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PERTURBATION OF THE DRAZIN INVERSE∗
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Abstract. Given a singular square matrix A with index r, ind(A) = r, we establish several
characterizations in the Drazin inverse framework of the class of matrices B, which satisfy the
conditions N (Bs)∩R(Ar) = {0} and R(Bs)∩N (Ar) = {0} with ind(B) = s, where N (A) and R(A)
denote the null space and the range space of a matrix A, respectively. We give explicit representations
for BD and BBD and upper bounds for the errors ‖BD − AD‖/‖AD‖ and ‖BBD − AAD‖. In a
numerical example we show that our bounds are better than others given in the literature.
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1. Introduction and preliminaries. Let A ∈ C
n×n be any complex square

matrix of order n with ind(A) = r, where ind(A), the index of A, is the smallest
nonnegative integer r such that rankAr = rankAr+1. Let R(A) and N (A) denote
the range space of A and the null space of A, respectively. In our development we
consider matrices B ∈ C

n×n, which satisfy the following condition for some positive
integer s:

(Cs) R(Bs) ∩N (Ar) = {0} and N (Bs) ∩R(Ar) = {0}.

A particular case is when the matrix B satisfies

(1.1) R(Bs) = R(Ar) and N (Bs) = N (Ar) .

The class of perturbation matrices B related to A by the condition (1.1), which is
equivalent to the fact that both matrices have equal eigenprojection at zero, Bπ = Aπ

with Aπ = I − AAD, were characterized in [4]. The Drazin inverse of B satisfying
(1.1) is given by the formula BD = (I + AD(B − A))−1AD. This latter formula was
given in [15] for B = A + E, where E = AADEAAD and E sufficiently small.

The first and third authors gave in [5] characterizations of the matrices B related
to A by the condition that, involving the eigenprojections at zero, I − (Bπ −Aπ)2 is
nonsingular. Therein, it was proved that BD = (I + AD(B − A) + S)−1AD(I − S)
where S = Bπ −Aπ and an upper bound for ‖BD −AD‖/‖AD‖ was given in terms of
‖AD(B −A)‖ and ‖Bπ −Aπ‖.

The continuity of the Drazin inverse was studied in [1, 2, 3, 11]. In [2], Campbell
and Meyer established that if Aj converges to A, then AD

j converges to AD if and

only if rankA
rj
j = rankAr for all sufficiently large j, where rj = ind(Aj). Recently,

the perturbation of the Drazin inverse was studied by several authors, and upper
bounds for the relative error ‖BD − AD‖/‖AD‖ were given under certain conditions
[4, 5, 6, 8, 9, 12, 13, 14, 15, 16].
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In this paper, in section 2 we prove that, for a matrix B with ind(B) = s, the
fact that B satisfies condition (Cs) is equivalent to that I− (Bπ−Aπ)2 is nonsingular.
We establish several new characterizations of the matrices which satisfy condition
(Cs). In terms of matrix rank, this class of matrices is characterized by the condition
rankAr = rankBs = rankArBsAr whenever s = ind(B).

In section 3 we study further characterizations for the class (C1), giving a represen-
tation of matrices B ∈ (C1) such that ind(B) = 1, with respect to the core-nilpotent
block form of the matrix A. We mention that the perturbation of the group inverse
is a case of special interest due to its application to stability of Markov chains [3, 10].

In section 4 we extend the characterizations for the group inverse to the general
case of perturbations satisfying condition (Cs). We give an expression for the index
1-nilpotent decomposition of the matrices B ∈ (Cs), ind(B) = s, which will be the
main tool in the development of perturbation results.

Finally, in section 5 we give an explicit representation of BD, and we derive upper
bounds for the errors ‖BD−AD‖/‖AD‖ and ‖BBD−AAD‖ in terms of norms involving
the powers Bs−As. In a numerical example we compare our bounds with others given
recently in [13, 14].

In relation to the study of the continuity of the Drazin inverse, we can say that
if Aj converges to A and rankA

rj
j = rankArA

rj
j Ar = rankAr for all sufficiently large

j, where rj = ind(Aj), then an explicit representation for AD
j and an explicit error

bound of ‖AD
j −AD‖/‖AD‖ are provided.

We recall that the Drazin inverse of A ∈ C
n×n is the unique matrix AD ∈ C

n×n

satisfying the relations

ADAAD = AD, AAD = ADA, Al+1AD = Al for all l ≥ r,

where r = ind(A). If A is nonsingular, then ind(A) = 0 and the solution to the above
equations is AD = A−1. The case when ind(A) = 1, i.e., rankA = rankA2, the Drazin
inverse is called the group inverse of A and is denoted by A�.

We denote by O a null matrix. Each A ∈ C
n×n with ind(A) = r has a unique

index 1-nilpotent decomposition (see [1, Theorem 11, Chapter 4]),

(1.2) A = CA + NA, ind(CA) = 1, CANA = NACA = O, Nr
A = O.

Moreover, we have Ak = Ck
A + Nk

A for all integers k ≥ 1, and AD = C�
A.

The following lemma gives a condition for the existence of the group inverse of
a partitioned matrix and a formula for its computation (see [3, Theorems 7.7.5 and
7.7.7]).

Lemma 1.1. Let M = ( A B
C D ) be square with A ∈ C

d×d nonsingular and denote
Ψ = I + A−1BCA−1. Then

(i) rankM = rankA ⇐⇒ D = CA−1B.

In this case, for all integers k ≥ 1, Mk may be partitioned as

(1.3) Mk =

[
I

CA−1

]
(AΨ)k−1A

[
I A−1B

]
.

(ii) If rankM = rankA, then ind(M) = 1 ⇐⇒ Ψ is nonsingular.

In this case, the group inverse of M is given by
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(1.4) M � =

[
I

CA−1

]
(ΨAΨ)−1

[
I A−1B

]
.

Let A ∈ C
n×n with ind(A) = r. The eigenprojection of A corresponding to the

eigenvalue 0, denoted by Aπ, is the uniquely determined projector such that R(Aπ) =
N (Ar) and N (Aπ) = R(Ar).

If ind(A) = r > 0, then there exists a nonsingular matrix P such that we can
write A in the core-nilpotent block form

(1.5) A = P

(
A1 O

O A2

)
P−1 A1 ∈ C

d×d nonsingular, d = rankAr, Ar
2 = O.

By [3, Theorem 7.2.1], relative to the form (1.5), the Drazin inverse of A and the
eigenprojection of A at zero are given by

AD = P

(
A−1

1 O

O O

)
P−1, Aπ = I −AAD = P

(
O O

O I

)
P−1.

The case when ind(A) = 1 is equivalent to having A2 = O in (1.5), and so
AπA = AAπ = O. Moreover, we have N (Aπ) = R(A) and R(Aπ) = N (A).

Lemma 1.2. Let A,C ∈ C
n×n with ind(A) = r and C nonsingular. Then

I −Aπ + CAπC−1Aπ is nonsingular ⇐⇒ I −Aπ + C−1AπCAπ is nonsingular .

Proof. Write

C = P

(
C11 C12

C21 C22

)
P−1 and C−1 = P

(
X11 X12

X21 X22

)
P−1,

where C11, X11, and A1 as in (1.5) are the same size. Then

I −Aπ + CAπC−1Aπ = P

(
I C12X22

O C22X22

)
P−1,

I −Aπ + C−1AπCAπ = P

(
I X12C22

O X22C22

)
P−1.

Hence, since C22X22 is nonsingular ⇐⇒ X22C22 is nonsingular, the equivalence
given in this lemma follows.

The following lemma is concerned with the rank of a product of matrices (see [17,
sec. 2.4]).

Lemma 1.3. Let A,B,C ∈ C
n×n. Then

rankAB = rankB − dim(R(B) ∩N (A)),(1.6)

rankABC ≥ rankAB + rankBC − rankB.(1.7)
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2. Characterizations of matrices satisfying condition (Cs). First, for a
matrix B with ind(B) = s we establish the equivalence among condition (Cs) and
conditions involving the matrix rank, and other conditions expressed in terms of the
eigenprojections at zero.

Theorem 2.1. Let A ∈ C
n×n, ind(A) = r. Then the following statements on

B ∈ C
n×n with ind(B) = s are equivalent:

(a) B satisfies condition (Cs).
(b) rankBs = rankAr = rankArBs = rankBsAr.
(c) rankBs = rankAr = rankArBsAr.
(d) rankBs = rankAr, I −Aπ + BπAπ is nonsingular.
(e) I − (Bπ −Aπ)2 is nonsingular.
(f) I −Bπ −Aπ is nonsingular.

Proof. (a) ⇒ (b). From the space decomposition C
n = R(Ar) ⊕ N (Ar) =

R(Bs)⊕N (Bs) and the conditions N (Bs)∩R(Ar) = {0} and R(Bs)∩N (Ar) = {0},
it is clear that rankBs = rankAr. Moreover, using Lemma 1.3, identity (1.6), we get

rankArBs = rankBs − dimR(Bs) ∩N (Ar)

and

rankBsAr = rankAr − dimR(Ar) ∩N (Bs).

Hence, rankArBs = rankBs and rankBsAr = rankAr. So, (b) is proved.
(b) ⇒ (c). Applying Lemma 1.3, formula (1.7), we get

rankArBsAr ≥ rankArBs + rankBsAr − rankBs.

Hence rankArBsAr ≥ rankBs. We also have rankArBsAr ≤ rankAr = rankBs, so
we conclude that rankArBsAr = rankBs.

(c) ⇒ (d). From condition rankArBsAr = rankAr = rankBs, using Lemma 1.3,
identity (1.6), we easily derive R(Ar) ∩ N (Bs) = {0} and N (Ar) ∩ R(Bs) = {0}.
Now, let (I − Aπ + BπAπ)x = 0. Then (I − Aπ)x = −BπAπx. From this latter
relation it follows that (I−Aπ)x ∈ R(Ar)∩N (Bs), and thus (I−Aπ)x = 0. Further,
we also have BπAπx = 0. Hence Aπx ∈ R(Bs)∩N (Ar) and, consequently, Aπx = 0.
Therefore x = 0, and I −Aπ + BπAπ is nonsingular.

(d) ⇒ (e). Since I− (Bπ −Aπ)2 = (I−Aπ +BπAπ)(I−Bπ +AπBπ), we have to
prove that I − Bπ + AπBπ is nonsingular. We write the core-nilpotent block forms,
as in (1.5), A = P (A1 O

O A2
)P−1 and B = Q(B1 O

O B2
)Q−1 with A1 and B1 nonsingular

matrices. We note that A1 and B1 have the same size because rankBs = rankAr.
Moreover, (Q−1BπQ = O O

O I ) = P−1AπP and, thus, Bπ = QP−1AπPQ−1. Hence
I − Aπ + BπAπ = I − Aπ + QP−1AπPQ−1Aπ. So I − Aπ + QP−1AπPQ−1Aπ is
nonsingular, and by Lemma 1.2 we conclude that PQ−1(I − Bπ + AπBπ)QP−1 =
I −Aπ + PQ−1AπQP−1Aπ is also nonsingular.

(e) ⇒ (f). Let (I − Bπ − Aπ)x = 0. Then (I − Bπ + Aπ)x = 2Aπx, and hence
(I + Bπ − Aπ)(I − Bπ + Aπ)x = 2BπAπx = 0. So, we have (I − (Bπ − Aπ)2)x = 0.
This implies that x = 0, and therefore I −Bπ −Aπ is nonsingular.

(f) ⇒ (a). This equivalence follows from [7, Theorem 1.2], applying the equiva-
lence of (iii) and (iv) given therein with the projectors I −Aπ and Bπ.

The next lemma gives properties that are needed in what follows.
Lemma 2.2. Let A ∈ C

n×n, ind(A) = r. If B ∈ C
n×n with ind(B) = s satisfies

condition (Cs), then
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(i) for any integer l ≥ s, I + (AD)l(Bl −Al) is nonsingular.
(ii) I − (I + (AD)s(Bs −As))−1Aπ −Aπ(I + (Bs −As)(AD)s)−1 is nonsingular.
Proof. (i) Let l ≥ s and (I+(AD)l(Bl−Al))x = 0. Then, Aπx = −(AD)lBlx = 0.

Hence, x ∈ N (Aπ) = R(Ar) and Blx ∈ N
(
(AD)l

)
= N (Ar). Since R(Bl) = R(Bs),

then Blx ∈ R(Bs) ∩N (Ar). So, Blx = 0. Therefore, x ∈ N
(
Bl

)
∩R(Ar), and thus

x = 0. So, I + (AD)l(Bl −Al) is nonsingular.
(ii) Let x− (I +(AD)s(Bs−As))−1Aπx−Aπ(I +(Bs−As)(AD)s)−1x = 0. Then

(I + (AD)s(Bs −As))−1(AD)sBsx = Aπ(I + (Bs −As)(AD)s)−1x. From this identity
and the fact that (I + (AD)s(Bs −As))−1(AD)s = (AD)s(I + (Bs −As)(AD)s)−1, we
conclude that (I+(AD)s(Bs−As))−1(AD)sBsx = 0 and Aπ(I+(Bs−As)(AD)s)−1x =
0. Therefore, (AD)sBsx = 0 and so Bsx ∈ R(Bs) ∩ N (Ar). Thus, Bsx = 0.
Moreover, since (I + (Bs −As)(AD)s)−1x ∈ R(Ar), (I + (Bs −As)(AD)s)−1x = Ary
for some y. This implies that x = Bs(AD)sAry, and so x ∈ R(Bs) ∩ N (Bs). Hence,
x = 0 because ind(B) = s. So, (ii) is proved.

In the following theorem, we will derive a formula for the eigenprojection of B at
zero, Bπ.

Theorem 2.3. Let A ∈ C
n×n, ind(A) = r. If B ∈ C

n×n with ind(B) = s
satisfies condition (Cs), then

Bπ = −(I + (AD)s(Bs −As))−1AπX−1 = −X−1Aπ(I + (Bs −As)(AD)s)−1,

where

X = I − (I + (AD)s(Bs −As))−1Aπ −Aπ(I + (Bs −As)(AD)s)−1.

Proof. From Lemma 2.2 we know that I+(AD)s(Bs−As) and X are nonsingular.
Using that Aπ(I +(AD)s(Bs−As))−1 = Aπ = (I +(Bs−As)(AD)s)−1Aπ, it is easily
checked that

X(I + (AD)s(Bs −As))−1Aπ

= −Aπ(I + (Bs −As)(AD)s)−1(I + (AD)s(Bs −As))−1Aπ

= Aπ(I + (Bs −As)(AD)s)−1X.

(2.1)

Hence

(2.2) (I + (AD)s(Bs −As))−1AπX−1 = X−1Aπ(I + (Bs −As)(AD)s)−1.

Let Q = −(I + (AD)s(Bs −As))−1AπX−1. We observe that

R(Q) = R((I + (AD)s(Bs −As))−1Aπ)

because X is nonsingular. Let us show that Q is the projector with N (Q) = R(Bs)
and R(Q) = N (Bs). First, using (2.2) and (2.1) we see that

Q2 = X−1Aπ(I + (Bs −As)(AD)s)−1(I + (AD)s(Bs −As))−1AπX−1 = Q.

Now, let us assume that x ∈ N (Bs). Then Aπx + (AD)sBsx = Aπx. From this
relation it follows that x = (Aπ + (AD)sBs)−1Aπx and, thus, x ∈ R(Q). Conversely,
assuming x ∈ R(Q) we get (Aπ + (AD)sBs)x = Aπy for some y ∈ C

n. Hence
(AD)sBsx = Aπ(y − x). Then (AD)sBsx = 0. Therefore, Bsx ∈ R(Bs) ∩N (Ar). So
Bsx = 0. Consequently, R(Q) = N (Bs).
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By (2.2) we have that N (Q) = N
(
X−1Aπ(I + (Bs −As)(AD)s)−1

)
. Hence it

follows that N (Q) = N
(
Aπ(I + (Bs −As)(AD)s)−1

)
because X is nonsingular. Let

us assume that x ∈ N (Q). Then

Aπ(Aπ + Bs(AD)s)−1x = (I −Bs(AD)s(Aπ + Bs(AD)s)−1)x = 0.

Hence, x = BsAD(Aπ + Bs(AD)s)−1x, and thus x ∈ R(Bs). Since N (Q) ⊆ R(Bs),
and C

n = R(Q) ⊕ N (Q) = R(Bs) ⊕ N (Bs) because ind(B) = s, we conclude that
N (Q) = R(Bs). So we have Bπ = Q, which is the desired result.

3. The class (C1). We shall first give further characterizations of matrices B
satisfying condition (C1) and ind(B) = 1. We obtain a representation of B with
respect to the core-nilpotent block form of the matrix A.

Theorem 3.1. Let A ∈ C
n×n, ind(A) = r. Then the following conditions on

B ∈ C
n×n are equivalent:

(a) B satisfies condition (C1) and ind(B) = 1.
(b) B(I + AD(B − A))−1Aπ = O, I + AD(B − A) and I + (AD)2(B2 − A2) are

nonsingular.
(c) Relative to the core-nilpotent block form of A in (1.5), B has the following

representation:

(3.1) B = P

(
B11 B12

B21 B21B
−1
11 B12

)
P−1,

where B11 and I + B−1
11 B12B21B

−1
11 are nonsingular.

(d) rankB = rankAr, I +AD(B −A) and I + (AD)2(B2 −A2) are nonsingular.
Proof. (a) ⇒ (b). Since ind(B) = 1, from Lemma 2.2(i) we get that I+AD(B−A)

and I + (AD)2(B2 −A2) are nonsingular. Finally, using that BBπ = O and applying
Theorem 2.3, we conclude that B(I + AD(B −A))−1Aπ = O.

(b) ⇒ (c). Write

B = P

(
B11 B12

B21 B22

)
P−1.

We compute

I + AD(B −A) = P

(
A−1

1 B11 A−1
1 B12

O I

)
P−1.

Hence B11 is nonsingular because I + AD(B −A) is nonsingular. We have

I + (AD)2(B2 −A2) = P

(
A−2

1 (B2
11 + B12B21) A−2

1 (B11B12 + B12B22)

O I

)
P−1.

Thus, B2
11 + B12B21 is nonsingular because I + (AD)2(B2 − A2) is nonsingular. On

the other hand,

B(I + AD(B −A))−1Aπ = P

(
B11 B12

B21 B22

)(
B−1

11 A1 −B−1
11 B12

O I

)(
O O

O I

)
P−1

= P

(
O O

O −B21B
−1
11 B12 + B22

)
P−1.
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From the assumption B(I + AD(B − A))−1Aπ = O it follows that B22 = B21B
−1
11 B12.

(c) ⇔ (d). From the representation (3.1), applying Lemma 1.1, it follows that
rankB = rankB11 = rankAr. The rest is easily seen.

Conversely, write

B = P

(
B11 B12

B21 B22

)
P−1.

Since I +AD(B−A) and I +(AD)2(B2−A2) are nonsingular, arguing as in the proof
of (b) ⇒ (c), we get that B11 and I +B−1

11 B12B21B
−1
11 are nonsingular. Finally, from

rankB = rankAr we obtain that rankB = rankB11, and hence by Lemma 1.1(i) we
conclude that B22 = B21B

−1
11 B12.

(c) ⇒ (a). Assume that B has the block representation (3.1). By Lemma 1.1(i),
(ii), we conclude that rankB = rankB11 = rankAr and ind(B) = 1. On the other
hand,

rankArBAr = rankP

(
Ar

1B11A
r
1 O

O O

)
P−1 = rankAr

1B11A
r
1 = rankAr.

Hence, in view of Theorem 2.1 (a)⇔(c), we conclude that B satisfy condition (C1).
Remark 3.2. Conditions (b) and (d) in the above theorem can be replaced by the

following symmetrical conditions:
(b′) Aπ(I + (B − A)AD)−1B = O, I + (B − A)AD and I + (B2 − A2)(AD)2 are

nonsingular.
(d′) rankB = rankAr, I + (B −A)AD and I + (B2 −A2)(AD)2 are nonsingular.
Next, we state the following compact representation for B and B�.
Lemma 3.3. Let A ∈ C

n×n, ind(A) = r and let B ∈ C
n×n, ind(B) = 1, satisfying

condition (C1). Then we have the representation

(3.2) B = P

[
I
S

]
B1

[
I T

]
P−1,

where B1 and I+TS are nonsingular. According to this expression, the group inverse
of B can be represented in the form

(3.3) B� = P

[
I
S

]
[(I + TS)B1(I + TS)]−1

[
I T

]
P−1.

Proof. By Theorem 3.1 (c),

B = P

(
B11 B12

B21 B21B
−1
11 B12

)
P−1,

where B11 and I + B−1
11 B12B21B

−1
11 are nonsingular. By denoting B1 = B11, T =

B−1
11 B12, and S = B21B

−1
11 we get the representation (3.2). Now, applying formula

(1.4) given in Lemma 1.1, we obtain the representation for B�.

4. The class (Cs). Next, based on Theorem 3.1, we establish the following new
characterizations of B satisfying condition (Cs).

Theorem 4.1. Let A ∈ C
n×n, ind(A) = r. Then the following conditions on

B ∈ C
n×n are equivalent:

(a) B satisfies condition (Cs) and ind(B) = s.
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(b) For the smallest positive integer s such that Bs(I+(AD)s(Bs−As))−1Aπ = O,
I + (AD)s(Bs −As) and I + (AD)s+1(Bs+1 −As+1) are nonsingular.

(c) The index 1-nilpotent decomposition of B has the following representation
relative to the core-nilpotent block form of A in (1.5),

B = CB + NB = P

[
I
S

]
B1

[
I T

]
P−1 + P

[
T
−I

]
B2

[
S −I

]
P−1,(4.1)

where B1 and I + TS are nonsingular and B2(I + ST ) is nilpotent of index
s.

(d) For the smallest positive integer s such that rankBs = rankAr, I+(AD)s(Bs−
As) and I + (AD)s+1(Bs+1 −As+1) are nonsingular.

Proof. If ind(B) = s and B satisfies condition (Cs), then s is the smallest positive
integer such that Bs satisfies condition (C1) and ind(Bs) = 1. Moreover, we observe
that for any k ≥ s, I + (AD)k(Bk −Ak) is nonsingular if and only if I +AD(Bk −A)
is nonsingular. So, applying Theorem 3.1 with Bs, it follows the equivalence between
condition (a) and the following:

(b′) For the smallest positive integer s such that Bs(I+(AD)s(Bs−As))−1Aπ = O,
I + (AD)s(Bs −As) and I + (AD)2s(B2s −A2s) are nonsingular.

We now note that conditions (b′) and (b) are equivalent.
A similar device proves the equivalence between conditions (a) and (d) in this

theorem. Applying Theorem 3.1 with Bs we get the equivalence of (a) and the
following:

(d′) For the smallest positive integer s such that rankBs = rankAr, we have that
I + (AD)s(Bs −As) and I + (AD)2s(B2s −A2s) are nonsingular.

Finally, we note that conditions (d′) and (d) are equivalent.
Now, we will prove the equivalence between (a) and (c). Suppose B = CB + NB

is the index 1-nilpotent decomposition (1.2) of B. We know that if s is the index of
B, then N (CB) = N (Bs) and R(CB) = R(Bs). Hence if B satisfies condition (Cs),
then CB satisfies condition (C1) and ind(CB) = 1. By Lemma 3.3 it follows that

(4.2) CB = P

[
I
S

]
B1

[
I T

]
P−1,

where B1 and I + TS are nonsingular. We observe that I + ST is also nonsingular.
Now, write

NB = P

(
N11 N12

N21 N22

)
P−1.

Since CBNB = NBCB = O, by direct computations it follows that N11 = TN22S,
N12 = −TN22, and N21 = −N22S. So,

(4.3) NB = P

[
T
−I

]
B2

[
S −I

]
P−1,

where we have renamed B2 = N22. Thus, for every positive integer k,

(4.4) Nk
B = P

[
T
−I

]
(B2(I + ST ))k−1B2

[
S −I

]
P−1.

Condition Ns
B = O implies that (B2(I + ST ))s = O. Therefore, B2(I + ST ) is

nilpotent of index s. Hence, from (4.2) and (4.3) we get the representation (4.1).
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Conversely, assume that we have the splitting B = CB + NB , where CB and NB

have the representation given by (4.1). Clearly CBNB = NBCB = O. Moreover, by
Theorem 3.1, equivalence between (a) and (c), it follows that CB satisfies condition
(C1) and ind(CB) = 1. Using (4.4), we see that Ns

B = O. So B = CB + NB is
the core-nilpotent decomposition of B and ind(B) = s. Since R(Bs) = R(CB) and
N (Bs) = N (CB), we conclude that R(Bs)∩N (Ar) = {0} and N (Bs)∩R(Ar) = {0}.
Thus B ∈ (Cs) and ind(B) = s.

Remark 4.2. Conditions (b) and (d) in Theorem 4.1 can be replaced by the
corresponding symmetrical conditions, as expressed in Remark 3.2.

Corollary 4.3. Let A ∈ C
n×n, ind(A) = r. Then the following statements

about B ∈ C
n×n with ind(B) = s are equivalent:

(a) B satisfies condition (Cs).
(b) I + (AD)s(Bs −As) is nonsingular and Bs(I + (AD)s(Bs −As))−1Aπ = O.
(c) rankBs = rankAr and I + (AD)s(Bs −As) is nonsingular.

Proof. (a)⇔(b). This equivalence follows from the equivalence (a)⇔(b) estab-
lished in Theorem 4.1 if we show that, under assumption ind(B) = s, the con-
dition (b) in this theorem implies that I + (AD)s+1(Bs+1 − As+1) is nonsingular.
First, we observe that N (Bs) = N

(
Bs+1

)
because ind(B) = s. Now, since Aπ +

(AD)sBs is nonsingular, then N (Aπ) ∩ N (Bs) = {0}. From Bs(I + (AD)s(Bs −
As))−1Aπ = O it follows that Bs = Bs(I + (AD)s(Bs − As))−1(AD)sBs. So, we see
that N

(
(AD)s+1Bs+1

)
= N

(
(AD)sBs+1

)
⊆ N

(
Bs+1

)
. Thus Aπ + (AD)s+1Bs+1 is

nonsingular because N (Aπ) ∩N
(
Bs+1

)
= {0}.

(a)⇔(c). This equivalence follows from the equivalence (a)⇔(d) established in
Theorem 4.1. The details are omitted.

Next, we give a representation for the powers of B.

Lemma 4.4. Let A ∈ C
n×n, ind(A) = r and let B ∈ C

n×n, ind(B) = s, satisfying
condition (Cs). Then, for all integer k ≥ 1, we have the representation

Bk = P

{[
I
S

]
(B1(I + TS))k−1B1

[
I T

]
+

[
T
−I

]
(B2(I + ST ))k−1B2

[
S −I

]}
P−1,

where B1 and I + TS are nonsingular and B2(I + ST ) is nilpotent of index s.

Proof. The formula for the powers Bk can be derived from the representation
(4.1), using the formula (1.3) of Lemma 1.1 and the formula (4.4).

5. Perturbation results. In this section we give an explicit representation of
BD and we derive perturbation bounds of the Drazin inverse and the eigenprojection
at zero.

Theorem 5.1. Let A ∈ C
n×n, ind(A) = r > 0 and let B ∈ C

n×n, ind(B) = s,
satisfying condition (Cs). Denote E1 = E = B − A and Es = Bs − As. Assume that
I + ADE is nonsingular. Then

BD =Φ−1
1

(
AD + ADΨ−1

ss Φ−1
s (AD)sEsA

π(I −AπEs(A
D)sΦ̃−1

s ) + AπEs(A
D)sΦ̃−1

s Ψ−1
1s

×
(
AD − Φ−1

1 ADEAD − Φ−1
1 AD(Ψss − I)Ψ−1

ss

)
(I + Φ−1

s (AD)sEsA
π)
)
,

(5.1)
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where Φi = I+(AD)iEi, Φ̃i = I+Ei(A
D)i, and Ψis = I+Φ−1

i (AD)iEiA
πEs(A

D)sΦ̃−1
s

for i = 1 and i = s. If max{‖ADE‖, ‖(AD)sEs‖, ‖Es(A
D)s‖} < 1, then

‖BD −AD‖
‖AD‖

≤ ‖ADE‖
1 − ‖ADE‖ +

‖(AD)sEsA
π‖‖Ψ−1

ss ‖
(1 − ‖ADE‖)(1 − ‖(AD)sEs‖)

(
1 +

‖AπEs(A
D)s‖

1 − ‖Es(AD)s‖

)

+
‖AπEs(A

D)s‖‖Ψ−1
1s ‖

(1 − ‖ADE‖)(1 − ‖Es(AD)s‖)

(
1 +

‖(AD)sEsA
π‖

1 − ‖(AD)sEs‖

)

×
(

1 +
‖ADE‖

1 − ‖ADE‖ +
‖(AD)sEsA

π‖‖AπEs(A
D)s‖‖Ψ−1

ss ‖
(1 − ‖ADE‖)(1 − ‖Es(AD)s‖)(1 − ‖(AD)sEs‖)

)
.

(5.2)

Furthermore, if

max{‖ADE‖, ‖(AD)sEs‖, ‖Es(A
D)s‖} <

1

1 +
√
‖Aπ‖

,

then we have the following upper bounds for i = 1 and i = s:

(5.3) ‖Ψ−1
is ‖ ≤ (1 − ‖(AD)iEi‖)(1 − ‖Es(A

D)s‖)
(1 − ‖(AD)iEi‖)(1 − ‖Es(AD)s‖) − ‖(AD)iEi‖‖AπEs(AD)s‖ .

Proof. From Theorem 4.1(c), we have that the index 1-nilpotent decomposi-

tion of B is given by B = CB + NB , with CB = P
[
I
S

]
B1

[
I T

]
P−1 and NB =

P
[
T
−I

]
B2

[
S −I

]
P−1, where B1 and I + TS are nonsingular and B2(I + ST ) is

nilpotent of index s. Hence, applying Lemma 3.3, formulae (3.3), we obtain

(5.4) BD = C�
B = P

[
I
S

]
[(I + TS)B1(I + TS)]−1

[
I T

]
P−1.

Furthermore, we can write E = B −A as

(5.5) E = P

(
B1 + TB2S −A1 B1T − TB2

SB1 −B2S SB1T + B2 −A2

)
P−1.

In view of this latter representation we get

(5.6) I + ADE = P

(
A−1

1 (B1 + TB2S) A−1
1 (B1T − TB2)

O I

)
P−1.

From the assumption that I + ADE is nonsingular, it follows that B1 + TB2S is
nonsingular. Using (5.6) and (5.4) we obtain
(5.7)

(I +ADE)BD = P

(
A−1

1 (I + TS)−1 A−1
1 (I + TS)−1T

S((I + TS)B1(I + TS))−1 S((I + TS)B1(I + TS))−1T

)
P−1.
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By denoting Φ1 = I + ADE, in view of (5.6) we obtain

(5.8) Φ−1
1 = P

(
(B1 + TB2S)−1A1 −(B1 + TB2S)−1(B1T − TB2)

O I

)
P−1.

Utilizing the representations of the powers of B given in Lemma 4.4, we write
Es = Bs −As as

Es = P

(
(B1(I + TS))s−1B1 −As

1 (B1(I + TS))s−1B1T

S(B1(I + TS))s−1B1 S(B1(I + TS))s−1B1T −As
2

)
P−1 .

By denoting Φs = I + (AD)sEs and Φ̃s = I + Es(A
D)s we get

(5.9)

Φ−1
s = P

(
B−1

1

(
(B1(I + TS))(s−1)

)−1
As

1 −T

O I

)
P−1,

Φ̃−1
s = P

(
As

1B
−1
1

(
(B1(I + TS))(s−1)

)−1
O

−S I

)
P−1,

and, hence,

Φ−1
s (AD)s = (AD)sΦ̃−1

s = P

(
B−1

1

(
(B1(I + TS))(s−1)

)−1
O

O O

)
P−1.

Furthermore,

(5.10) Φ−1
s (AD)sEsA

π = P

(
O T

O O

)
P−1, AπEs(A

D)sΦ̃−1
s = P

(
O O

S O

)
P−1.

Let Ψis = I + Φ−1
i (AD)iEiA

πEs(A
D)sΦ̃−1

s for i = 1 and i = s. Using (5.10) we see
that

(5.11) Ψ−1
ss = P

(
(I + TS)−1 O

O I

)
P−1,

and, using (5.5), (5.6), and (5.10) we obtain

Ψ1s = P

[(
I O

O I

)

+

(
I − (B1 + TB2S)−1A1 (B1 + TB2S)−1(B1T − TB2)

O O

)(
O O

S O

)]
P−1

= P

(
(B1 + TB2S)−1B1(I + TS) O

O I

)
P−1,

and, thus,

(5.12) Ψ−1
1s = P

(
(I + TS)−1B−1

1 (B1 + TB2S) O

O I

)
P−1.
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Now, let us introduce

(5.13)

Σ1 = AD + ADΨ−1
ss Φ−1

s (AD)sEsA
π(I −AπEs(A

D)sΦ̃−1
s ),

Ω = AD − Φ−1
1 ADEAD − Φ−1

1 AD(Ψss − I)Ψ−1
ss ,

Σ2 = AπEs(A
D)sΦ̃−1

s Ψ−1
1s Ω(I + Φ−1

s (AD)sEsA
π).

In order to verify identity (5.1) we will see that the matrix representation of Σ1 + Σ2

is equal to the right-hand side of (5.7). We compute

Σ1 = P

[(
A−1

1 O

O O

)
+

(
O A−1

1 (I + TS)−1T

O O

)(
I O

−S I

)]
P−1

= P

(
A−1

1 (I + TS)−1 A−1
1 (I + TS)−1T

O O

)
P−1.

On the other hand, utilizing (5.5), (5.8), and (5.11) we see that

Ω = P

(
(B1 + TB2S)−1(I + TS)−1 O

O O

)
P−1,

and, hence, using (5.12), we get

Ψ−1
1s Ω = P

(
(I + TS)−1B−1

1 (I + TS)−1 O
O O

)
P−1.

Therefore,

Σ2 =P

(
O O

S O

)(
(I + TS)−1B−1

1 (I + TS)−1 O

O I

)(
I T

O I

)
P−1

=P

(
O O

S(I + TS)−1B−1
1 (I + TS)−1 S(I + TS)−1B−1

1 (I + TS)−1T

)
P−1.

In view of these expressions of Σ1 and Σ2 we conclude the proof of the first part.
From the identity BD − AD + ADE(BD − AD + AD) = Σ1 − AD + Σ2, taking norms
we obtain

‖BD −AD‖ ≤ ‖ADE‖‖BD −AD‖ + ‖ADE‖‖AD‖ + ‖Σ1 −AD‖ + ‖Σ2‖.

Since max{‖ADE‖, ‖(AD)sEs‖, ‖Es(A
D)s‖} < 1, we have

(5.14) ‖BD −AD‖ ≤ ‖AD‖‖ADE‖ + ‖Σ1 −AD‖ + ‖Σ2‖
1 − ‖ADE‖

and

(5.15) ‖Φ−1
s ‖ ≤ 1

1 − ‖(AD)sEs‖
and ‖Φ̃−1

s ‖ ≤ 1

1 − ‖Es(AD)s‖ .

Taking norms in (5.13), and using these upper bounds, we get

‖Σ1 −AD‖ ≤ ‖AD‖‖(AD)sEsA
π‖‖Ψ−1

ss ‖
1 − ‖(AD)sEs‖

(
1 +

‖AπEs(A
D)s‖

1 − ‖Es(AD)s‖

)
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and

‖Σ2‖ ≤‖AD‖‖AπEs(A
D)s‖‖Ψ−1

1s ‖
1 − ‖Es(AD)s‖

(
1 +

‖(AD)sEsA
π‖

1 − ‖(AD)sEs‖

)

×
(

1 +
‖ADE‖

1 − ‖ADE‖ +
‖(AD)sEsA

π‖‖AπEs(A
D)s‖‖Ψ−1

ss ‖
(1 − ‖ADE‖)(1 − ‖Es(AD)s‖)(1 − ‖(AD)sEs‖)

)
.

Substituting these upper bounds of ‖Σ1 − AD‖ and ‖Σ2‖ in (5.14) we conclude the
proof of (5.2). Finally, if max{‖ADE‖, ‖(AD)sEs‖, ‖Es(A

D)s‖} < 1

1+
√

‖Aπ‖
, then

‖Ψis − I‖ ≤ ‖(AD)iEi‖‖AπEs(A
D)s‖

(1 − ‖(AD)iEi‖)(1 − ‖Es(AD)s‖) < 1, i = 1, s.

Hence, it follows that

‖Ψ−1
is ‖ ≤ (1 − ‖(AD)iEi‖)(1 − ‖Es(A

D)s‖)
(1 − ‖(AD)iEi‖)(1 − ‖Es(AD)s‖) − ‖(AD)iEi‖‖AπEs(AD)s‖ , i = 1, s.

This completes the proof.
Remark 5.2. If we denote δis = (1 − ‖(AD)iEi‖)(1 − ‖Es(A

D)s‖) − ‖(AD)iEi‖
‖AπEs(A

D)s‖, then the upper bounds (5.3), for i = 1 and i = s, can be expressed as

‖Ψ−1
is ‖ ≤ 1 +

‖(AD)iEi‖‖AπEs(A
D)s‖

δis
= 1 + O(‖E‖2),

where in the last identity we have taken into account that ‖Es‖ = O(‖E‖) (see [11]).
Substituting this in (5.2) we get that the upper bound of ‖BD − AD‖ up to the

first order of ‖E‖, has the following expression

‖BD −AD‖
‖AD‖ ≤ ‖ADE‖

1 − ‖ADE‖ +
‖(AD)sEsA

π‖
(1 − ‖ADE‖)(1 − ‖(AD)sEs‖)

+
‖AπEs(A

D)s‖
(1 − ‖ADE‖)(1 − ‖Es(AD)s‖) + O(‖E‖2).

(5.16)

In the following corollary we show that the matrices satisfying condition (1.1), or
equivalently Bπ = Aπ, are a particular case of the matrices satisfying condition (Cs).

Corollary 5.3. Let A ∈ C
n×n, ind(A) = r > 0, and let B ∈ C

n×n ind(B) = s
satisfying condition (Cs). Denote E = B − A. If AπEAD = ADEAπ, then we have
BD = (I + ADE)−1AD. Further, if ‖ADE‖ < 1, then

(5.17)
‖BD −AD‖

‖AD‖ ≤ ‖ADE‖
1 − ‖ADE‖ .

Proof. We have that E has the representation (5.5) given in the proof of Theo-
rem 5.1. From condition AπEAD = ADEAπ it follows that

B1T = TB2 and SB1 = B2S.

Using these relations we get that

S(B1(I + TS))s = B2(I + ST )S(B1(I + TS))s−1 = · · · = (B2(I + ST ))sS.
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Applying that B2(I + ST ) is nilpotent of index s and B1(I + TS) is nonsingular we
obtain that S = O. Analogously, we can see that T = O. Thus, expression (5.6) takes
the form

I + ADE = P

(
A−1

1 B1 O

O I

)
P−1.

Clearly I + ADE is nonsingular. In view of (5.4) we get

BD = P

(
B−1

1 O

O O

)
P−1 = (I + ADE)−1AD.

Hence, we get that Bπ = Aπ and the upper bound (5.17).
Theorem 5.4. Let A ∈ C

n×n, ind(A) = r > 0, and let B ∈ C
n×n, ind(B) = s,

satisfying condition (Cs). Denote Es = Bs−As. If max{‖(AD)sEs‖, ‖Es(A
D)s‖} < 1,

then

‖Bπ −Aπ‖ ≤ ‖(AD)sEsA
π‖

1 − ‖(AD)sEs‖

+
‖AπEs(A

D)s‖‖Ψ−1
ss ‖

(1 − ‖(AD)sEs‖)(1 − ‖Es(AD)s‖)

(
1 +

‖(AD)sEsA
π‖

1 − ‖(AD)sEs‖

)
,

(5.18)

where Ψss = I + (I + (AD)sEs)
−1(AD)sEsA

πEs(A
D)s(I + Es(A

D)s)−1.
If max{‖(AD)sEs‖, ‖Es(A

D)s‖} < 1

1+
√

‖Aπ‖
, then an upper bound of ‖Ψ−1

ss ‖ is

given by (5.3).
Proof. From Theorem 2.3 we have

(5.19) Bπ + (AD)sEsB
π = −AπX−1,

where X = I − (I + (AD)sEs)
−1Aπ − Aπ(I + Es(A

D)s)−1. Utilizing the expressions

of Φ−1
s and Φ̃−1

s given in the proof of Theorem 5.1 by (5.9), we can represent

X = P

(
I T

S −I

)
P−1 and X−1 = P

(
(I + TS)−1 (I + TS)−1T

S(I + TS)−1 −I + S(I + TS)−1T

)
P−1.

Thus,

−AπX−1 = Aπ + P

(
O O

−S(I + TS)−1 −S(I + TS)−1T

)
P−1.

Hence, in view of the representations (5.10) and (5.11) we may write

−AπX−1 = Aπ −AπEs(A
D)sΦ̃−1

s Ψ−1
ss (I + Φ−1

s (AD)sEsA
π).

Substituting the latter identity in (5.19) we obtain

Bπ −Aπ = −(AD)sEs(B
π −Aπ + Aπ) −AπEs(A

D)sΦ̃−1
s Ψ−1

ss (I + Φ−1
s (AD)sEsA

π).

Taking norms

‖Bπ −Aπ‖ ≤‖(AD)sEs‖‖Bπ −Aπ‖ + ‖(AD)sEsA
π‖

+ ‖AπEs(A
D)s‖‖Φ̃−1

s ‖‖Ψ−1
ss ‖(1 + ‖Φ−1

s ‖‖(AD)sEsA
π‖).
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Table 5.1

Comparison of upper bounds of ‖BBD −AAD‖2.

Exact value [13, Thm. 5], (15) (5.18)
B = A + E1 9.99 × 10−10 1.00 × 10−5 1.00 × 10−9

B = A + E2 1.85 × 10−9 2.74 × 10−5 2.74 × 10−9

Table 5.2

Comparison of upper bounds of ‖BD −AD‖2/‖AD‖2.

B = A + E1 B = A + E2

Exact Value 1.12 × 10−10 3.44 × 10−11

[13, Thm. 1], (1) 0.7649 0.9008
[13, Thm. 4], (6) 1.00 × 10−5 + O(‖E‖2) 2.73 × 10−5 + O(‖E‖2)

(5.20)+(5.18) 3.41 × 10−9 6.88 × 10−9

(5.2) 2.41 × 10−9 4.15 × 10−9

(5.16) 2.41 × 10−9 + O(‖E‖2) 4.15 × 10−9 + O(‖E‖2)

Table 5.3

Comparison of upper bounds of ‖BD −AD‖F /‖AD‖F .

Exact value [14, Thm. 4.1], (4.1) (5.2)
B = A + E1 1.14 × 10−10 8.39 × 10−5 2.42 × 10−9

B = A + E2 3.47 × 10−11 8.39 × 10−5 4.15 × 10−9

Since max{‖(AD)sEs‖, ‖Es(A
D)s‖} < 1, regrouping in ‖Bπ − Aπ‖ and substituting

‖Φ−1
s ‖ and ‖Φ̃−1

s ‖ by the upper bounds (5.15), we get (5.18).

Remark 5.5. If max{‖ADE‖, ‖(AD)sEs‖, ‖Es(A
D)s‖} < 1

1+
√

‖Aπ‖
, as we have

seen in Remark 5.2, the upper bound of ‖Bπ − Aπ‖ up to the first order of ‖E‖ has
the following expression:

‖Bπ −Aπ‖ ≤ ‖(AD)sEsA
π‖

1 − ‖(AD)sEs‖
+

‖AπEs(A
D)s‖

(1 − ‖(AD)sEs‖)(1 − ‖Es(AD)s‖) + O(‖E‖2).

Remark 5.6. In [5, Theorem 3.1 and Remark 3.3], under assumption Δ+‖ADE‖ <
1, where Δ is un upper bound of ‖Bπ − Aπ‖, the following estimation of the Drazin
inverse was given:

(5.20)
‖BD −AD‖

‖AD‖ ≤ ‖ADE‖ + 2Δ

1 − ‖ADE‖ − Δ
.

Example 5.7. In Table 5.1 we compare the upper bound for ‖Bπ −Aπ‖2 derived
in Theorem 5.4 with the upper bound given in [13, Theorem 5]. The upper bounds
for ‖BD−AD‖2/‖AD‖2 given in Theorem 5.1, Remark 5.2, and Remark 5.6, replacing
Δ in (5.20) by the upper bound given in (5.18), are compared in Table 5.2 with the
upper bounds given in [13]. Let

A =

⎛⎜⎜⎜⎜⎜⎜⎝

1
100 0 0 0 0

0 1 0 0 0

0 0 0 1 1

0 0 0 1 0

0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ , E1 =

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 0 0 0

0 ε 0 ε 0

0 0 0 ε 0

0 0 0 0 0

0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ , E2 =

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 0 0 0

0 0 ε ε 0

0 0 0 ε 0

0 0 0 0 0

0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ ,
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where ε = 10−9. We have ind(A) = ind(A + Ei) = 2 and rankA2 = rank(A + Ei)
2 =

rankA2(A + Ei)
2A2 = 3, i = 1, 2. By Theorem 2.1 we have that B = A+Ei satisfies

condition (C2).
In Table 5.3 we compare the upper bound (5.2) using the Frobenius norm with

the upper bound given in [14], formula (4.1). That formula is based on the separation
of matrices sepF (C,N), with C and N being the matrices in the following Schur
decomposition,

QHAQ =

[
C G

O N

]
,

where Q is an unitary matrix, C is nonsingular, and N is nilpotent of index ind(A).
In this example sepF (C,N) = 1.42 × 10−4.
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