884 919
47 14205 13591 14606

CRILU CRGM
ek Dpa D;pa
533 458 443 464
5794 5807 6776 6921

TABLE 6
Execution time in seconds for shallow arch problem.

CR-S

29 1108 947
47 16904 17593

CRILU-S

599 470
5674 5957

CRGM-S
ek
468 818
7322 10105

considerably lower for many of the splitting cases than for the corresponding direct
case. This helps explain why the direct methods are often not significantly faster,
despite the fact that they solve half as many linear systems.

Regarding a comparison between the two basic iterative schemes, the data indicate
that unpreconditioned SYMMLQ is faster than unpreconditioned Craig’s method,
often by a significant amount. The advantage of SYMMLQ seems to be both in fewer
iterations and in less work per iteration (one less matrix-vector product). With GM
preconditioning, SYMMLQ is still a bit faster than Craig’s method for the turning
point and shallow dome problems; on the shallow arch problem the two perform
roughly the same. When ILU preconditioning is used, Craig’s method appears to be
superior. It performs slightly better on the turning point and shallow arch problems;
and ILU preconditioning combined with SYMMLQ fails completely on the shallow
dome problem (SYMMLQ is not converging to a solution of some of the linear systems,
and consequently the curve-tracking algorithm does not make progress).

It is tempting to conclude from the data that the best method overall is CRILU.
However, it must be pointed out that the ILU factorization fails to exist at turning
points and is unstable whenever A is indefinite (as is illustrated by SYILU on the
shallow dome problem). We encountered other homotopy curve-tracking runs, on
slightly different problems, which failed because the ILU preconditioner failed to exist
or generated an overflow, or because of the difficulty caused HOMPACK by inac-
curate tangents resulting from ILU. Because of this potential catastrophic failure or
instability, it is difficult to seriously consider the ILU preconditioner for use in robust
homotopy software. Still, the data do show why the concern of numerical analysts
about unstable algorithms is not always shared by others.

The GM preconditioner, meanwhile, is fairly competitive with ILU on the turning
point and shallow arch problems. Furthermore, it is more robust in the presence of
turning points and when A becomes indefinite. However, the data for the shallow
dome problem show that the GM preconditioner may do a very poor job indeed at
a few points on the curve. Tables 21-24 indicate that while the average number
of iterations is reduced by using the GM preconditioner, the maximum number can
actually increase. Thus the net improvement in efficiency is not at all impressive.

The algorithms SSOR and ORTHOMIN(k), discussed earlier, are not shown in
the tables because they totally fail at turning points and along unloading portions of
equilibrium curves (for reasons stated in 3). When these methods do work, they can
be very efficient (e.g., ORTHOMIN(1) on A with c- Dpa took 443 (6092) seconds
for the shallow arch problem with n 29 (47)), but that is no consolation for homo-
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TABLE 7
Execution time in seconds for shallow arch problem.

SY SYILU SYGM
n Dpa Dpa ’Dpa
29 635 488 463
47 7343 5350 6277

TABLE 8
Execution time in seconds for shallow arch problem.

SY-S
n ek
29 615 664
47 8992 8362

SYILU-S
ek
464 499
5593 5683

SYGM-S
ek 9
500 537

5760 6506

TABLE 9
Execution time in seconds for shallow dome problem.

CR
n ek fl Dapa
21 46 47 47

546 2495 2545 2573
1050 4504 4691 4690

CRILU CRGM
ek Dpa Dpa
16 16 16 89

355 369 365 2233
632 665 651 4313

TABLE 10
Execution time in seconds for shallow dome problem.

CR-S
n ek
21 57 86

546 3127 4803
1050 5615 8553

CRILU-S
ek y
21 25

492 630
887 1133

CRGM-S
ek y
108 57

2710 1787
5107 3177

TABLE 11
Execution time in seconds for shallow dome problem.

SY SYILU SYGM
n Dpa D)pa DApa
21 22 o 29

546 957 c 693
1050 1743 o 1276

TABLE 12
Execution time in seconds for shallow dome problem.

SY-S
n ek
21 35 44

546 1420 2027
1050 2529 3690

SYILU-S
ek :

SYGM-S
ek
41 35

1052 928
1902 1629
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topy curve tracking.
GMRES(k) hs a solid theoretical justification and has been used very success-

fully in a variety of contexts [28], [2], [31], [30]. Nevertheless, GMRES(k) with k < n
performed unacceptably on the test problems here, at least without preconditioning.
For the shallow arch problem with n 29 and tol 10-12, GMRES(29) on A with
c D,pa took 591 seconds, comparable to CRGM and CRGM-S. For k 1, 3,
25, GMRES(k) took over a day of CPU time. Relaxing the tolerance to 10-6, GM-
RES(25) took 18,330 seconds. This is especially noteworthy because the A matrices
are (theoretically) symmetric and positive definite. For the turning point problem
with n 20, tol 10-12, c D),pa, the performance degradation from the full
GMRES to GMRES(k) was dramatic. With k 20, 19, 18, 15, 10, 8, GMRES(k)
took, respectively, 19, 117, 154, 375, 338, 420 seconds. Thus for these problems,
without preconditioning, only the full GMRES method is competitive. Consequently
GMRES(k) was not included in the tables.

There are some theoretical results concerning the convergence of GMRES(k) given
in [28, 3.4]. These results give worst-case bounds on the rate of residual norm
reduction which are determined by the distribution of eigenvalues of A. For the shallow
arch and turning point problems, the eigenvalues of A were determined numerically
along the homotopy curve, and the resulting bounds were often (although not in every
case) found to guarantee only hopelessly slow residual norm reduction, indeed, often
to guarantee no residual norm reduction at all even when k n.

Actually, it is apparent from the data that a crucial advantage of Craig’s method
over methods such as GMRES(k) and ORTHOMIN(k) is that it can iterate indefi-
nitely, if necessary long after the solution would have been reached in exact arithmetic,
without incurring increasing costs per iteration and without restarting or otherwise
losing information from earlier iterations. Furthermore, there are theoretical guaran-
tees that Craig’s method will make progress at each iteration, whereas GMRES(k)
may fail to make any progress at all if A is indefinite. It is possible that if the number
of iterations necessary to meet the stopping tolerance could be kept small through
preconditioning, then GMRES(k) would be competitive for k < n. A complete study,
similar to that done here for Craig’s method, of GMRES(k) with preconditioning and
polynomial acceleration would be interesting and will be the topic of a future paper.

Tables 13-24 show the average, maximum, and minimum number of iterations per
linear system solution along the homotopy zero curve , for the three problems, using
the same algorithms as in Tables 1-12. Such iteration statistics give an intuitive feel for
how the algorithms behave and are sometimes very revealing. For example, Tables 13
and 14 show that symmetry does improve the algorithms’ efficiency (compare CR and
CR-S with last row e), and that, all other things being equal, achieving symmetric
coefficient matrices is worthwhile. (The algorithms based on splitting to achieve
symmetry are not uniformly better, because all other things are not equal.) Note
that in all cases (except for the shallow dome problem with GM preconditioning) the
maximum number of iterations is less than or equal to four times the average, which
says that the convergence behavior is fairly consistent. On the other hand the range
between the minimum and maximum is as great as 3 to 536, showing that there is a
wide variation in the difficulty of the linear systems encountered along 7.

A succinct, albeit oversimplified, summary of the discussion is that ILU precon-
ditioning is the most efficient, but it may completely fail for some cases, while the
Gill-Murray preconditioner rarely fails but may be considerably slower on extremely
difficult problems.
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TABLE 13
Average, maximum, and minimum number of iterations per linear system along homotopy curve

for turning point problem.

n
20 24,29,1
60 70,86,1
125 159,292,1
250 196,404,1
500 216,427,1
1000 224,446,1

CR
ek Dxpa

24,28,1
69,84,1

151,232,1
150,246,1
165,337,1
164,323,1

26,31,1
74,91,2

179,328,3
231,407,3
268,489,3
285,536,3

CRILU CRGM
ek Dxpa Dxpa

2,2,1 4,5,1 2,3,1 3,9,2
2,3,1 4,7,1 2,3,2 3,12,1
2,3,1 4,5,1 2,3,2 5,15,2
2,3,1 4,5,1 2,3,2 4,15,2
2,3,1 4,6,1 2,3,2 5,16,2
2,3,1 4,5,1 3,3,2 5,16,2

TABLE 14
Average, maximum, and minimum number of iterations per linear system along homotopy curve

for turning point problem.

CR-S
n
20 21,28,1
60 60,100,1
125 127,261,1
250 139,302,1
500 149,314,1
I000 151,312,1

ek y
24,29,1
69,87,1

154,264,1
150,246,1
164,281,1
162,289,1

CRILU-S

2,2,1 2,2,1
2,3,1 2,3,1
2,3,1 2,3,1
2,2,1 2,3,1
2,2,1 2,3,1
2,2,1 2,3,1

CRGM-S

4,6,1 5,7,1
4,8,1 5,8,1
5,9,1 6,11,1

5,11,1 5,10,1
5,11,1 5,10,1
5,11,1 5,11,1

TABLE 15
Average, maximum, and minimum number of iterations per linear system along homotopy curve

for turning point problem.

n
20
60
125
250
5O0
1000

SY SYILU SYGM
Dpa Dpa Dpa
22,28,2 2,5,1 2,7,2
48,70,2 2,7,2 2,9,2

77,123,3 3,9,1 3,11,2
75,131,3 2,9,1 3,11,2
80,146,3 2,8,1 3,11,2
83,156,3 3,8,1 3,11,2

TABLE 16
Average, maximum, and minimum number of iterations per linear system along homotopy curve

for turning point problem.

SY-S
n
20 18,25,0
60 37,75,0
125 56,116,0
250 58,118,0
500 61,122,0
1000 62,127,0

21,25,0
46,61,0

71,108,0
68,100,0
72,107,0
71,106,0

SYILU-S
ek y

2,5,0 2,6,0
2,6,0 3,7,0
3,6,0 3,9,0
3,8,0 3,8,0
3,8,0 3,7,0
3,9,0 3,8,0

SYGM-S

2,5,0 2,5,0
2,5,0 3,7,0
3,7,0 3,9,0
3,7,0 3,8,0
3,7,0 3,8,0
3,8,0 3,8,0

TABLE 17
Average, maximum, and minimum number of iterations per linear system along homotopy curve

for shallow arch problem.

n
29
47

CR
ek Dxpa

99,127,51 91,107,38 98,120,52
265,360,109 239,305,133 265,355,105

ek
3,3,2
3,3,2

CRILU
Y

4,5,2
4,4,2

CRGM
Dpa Dxpa
3,3,2 6,7,2
3,3,2 6,7,2
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TABLE 18
Average, maximum, and minimum number of iterations per linear system along homotopy curve

for shallow arch problem.

CR-S
n ek
2 6’6,109,i’
47 190,313,1

6i3,101,1
194,291,1

CRILU-S
ek Y

2,3,1 3,3,1
2,3,1 3,3,1

CRGM-S
ek 3

4,10,1 28,40,1
5,10,1 37,53,1

TABLE 19
Average, maximum, and minimum number of iterations per linear system along homotopy curve

for shallow arch problem.

SY SYILU SYGM
"D’pa’ Dpa ’Dpa

29 ’58179,37 2,5,2’ 2,4,2
47 115,152,72 3,5,2 3,5,2

TABLE 20
Average, maximum, and minimum number of iterations per linear system along homotopy curve

for shallow arch problem.

SY-S SYILU’S
n ek y e y
29 39,78,0 42,74,0 2,7,0 4,7,0
47 91,150,0 82,147,0 2,7,0 4,7,0

SYGM-S
e y

,5,0 10,12,0
2,7,0 12,16,0

TABLE 21
Average, maximum, and minimum number of iterations per linear system along homotopy curve

for shallow dome problem.

n ek
21 26,36,14

546 58,81,17
1050 58,87,18

CR
Dpa

26,36,14
57,82,17
59,91,18

26,36,14
58,82,18
58,83,18

CRILU
ek D,xpa

2,3,2 2,3,2 2,3,2
2,3,2 2,3,2 2,3,2
2,3,2 2,3,2 2,3,2

CRGM
Dpa

23,113,2
23,111,2
23,113,2

TABLE 22
Average, maximum, and minimum number of iterations per linear system along homotopy curve

for shallow dome problem.

CR-S
n ek
21 17,31,1 24,36,1

546 38,75,1 54,87,1
1050 38,76,1 53,91,1

CRILU-S
ek

2,3,1 2,3,1
2,3,1 3,3,1
2,3,1 3,3,1

CRGM-S
ek

17,118,1 7,46,1
15,113,1 9,63,1
16,114,1 8,101,1
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TABLE 23
Average, maximum, and minimum number of iterations per linear system along homotopy curve

for shallow dome problem.

SY SYILU SYGM
n Dpa Dpa Dpa
21 17,32,10 o 7,23,2

546 34,55,11 6,33,2
1050 34,52,11 7,35,2

TABLE 24
Average, maximum, and minimum number of iterations per linear system along homotopy curve

for shallow dome problem.

SY-S
n e
21 14,34,0 19,32,0

546 25,58,0 37,69,0
1050 24,54,0 36,64,0

SYILU-S
ek y

SYGM-S
ek

5,33,0 4,17,0
6,40,0 4,18,0
6,40,0 4,23,0
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