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OPTIMAL CONTROL FOR AN ELLIPTIC SYSTEM WITH
POLYGONAL STATE CONSTRAINTS

KARL KUNISCH, KEWEI LIANG, AND XILIANG LU

ABSTRACT. This work is devoted to stationary optimal control problems with
polygonal constraints on the components of the state. Existence of Lagrange
multipliers, of different regularity, is verified for the cases with and without
Slater condition holding. For the numerical realization a semi-smooth Newton
method is proposed for an appropriately chosen family of regularized prob-
lems. The asymptotic behavior of the regularized problem class is studied,
and numerical feasibility of the method is shown.

1. INTRODUCTION

In recent years a significant amount of attention was paid to open loop optimal
control problems governed by partial differential equations with state and/or control
constraints, see for example [4, 5, 9, 11, 13, 7, 14] and further references cited
there. Most of this work, especially in the context of efficient numerical methods,
considered the case of unilateral or bilateral constraints. We focus on polygonal
state constraints in this paper. For the model problem, we consider a system of
second order elliptic differential equations

(1.1) AF=1, inQ, oo =0.
with vector-valued state-variable ¢ and control variable @. For simplicity here we

consider only stationary problems posed on a bounded domain Q C R™ (n = 2,3)
with Lipschitz continuous boundary 0. As cost we take the quadratic functional

I T Q.
7@ = S5~ gl + 5P,
where o > 0 and 3 are fixed. Consider then the following optimal control problem:

Problem 1.1.
min J(7, %), such that (1.1) holds and M7(x) < 1, for all x €

Here ¢/ € R™, M is matrix of appropriate dimension and Mj(x) < ¢ describes a
point-wise polygonal bound that needs to be satisfied by the state i of the system
(L.1).

To solve Problem 1.1 a Lagrangian approach will be used. It is by now well-
known that the Lagrange multiplier corresponding to the state constraint is only a
measure, see [4, 5]. Therefore a penalized formulation is introduced. Specifically,
for v > 0 we consider the family of regularized problems
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Problem 1.2.
min J(7, @) + %H(Mg— $) |2 such that (1.1) holds,

where (M7 — )" is defined coordinate-wise: (Mg — 15);*' = max(MT'§ —1;,0), for
i=1,...,m.

Throughout || - || denotes the L? on € of appropriate dimensions and || - |2 will
stand for the norm in H?2.

There are three instances which involve a dimension concept in this paper. First,
there is the spatial domain 2 and we assume that it is of dimension 2 or 3. The
dimensional of the system in particular the dimension of % is chosen to be 2. This
is mainly for transparency of the proofs and higher dimensions can be treated by
the same techniques. Finally there is the image space of M, which we assume to
be of dimension m. This is the number of constraints on the state 3. Throughout
it will be essential that the regularity and dimension assumptions are such that for
the state of the system we have ¢ € C(Q, R?) for any admissible control .

While the linear-quadratic model problem considered here is rather standard it
should be noted that it arises in the inner-loop of the sequential quadratic program-
ming approach to general nonlinear optimal control problems. After an implicit
Euler discretization step, parabolic PDE-constrained optimal control problems also
fall into this class of model problem.

Let us also compare the problem considered here to coordinate-wise unilaterally
constrained problems. In this case the matrix M is the identity matrix and in
particular it is surjective. Here we consider the case where M is not surjective.
This requires a different treatment of the Lagrange multipliers, in particular to
argue their uniqueness and their convergence properties in the semi-smooth Newton
method. A very particular case are bilateral constraints of the form (5 <y< 1/_;,
with gz_g € C(Q,R"), 1E € C(Q,R"), 5 < 1E In this case one can separate the active
sets from below and the active sets from above and in each coordinate these closed
sets have empty intersection. Then the Lagrange multipliers can essentially be
introduced as in the unilateral case, having opposite signs on the active sets from
above, respectively from below. For the case of optimal control problems related
to the Navier-Stokes equations with bilateral state constraints this was considered
in [8].

2. PRELIMINARIES AND PROBLEM SETTING

2.1. Problem Setting. We define the spaces W = H?nN {{é and W = (H? N
Hj)? Let C(Q) be the space of continuous functions on Q, endowed with the
maximum norm and denote by Cy(Q2) the subspace of C(€2) with vanishing trace

on the boundary. It is known that W < (Co(€))% = Co(Q, R?) for 1 < n < 3.
We assume that for every @ € L2(2,R?) system (1.1) has a unique solution

=,
i € W satisfying
(2.1) 9]l < Cla]|-

We also consider a polygonal domain D C R? which is defined as the intersection
of m half spaces MI'§ < v, i = 1,...,m. Define the matrix

M:R? - R™
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and the vector » € R™ by

MY 1
(2.2) M= |d=( ¢ )
MPr Ym

F1GURE 2.1. Polygonal Constraint

li: MTg =1

the polygon can be expressed as D = {g: My < 1/7}, see Figure 2.1.
Remark 2.1. Note that the dimensions of the composite mapping x — My(x) is

given by
x € Q e R*® — jj(x) € R? — Mjj(x) € R™
As already remarked, considering ¢(x) € R? simplifies the explanation, but it is not
essential. The results can be extended to ¢(x) € R, [ > 2.

2.2. Measure Theory. We review some basic results in measure theory. By
Riesz’s representation theorem, the regular Borel measures on the compact set
Q can be identified with the dual space of C() (see [6]). An analogous result holds
for vector valued regular Borel measures. We shall not distinguish in notation these
two concepts, i.e. we use A(U) to denote the measure of a Borel measurable set
U and we use the duality pairing (A, f)c« ¢ for f € C(Q) to represent a measure.
The positivity of a measure can equivalently be checked by following relation:

A>0e (A flewc >0, forall feC(Q), with £ > 0.

Given A\ € C*, the measure can be defined as follows (see [6]). For any open subset
UeQ,

(2.3) AU) = sup A fewc
FECO(@),0f <xu
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Subsequently the property of the regular Borel measure allows us to extend the
above calculation to any Borel measurable set A:

A(A) = inf A(U).
ACU,U is open

The following relation can be obtained by the above characterization (see [6]).
Suppose that f is a continuous function, then
xa < f=XA) <(\ f)lc+c, for all measurable sets A,

2.4
24) 0<f<xa=XA) > (\ fle-c, for all compact sets A.

3. FIRST ORDER OPTIMALITY CONDITION
Let K be the following set
(3.1) K ={Ze C(Q,R™): Z(x) < ¢, for all x € Q},
and let I be the indicator functional of K:
. +o00, Z¢K
(3.2) lk(®) = { 0, Zek.

It is clear that K is a closed convex set in C'(Q,R™) and therefore the indicator
functional Ig is convex.

We denote the map @ — ¢(%) by T, where T : L*(Q,R?) — Cp(Q, R?). Hence
cost functional J(¢, @) can be equivalently represented by the reduced functional

J(@) = J(Ti, ),

and Problem 1.1 can be rewritten in the following equivalent way:
3.3 inf  J(@) + I (MT4).
(33) st T + I (T

Theorem 3.1. There exists a unique solution for Problem 1.1.

Proof: We can easily check that J 4 I o MT is a lower semi-continuous convex
functional. Then standard arguments imply the existence of an optimal solution.
Strictly convexity implies uniqueness of the solution. O

3.1. Optimality System. Using the notation of subdifferential calculus (ref. [3]),
@* is a solution to (3.3) if and only if

0 € a(J(@*) + Ix(MTa)).
Assumption 3.2. z/_; > 0.

With Assumption 3.2 holding the Slater condition is satisfied, i.e.:
there exists @, such that MT4u € int(K).

In fact, for the choice ¥ = 0, we have ¥ = Tu = 0, and hence My = 0, is an
interior point of K.

Remark 3.1. The assumption 1; > 0 ensures that the Slater condition is satisfied.
It implies that O is the interior point of the polygon D C R™. In practice this
assumption may not be true, e.g. 0 is a vertex of D in our numerical example in
Section 5. The following convex analysis approach relies on the Slater condition
and thus it is not applicable to the case where we only have z/? > 0. For this case,
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however, we can stillﬂstudy the existence of Lagrange multiplier, in a slightly weaker
sense, namely with \* € W*(Q,R™). This will be considered in Proposition 3.4.

If assumption 3.2 is satisfied, then (ref. [12])
0 € dJ(@) +T*MToL,(MTT").
Hence we can find X* € O, (MTi*) such that X* € C*(, R™) and
0€dJ(@)+TMTX.

Since J(@*) = 3| Ta@* — Fa||? + £@*|2, we have
(3.4)

0= (T*(TT" — §a) + a@* + T*MTX*, %) = (a@* — §*,7), for all 7 € L*(Q,R?),
where the adjoint variable §* is given by §* = —T*(T@* — ;) — T*MTX*. Hence

(7*,0) = (=T*MTX* —T*(Ta@* — §,),7), forall 7€ L*(Q,R?),
(35)  (7*,A%) =N MZDewc — (fF —§a, ), forall Z€ W,
Lastly \* € OI,(MTu*) is equivalent to
My e K, (X,Z—Mij)c-c <0, foral ZeK.

By a standard argument, this is also equivalent to
(3.6) X>0, My <¢, (N MG —d)es o =0.
Combining these arguments we have

Theorem 3.3. If assumption 3.2 is satisfied, then there exists an optimal solution

@*, §* and an associated dual variable p* € L*(2,R?), and a Lagrange multiplier

Xt e C*(Q,R™), such that the first order optimality system

A = @,
. (7, A2) + (3, MZ) e o = (fa— 7, 7), forallZeW,
' al* = p*,
X*ZO, Mg’*ng;a <>_\’*,Mg’**’l[)’>c*70:0,
holds.

Remark 3.2. The dual variable p* has more regularity than L?(2, R?). The second
equation of the optimality system has the form
AT = ga = 7" = MTX".

This is an elliptic equation where the right hand side is given by a Radon measure.
From [15], we have p* € WP (Q,R?) for any 1 < p < 2 where 2 C R, n=2 (or p* €
WhP(Q,R?) for any 1 < p < 2 where n=3). By the Sobolev embedding theorem
this implies that, p* € L9(Q,R?), for all ¢ < co when n=2 (or p* € L4(Q,R?), for
all ¢ < 3 when n=3). Then for sufficient smooth 9, use of standard regularity
theory for elliptic equations implies that the regularity of the state can be improved
for ¢* from H? N HL(Q,R?) to W20 H(Q,R?) for any ¢ < co when n=2 (or from
H? N HYQ,R?) to W24 N HYHQ,R?) for any ¢ < 3 when n=3). Here we use the
first and the third equation in (3.7).



6 KARL KUNISCH, KEWEI LIANG, AND XILIANG LU

Proposition 3.4. Let 1/7 > 0. Then there exists an optimal solution @*, ¥*
and an associated dual variable p* € L?(Q,R?), and a Lagrange multiplier \* €
WH*(Q,R™), which satisfy the first order optimality system

59 (7, A2) + (X, MBw-w = (fu— i7", 2), for all 7€ W,

X>0, Mg <, (N MP —Pywew =0.

The proof is given in the Appendix. It depends on a regularization technique
which is developed in Section 4. The assumption 1/7 > ( is not essential in most
part of this paper, which include the convergence of the solution to Problem 1.2,
super-linear convergence of the semi-smooth method. But we need to assume 1/7 >0
in Section 3.2, to ensure the uniqueness of Lagrange multiplier.

3.2. Uniqueness of Optimal Solution. From Theorem 3.1, we know that the
optimal solution pair (@*,%*) is unique, and hence p* is unique. The main task
is to prove the uniqueness of the Lagrange multiplier . We already know that
the Lagrange multiplier \* € C*(Q,R™), and we henceforth investigate some of
its properties. First it is clear that the linear complementary condition (3.6) holds

componentwise, i.e.
Lemma 3.5. There exists a decomposition §;, i = 1,...,m of Q, which satisfies

Ui = Q, Q; is open, \j(€;) =0, for all j #i,i+1 (where we let m+1 be 1).

Proof: From the definition, the function %* maps from £ to the polygonal domain
D. Tt is a continuous, hence uniformly continuous. More precisely, for any given
positive constant d, there exists another positive constant €, such that

L 4]
X1 = xal < € = 177 (x) — 7 (x2)] < 5.

We can decompose the polygon D into m parts, such that every part DY has at
least distance & > 0 to the constraint which with index different from 4,7+ 1. Then
define the subdomains ¢, Q; and D; as

09 ={x:y*(x) € DY},
Q; = {x € Q:dist(x, ) < €},
D; = g ().

For this kind of partition, please refer to the figure 3.2.

Clearly 2; are open subsets and 2 = U;{);. By the above definition and from
the uniform continuity of ¥* on 2, we have that every D; has at least distance g

to the constraint whose index is not ¢,¢ + 1. In fact, without loss of generality, we
only consider the case ¢ = 1. Since D; has strict positive distance at least g to the
constraints with index 7 # 1,2, we have

1)
My — ;) < —= < 0.
zIn;éElL,}; xSélQpl( y w ) 2
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FIGURE 3.2. Partition to the Domain and the Polygonal
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Let f; = ¢; — M;y*. Then f; > gXQl and from (2.4) we have

2
0 <A () < 5<)\;:kvfz'>c*,c =0, forall 2 <i<m.
O

Lemma 3.6. There exists an open set Qo C Q and a function fo € Co(Q), such
that

1. dist(Q0,09) > 0, and X*(Q\Qp) = 0,

2. for all ¢ € C(Q,R™), we have

(N d) e .o = (N, fod) o c-
Proof: By assumption 3.2, and since y* satisfies a homogenous boundary condition,

My — 1; has strictly negative values on 02, i.e. there exists a positive constant §
such that

Mg (x) —1¢; < =0 <0, forall i =1,...,m, and x € Q.

Since My* — 1,; is uniformly continuous on €, there exists a positive constant e,
such that

0
|x1 —x2| < €= gi(x1) — gi(x2)] < 2’ for all 4,
where g;(x) = M;y*(x) — ;. We define the open set
(3.10) Qo = {x:x € Q,dist(x, Q) > €}.

Uniform continuity of the function My* — 1; implies that

b _
My (x) = i < =3 <0, for all i, for all x € D\Qp,
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The linear complementary condition (3.9) implies that \;(Q\Qo) = 0. We define

the function fy by
1 X € Qg
X) = _
folx) Ldist(x,00) x € 2\Qp.

Clearly fy is continuous and for all 5 € C(Q,R™), we have

X dec= [[Ga5 = [ Ga% = [ fubaks = (5, fodhe .

O

We are now prepared for the proof of uniqueness of the Lagrange multiplier.
Suppose that there exist two measures A! and \? satisfying the optimality system.
By Lemma 3.6,

X(Q\Qo) = X2(Q\Q) = 0.

Since X! and \? are regular Borel measure, we only need to show that they coincide
on any open subset U C {g. By the next Lemma, the problem can be further
reduced.

Lemma 3.7. If two measures \' and A2 coincide on any open subset U C Q,
i=1,...,m, then \X(V) = X2(V), for any open set V € €.

Proof: Let V; =V NQ,;, fori =1,...,m. Since Qy C UZ,Q;, we have V = U2, V;.
By the inclusion-exclusion principle (see [2]), we find for ¢ = 1 and ¢ = 2,

N(V) =X, V) = Y NV - > X (V,NV,)
J=1 1<j1<j2<m

+ Z )‘i(‘/jl NVj, mvjs)*"'+(*1>m)‘i(m}n:1vj)'

1<j1<j2<jz<m

From definition of V;, every term on the right hand side coincides for ¢ = 1 and
i = 2. This implies that A}(V) = A%(V). O

From Lemma 3.7, it is enough to show for any open subset U C Q;, Xl(U) =
X2(U). Without loss of generality, we only consider the case i = 1. Lemma 3.5
implies that

(3.11) M(U) =M (U) =0, forall 2 <i<m.
For any Z € W/, by (3.7), we have
(MTX, D)oo = (MTX2, D)ee o,
which implies that
<M1:,:2Xi,2a5>0*,c = <M11725‘?,275>C*,C>

where the square matrix M) and the vectors A} ,, AT , are given by

MT N )\1 - /\2
e (). 5= (). ()
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Since the line segments 1 and 2 are not parallel (they intersector at vertex 1), the
—

matrix M o is invertible. Since the space W is dense in Cy(Q2, R?), equation (2.3)

implies that

MEQ)&Q(U) = MEQ)‘%Q(U)
Hence X' (U) = X2(U) is obtained by the invertibility of the matrix M; 5.
The above argument implies that the uniqueness of the corresponding Lagrange

multiplier. Moreover, we have following theorem.

Theorem 3.8. There exists a unique solution (g}*,ﬁ*,ﬁ*,x*) satisfying the opti-
mality system (3.7).

Proof: To complete the argument, we only _'need to show the uniqueness for
(g, a*, p*). Let (7', a,pt,A\!) and (2, @2, p?, \?) are two solutions which satisfy
equation (3.7). For ¢ = 1,2, the complementary conditions
X>0, My <o, (X,MJ - o =0

are equivalent to the variational inequalities

M <, (X,Z—Mij)e-c <0, forall <.
Choose 7= My" when i = 2 and Z = M4? when i = 1, we have

N MGP = M§Y oo <0, (W2, MG — M@)o« o <O0.
Hence
(3.12) (X' = X2, M — MiP)e- o > 0.

Let (67,01, 0p) = (7, @', p*) — (72, @2, p?), we have

ASY = 1,
(65, AZ) + (X! = X2, MZ) ¢ ¢ = —(67, %), for all Z€ W,
adi = 57,

Multiplying the first equation with ép and choosing z' = §¥/ in the second equation
then subtracting each other, we have

0 = (81, 65) + (X' — X2, Még)c- o + ||677]1>.
Using 6p' = adi, 5 = §* — ? and inequality (3.12), we find
16511 + af|oa]|* < 0.
This implies that (6%, d@) = 0, which leads the uniqueness of (y*, @*,p*). O

Remark 3.3. Theorem 3.3 only gives first order necessary condition. Together
with Theorem 3.8 this optimality system (3.7) provides also a sufficient condition.
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4. SEMI-SMOOTH NEWTON METHOD

The optimal control Problem 1.2 without constraints on the state admits an
optimal solution which satisfies the following first order optimality system:

Ag’y = 7._[7,
N s - s N N i N —
(P, AZ) + (N\y, MZ) = (§a — ¥y, Z), forall Ze W,
Qg = Py,
Xy = (M, — )"
We will use a semi-smooth Newton method to solve system (4.1). Before, how-

ever, we consider the asymptotic behavior as the penalty parameter v tends to
infinity.

(4.1)

4.1. Convergence with respect to ~. In this subsection, we study the conver-
gence when the parameter v — +o00.

Theorem 4.1. Let (4, 5", p*, X*) and (U, Yy, Pry, Xv) satisfy the optimality systems
(3.7) and (4.1) respectively. Then we have

N
Uy =y inW,
Py —7° inL*(Q,R?),
Xy = X in WH(Q,R™).
Proof: Since Xv >0 and My* — 1/; <0, it follows that
. I Lo . 1 o
(4.2) O‘%M(y'v -4")) = ()"YvMy’Y — ) — (AV,MZ/ —) > ;H)"yuz'

From (4.1), we deduce that

—

(4'3) a(Ag'yvA(?j'y_f)) = (ﬁva(gv_f)) = (gd_gwagv_g*)_(AwaM(?j"y_?j*))'
Inequality (4.2) and equality (4.3) lead to
— — —nk — — —nk = o —rk ]‘ Y
O‘”Ay'y”2 - O‘(Ay'yvAy ) < *Hy’ynz + (y'yay ) + (yday’y -y ) - ;”)"YHQ'
Hence
= 1 b - — —nk — —nk — — —nk
al| A, |1 + ;Il)wll2 + 175017 < (Mg, AT) + (. T + a) — (Far T°)
., Qs 1, . 1. .. 2 1] o
< ZIATIP + SUAT I 4+ 1517 + 3 15 + Bl + 17 il

Therefore, o /Ag,||* + %HXVHQ < C(|a*]]? + |7 |* + ||Fal|?), for a constant inde-
pendent of 7. This implies uniform boundedness of ||#,]|3 + %H)\A,H2 with respect

to v > 1. Hence ||7,|| + [|[MT\,||c+ is also uniformly bounded. After passage to a
subsequence,

.
7, =9 mW,
7, —p mI*QR).
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From the definition X7 =v(My, — ¥)T, it can be shown that
Lo 1.5
(Mg — )" = ?H)"Y”Z — 0.

Since W is compactly imbedded into C(€2,R?), we have 7, — § in C (2, R?) after
passage to a subsequence. Then we have (Mg, — )t — (Mj— )* in C(Q,R™),
and hence

(MG, = @)l = [[(M§ =)t = 0.
This implies M§ < 1. Using (3.7), (4.1) and (4.2) we have the following estimate:
(44)  allAgy —)IP =@ -5 MGy — 7))
= <—§'7+T+MT(/\*— v) Uy = 9§ )e-
==l =711 + <>\*

A
M (g, — )>c* c
—ll7 — 71 - *||)\ ||2 (X My — 7))e o

IN

Hence the complementary condition (3.6) implies
— i - i 1N Y = i G = ™
af AT =g P +I7 5 H2+;||>w||2 < NS Mgy =37))eo = (N My =) c- o
Taking the limit v — oo and using that My < 1/;7 we have § = y* and
¥y — ¢y in W/,
py — p* in(L?)?,
1 -
—[IA11* = 0.
v
Now we consider convergence of the Lagrange multipliers. Since
MT(N, = X) = AT(5" = 7)) + (7 = §4),
the convergence results for 3, and p’, imply that
(4.5) MTX, — MTX* W™
Moreover, we also have
(A )erc = (M, = Mgy)er o + </\"/aM377>C*C
1 Y Y — Tk % Vs 7
B _§||>w||2 +H(MTN gy)on e — (MTX %) e o = (N d)o- e

Since M is not a square matrix, the investigation of convergence of the Lagrange
multipliers A, requires extra care. Let €;, ¢ = 0,1,...,m be the open sets defined
in Lemma 3.5 and Lemma 3.6, and recall that

(4.6) Xy = (Mg, — )t
Our goal is to show X’v — X* in W*(Q,R™), i.e

(X, @) — (X, @ wew, forall g e W(QR™).
Without loss of generality, we only need to show

(4.7) (A1,0) = (AL @)wew, forall g € W.
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By the construction of €2y it follows that Qg € © . Using a partition of unity
argument (c.f. [1]) there exist smooth functions & € C§°(€2) with support in €;,
and

(4.8) 1= Zfi(x), for all x € Q.
i=1

We already have ¢, — 7* in C(Q,R?), and Mj* — 1/7 < 7% in Q\Qp. This implies
that for « large enough, we have Mg, — ¢ < 0 on Q\Q, and hence X’v‘ﬁ\go =
y(Myy — ¢)+|ﬁ\90 = 0. Together with X*(€2\€2) = 0 this imply that

(M1 8) = (A1, B = O (A1, 0800 = O (A1, 6€),

(2 K3

(i hwew = (oo = [ o
(0]
=3 [ sdxi = S0 b o = SO 6w
i VS i i
Hence (4.7) follows by applying the following Lemma 4.2. O

Lemma 4.2. Let ¢ € H> N Hg, with support in Q;, i = 1,...,m. Then we have
(Ay1,0) = (AL, d)w=w-

Proof: If i = 2,...,m — 1, then by the argument below equation (4.8), we find
Ay 1lo, = 0 for 7 large enough. Hence we have (Ay1,¢) = 0 = (A}, d)w~,w for
supp¢ C Q;, i = 2,...,m — 1. Next let i = 1. The case i = m can be treated
analogously. Since 7, — #* in C(Q,R?) and (M7* — 1), < —32 in O, for all
2 < j < m, we have Ay j|lo, = 0, for all 2 < j < m and sufficient large . This

implies that for any f € W which vanishes outside of Q1,
(MTX,, f) = (R, MF) = (X, Mfla, = Ay, MTF) + (A2, M5 ),

where we recall the notation introduced in (2.2).
Applying Lemma 3.5, we find

<MTX*3.]F>W*,W = <)‘>{3M1T.f_“>W*,W + <)‘33M271.fT>W*,W

Using the notation M; 2 as in Section 3.2, and choosing f: ¢M£21e (where e =
(1,0)7), we deduce from the above two equalities

(MTX’Y’JF) = (>\’y,1’¢)a <MTX*7,]?>W*7W = <)\T7¢>W*,W-
Therefore (4.5) implies that for ¢ with support in 4,
(A1, 9) = (AL @) we,w-
O

4.2. Algorithm. For convenience we recall the optimality system (4.1) for Problem
1.2:

aAgW = ﬁ’ya
(4.9) ATF 4+ MTX, + Gy = G,

Xv = 'Y(Mg"‘/ - ¢)+7
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where v > 0 is fixed. The semi-smooth Newton algorithm (or primal-dual active
set algorithm) to solve the optimality system (4.9) is given in Algorithm 1 (ref.
10, 11)).

Algorithm 1 Primal - Dual Active Set Algorithm

1: Set k=0, initialize i°,
2: let A¥ = {x: M;y* > 1;}, and set

M{X 1 Y1X 4k
M* = : , P = : ,
M X ar, YmXat,
3: solve for (g*+1, pFt1)

QAFEH! = 1,
(4.10) { .

ATp‘kJrl + VMT(ngk+1 _ wk) — Zjd _ g‘l@Jrl7

4: define Ne 1 = y(MFghH1 — k),
5: stop or update k = k+ 1, and go to 2.

Proposition 4.3. There exists a unique solution (%1, p**1) for system (4.10).

Proof: Since for fixed 7, equation (4.10) is an elliptic system, standard argument
imply existence and uniqueness of the solution.O

Proposition 4.4. If AF = A" for i = 1,...,m, then (§"t1, 1, XF1) solves
system (4.9).

Proof: The proof is based on the key observation: if A¥ = Af“, then M* = MF+1
and Mkzjk-‘rl _ ,(Ek _ (Mg'k'H _ 1;)-&- 0

By the above proposition, it is reasonable to choose A¥ = Af“, fori=1,...,mas
stopping criterion. Numerical results show that this stopping criterion is typically
reached.

4.3. Super-linear Convergence of the Semi-Smooth Newton Method.
Theorem 4.5. Let §° € LP(Q,R?) for some p > 2, and ||§° — ¢, ||r be sufficient

small. Then (7, p*, X’“) converges to (Yy, D, Xﬂ,) super-linearly.

Proof: We define the error between the (k + 1)*" iteration and the solution to the
~ problem by

5g:gk+1_gw 5ﬁ:ﬁk+l_ﬁw (SA:)\IH_I_)‘"/‘
These expressions satisfy
aldy = op

(4.11) ATSF+ MTX = —o7
16X = (MFgEFY — k) — (M, — )T
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Since
(MFGHL— by — (Mif, — D) T = MP@GE — %) + (My* — ) — (Mg, —¥)T,
we find for i =1 (i = 2,...,m can be treated similarly), we have

1 -
;5A1 = Mf(gk+1 - gk)XAf + maX(O7 Mfgk - 7/)1) - maX(O, MiTy’y - ¢1)

= (M85 + MG, — M{§*)xar + max(0, M{ (§* — 1)) — max(0, M{'if, — ).

For g = M{'j, — 1, h = M{§* — M{'j,, we have g + h = MTy* — ¢y, Tt is
well established [10] that the mapping ¢ — max(0, ¢) is Newton differentiable from
LP to L? with p > 2, with Newton derivative given by the characteristic function
X{z: 6(z)>0}- As a consequence we have, see e.g. [10],

(4.12) || max(0, g + h) — max(0, g) — hx ax || = o(|[h|[Lr).
Let RY = max(0, g+h)—max(0, g) —hx 4, and R5, ..., R}, can be defined similarly.

Hence
OX = yM*57 + RF,
where RF = (R¥, ..., R¥)T. Then we multiply Ad7 on the first equation of (4.11),
0 = af|ASGI[* — (7, A5G) = ol|ASH|> + |67]* + (M5, 6X).
Since (M &4, M*53) = | M*63]|?, we have
167112 = o(ll7* — 7+l v),
and hence the desired estimate follows:

16712 + 8X] + 1352 = o(17* = & llz»)-

5. NUMERICAL RESULTS

Here we present a numerical example by utilizing a finite difference discretization
to the following elliptic system in the unit square with the homogeneous Dirichlet
boundary conditions:

(5.1) —Ay1 +y2 = uq,
(5.2) —Ays — y1 = uz.

Define the elliptic operator A = —AT+ [ 91 é ] . It can be shown that A satisfies

[7]l2 < Cl]].
The state variable ¢/ has to satisfy the constraint

(5.3) 11 >0, y2>0, y1+y <L

It can be equivalently represented in matrix form as My < 15, where

) e[
M= — , = .
1 1 4 1
Recall that the cost functional J is

Lo 1, o,
J(y, 1) = 5”3/ — Gall* + §||U||2-
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Let §; = (4sin(4nzy), 2sin(2rz) + 2cos(2my))”, v = 10%, o = 0.001, h = ;. For
this choice of y4 all three constraints are active on some part of the domain. We refer
to Figure 5.3 and 5.4 for the optimal state and control. The active sets associated
with the three different constraints are depicted in Figure 5.5. We note that the
active set can be a ”slim set” (as for the first constraint ) or a set which clearly
has on open interior (as for the second constraint). The corresponding Lagrange
multipliers are depicted in Figure 5.6, and as expected they are oscillatory near the
boundary of active set.

FIGURE 5.3. Optimal State

— w1 — — vz — — WIEYE —
H (=2 : :

Q.35

0.25

FI1GURE 5.4. Optimal Control
-ul - -2 -

50. : ; 40
30

20

10

10
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FIGURE 5.5. Active set

— active set 1 - — active set 2 - — active set 3 -
0 0 0
20 1 20 20
40 1 40 40
60 1 60 1 &0 , , ,
0 20 40 60 0 20 40 60 0 20 40 &0
nz = 84 nz = 1002 nz = 91

FIGURE 5.6. Lagrange Multiplier

= lambdal — = lambdaz - = lamidasz —

12 ; g =5, : P 25

TABLE 5.1. super-linear convergence

k 11 12 13 14 15 16 | 17
T | 0.9449 | 0.8910 | 0.7685 | 0.6405 | 0.4670 | 0.0118 | 0.0

Super-linear convergence can be observed numerically. In fact, denoting by 7}
the solution to the discretized problem, we compute the ratios

—k
_ s - gl

157 = gl
for a fixed v = 1000 and o = 0.01. The result for iterations k = 11,...,17 is given
in Table 5.1.
The above test problem has the same diffusion parameter in the underlying
equations and the constraint set is a triangular with two equally long sides. We
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TABLE 5.2. v=10% o =0.001, =1

6101]05| 1110

iteration number | 36 | 23 | 15 | 18

active components 1 21 3| 3

TABLE 5.3. v=10% o =0.001,0 =1

B10.01] 1100

iteration number 23 115 17

active components 3|1 3 3

then change the governing equation and the constraints to be

(5.4) —Ay1 +y2 = ua,

(5.5) —BNys — y1 = us.

and

(5.6) 1 >0, y2>0, Oy +y2 <1

As before we set §; = (4sin(4mzy), 2sin(2rz) + 2cos(2my))T, and fix v = 10°,
a = 0.001, h = 6—14. We test the performance of the algorithm under changes of
and (. It can be noted from Tables 5.2 and 5.3 that it converges for a wide range of
values for 6 and 3, and that the number of iterations before convergence is achieved
does not depend on these parameters significantly. As expected, taking into consid-
eration the shape of y4 the number of components as well as the associated active

sets increase with 6.

APPENDIX

Proof to the Proposition 3.4. Let (¢*, ") € W x L?(9,R?) denote the unique
optimal solution. Since the Slater condition is not assumed, convex analysis is not
directly applicable. To prove the existence of a Lagrange multiplier, we consider
the convergence of the solutions to the vy problems. Let (¢, @y, Py, Xv) satisfy

Ay = i,

(B, AZ) + (X, MZ) = (§u — iy, Z), forall 7€ W,
aity = f,

Xy = (M, — )T

By similar arguments as in Section 4.1, we obtain

(5.7)

i —9 v,
i, =4 inL?*(Q,R?),
and My < . For J,(¢,4@) = J(¢,@) + L||(Mg — ¢)*|[?, we have
Iy (G 1) < Jo (g7, a%) = J (i, d").
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The weak lower semi-continuous of .J implies that
J(g,4) < liminf J(y,, y) < liminf J, (¢, 4,) < J(§",a").

Since 3 satisfies the state constraints and (g, %) satisfies Ag = 4, uniqueness of the
optimal solution (g*, «@*) implies that (¢*, @*) = (g, 4). From the second equation in
system (5.7), we deduce that {||MTX7||W }4>1 is bounded. To prove that {Xw}wzl
is bounded in space (W*)™, we need to guarantee that for some constant C' > 0
independent of v > 1,

Xy, Bywws < C|dll2,  for all g € W(Q,R™).

We will follow the notation and the arguments in Section 4.1, and note that the
construction of ; for ¢ = 1,...,m does not use assumption 3.2. Since we use

homogenous Dirichlet boundary condition, 7* maps from 99 to 0. Without loss of

F1cURE 5.7. Partition with Homogenous Dirichlet Boundary Condition

A

II I

— |

|!'-‘!2 /

Sl ! —

generality, we assume that 0 has strictly positive distance to D;, for i = 2,...,m,
(see the figure 5.7). Hence a neighborhood of 9 is in ;. Therefore there exists
a compact subset 2. € Q such that Q\Q. C Q. Since Q. is covered by open sets
Q;, by partition of unity (c.f. [1]), there are smooth functions & € C§°(Q2) with
support in €2;, and

m
1=) &(x), forallxeQ,.
i=1

Define § = 1 — Y %, &, which has support in €;. Then any fixed function ¢ €
H? N H(Q), can be expressed as

¢=0(+ > &)
=1

Let ¢; = ¢&;, for i = 0,1, ...,m. Clear ¢; has support in ;, for i = 1,...,m, and ¢q
has support in ;. Moreover, the domain €2; depends on the optimal solution ™*,
but not on 7. Therefore there exists a constant C' which does not dependent on -,
such that

(5-8) Igill2 < Clléllz, i=0,1,...,m.
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Using the same technique as in Lemma 4.2, and noticing the uniform boundedness
of HMT)WHW*, we obtain for ¢ € W™ and with support in €,

Ay Prww= < Cill 2,

where C; only depends on domain €; and the bound on {||MTXA,||V—>V* }y>1. Com-
bining this with estimate (5.8), we have

m

(A Bywars = DAy d)waw= <Y Cilldillz < (m + 1)C max{Ci}[¢]l2.
i=0 i

Hence {X, },>1 is uniformly bounded in (W*)™. Then there exists X* € W*(, R"™)

and a subsequence still denoted by va such that

X, = X in WH(Q,R™).

This implies the existence of Lagrange multiplier of the Problem 1.1. In fact, to
obtain the optimality system, we need to define the dual variable p* = au*. By
passing to the limit in the first three equations of system (5.7), (gj*,ﬁ*,ﬁ*,x*)
satisfies

Ay =,
(7", A2) + (X, M2) = (§u— 4, 2), forall 7€ W,
ot = p*.

We need to check the linear complimentary condition to close the system. Positivity
of A* follows from weak convergence of A,. Utilizing the estimate (4.4), we find

- e — e L5 NG — i
al A = 77 < =gy — 7 I1” — ;||)w||2 + NS MGy = 7)) wew

. — . oy N oy .
Since ¥, — ¥* in W, and MTX\* € W*, we obtain
Ly 2 — N 7.4
;”)‘7” -0, g,—y inW.
Using that X, = v(M, —¢)*, we have
- [ I
Ay Mgy =) = — |17
Y
— . oy 4 — > —
Strong convergence ¥, — %" in W and weak convergence M TA,Y — MTX*in W*
imply that
(Ayy Mgy — ) — (XN, My* — p)w= w-
Combining the above estimates leads to linear complimentary condition

X* >07 Mg* S’J;a <X*,Mg*_QZ>W*,W:0'

This completes the proof. O
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