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CHARACTERIZATIONS OF A CLASS OF MATRICES AND
PERTURBATION OF THE DRAZIN INVERSE*

N. CASTRO-GONZALEZ', J. ROBLES', AND J. Y. VELEZ-CERRADAT

Abstract. Given a singular square matrix A with index r, ind(A) = r, we establish several
characterizations in the Drazin inverse framework of the class of matrices B, which satisfy the
conditions N'(B*)NR(A") = {0} and R(B*)NN(A") = {0} with ind(B) = s, where N'(A4) and R(A)
denote the null space and the range space of a matrix A, respectively. We give explicit representations
for BP and BBP and upper bounds for the errors |[BP — AP||/||AP| and ||BBP — AAP|. In a
numerical example we show that our bounds are better than others given in the literature.
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1. Introduction and preliminaries. Let A € C"*" be any complex square
matrix of order n with ind(A) = r, where ind(A), the index of A, is the smallest
nonnegative integer r such that rank A” = rank A"*1. Let R(A) and N (A) denote
the range space of A and the null space of A, respectively. In our development we
consider matrices B € C™*", which satisfy the following condition for some positive
integer s:

(Cy) R(B°)NN (A") ={0} and N (B°)NR(A")={0}.
A particular case is when the matrix B satisfies
(1.1) R(B*)=R(A") and N (B’ )=N(4").

The class of perturbation matrices B related to A by the condition (1.1), which is
equivalent to the fact that both matrices have equal eigenprojection at zero, B™ = A™
with A™ = I — AAP, were characterized in [4]. The Drazin inverse of B satisfying
(1.1) is given by the formula BP = (I + AP(B — A))~1AP. This latter formula was
given in [15] for B = A + E, where E = AAPEAAP and FE sufficiently small.

The first and third authors gave in [5] characterizations of the matrices B related
to A by the condition that, involving the eigenprojections at zero, I — (B™ — A™)? is
nonsingular. Therein, it was proved that BP = (I + AP(B — A) + 9)~1AP(I - 9)
where S = B™ — A™ and an upper bound for ||BP — AP||/||AP|| was given in terms of
|AP(B - A)] and | B — A%,

The continuity of the Drazin inverse was studied in [1, 2, 3, 11]. In [2], Campbell
and Meyer established that if A; converges to A, then A? converges to AP if and
only if rank A;j = rank A" for all sufficiently large j, where r; = ind(A;). Recently,
the perturbation of the Drazin inverse was studied by several authors, and upper
bounds for the relative error ||[BP® — AP||/||AP|| were given under certain conditions
[4,5,6,8,9,12, 13, 14, 15, 16].
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CHARACTERIZATIONS OF A CLASS OF MATRICES 883

In this paper, in section 2 we prove that, for a matrix B with ind(B) = s, the
fact that B satisfies condition (Cy) is equivalent to that I — (B™ — A™)? is nonsingular.
We establish several new characterizations of the matrices which satisfy condition
(Cs). In terms of matrix rank, this class of matrices is characterized by the condition
rank A" = rank B® = rank A" B* A" whenever s = ind(B).

In section 3 we study further characterizations for the class (C1), giving a represen-
tation of matrices B € (C1) such that ind(B) = 1, with respect to the core-nilpotent
block form of the matrix A. We mention that the perturbation of the group inverse
is a case of special interest due to its application to stability of Markov chains [3, 10].

In section 4 we extend the characterizations for the group inverse to the general
case of perturbations satisfying condition (Cs). We give an expression for the index
1-nilpotent decomposition of the matrices B € (Cs), ind(B) = s, which will be the
main tool in the development of perturbation results.

Finally, in section 5 we give an explicit representation of BP, and we derive upper
bounds for the errors || BP — AP || /|| AP|| and || BBP — AAP|| in terms of norms involving
the powers B® — A®. In a numerical example we compare our bounds with others given
recently in [13, 14].

In relation to the study of the continuity of the Drazin inverse, we can say that
if A; converges to A and rank A;j = rank ATA;j A" = rank A" for all sufficiently large
Jj, where 7; = ind(A;), then an explicit representation for AJD and an explicit error
bound of HA}D — AP||/||AP|| are provided.

We recall that the Drazin inverse of A € C™*™ is the unique matrix AP € C"*"
satisfying the relations

AP AAP = AP AAP = APA, AHIAP =AY foralll >,

where r = ind(A). If A is nonsingular, then ind(A) = 0 and the solution to the above
equations is A® = A~1. The case when ind(A) = 1, i.e., rank A = rank A2, the Drazin
inverse is called the group inverse of A and is denoted by A*.

We denote by O a null matrix. Each A € C"*" with ind(A) = r has a unique
index 1-nilpotent decomposition (see [1, Theorem 11, Chapter 4]),

(1.2) A=Cs+ Ny, ind(Cy)=1, CaNy=NsCy =0, N} =0.

Moreover, we have A¥ = Ck + N% for all integers k > 1, and AP = C’fg.

The following lemma gives a condition for the existence of the group inverse of
a partitioned matrix and a formula for its computation (see [3, Theorems 7.7.5 and
7.7.7]).

LEMMA 1.1. Let M = (& B) be square with A € C™*? nonsingular and denote
U=71+A1BCA-L. Then

(i) rank M =rank A < D =CA"'B.
In this case, for all integers k > 1, M* may be partitioned as

1

1. Mk =
(1.3) CA!

(AD)*1A[I A'B].

(ii) Ifrank M = rank A, then ind(M) = 1 <= ¥ is nonsingular.

In this case, the group inverse of M is given by
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884 CASTRO-GONZALEZ, ROBLES, AND VELEZ-CERRADA

(1.4) M* = (PAV)~"'[I A7'B].

CA™1

Let A € C™*™ with ind(A4) = r. The eigenprojection of A corresponding to the
eigenvalue 0, denoted by A™, is the uniquely determined projector such that R(A™) =
N (A™) and N (A7) = R(A").

If ind(A) = r > 0, then there exists a nonsingular matrix P such that we can
write A in the core-nilpotent block form

A O

P! Ay e €% nonsingular, d = rank A", AL =0.
O A,

(1.5) A:P(

By [3, Theorem 7.2.1], relative to the form (1.5), the Drazin inverse of A and the
eigenprojection of A at zero are given by

A71
AP =p |7 © Pl AT=T-AAP =P © 0 Pt
O 0 o I

The case when ind(4) = 1 is equivalent to having Ay = O in (1.5), and so
A™A = AA™ = O. Moreover, we have N/ (A™) = R(A) and R(A™) = N (4).
LEMMA 1.2. Let A,C € C™*™ with ind(A) = r and C nonsingular. Then
I — A" + CA™C7YA™ is nonsingular <= I — A™ + C"YATCA™ is nonsingular .

Proof. Write

Cn Ci2) 51 -1 X1 Xi2) 51
CcC=P P d C"=P P
(021 022) o Xo1 X ’

where C11, X117, and A; as in (1.5) are the same size. Then

I CpX
[— A"+ CAC™'A™ = P 1222 pt
O CQQXQQ

I X150
I—-A"4+C'A"CA™ =P P
(O XQQCQQ)

Hence, since Cy3 X959 is nonsingular <= X95C55 is nonsingular, the equivalence
given in this lemma follows. |

The following lemma is concerned with the rank of a product of matrices (see [17,
sec. 2.4]).

LEMMA 1.3. Let A, B,C € C™"*". Then

(1.6) rank AB = rank B — dim(R(B) NN (A4)),

(1.7) rank ABC > rank AB + rank BC' — rank B.
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2. Characterizations of matrices satisfying condition (Cg). First, for a
matrix B with ind(B) = s we establish the equivalence among condition (Cs) and
conditions involving the matrix rank, and other conditions expressed in terms of the
eigenprojections at zero.

THEOREM 2.1. Let A € C™*", ind(A) = r. Then the following statements on
B € C™*™ with ind(B) = s are equivalent:

(a) B satisfies condition (Cs).
b) rank B® = rank A" = rank A" B® = rank B5A".
c¢) rank B® = rank A” = rank A" B A".
d) rank B®* =rank A", I — A™ + B™A™ is nonsingular.
) I —(B™ — A™)? is nonsingular.
) I — B™ — A™ s nonsingular.
Proof. (a) = (b). From the space decomposition C* = R(A") ® N (4") =
R(B*)®N (B*) and the conditions N (B*)NR(A") = {0} and R(B*)NN (A") = {0},
it is clear that rank B® = rank A". Moreover, using Lemma 1.3, identity (1.6), we get

(
(
(
(e
(f

rank A" B® = rank B® — dim R(B*) NN (A")
and
rank B°A” = rank A" — dim R(A") NN (B?).

Hence, rank A" B® = rank B® and rank B*A” = rank A". So, (b) is proved.
(b) = (c¢). Applying Lemma 1.3, formula (1.7), we get

rank A"B* A" > rank A" B® + rank B* A" — rank B®.

Hence rank A" B* A" > rank B®. We also have rank A" B°A” < rank A" = rank B*®, so
we conclude that rank A" B* A" = rank B®.

(¢) = (d). From condition rank A" B* A" = rank A" = rank B*, using Lemma 1.3,
identity (1.6), we easily derive R(A™) NN (B*) = {0} and N (A") N R(B*) = {0}.
Now, let (I — A™ + B™A™)xz = 0. Then (I — A™)x = —B™A™z. From this latter
relation it follows that (I — A™)z € R(A")NN (B*®), and thus (I — A™)z = 0. Further,
we also have BT A"z = 0. Hence A"z € R(B*) NN (A") and, consequently, A"z = 0.
Therefore x = 0, and I — A™ + B™A™ is nonsingular.

(d) = (e). Since I — (B™ — A™)? = (I — A™ + B"A™)(I — B™ + A™B™), we have to
prove that I — B™ + A™B™ is nonsingular. We write the core-nilpotent block forms,
as'in (1.5), A= P(‘y 0 )P~' and B = Q'Y 5 )Q~! with A; and B; nonsingular
matrices. We note that A; and B; have the same size because rank B® = rank A".
Moreover, (Q7'B™Q = §9) = P"'A™P and, thus, B = QP 'A"PQ~'. Hence
I - A"+ B"A™ = — A" + QP 'A"PQ'A™. SoI — A™ + QP 'A™PQ'A™ is
nonsingular, and by Lemma 1.2 we conclude that PQ~'(I — B™ + A"B™)QP~! =
I— A™ + PQ 'ATQP~'A™ is also nonsingular.

() = (f). Let (I — B™ — A™)x = 0. Then (I — B™ + A™)x = 2A™x, and hence
(I+B™—A™)(I — B™+ A™)z = 2B™A™z = 0. So, we have (I — (B™ — A™)?)z = 0.
This implies that x = 0, and therefore I — B™ — A™ is nonsingular.

(f) = (a). This equivalence follows from [7, Theorem 1.2], applying the equiva-
lence of (iii) and (iv) given therein with the projectors I — A™ and BT. |

The next lemma gives properties that are needed in what follows.

LEMMA 2.2. Let A € C"*", ind(A) =r. If B € C"*"™ with ind(B) = s satisfies
condition (Cs), then
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886 CASTRO-GONZALEZ, ROBLES, AND VELEZ-CERRADA

(i) for any integer 1 > s, I + (AP)(B' — AY) is nonsingular.

(i) T — (I+ (AP)*(B* — A®))7LA™ — A™(I + (B* — A®%)(AP)*)~! is nonsingular.

Proof. (i) Let I > s and (I+(AP){(B'— A"))z = 0. Then, A"z = —(AP)!Blz = 0.
Hence, z € N (A™) = R(A") and B'z € N ((AP)") = N (A"). Since R(B') = R(B*),
then B'z € R(B*) NN (A"). So, B'z = 0. Therefore, z € N (B') N R(A"), and thus
x=0. So, I + (AP)/(B! — A!) is nonsingular.

(ii) Let z — (I + (AP)*(B® — A%)) 1Az — A™(I + (B* — A%)(AP)®*)"1z = 0. Then
(I+(AP)*(B® — A%))"Y(AP)*Bsz = A™(I + (B* — A®)(AP)*)~'z. From this identity
and the fact that (I + (AP)*(B® — A%))71(AP)* = (AP)(I + (B* — A%)(AP)*)71, we
conclude that (I+(AP)*(B*—A%))"Y(AP)*B%xr = 0 and A™(I+(B*—A%)(AP)*) "1z =
0. Therefore, (AP)*B*zx = 0 and so B’z € R(B*) N N (A"). Thus, B’z = 0.
Moreover, since (I + (B — A%)(AP)*) "tz € R(A"), (I + (B® — A%)(AP)*) "1z = A"y
for some y. This implies that x = B*(AP)* A"y, and so x € R(B*) NN (B*). Hence,
x = 0 because ind(B) = s. So, (ii) is proved. O

In the following theorem, we will derive a formula for the eigenprojection of B at
zero, BT.

THEOREM 2.3. Let A € C**", ind(4) = r. If B € C"*" with ind(B) = s
satisfies condition (Cs), then

BT = —(I+ (AP)*(B* — A*))'A™X 1 = - X TA™(I + (B® — A°)(AP)") 7,
where
X =T~ (I+(AP)*(B* — A%)) 'A™ — A™(I + (B* — A*)(AP)*)~ L.
Proof. From Lemma 2.2 we know that I+ (AP)*(B*— A%) and X are nonsingular.

Using that A™(I + (AP)*(B* — A%))71 = A™ = (I +(B* — A%)(AP)*) 71 A7 it is easily
checked that

X(I+ (AP)*(BS — A%))~tA™
(2.1) = —AT(I + (B® — A°)(AP)*)TH(I + (AP)*(B* — A®)) 7' AT
= A™(I 4 (B® — A°)(AP)*)71X.
Hence
(2.2) (I+ (AP)¥(B® — A*))'A™X 1 = X TA™(I 4 (B® — A%)(AP)*)~L.
Let Q@ = —(I 4 (AP)*(B* — A%))"'A"X~'. We observe that
R(Q) = R((I +(AP)*(B* — A%))~'A7)

because X is nonsingular. Let us show that Q is the projector with N (Q) = R(B?)
and R(Q) = N (B?®). First, using (2.2) and (2.1) we see that

Q2 _ XflATr(I_F (Bs _ AS)(AD)S)71(1+ (AD)S(BS _ As))flAwal — Q

Now, let us assume that € N (B*). Then A"z + (AP)*B%z = A™z. From this
relation it follows that x = (A™ + (AP)*B*)"1A™z and, thus, z € R(Q). Conversely,
assuming z € R(Q) we get (A" + (AP)*B%)xz = A™y for some y € C". Hence
(AP)*Bsz = A™(y — z). Then (AP)*B%z = 0. Therefore, B5x € R(B*) NN (A"). So
Bz = 0. Consequently, R(Q) = N (B?).
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By (2.2) we have that V' (Q) = N (X *A™(I + (B* — A*)(AP)*)~!). Hence it
follows that N (Q) = N (A™(I + (B* — A*)(AP)*)~!) because X is nonsingular. Let
us assume that x € ' (Q). Then

A™(A™ + B*(AP)*) "'z = (I — B*(AP)*(A™ + B*(AP)*)~1)z = 0.

Hence, z = B*AP(A™ + B*(AP)*)~ 1z, and thus z € R(B?). Since N (Q) C R(B?*),
and C" = R(Q) & N (Q) = R(B*) ® N (B*) because ind(B) = s, we conclude that
N (Q) = R(B?). So we have B™ = @, which is the desired result. O

3. The class (C1). We shall first give further characterizations of matrices B
satisfying condition (C;) and ind(B) = 1. We obtain a representation of B with
respect to the core-nilpotent block form of the matrix A.

THEOREM 3.1. Let A € C"*™ ind(A) = r. Then the following conditions on
B € C™*™ are equivalent:

(a) B satisfies condition (C1) and ind(B) = 1.

(b) B+ AP(B - A))™'A™ = O, I + AP(B — A) and I + (AP)?(B? — A?) are

nonsingular.
(¢) Relative to the core-nilpotent block form of A in (1.5), B has the following
representation:
B B
(3.1) p=p(_ " ” P,
By Ba1Biy Big

where By and I + B1_11B12B2131_11 are nonsingular.
(d) rank B =rank A", I + AP (B — A) and I + (AP)%(B? — A2) are nonsingular.
Proof. (a) = (b). Since ind(B) = 1, from Lemma 2.2(i) we get that [+ AP (B—A)
and I + (AP)?(B?% — A?) are nonsingular. Finally, using that BB™ = O and applying
Theorem 2.3, we conclude that B(I + AP(B — A))~1A™ = O.
(b) = (c). Write

Bi1 B2\ -1
B=P P
<B21 B22)

We compute

AT'B;, AT'B
I+AD(B—A):P< 1011 1112>P_1~

Hence Bj; is nonsingular because I + AP (B — A) is nonsingular. We have

T+ (AD)2(B2— A%) = P <A1_2(B%1 + B12By1) A;*(BiBia + B12322)> pt
@) I '

Thus, B?, + B12Ba; is nonsingular because I + (AP)?(B? — A?) is nonsingular. On
the other hand,

B B Bi'A, -B;'B 0 0
B(I-FAD(B—A))_lAW - p 11 12 11 A1 11 B12 p1
By1 B o) I o I

0 0 »
oy B P
O —B21 By Bia + Bas
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888 CASTRO-GONZALEZ, ROBLES, AND VELEZ-CERRADA

From the assumption B(I + AP(B — A))~!A™ = O it follows that Boy = BngﬁlBlg.
(¢c) & (d). From the representation (3.1), applying Lemma 1.1, it follows that
rank B = rank By; = rank A”. The rest is easily seen.
Conversely, write

Bi1 B2 51
B=P P
<le 322)

Since I+ AP (B — A) and I + (AP)?(B? — A?) are nonsingular, arguing as in the proof
of (b) = (c), we get that By; and I + BilBlnglell are nonsingular. Finally, from
rank B = rank A” we obtain that rank B = rank By;, and hence by Lemma 1.1(i) we
conclude that Byy = BngﬁlBlg.

(¢) = (a). Assume that B has the block representation (3.1). By Lemma 1.1(i),
(ii), we conclude that rank B = rank B;; = rank A” and ind(B) = 1. On the other
hand,

ATB1 AT O

rank A"BA" = rank P
O O

) P! =rank A7Bj; A} = rank A".

Hence, in view of Theorem 2.1 (a)<(c), we conclude that B satisfy condition (Cy). |
Remark 3.2. Conditions (b) and (d) in the above theorem can be replaced by the
following symmetrical conditions:
(b"y A™(I+ (B—A)AP)"'B =0, I + (B — A)AP and I + (B% — A?)(AP)? are
nonsingular.
(d') rank B = rank A", I + (B — A)AP and I + (B% — A?)(AP)? are nonsingular.
Next, we state the following compact representation for B and B¥.
LEMMA 3.3. Let A € C"*™, ind(A) = r and let B € C"*", ind(B) = 1, satisfying
condition (C1). Then we have the representation

1

(3.2) B:Pb

] B, [I TP,
where By and I +TS are nonsingular. According to this expression, the group inverse
of B can be represented in the form

1

(3.3) B*=P [ g

} (I+TS)B(I+TS)) ' [1 T]P".

Proof. By Theorem 3.1 (c),

By, By > —1
B=P 1 PL
(321 By Byy' Brs

where Bj; and I + Bl_llBlnglBl_l1 are nonsingular. By denoting By = By, T =
Bl_llBlg, and S = Bngl_ll we get the representation (3.2). Now, applying formula
(1.4) given in Lemma 1.1, we obtain the representation for BF. |

4. The class (Cs). Next, based on Theorem 3.1, we establish the following new
characterizations of B satisfying condition (C).

THEOREM 4.1. Let A € C**™ ind(A) = r. Then the following conditions on
B € C™*™ are equivalent:

(a) B satisfies condition (Cs) and ind(B) = s.
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(b) For the smallest positive integer s such that B*(I+(AP)%(Bs—A®))"1A™ = O,
I+ (AP)(B® — A®) and I + (AP)s*1(B*tt — As*1) are nonsingular.

(¢) The index 1-nilpotent decomposition of B has the following representation
relative to the core-nilpotent block form of A in (1.5),

1

(4.1) B:CB+NB=P[S

} Bi[I T|P'+P [_TI} By [S —I] P,
where By and I + TS are nonsingular and Ba(I 4+ ST) is nilpotent of index
s.
(d) For the smallest positive integer s such that rank B® = rank A", [+(AP)*(B*—
A% and I + (AP)*TH( B+ — As*Y) are nonsingular.

Proof. If ind(B) = s and B satisfies condition (Cs), then s is the smallest positive
integer such that B* satisfies condition (C;) and ind(B®) = 1. Moreover, we observe
that for any k > s, I + (AP)¥(B¥ — A*) is nonsingular if and only if I + AP (B* — A)
is nonsingular. So, applying Theorem 3.1 with B?, it follows the equivalence between
condition (a) and the following:

(b For the smallest positive integer s such that B*(I+(AP)®(B*—A%))"1A™ = O,
I+ (AP)3(B® — A®) and I + (AP)?$(B2%* — A2®) are nonsingular.

We now note that conditions (b’) and (b) are equivalent.

A similar device proves the equivalence between conditions (a) and (d) in this
theorem. Applying Theorem 3.1 with B® we get the equivalence of (a) and the
following:

(d") For the smallest positive integer s such that rank B® = rank A", we have that
I+ (AP)3(B* — A%) and I + (AP)25(B% — A%%) are nonsingular.

Finally, we note that conditions (d’) and (d) are equivalent.

Now, we will prove the equivalence between (a) and (c). Suppose B = Cp + Np
is the index 1-nilpotent decomposition (1.2) of B. We know that if s is the index of
B, then N (Cp) = N (B*) and R(Cp) = R(B?). Hence if B satisfies condition (Cy),
then Cp satisfies condition (C;) and ind(Cg) = 1. By Lemma 3.3 it follows that

I

(4.2) Cp=P [ g

} B, [I T|P,
where By and I + T'S are nonsingular. We observe that I + ST is also nonsingular.
Now, write

Nii Ni2\ 5,1
N =P P,
B <N21 N22)

Since CgNp = NCp = O, by direct computations it follows that Ni; = T N3s.S,
N12 = —TNQQ, and N21 = —NQQS. SO,

T

(4.3) Ng=P {_ ;

} By [S —I| P,

where we have renamed Bs = Noy. Thus, for every positive integer k,

T

(4.4) NE =P [ 7

} (Bo(I+ ST)*'By [S —1] P

Condition N = O implies that (Bz(I + ST))® = O. Therefore, Ba(I + ST) is
nilpotent of index s. Hence, from (4.2) and (4.3) we get the representation (4.1).
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890 CASTRO-GONZALEZ, ROBLES, AND VELEZ-CERRADA

Conversely, assume that we have the splitting B = Cp + Np, where Cg and Np
have the representation given by (4.1). Clearly CgNg = NgCpg = O. Moreover, by
Theorem 3.1, equivalence between (a) and (c), it follows that Cp satisfies condition
(C1) and ind(Cg) = 1. Using (4.4), we see that N = O. So B = Cg + Np is
the core-nilpotent decomposition of B and ind(B) = s. Since R(B*) = R(Cp) and
N (B#%) = N (Cp), we conclude that R(B*)NN (A") = {0} and N (B*)NR(A") = {0}.
Thus B € (Cs) and ind(B) = s. O

Remark 4.2. Conditions (b) and (d) in Theorem 4.1 can be replaced by the
corresponding symmetrical conditions, as expressed in Remark 3.2.

COROLLARY 4.3. Let A € C**", ind(A) = r. Then the following statements
about B € C"*™ with ind(B) = s are equivalent:

(a) B satisfies condition (Cs).
(b) I+ (AP)*(B* — A®) is nonsingular and B*(I + (AP)*(B* — A%))"1A™ = O.
(c) rank B® = rank A" and I + (AP)*(B* — A®) is nonsingular.

Proof. (a)<(b). This equivalence follows from the equivalence (a)<(b) estab-
lished in Theorem 4.1 if we show that, under assumption ind(B) = s, the con-
dition (b) in this theorem implies that I + (AP)*T1(B**t! — As+1) is nonsingular.
First, we observe that N (B*) = N (B**!) because ind(B) = s. Now, since A™ +
(AP)*B* is nonsingular, then N (A™) N N (B*) = {0}. From B*(I + (AP)*(B* —
A%))7LA™ = O it follows that B® = B*(I + (AP)*(B* — A%))~}(AP)*B*. So, we see
that N ((AP)*F1BsT1) = N ((AP)*B**') C N (B*!). Thus A™ + (AP)*t1 Bt js
nonsingular because N (A™) NN (B*+!) = {0}.

(a)<(c). This equivalence follows from the equivalence (a)<(d) established in
Theorem 4.1. The details are omitted. |

Next, we give a representation for the powers of B.

LEMMA 4.4. Let A € C"*", ind(A) = r and let B € C"*", ind(B) = s, satisfying
condition (Cs). Then, for all integer k > 1, we have the representation

BF=p { [é} (Bi(I+TS) By [I T]+ [_TI] (Bo(I+ ST))F By [S I } P
where By and I + TS are nonsingular and Bo(I + ST) is nilpotent of index s.

Proof. The formula for the powers B¥ can be derived from the representation
(4.1), using the formula (1.3) of Lemma 1.1 and the formula (4.4). |

5. Perturbation results. In this section we give an explicit representation of
BP and we derive perturbation bounds of the Drazin inverse and the eigenprojection
at zero.

THEOREM 5.1. Let A € C"*", ind(A) =7 > 0 and let B € C™*", ind(B) = s,
satisfying condition (Cs). Denote By = E = B — A and E; = B> — A®. Assume that
I + APE is nonsingular. Then

(5.1)
BP =¢;! (AD + APU ' (AP B AT (I — ATE (AP)* @Y + ATE(AP)*® 1T}

x (AP — o APEAP — o7 AP (W, — DU (T + <I>S‘1(AD)SE5A”)>,
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where ®; = [+(AP)'E;, &; = I+ E;(AP), and V;, = [+®; 1 (AP) E;ATE,(AP)3® !
fori=1 andi=s. If max{||APE||, ||(AP)*Es||, | Es(AP)®||} < 1, then

(5.2)
| B — AP
| AP||

|APE|| I(AP)* E AT W <1+ IA”ES(AD)S|>
T 1 [JAPE] (1= [[APE])( - [[(AP) E])) 1—||Es(AP)*||

|A™ B (AP)* || %3, | [(AP)* EA7|
(1= [|[APE[)(L - [[E(AP)*]) (1 - I(AD)SEsH)

<1+ IAPE| [(AP) B A™|[[|A™Es (AP)° |15 )
1—[[APE| (1= [[APE)( = [[E(AP)*[)(1 = [I(AP)*Eq)) )

Furthermore, if

1
L+ /] A7

then we have the following upper bounds for i =1 and i = s:

max{||APE|, [|(AP) Eq|, || Es(AP)* ||} <

(1= [(AP)' Ei[)(A — [ Eo(A)*]]) .
(1= [I(AP) E[)(1 = [|Es(AP)*]]) = [[(AP) Ei[[| A7 Es (AP)* |

(53) Rl <

Proof. From Theorem 4.1(c), we have that the index 1-nilpotent decomposi-
tion of B is given by B = Cp + Np, with Cp = P[¢| By [I T] P~' and N =

P[_TI} By [S —I] P!, where By and I 4+ T'S are nonsingular and Bs(I + ST) is

nilpotent of index s. Hence, applying Lemma 3.3, formulae (3.3), we obtain

1

(5.4) BP=cL="pP {s

} (I +T8)By(I+TS)'[I T]P~".

Furthermore, we can write E = B — A as

55) B_p <31 +TByS—A, BT -TB ) 1

SBy — BsS  SBiT + By — A,

In view of this latter representation we get

ATY By +TByS) ATYB,T -TB
(5.6) I+ADE—P< 1 ( 1(4)- 25) Ay ( 1I 2)>P1.

From the assumption that I + AP E is nonsingular, it follows that By + T B5S is
nonsingular. Using (5.6) and (5.4) we obtain
(5.7)

(I+APE)BP = P (

ATM I+ T9)™! ATV (I +TS)~T .
S((I+TS)Bi(I+T8S)~' S((I+TS)Bi(I+TS))~'T '
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By denoting ®; = I + AP E, in view of (5.6) we obtain

0 1

By +TB3S) YAy —(By +TB2S)"Y(BiT - TB
(5.8) <I>1_1:P<( 1 +TByS) 1 (B1 +TB2S)™ (B 2)>P_1.

Utilizing the representations of the powers of B given in Lemma 4.4, we write
E, = B® — A% as

5 _ p (Bi(I+TS8))**By — A3 (Bi(I+TS8))* BT p1
’ S(By(I+T8))*'B;  S(B\(I+T8))* BT — A3

By denoting ®, = I + (AP)*E, and ®, = I + E,(AP)* we get

_ -1 s
o1 — pB((BI+TED) AT =T
S O I )
(5.9) » -
1 — p AiBy ((Bl(I+TS))(S_ )) o p-1
° -3 I ’
and, hence,
~ -1 (s—1)) 71
;1(AP) = (AP) & = p [ 1 (B +T$)E0) 7 O) poa,
(0] 0]
Furthermore,

o T ~ O O
5.10) @ 1(APYE AT =P Pt ATE (AP)o l =P pPL
(5.10) @, °(47) (o 0) (A7) @ (5 0)

Let W;, = I 4+ ®; 1 (AP) E;A"E,(AP)*®;! for i = 1 and i = s. Using (5.10) we see
that

I+TS)"' O
(5.11) v l=pP <( +75) ) P
O I

and, using (5.5), (5.6), and (5.10) we obtain

(o 7)

. (1 (By +TB,S)"" A1 (B, +TBQS)1(31TTBQ)> <O O)

Vi, =P

P—l
0] (0] S O

b ((31 +TB8)'By(I+T5) 0) po

O I
and, thus,
(5.12) vl_p (I+TS)'By'(B1+TByS) O 1
s o) I
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Now, let us introduce
¥y = AP 4+ APU_1& 1 (AP) B, A™ (I — ATE,(AP)*d 1),
(5.13) Q=AP — 3 'APEAP — o' AP (U, — 1)U},

S = ATE (AP o1 W] + &1 (AP)* E A7),

In order to verify identity (5.1) we will see that the matrix representation of 3; + X
is equal to the right-hand side of (5.7). We compute

AT O O A'(I+1S)'r\ (I O
o o) \o 0] -S I

_p <A11(1 +TS)"Y ATV I+ TS)—1T> iy

21 =P P*l

0 0

On the other hand, utilizing (5.5), (5.8), and (5.11) we see that

By +TB:S)"{(I+TS)" 0O
QP<(1+ 2)0<+ ) O)Pl,

and, hence, using (5.12), we get

wilo - p ((1+T5)—1311(I+T5)—1 0> =

0 0

Therefore,
O O I -1p-! -1 I T
S, =P (I+TS)'Bi (I+TS)™" O p1
S O O I O I

@) 0
=P o . i N
S(I+TS)"'ByY(I+T8)~" SUI+TS)"'ByY(I+TS)"'T

In view of these expressions of X7 and X3 we conclude the proof of the first part.
From the identity B® — AP 4+ APE(BP — AP + AP) = %; — AP 4 %,, taking norms
we obtain

IBP — AP|| < [ APE||[| B® — AP|| + [ APE[||AP|| + [[21 — AP + |||l
Since max{||[APE||, |[(AP)*E,|, || Es(AP)*||} < 1, we have
IAPIIAPE] + (|51 — AP[| + (15

(5.14) IBP — AP|| < T E

and

(615 o7 <—— and &7l <— 1
1= [(4D)E, 1= B, (AD)7]

Taking norms in (5.13), and using these upper bounds, we get

LAP[I[(AP)* B AT |9l <1+ A”ES(AD)S|>

121 — AP|| < *
' 1—[[(AP)*E| 1B (AP)?
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and

1Bl <

IAP ||| A B (A)*[[[[ 97| (1+ II(AD)SESA”II)
1—[|Es(AP)7]] 1—[|(AP)Ey||

|APE] I(A")* B AT | A7 E, (AP)* [ [ @ |
g (1 T APE] T [APE[){ — | E (AP - II(AD)SESII)> '

Substituting these upper bounds of ||2; — AP|| and ||Z2|| in (5.14) we conclude the

proof of (5.2). Finally, if max{||APE||, ||(AP)*E,||, | Es(AP)*||} < m, then
[(AP) B || A" Es(AP)* ,
U, — I < - <1, 1=1,s.
Wi =10 = G j Py B - 1,407
Hence, it follows that
_— (1 [PV B~ B AP —
T (L= [[(APYE ) (1 = [|Es(AP)*]]) — [[(AP) E; || A™ Es (AP)*||” 7
This completes the proof. ]

Remark 5.2. If we denote 6;s = (1 — [|[(AP) E;|)(1 — [|[Es(AP)?])) — ||[(AP) Ey|
| A™Es(AP)*||, then the upper bounds (5.3), for i = 1 and i = s, can be expressed as

[(AP) E;i ||| A7 E (AP)°

vl<i1
[P <1+ s

=1+0(|E[?),

where in the last identity we have taken into account that || Es|| = O(||E||) (see [11]).
Substituting this in (5.2) we get that the upper bound of ||BP — AP|| up to the
first order of ||E||, has the following expression

|BP — AP|| __||APE] I(AP)*E A7
(5.16) [AP] T1—[[APE] (1 - [|APE[)(1 — [[(AP)*Esl])
’ ATK'ES ADP)s

(1= APE[NA - [[Es(AP)*]])

In the following corollary we show that the matrices satisfying condition (1.1), or
equivalently B™ = A™, are a particular case of the matrices satisfying condition (Cy).

COROLLARY 5.3. Let A € C"*", ind(A) =r >0, and let B € C"*" ind(B) = s
satisfying condition (Cs). Denote E = B — A. If ATEAP = APEA™, then we have
BP = (I + APE)=YAP. Purther, if | APE|| < 1, then

|BP — AP |APE]

5.17 < .
(5:17) A = T ADE]

Proof. We have that E has the representation (5.5) given in the proof of Theo-
rem 5.1. From condition A"EAP = APEA™ it follows that

BlT = TB2 and SBl = BQS
Using these relations we get that

S(B1(I+T8))* = Ba(I+ST)S(B1(I+T8S))* ' =--- = (B2(I +ST))*S.
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Applying that Bo(I + ST) is nilpotent of index s and By (I + T'S) is nonsingular we
obtain that S = O. Analogously, we can see that T'= O. Thus, expression (5.6) takes

the form
AT'B;, O
I+ADEP< Lo >P1.
O I

Clearly I + APFE is nonsingular. In view of (5.4) we get

B O
BD:P 1 P711(1+ADE)71AD.
O O
Hence, we get that B™ = A™ and the upper bound (5.17). ]
THEOREM 5.4. Let A € C**™ ind(A) =7 > 0, and let B € C"*" ind(B) = s,
satisfying condition (Cs). Denote E, = B —A®. If max{||(AP)*E,|, || Es(AP)*||} < 1,
then

oo APy AT
(5.18) 1A= 1 —[[(AP)sE,]]
' AT E, (AP) |93 |(AP)* B, AT |
T A APy BN - [E:(AD)]) (1 = ||<AD>SES||) ’

where Uyg = I + (I + (AP)E,) "1 (AP) E,A™E (AP)*(I + E4(AP)*)~1.
If max{|[(AP) E,||, || Es(AP)*||} < —-——, then an upper bound of ||V} is

L+4/[1A7 ]|
given by (5.3).
Proof. From Theorem 2.3 we have
(5.19) B™ 4+ (AP)*E,B™ = —A™X !,

where X = I — (I + (AP)*E,)"1A™ — A™(I + E,(AP)*)~1. Utilizing the expressions
of ®;1 and ®; ! given in the proof of Theorem 5.1 by (5.9), we can represent

I T I+T8)™! [+TS8)™'T
X=pr P amdx— =p | TS . U +T5) PR
S —I S(I+TS)™ —I+SUI+TS)'T

Thus,

ATy -1 T O O —1
ATX " =A"+ P P
-S(I+TS)"t —-S(UI+TS)"'T

Hence, in view of the representations (5.10) and (5.11) we may write
—ATX V= AT — ATE (AP S NI + B (AP)PE,AT).
Substituting the latter identity in (5.19) we obtain
B™ — A" = —(APYE(B™ — A" + A7) — ATE(AP)* & W M1 + &, (AP) E,AT).
Taking norms
IB™ — A™|| <|[(AP) Es ||| BT — Al + | (AP)*E. A"

+ | ATE (AP [lR e I (1 + |2 7 1(AP)* E.AT).
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TABLE 5.1

Comparison of upper bounds of | BBP — AAP||5.

Exact value | [13, Thm. 5], (15) (5.18)
B=A+E; | 999x 10" 10 1.00 x 10~° 1.00 x 109
B=A+FEy | 1.85x1079 2.74 x 10~° 2.74 x 1079

TABLE 5.2

Comparison of upper bounds of | BP — AP||2/]|AP]|2.

[ [ B=A+E: [ B=A+EFE
Exact Value 1.12 x 10710 3.44 x 10~ 11
13, Thm. 1], (1) 0.7649 0.9008
13, Thm. 4], (6) | 1.00 x 1075 + O(J[E[]?) | 2.73 x 107° + O(] E|]?)
(5.20)+(5.18) 3.41 x 1079 6.88 x 1077
(5.2) 2.41 x 1079 415 x 107°
(5.16) 241 x 1079+ O(JE|?) | 415 x 10~7 + O(] E|]?)

TABLE 5.3
Comparison of upper bounds of |B® — AP||p/||AP||F.

Exact value | [14, Thm. 4.1], (4.1) (5.2)
B=A+FE; | 1.14x10° 10 8.39 x 10~ ° 2.42 x 1077
B=A+FEy | 347 x 10~ 1T 8.39 x 10~° 4.15 x 1079

Since max{||(AP)*Eq||, || Es(AP)*||} < 1, regrouping in |B™ — A™|| and substituting

|®5 1] and ||®; ]| by the upper bounds (5.15), we get (5.18). a
R k 5.5. If APE|, 1(APYSEy|l, | Es(AP)*]|} < ——,
emar. max{[[AE], [[(A7)*Es|, [ Es(A7)*[l} < 7=

seen in Remark 5.2, the upper bound of ||B™ — A7 || up to the first order of || E|| has
the following expression:

as we have

[(AP)° B, AT]|
1—[|(AP) Ey||

1A B (AP)°

|B™ — A™| < (1 —[[(AP)sE,[)(1 — || E<(AP)5]])

+O(|E]*).

Remark 5.6. In [5, Theorem 3.1 and Remark 3.3], under assumption A+||APE|| <
1, where A is un upper bound of ||[B™ — A™||, the following estimation of the Drazin
inverse was given:

B> — AP _ | APE]| +2A
[AP - T 1-[[APE| - A

(5.20)

Ezample 5.7. In Table 5.1 we compare the upper bound for || B™ — A™||s derived
in Theorem 5.4 with the upper bound given in [13, Theorem 5]. The upper bounds
for || BP — AP||5/||AP||2 given in Theorem 5.1, Remark 5.2, and Remark 5.6, replacing
A in (5.20) by the upper bound given in (5.18), are compared in Table 5.2 with the
upper bounds given in [13]. Let

g

—
o
o
o

B

Il
o o o o9
o

7E1: 7E2:

o O O = O
o O ©O o o
S = = O O
S O = O O
o O O O O
o O o~

o O O O O
o O O o O
o O O O O
o O O O O
o O O~

S O O O O
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where € = 107%. We have ind(A) = ind(A + E;) = 2 and rank A% = rank(A4 + E;)? =
rank A%(A + E;)?A% = 3, i = 1,2. By Theorem 2.1 we have that B = A + E; satisfies
condition (Cz).

In Table 5.3 we compare the upper bound (5.2) using the Frobenius norm with
the upper bound given in [14], formula (4.1). That formula is based on the separation
of matrices sepp(C,N), with C' and N being the matrices in the following Schur
decomposition,

QHAQ_CG
|0 N|’

where @ is an unitary matrix, C' is nonsingular, and N is nilpotent of index ind(A).
In this example sepp(C, N) = 1.42 x 1074,
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