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A SEMICLASSICAL COUPLED MODEL FOR THE TRANSIENT
SIMULATION OF SEMICONDUCTOR DEVICES

PHILIPPE BECHOUCHE∗ AND LAURENT GOSSE†

Abstract. We consider the approximation of a microelectronic device corresponding to a
n+ − n − n+ diode consisting in a channel flanked on both sides by two highly doped regions.
This is modelled through a system of equations: ballistic for the channel and drift-diffusion else-
where. The overall coupling stems from the Poisson equation for the self-consistent potential. We
propose an original numerical method for its processing, being realizable, explicit in time and non-
negativity preserving on the density. In particular, the boundary conditions at the junctions express
the continuity of the current and don’t destabilize the general scheme. At last, efficiency is shown
by presenting results on test-cases of some practical interest.

Key words. Drift-diffusion equation, Schrödinger-Poisson equation, WKB ansatz, open quan-
tum system, Robin boundary condition.

AMS subject classifications. 76W05, 65J10.

1. Introduction and modelling.

1.1. Preliminaries. The present paper scopes onto developing a fast, efficient
and stable approach to 1D semiconductor components computations without directly
processing any kind of kinetic equation; only moment-type approximations are to be
used, in “high-field regime” though, in order to cope with “submicronic standards”.

It is a well-known fact nowadays that a whole hierarchy of mathematical models
ranges from quantum mechanics to transport equations eventually leading to “fluid-
like” models, see e.g. [7, 33]. Two main tools exist for performing the first step, namely
WKB and Wigner measures methods, see [2, 5, 30, 31]; the correct way to interpreting
the WKB classical system being through a Vlasov equation, see [22, 26]. It is then at
this “mesoscopic scale” that one introduces collisions between electrons and impurities
(i.e. phonons, quantum representations of the crystal’s vibrations) which thermalize
the carriers population. This is rendered through a collision operator put on the
right-hand side of the kinetic equation which is now meant to relax towards a local
equilibrium called Maxwellian by analogy with Boltzmann’s theory of rarefied gases,
[14]. The passage from kinetic models to coarser ones always stems from prescribing a
peculiar dependence of the kinetic density in its velocity variable; such simplifications
can sometimes be justified by means of convenient time/space rescalings, consult [33]
for a survey on these questions.

At this level, we take advantage of former results, mainly [13, 11, 3]; in these
papers, coexistence of several qualitatively different areas has been clearly evidenced
inside a standard n+nn+ diode, [10], under reasonable voltage biases. To each of these
regions can be associated a particular rescaling of the kinetic transport model; roughly
speaking, heavily doped zones (the source and the drain) exhibit “low-field” diffusive
behaviour whereas inside the channel takes place “high-field” ballistic transport. To
some extent, a schematic but acceptable picture goes as follows: carriers move inside
the channel according to monokinetic solutions of the Vlasov-Poisson equation (be-
cause they accelerate, no shock is likely to appear at least at steady state) whereas
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they are “nearly Maxwellian” inside the source/drain regions where their position
densities can be computed by means of a drift-diffusion approximation. We obviously
expect to observe stabilization of transient dynamics leading to convergence onto some
steady time-asymptotic regime (see e.g. [15, 34] for direct steady-state computations).
We stress that our goal here is to devise a time-marching strategy.

Such a program clearly raises up an issue in terms of time-stepping compatibil-
ity, and this whatever the boundary conditions on each side of the channel. Indeed,
any drift-diffusion equation, being of parabolic type, asks for a CFL restriction like
∆t = O(∆x2) whereas ballistic regime is essentially of hyperbolic nature (signals
travel at finite speed), thus requiring ∆t = O(∆x) instead. Of course, imposing the
smallest value of ∆t everywhere, despite ensuring stability, would result in an over-
whelming smearing of the sharp profiles inside the channel. We thus selected a mixed
implicit/explicit numerical strategy as described in §4.1. The channel being flanked
on each side by low-field areas, deriving appropriate boundary conditions connecting
these regions was necessary, so as oscillations won’t develop. It has been observed
that Dirichlet conditions aren’t conclusive as they didn’t allow for the scheme to relax
toward a steady-state; however, imposing the current’s continuity at the junctions
leads to a nonlinear Robin boundary condition, [1, 17, 18, 19], for the drift-diffusion
equations: it also remains stable and easy to implement, see §4.3. Obviously Dirichlet
conditions are imposed on each side of the device and for the Poisson equation.

The remainder of the paper is devoted to numerical experiments as an outcome
of the aforementioned general framework. A careful rescaling of a well-known GaAs
device has been performed in §3 and practical results are displayed in §5. In particular,
we observe stabilization in time toward a steady profile together with a satisfying
residues decay. We also show the way current settles inside the device for large
times; a reasonably constant current being the main goal in order to achieve reliable
intensity/voltage diagrams (see especially Fig.5.6 in §5.5 where an original derivation
leading to a real improvement of ballistic currents is proposed). Anyway, we aren’t
aware of any time-marching scheme able to stabilize onto steady-states with perfectly
flat currents for such models. Presently, we found out Ohm’s law, stipulating a linear
dependence between currents and biases, being satisfied as soon as potential drops
are strong enough. This was to be somehow expected as we developed the present
approach for a high-field setting in which low biases don’t really fit.

1.2. From quantum models to kinetic equations. We briefly recall the
different levels for the modelling of charge carriers; the finest one here is nonrelativistic
quantum mechanics. One considers thus a mixed-state, i.e. a statistical repartition
of quantum states ψℓ ∈ C indexed by the (quantized) energy levels solution of the
one-dimensional Schrödinger-Poisson equation in the parabolic band approximation:
(m∗ stands for the effective mass of the electron in the material under consideration)

i~∂tψℓ +
~

2

2m∗
∂xxψℓ = eU(t, x)ψℓ, εs∂xxU = e(̺ − D).(1.1)

The wave function ψℓ(t, x) corresponds to an energy level Eℓ of the homogeneous
Hamiltonian, ~, e and m∗ stand for Planck’s constant, the charge and the effective
mass of the electron in the considered material respectively. The Hartree equation
renders a mean-field approximation of the Coulombian forces, with ε0 being the di-
electric permittivity of the medium. D is the given doping concentration and ̺(t, x)



Semiclassical coupled model for transient simulations 3

is electrons’ density, which reads,

̺(t, x) =
∑

ℓ

F (Eℓ)|ψℓ(t, x)|2,

with e.g. F (E) = (1 + exp((E − EF )/kBθ0))
−1 in case of Fermi-Dirac statistics,

EF being usually called the Fermi energy1. θ0 is the ambient temperature, and kB

the Boltzmann’s constant. The sum ranges therefore over the whole spectrum of the
Hamiltonian consisting in an orthonormal basis of L2; hence (1.1) is indeed a system
of equations all coupled by the Poisson term U . With the next level of modelling
comes into play the Wigner transform:

w(t, x, p) =
1

2π

∫

R

z

(

t, x +
~y

2
, x − ~y

2

)

exp(iyp).dy,

where

z(t, x, y) =
∑

ℓ

F (Eℓ)ψℓ(t, x)ψℓ(t, y).

One observes at once that:

̺(t, x) =

∫

R

w(t, x, p).dp = z(t, x, x).

The Wigner transform solves the (pseudo-differential) Wigner equation,

∂tw +
p

~m∗
∂xw − eΘ[U ]f = 0, Θ[V ] =

i

~

{

U

(

t, x +
~

2i
∂x

)

− U

(

t, x − ~

2i
∂x

)}

,

completed by the Poisson equation as in (1.1). Passing to the (semi)classical limit ~ →
0, w ⇀ f(t, x, ξ) ≥ 0 in the sense of measures [31] and the pseudo-differential operator
Θ becomes the standard Vlasov term ∂xU.∂ξf . It is usually at this intermediate level
that electron-phonon collisions are introduced in the models (see however [2, 23]) by
means of an integral operator on the right-hand side:

∂tf + ξ∂xf +
e

m∗
∂xU∂ξf = Q(f), εs∂xxU = e(̺ − D), E = −∂xU.(1.2)

We shall not enter the details of Q(f) since different models exist like e.g. BGK or
Fokker-Planck; however, they share the interesting property of admitting the same
Maxwellian distribution, a fact that will be extensively used in the next section. At
this level of description the electron and current density are the moments of f :

̺(t, x) =

∫

R

f(t, x, ξ)dξ, J(t, x) =

∫

R

ξf(t, x, ξ)dξ.

2. Low and high field scalings inside a n+nn+ device. Our 1D problem
combines two distinct zones according to the importance which is given to the phe-
nomena rendered through Q in the equation (1.2); purely ballistic transport means
Q ≡ 0. However, we begin with the opposite case and mainly follow [11] in our pre-
sentation. Let us first recall some conventions: L > 0 stands for the characteristic

1it corresponds to an energy level for which the occupation probability is exactly one half.
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device’s length whereas ̺0 ≥ 0 and θ0 = kBT/m∗ ≥ 0, for an average value of the
doping profile D(x) and the lattice temperature. Uth = kBT/e is the thermal poten-
tial. Four (possibly) different velocity magnitudes appear: vth =

√
θ0 is the thermal

velocity. If τ0 stands for an average value of the relaxation times2 τ(x) inside the
device, vrelax = L/τ0 is the relaxation velocity. Similarly, if [Φ] is the bias applied
at the contacts, one defines the reference magnitude for the drift velocity as follows,

vdrift = τ0
e[Φ]

m∗L
,(2.1)

whereas the ballistic velocity reads:

vbal =

√

2e[Φ]

m∗
.

In a 1D framework, it is reasonable to render collisions by mean of a linear relaxation
time operator thus we can start from the following kinetic equation to describe the
dynamic of the electrons in the device.

∂tf + ξ∂xf − e

m∗
E(t, x)∂ξf =

1

τ

(

M(θ0)̺(x) − f
)

,(2.2)

where the Maxwelian reads

M(θ0) =
1√

2πθ0

exp

(

− ξ2

2θ0

)

θ0→0→ δ,

where δ stands for the Dirac mass in zero; the electric field E(t, x) is coupled to the
Poisson equation by

εs∂xxU = e(̺(x) − D(x)), E(t, x) = −∂xU.(2.3)

Remark 1. Starting from here, we assume that junctions are rendered through
sharp interfaces inside the device. Some quantities like e.g. the temperature will
obviously be discontinuous across them. This modelling has already been widely used,
see for instance [3, 8, 11, 12, 15].

2.1. Drift-diffusion approximation. It is convenient to normalize the doping
concentration and the potential bias: D(x) = ̺0D̂(x̂) and U(t, x) = [Φ]Û(t̂, x̂) where
we make use of rescaled variables defined as follows:

x = Lx̂, ξ = vthξ̂, t = vdrift

t̂

L
, τ(x) = τ0τ̂(x̂).

Moreover the kinetic density rewrites:

f(t, x, ξ) =
̺0

vth

f̂(t̂, x̂, ξ̂).

The main assumption in this approximation is vdrift ≪ vth ≪ vrelax; hence two small
parameters naturally appear:

ǫ =
vth

vrelax

, η =
vdrift

vth

(2.4)

2for instance, in case Q is given by a BGK model.
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which we suppose to be of the same order of magnitude. Then “low-field” is precisely
meant to be the limit η ≃ ǫ → 0 thus (2.2) rewrites:

ǫ∂tf + ξ∂xf − e

m∗
E(t, x)∂ξf =

1

ǫτ
(M(1)̺ − f).(2.5)

This regime describes the flow in highly doped areas (source and drain); (2.5) ad-
mits asymptotic expansions which allow to compute the two first moments of f in
closed form. Since collisions are dominant, drift velocity is much smaller than thermal
velocity and the mean free path can be considered infinitesimal, i.e. o(1). Hilbert
expansion leads to:

∂t̺ + ∂xJ = 0, J = −dn(x)∂x̺ − µn(x)E̺.(2.6)

There, µn(x) = eτ(x)/m∗ is the electron mobility and dn(x) = τ(x)θ0 = µnUth ≥ 0
appears to be a diffusion coefficient. In this regime, it is tacitly assumed that the
solution of (2.5) is “nearly Maxwellian”, i.e.

f(t, x, ξ) = ̺(t, x)Mθ0
(ξ) + o(ǫ).

2.2. Shur-Eastman/WKB ansatz for ballistic regime. This is somehow
the opposite; we consider now the following variables:

x = Lx̂, ξ = vbalξ̂, t = vbal

t̂

L
, τ(x) = τ0τ̂(x̂).

The kinetic density reads accordingly,

f(t, x, ξ) =
̺0

vbal

f̂(t̂, x̂, ξ̂).

The main assumption in this approximation is vth ≪ vbal ≃ vdrift, which leads to the
limit β = vth/vbal → 0, while α = vdrift/vbal = O(1). Thus comes out,

∂tf + ξ∂xf +
e

m∗
∂xU.∂ξf =

1

2ατ
Q(f), θ0 → 0, ∂xxU = γ(̺ − D).(2.7)

Clearly, neither Hilbert nor Chapman-Enskog expansions are likely to lead to a
diffusion-like equation. Instead, one obtains formally a Vlasov-Poisson system for
which the kinetic density is of the monokinetic form at zero temperature (see [35] and
[3], §5). This can be approximated by the so–called “WKB system”, as in [25],

∂t̺ + ∂x

(

∂xϕ

m∗
̺

)

= 0, ∂tϕ +
1

2m∗
|∂xϕ|2 + eU = 0,(2.8)

assuming that the wave functions behave like
√

̺ exp(iϕ/~), or equivalently, that the
solution of (2.7) reads f(t, x, ξ) = ̺(t, x)δ(ξ − ∂xϕ(t, x)), see [31]. Of course, u =
1

m∗
∂xϕ is meant to remain smooth3 and this holds in particular for the accelerating

particles ∂xu(t, x) ≥ 0 inside the channel. In §5 of [3], the authors suggest that the
distribution f should be of the type δ(ξ − Eτ), which boils down to assuming that
u(t, x) ≃ τ(x)E(t, x) at least after some time. This is indeed what we observe in
the numerical results (in constrast with [11] where E and u look quite different at
steady-state); see §5.4.

3if not, breakup occurs and multibranch solutions are to be sought instead, like in [22, 26, 29].
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3. Rescaling the device. First of all let us remark that the device has not
the same physical characteristics in the channel (ballistic zone) where there is a low
doping concentration relatively to the source and the drain (Drift-diffusion zone). This
implies that the electron mobility is higher in the channel as in the source and drain.
The same occurs for the relaxation time in the same proportion. More precisely, let
µ1 be the mobility in the source and drain and µ2 in the channel. We have

µ1

µ2
=

τ1

τ2
=

v2

v1
(3.1)

if we suppose that τ1 (resp.τ1) is proportional to L/v1 (resp. to L/v2). This means
that if we want to see phenomena evolve at the same velocity, we have to scale the
time in this proportion. An other way to explain this is if we scale the drift-diffusion
equation first (with mobility µ1) , then we have to scale the ballistic equation with
the same scaling obtained in the drift-diffusion equation but with the mobility µ2.

3.1. Rescaling the drift-diffusion equation. According to (2.6), the physical
drift-diffusion model reads for x ∈ [0, L], t ≥ 0:

εs∂xxU = e(̺ − D), ∂t̺ = ∂x (µ1Uth∂x̺ − µ1̺∂xU) .(3.2)

The first equation in (3.2) is Poisson’s completed by a continuity equation. In the
device’s variables, the current density is given by: J(t, x) = −d1∂x̺ + µ1̺∂xU . The
first part of the current is the diffusion term (d1 = µ1Uth) and the second part the drift
term. The general way to process (3.2) starts by rescaling space and time variables
according to the size of the device and some characteristic velocity which is to be
chosen to convenience:

x̂ =
x

L
, t̂ =

t

L/v1
,(3.3)

We can deduce an adimensionalized density ρ and a potential Û as follows:

̺(t, x) = ̺0ρ̂(t̂, x̂) U(t, x) = U0Û(t̂, x̂).(3.4)

The doping concentration is obviously treated accordingly:

D(x) = ̺0D̂(x̂).

Here ̺0 stands for a mean density inside the device (obtained by e.g. doping concen-
tration’s arithmetic or geometric average) and U0 is a reference value for the potential.
We first rescale the Poisson equation so as to obtain,

εsU0

e̺0L2

∂2Û

∂x̂2
= ρ̂ − D̂.

If we denote by [Φ0] the applied bias, the scaled Debye length is given by

γ =
εs[Φ0]

e̺0L2
.

At this level, we decide to choose U0 = e̺0L2

εs
= γ[Φ0] in order to scale the coefficient

to 1. Thus the scaled Poisson equation rewrites:

∂2Û

∂x̂2
= ρ̂ − D̂.(3.5)
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Let us now rescale the continuity equation in (3.2); the outcome reads:

∂ρ̂

∂t̂
=

∂

∂x̂

(

µ1Uth

v1L

∂ρ̂

∂x̂
− µ1U0

v1L
ρ̂
∂Û

∂x̂

)

.(3.6)

A relevant quantity is the ratio between the diffusion and drift current: here it is
Uth/U0. We observe that in general, it is not possible to scale to unit simultaneously
the scaled Debye length, the drift and diffusion terms. So in the present framework,
we chose to scale to unit the scaled Debye length and the scaled drift term. Let us
choose v1 such that the drift velocity coefficient scales to 1 i.e. µ1U0

v1L
= 1. In such a

way (3.6) transforms into:

∂ρ̂

∂t̂
=

∂

∂x̂

(

Uth

U0

∂ρ̂

∂x̂
− ρ̂

∂Û

∂x̂

)

.(3.7)

The scaled current density therefore reads

J(t̂, x̂) = −Uth

U0

∂ρ̂

∂x̂
+ ρ̂

∂Û

∂x̂
,(3.8)

and (3.7)–(3.8) should be completed with the rescaled potential equation (3.5). A
short computation with the numerical values given below shows that for high con-
centrations of doping, the drift term is more important than the diffusion term, for
concentration of doping of 1019/m3, both terms are of the same order of magnitude,
and for concentration of doping lower, the diffusion term is dominant.

3.2. Rescaling the Ballistic equation. Let us now scale the equations (2.8)
with the same scaling (3.3) in space and time but with v2 instead of v1 and (3.4) for
the density and potential. Moreover we assume the phase scales in the following way

ϕ(t, x) = ϕ0ϕ̂(t̂, x̂).(3.9)

With this scaling equations (2.8) become

∂ρ̂

∂t̂
+

∂

∂x̂

(

ϕ0

m∗Lv2

∂ϕ̂

∂x̂
ρ̂

)

= 0

∂

∂t̂

∂

∂x̂

(

ϕ0ϕ̂

m∗Lv2

)

+
1

2

∂

∂x̂

(

ϕ2
0

(m∗)2L2v2
2

|∂x̂ϕ̂|2
)

+
eU0

m∗v2
2

∂Û

∂x̂
= 0.

Note that we have derived w.r.t. x̂ the second equation. In order to work with the
same time scale as in the Drift-Diffusion case, we have to choose v2 such that (3.1) is
verified. Let let us set u = ϕ0

m∗Lv2
∂x̂ϕ̂. We can choose ϕ0 such that ϕ0

m∗Lv2
= 1. We

set for the scaled current Ĵ = ρ̂u. Then the scaled WKB equation (2.8) becomes:

∂ρ̂

∂t̂
+

∂

∂x̂
(ρ̂u) = 0,

∂

∂t̂
u +

1

2

∂

∂x̂
u2 +

eU0

m∗v2
2

∂Û

∂x̂
= 0.

From now on, we shall always work with scaled quantities thus it makes sense to
remove the “hats”.

Remark 2. (Numerical values) Let us take the same test case as in [4, 11]:
that is to say, m∗ = 0.065 × 9.109 × 10−31Kg, e = 1.602 × 10−19C, kB = 1.38 ×
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10−23J/K, εs = 13.2×8.85418×10−12F/m, T0 = 300K, L = 0.8×10−6m. Moreover
in the classical zone, we take for the doping concentration D = 1024/m3 and for the
electron mobility µ1 = τ1e/m∗ = 0.75. In the ballistic zone, D = 2 × 1021/m3 and

µ2 = τ2e/m∗ = 4. These values imply that ̺0 = 5 × 1023/m3, U0 = e̺oL2

εs
= 438.6.

Concerning the velocity v1 = µ1U0

L
= 4.111 × 108m/s which implies v2 = v1µ1/µ2 =

7.71 × 107m/s. The scaled diffusion coefficient is d1 = Uth

U0
= 5.9 × 10−5 (and the

scaled drift coefficient is µ = 1). Finally we have eU0/(m∗v2
2) = 0.2.

3.3. The kinetic equation. We finally rewrite the kinetic model (2.2); let us
rescale the variables as follows:

x = Lx̂, ξ = vthξ̂, t = v
t̂

L
, τ(x) = τ0τ̂(x̂)

where v is a velocity that is to be set according to the scaling which has been chosen.
Moreover the adimensioned kinetic density rewrites:

f(t, x, ξ) =
̺0

vth

f̂(t̂, x̂, ξ̂).

As usual, we define an adimensioned density ρ and a potential Φ as follows:

̺(t, x) = ̺0ρ(t̂, x̂) U(t, x) = Φ0Φ(t̂, x̂).(3.10)

With this notation the adimensioned form of (2.2) reads:

∂t̂f̂ +
(vth

v

)

ξ̂ · ∂x̂f̂ −
(

U0

Uth

vth

v

)

∂x̂Φ · ∂
ξ̂
f̂ =

vrelax

v

(

M(θ0)ˆ̺(x̂) − f̂
)

.(3.11)

Accroding to Remark 2, v can be chosen to be e.g. between 100vth and 1000vth.

4. A staggered scheme for the coupled model. Hereafter we always con-
sider working with the rescaled equations derived in the preceding section.

4.1. A semi-implicit discretization. We now aim at describing in full detail
the numerical recipe we propose for the solving of the following adimensionalized
problems:

(CL)

{

∂t̺ + ∂xJ = 0,
J = −d∂x̺ − ̺∂xU, ̺(t, x = 0) = 1,

x ∈]0, xL[;

(B)

{

∂t̺ + ∂xJ = 0,
∂tu + u∂xu + ∂xU = 0, J = ̺u,

x ∈]xL, xR[;

(CR)

{

∂t̺ + ∂xJ = 0,
J = −d∂x̺ − ̺∂xU, ̺(t, x = 1) = 1,

x ∈]xR, 1[;

where all these PDE’s are coupled through the Poisson equation:

(P )

{

−∂xxU = ̺ − D(x),
U(t, x = 0) = 0, U(t, x = 1) = U0 ≤ 0.

x ∈]0, 1[.

We are given initial data ̺(t = 0, .) = ̺0 ≥ 0, D(x) ≥ 0 and u(t = 0, .) we usually take
zero. We shall develop on the implementation of boundary conditions in x = xL, xR
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rendering the junctions in §3.3. First, let us say that (CL), (CR) will be solved
implicitly whereas (B) will be processed explicitly in time. Another important feature
is that ̺ and u won’t be known at the same abscissae (hence the use of “staggered”).
The computational domain is the half-stripe R

+×]0, 1[, which is parametrized by
∆x = 1

N
> 0; we define,

xj = j∆x =
j

N
; j = 0, ..., N.

We also define the following domains:
{

B = {xQ, xQ+1, ..., 1 − xQ}, xQ = xq + ∆x
2 , 1 − xQ = xN−q − ∆x

2 ,
CL = {x0, x2, ..., xq}, CR = {xN−q, ..., xN},

Thus ~̺n=0 = (̺0(xj))j=0,...,N ∈ R
N+1
+ . The boundary conditions read at the discrete

level: ̺0,n = ̺(tn, 0) and ̺N,n = ̺(tn, xN ) = ̺(tn, 1).

4.2. Choosing the time-step ∆t. We select a standard centered discretization
for (CL), (CR); it reads: (n the time index, j the space one)

̺j,n+1 − ∆t
d(̺j+1,n+1−̺j,n+1)−d(̺j,n+1−̺j−1,n+1)

∆x2 =

̺j,n + ∆t
∆x

(〈

Fj+ 1
2
,n,Rj+ 1

2
,n

〉

R2
−

〈

Fj− 1
2
,n,Rj− 1

2
,n

〉

R2

)

,
(4.1)

where the following notations have been used:

Fj+ 1
2
,n :=

{

max
(

0,
Uj+1,n−Uj,n

∆x

)

,min
(

0,
Uj+1,n−Uj,n

∆x

)}

,

Rj+ 1
2
,n := {̺j,n, ̺j+1,n} .

Clearly, <,>R2 stands for the standard R
2 scalar product. At this stage, we tacitly

assume that ~̺n being known, we already have a way to produce the two borderline
values ̺q+1,n+1 and ̺N−q−1,n+1. Thus, the scheme boils down to inverting a tri-
diagonal q × q matrix reading:

Mq =











1 + αd∆t
∆x2 − d∆t

∆x2 0 · · ·
− d∆t

∆x2 1 + 2d∆t
∆x2 − d∆t

∆x2 0

0
. . .

. . .
. . .

0 − d∆t
∆x2 1 + βd∆t

∆x2











,

where α, β can be 1 or 2 depending whether (4.1) is meant to approximate (CL)
or (CR) because of the boundary conditions. Anyway, it is clearly unconditionally
invertible since it is strictly diagonally dominant; thus the discretization (4.1) will
remain stable as long as its right-hand side will be a convex combination, i.e. for a
time step ∆t = O(∆x). In order to produce ̺q+1,n+1 and ̺N−q−1,n+1, we solve (B)
by means of an explicit time-marching scheme already used in [24, 25], except that
we set it up now together with a well-balanced strategy, as in [21] for the handling of
the electric field. More precisely, from [24],

̺j,n+1 = ̺j,n − ∆t

∆x

( 〈

Aj+ 1
2
,n,Rj+ 1

2
,n

〉

R2
−

〈

Aj− 1
2
,n,Rj− 1

2
,n

〉

R2

)

,(4.2)

with j = q, ..., N − q − 1 and,

Aj+ 1
2
,n :=

{

max
(

0, uj+ 1
2
,n

)

,min
(

0, uj+ 1
2
,n

)}

.
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Now the velocity values uj+ 1
2
,n are sought on the staggered computational grid by

means of a simple upwind well-balanced scheme:

uj+ 1
2
,n+1 = uj+ 1

2
,n − ∆t

∆x

(

F(uj+ 1
2
,n, ũj+ 3

2
,n) −F(ũj− 1

2
,n, uj+ 1

2
,n)

)

.(4.3)

F(u, v) = 1
2 (max(u, 0)2 +min(v, 0)2) is the standard upwind scheme and the modified

values ũj− 1
2
,n, ũj+ 3

2
,n are computed according to the steady-state equation, u∂xu +

∂xU = 0 out of resonance points, see Appendix A and [21] for details. We know from
[21, 24, 25] that this approach for the solving of (B) will be stable for a time step
∆t = O(∆x).

Hence the algorithm proceeds as follows: knowing all ~̺n and uj+ 1
2
,n (j = q, ..., N−

q − 1) at some time tn = n∆t, we first update uj+ 1
2
,n+1 inside B with (4.3) in order

to deduce ̺j,n+1 by means of (4.2). Then, knowing ̺q+1,n+1 and ̺N−q−1,n+1, we
can invert the implicit scheme (4.1) as soon as we have chosen a correct boundary
condition to render the junction between the diffusive/ballistic zones.

4.3. A (nonlinear) Robin boundary condition. Let us mention first that
junctions have been put at staggered abscissae, xq+ 1

2
, xN−q−1− 1

2
, which correspond

to the velocity unknowns. At these points, imposing Dirichlet boundary conditions
leads to some kind of inconsistency because of a somewhat redundant definition of
the current J between e.g. (CL) and (B). Numerically, it produced some spurious
oscillations eventually leading to general instability. Moreover, in order to observe a
constant current everywhere inside the device at steady state, it sounds reasonable to
impose its continuity at the junctions between diffusive and ballistic areas. That is
to say, at xq+ 1

2
,

uq+ 1
2
,n+1 = −d

̺q+1,n+1 − ̺q,n+1

∆x̺q+ 1
2
,n+1

− Uq+1,n+1 − Uq,n+1

∆x
,

which implies:

−d
̺q+1,n+1 − ̺q,n+1

∆x
= ̺q+ 1

2
,n+1

(

uq+ 1
2
,n+1 +

Uq+1,n+1 − Uq,n+1

∆x

)

,

that we can approximate by means of

−d
̺q+1,n+1 − ̺q,n+1

∆x
=

(

θ̺q+1,n+1+(1−θ)̺q,n+1

)

(

uq+ 1
2
,n+1+

Uq+1,n+1 − Uq,n+1

∆x

)

,

(4.4)
for θ ∈ [0, 1]. Hence one recognizes on the left-hand side of (4.4) the unknown flux
which appears in (4.1) and the Mq matrix, and the right-hand side contains only
values which can be deduced from the outcome of the explicit schemes used inside
B. Actually, only the average value ̺q+ 1

2
,n+1 has to be arbitrarily chosen as e.g. the

arithmetic average 1
2 (̺q+1,n+1 + ̺q,n+1), ̺q,n+1 or ̺q+1,n+1, corresponding to θ = 1

2 ,
θ = 0 and θ = 1 respectively.

Remark 3. This choice of boundary conditions corresponds to the solving of the
following problem for the drift-diffusion equation (CL):

{

∂t̺ + ∂xJ = 0, J = −d∂x̺ − ̺∂xU, x ∈]0, xL[,
̺(t, x = 0) = D(x = 0), −∂x ln(̺)(t, x = xL) = u + ∂xU

where u(t, x = xL) is deduced from (B). This is a mixed (nonlinear) Robin-type bound-
ary condition for a strictly parabolic equation. The well-posedness theory for problems
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of this flavour is quite recent; it started with the paper by L. C. Evans [17] and then
developed further into [1, 18, 19].

Of course, we presented everything in x = xq+ 1
2
, but the right junction x =

xN−q−1− 1
2

is completely equivalent (with maybe a different choice of θ however).

4.4. Some stability results. First of all, we wish to state a result from [19]
which we adapt to our situation involving only a uniformly elliptic linear operator:

Theorem 4.1. (Goldstein & Goldstein, [19]) Let βj(ξ) be a strictly increasing
and continuous function. The problem:







∂tu = ∂xxu, x, t ∈ (0, 1) × R
+,

(−1)j∂xu(., x) = βj(u), x = j ∈ {0, 1},
u(t = 0, x) = f(x) ∈ L1(0, 1) x ∈ (0, 1),

has a unique mild solution u in (0, 1)× [0, T ] for any T > 0 given. Moreover, u(t, .) ∈
L∞(0, 1) and ∂tu(t, .) ∈ L2(0, 1).

Clearly in order to be complete, a full study of the coupled problem (even if
neglecting the Poisson coupling equation) would be necessary before concluding to the
stability of the whole model given by (CL)-(B)-(CR). However, the former theorem is
a stepping stone in this direction. An interesting feature of our numerical approach
(4.1)–(4.2) lies in a nonnegativity-preserving property for the density.

Theorem 4.2. Let θ = 0 in (4.4), maxj,n(|uj+ 1
2
,n|+|Uj+1,n+1−Uj,n+1|/∆x)∆t ≤

∆x and ~̺n ∈ (R+)N , then the whole scheme (4.1)–(4.2) preserves nonnegativity in
the sense that ~̺n+1 ∈ (R+)N .

Actually, we never used (4.1)–(4.2) with θ = 0 because it looks like being the less
accurate choice. However we were unable to prove Theorem 4.2 for θ > 0.

Proof. The proof proceeds in 3 steps, namely the explicit part, then the implicit
one and what happens at the junctions.

• We first observe that thanks to the prescribed CFL condition, the explicit
parts of both schemes (4.1) and (4.2) turn out to be convex combinations
of the values showing up on their right-hand sides. This has been precisely
shown in previous paper, see e.g. Proposition 4.6 in [24] or §4.3 in [25].

• The implicit part of (4.1) is given by Mq which is a M-matrix in the termi-
nology of [9], that is to say its entries satisfy:

mi,i > 0, mi,j 6=i ≤ 0, |mi,i| >
∑

j 6=i

|mi,j |.

So let’s suppose we solve Mq~x = ~b where ~b has nonnegative components, it
is a classical fact that ~x will have only nonnegative components too. For
completeness we recall its (quick) proof: let i0 corresponds to the smallest
component of ~x, xi0 := min(~x). There holds:

mi0,i0xi0 = bi0 −
∑

j 6=i0

mi0,jxj ≥ bi0 − xi0

∑

j 6=i0

mi0,j ,

which implies:

xi0 ≥ bi0

mi0,i0 +
∑

j 6=i0
mi0,j

≥ 0.
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• It remains to observe that choosing θ = 0 in (4.4) means that the boundary
condition shows up only in the implicit part of (4.1). Let us focus on the
left junction: inside Mq, we have α = 2 and β = 1. The condition (4.4)

gives us another term which reads uq+ 1
2
,n+1 +

Uq+1,n+1−Uq,n+1

∆x
, but thanks

to the CFL condition, we know that Mq remains diagonal-dominant even
on this line. Hence the preceding computation garantees the nonnegativity-
preserving property and we are done.

These computations are based on convexity arguments hence they somehow open
the way to compactness for the whole scheme. However, we do not have any precise
theory at the continuous level for (CL)-(B)-(CR) yet. This might constitute a direction
for further investigation.

Remark 4. Actually the choice of the parameter θ is quite a delicate task when
considering its importance in order to make the numerical scheme stabilize on a
steady-state regime with flat currents (as can be seen on the numerical figures). Here
is what we implemented in order to produce the numerical results of §5: first, we
distinguished between the left junction where the solution is Lipschitz-continuous and
the right one where it generally involves a discontinuity. Then we observed that it
wasn’t possible to code directly ∂x ln(̺) = u + ∂xU simply because it would require
to apply the change of variable v = ln(̺) while solving the drift-diffusion equation,
which isn’t easy. Hence it becomes necessary to linearize the ln(.) function and this is
where the θ ∈ [0, 1] parameter comes into play through the mid-point rule. In case this
linearization occurs in a smooth location, θ = 1

2 gives a second-order accuracy and is
therefore sufficient. In case a discontinuity shows up, the upwind value is often the
right choice, that is to say, the weight should go to the point from where the signal
comes from (generally, it is the left side).

5. Numerical validation with doping 5 × 1022m−3. In this section, we dis-
play some numerical results at steady-state for a standard GaAs device as already
considered in [11, 3, 10, 35]. We took a discontinuous doping profile equal to 1 inside
x ∈ [0, 0.25[∪]0.75, 1] and 0.002 elsewhere. We iterated the marching schemes pre-
sented in §3.2 until residues on ~̺n decay lower than 10−15. The resulting parameters
are d1 = 0.00118 and eU0/(m∗v2

2) = 4. We stress that neither “drift-diffusion nor
mixed currents” are flat in the whole computational domain at steady-state; so in
order to derive the current-voltage relations, we computed arithmetic averages of the
results coming from both discretizations; we shall however propose a more interest-
ing derivation in §5.5 relying on Well–Balanced ideas. 255 points have been used to
sample the [0, 1] interval and the time-step is chosen adaptively in order to minimize
the mixed scheme’s numerical diffusion. The main difference between both curves
in Fig.5.1 lies in slightly lower values for the drift-diffusion currents. Apart from
that, both approaches appear to agree. However, we are about to see that despite
the relations current-voltage may look similar, the densities and velocities are rather
different.

Remark 5. It may sound reasonable to think about simulating directly the equa-
tion (2.2), at least to validate the outcome of our mixed scheme as in 1-D, the com-
putational cost can be still considered reasonable. Indeed, performing the rescalings as
in §3 leads to the following problem:

v∂tf + vthξ∂xf + vth

U0

Uth

∂xU∂ξf = vrelax(M(θ0)̺ − f),
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Fig. 5.1. Current-Voltage relation with doping 5 × 1022m−3 (left, normal scale; right, log scale).

supplemented by (3.5) and v being a free parameter. Actually, it is also possible to
evaluate all the parameters involved: ǫ ≃ 0.09, η ≃ 0.3 (tending to zero in §3.1) and
β ≃ 0.1, α ≃ 2 (being o(1) and O(1) respectively in §3.2). However, there’s at least
one obstacle on this way: the problem still involves two different time scales, and two
different Maxwellian distributions. Hence a direct upwind discretization of (3.11) is
unstable because some boundary conditions are needed at each junction: a way out
may consist in implementing numerically the formulas (16)–(17) in [8] (see also [16]
for related questions). The schemes should also be asymptotic-preserving in the sense
of [28, 27]. Finally, we notice from [12] that direct kinetic simulations deliver results
quite similar to drift-diffusion ones.

5.1. Weak bias: [Φ] = −0.2. Essentially, the main difference between the mixed
approach and the global drift-diffusion solving is that the last one always produces
continuous solutions whereas jumps show up in the other ones. This is clearly demon-
strated by the results in Fig. 5.2, even if the corresponding diffusion coefficient turns
out to be relatively small. Velocities and densities turn out to be rather different for
both approaches, especially when compared to the Poisson potential and the resulting
electric field. We can observe that our prescribed boundary condition for the junction
works fine for continuous solutions, but is unable to produce a flat current close to
a shock. This can come from the fact it involves an average value, ̺q+ 1

2
,n+1 which

should perhaps be derived more precisely. However, outside the junctions, currents
look satisfying.

5.2. Moderate bias: [Φ] = −0.35. In this case, the higher bias accelerates
electrons; the outcome of both schemes is presented on Fig. 5.3. The residues decay
is satisfying and the steady-state currents are reasonably flat. Densities and velocities
are again very different for both approaches, quantitatively and qualitatively.

5.3. Higher bias: [Φ] = −0.5. In this last case, the higher bias tends to flatten
more the “mixed current”, see Fig. 5.4 despite some sort of boundary layer on the
right side. The potentials and the electric fields are quite similar for both approaches
even if velocities and densities are still very different. Convergence in time is obtained
in half the time it asked for with [Φ] = −0.2.

5.4. Electric field and velocities inside the device. For completeness, we
finally plot the fraction u(x)/E(x) at steady-state since this quantity measures the
conductivity as a function of the applied bias; see Fig. 5.5. We observe that in-
dependently of the bias, this fraction is practically constant in the zones where the
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Fig. 5.2. Carriers density, velocity, potential, electric field, currents and residues for an applied
bias of [Φ] = −0.2. (left to right, top to bottom).

drift-diffusion algorithm is used (this reflects the smallness of the diffusion coefficient
for high doping). However, it falls down strongly inside the channel even if increas-
ing the bias improves things. Junctions are slightly visible, but the corresponding
discontinuities don’t seem to have strong effects on the global picture.

5.5. A different way to compute currents in the device. We finally pro-
pose a new way to compute steady-state currents inside the device, owing to the fact
that a Well–Balanced discretization is used to solve the ballistic part (B) of the prob-
lem; see Appendix A for details. Actually, assuming (B) is stationary, one derives
easily that the following equality holds:

Jbal(x) = ̺(x)u(x) = ̺(x)
√

−2(U(x) − U(xL)) + u(xL)2.(5.1)

The same way, one actually can compute stationary drift-diffusion like:

JDD = −̺(d∂x ln(̺) + ∂xU).(5.2)

On Fig.5.6, we compare the outcome of the very usual arithmetic averages with the
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Fig. 5.3. Carriers density, velocity, potential, electric field, current and residues for an applied
bias of [Φ] = −0.35. (left to right, top to bottom).

formulas (5.1)–(5.2). One clearly sees the inside the ballistic channel, the resulting
currents are perfectly flat, which has never been obtained before up to the authors’
knowledge. Even the drift-diffusion currents are rendered in a slightly better way:
for [Φ] = −0.35, there’s no jump around x = xR. Nevertheless, this isn’t meant to
improve the treatment of the junctions where small discontinuities still appear. We
believe that only a discretization of the type (6.1) can solve this issue.

6. Conclusion and outlook. We presented in this paper a first attempt to
develop a robust mixed approach to transient semiconductor’s computations relying
on a simple time-marching strategy. The main obstruction to circumvent was the
choice of a time-step which would ensure the compatibility of both the parabolic
(drift-diffusion) and hyperbolic (ballistic) areas, left apart the derivation of a sta-
ble boundary condition at the junctions between the source/drain and the channel.
For completeness, we display here the current-voltage relation for a doping value of
1024m−3, see Fig.6.1. With a diffusion coefficient so low, both curves look very similar.
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Fig. 5.4. Carriers density, velocity, potential, electric field, current and residues for an applied
bias of [Φ] = −0.5. (left to right, top to bottom).
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Fig. 5.5. Steady state fraction u(x)/E(x) for applied biases [Φ] = −0.2,−0.35,−0.5. (left to right)

There exist several ways of extending such an approach: one could be the inclusion
of the energy bands, more accurate than the simple “effective mass” approximation
made in (1.1). Indeed, such a simplification makes the whole model very close to the
so–called “Drude theory of conduction” (see [2]), which is known to be quite crude.
In order to improve the overall accuracy, an efficient algorithm to compute the Bloch
decomposition in 1-D has already been studied in [26]. It may also be interesting
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Fig. 5.6. Steady state currents for the mixed scheme with [Φ] = −0.2,−0.35,−0.5. (top to bottom)

to use the sophisticate “multi-branch” routines of [22, 26] in this present context to
achieve more precise simulations inside the ballistic channel. A routine able to handle
phonons has been recently proposed in [23].

From the perspective of the “well-balanced” aspects of things, the big step would
be to succeed in working with a good set of variables which would prevent from
linearizing at the junctions (recall the delicate choice of the θ parameter, see Remarks
3 and 4). The first idea could be to replace the ̺ variable in (CL) and (CR) by
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Fig. 6.1. Current-Voltage relation with strong doping (left, normal scale; right, log scale).

z = ln ̺. However, the price to pay is to make these drift diffusion problems nonlinear;
indeed the equations become in the z variable

{

∂tz + d
(

∂xxz + |∂xz|2
)

+ ∂xxU + ∂xU ∂xz = 0,
exp(z)(·, x = 0) = 1, ∂xz(·, x = xL) = u + ∂xU,

(6.1)

the left junction being rendered through the last boundary condition. However, the
nonlinear term is first-order, hence asks only for a mild CFL restriction.
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Appendix A. Well-balanced for (B) in a nutshell.
In this short section, we follow [21] in order to explain quickly how to manage the

forced Burgers equation appearing in (B) in such a way to approximate steady-states
as best as possible. Let us suppose that u(t, .) > 0 holds (this is completely fair
looking at the kind of steady regimes we have in mind to reproduce), we can rewrite
the scalar balance law the following way:

∂tu + ∂x

(u2

2
+ U(t, x)

)

= 0.

This clearly shows that steady states with u 6= 0 are given by the conservation law
u2

2 + U ≡ Ct ∈ R. At this point, it is easy to include the Poisson potential U in the
upwind fluxes in order to maintain this property: thus we obtain the modified fluxes,

F(ul, ur;Ul, Ur) =
1

2

(

max(ũl, 0)2 + min(ũr, 0)2
)

,

with the upwinded values,

ũl =
√

u2
l − 2(Ur − Ul) ≥ 0, ũr = −

√

u2
r + 2(Ur − Ul) ≤ 0.
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