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OVERLAPPING SCHWARZ WAVEFORM RELAXATION FOR
CONVECTION-DOMINATED NONLINEAR CONSERVATION LAWS∗

MARTIN J. GANDER† AND CHRISTIAN ROHDE‡

Abstract. We analyze the convergence of the overlapping Schwarz waveform relaxation algo-
rithm applied to convection-dominated nonlinear conservation laws in one spatial dimension. For
two subdomains and bounded time intervals we prove superlinear asymptotic convergence of the
algorithm in the parabolic case and convergence in a finite number of steps in the hyperbolic limit.
The convergence results depend on the overlap, the viscosity, and the length of the time interval
under consideration, but they are independent of the number of subdomains, as a generalization of
the results to many subdomains shows. To investigate the behavior of the algorithm for a long time,
we apply it to the Burgers equation and use a steady state argument to prove that the algorithm
converges linearly over long time intervals. This result reveals an interesting paradox: while for the
superlinear convergence rate on bounded time intervals decreasing the viscosity improves the per-
formance, in the linear convergence regime decreasing the viscosity slows down the convergence rate
and the algorithm can converge arbitrarily slowly, if there is a standing shock wave in the overlap.
We illustrate our theoretical results with numerical experiments.
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1. Introduction. Overlapping Schwarz waveform relaxation is a class of do-
main decomposition algorithms to solve evolution problems in parallel. The classical
way of applying domain decomposition methods to evolution problems is to discretize
the time dimension first uniformly over the whole domain by an implicit scheme,
and then to apply domain decomposition at each time step separately to solve the
sequence of steady state problems obtained from the implicit time discretization.
Numerical experiments for this approach with an overlapping Schwarz method for
the two-dimensional heat equation can be found in [Meu91] and the application of
the additive and multiplicative Schwarz preconditioners to the convection diffusion
equation have been analyzed in [Cai91] and [Cai94], respectively. A nonoverlapping
domain decomposition in this context using a Neumann–Dirichlet preconditioner at
each time step was proposed in [Dry91], and an interesting variant, which uses an
explicit method to advance the interface values in time and then an implicit method
on each subdomain and thus avoids a subdomain iteration, is proposed in [DD91];
see also [RZ94] and [CL96]. For hyperbolic problems, the case of the wave equation
with discontinuous bulk modulus and density fields per subdomain was analyzed in
[BGT97] and the advantage of different grids in space due to the domain decomposi-
tion was emphasized (“the possibility of assigning to each subdomain its own space
step makes numerical simulations much less expensive”), but due to the uniform
time discretization, one cannot have an optimal space-time discretization close to the
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CFL condition in each subdomain in the classical approach. For a linear first-order
hyperbolic equation in two dimensions, numerical results of the additive Schwarz pre-
conditioner together with GMRES acceleration were reported in [WCK98] and a first
analysis for the case of the Euler equations can be found in [DLN00]. As mentioned
above, the main disadvantage of this classical approach is that one needs to use a
uniform time discretization over the entire domain and thus loses one of the main
features of domain decomposition methods, namely, to treat the problem on each
subdomain numerically differently, with an appropriate discretization both in time
and space adapted to the subdomain problems.

Overlapping Schwarz waveform relaxation does not have this disadvantage; the
algorithm also uses an overlapping domain decomposition in space, like the classical
Schwarz algorithm for steady state problems (see [Sch70]), but then the algorithm
solves evolution problems on the subdomains and uses an iteration to converge to
the solution of the original problem posed on the entire domain, like in waveform
relaxation methods (see [LRSV82]), which explains the name of the algorithm. Since
subdomain problems are solved both in space and time on subdomains, appropriate
discretizations in space and time can be applied per subdomain. In addition, com-
munication is not required at each time step; the computation can be performed over
several time steps in a time window before information is exchanged with neighboring
subdomains. This can be beneficial in a parallel environment where the startup cost
of a connection with another processor is significant.

A very early use of this type of algorithm can be found in the research report
[MS87], where it was applied to the one-dimensional wave equation, and it was shown
that the algorithm converges in a finite number of steps in this case; see also [Gan97].
The algorithm has been analyzed in [Bjø95] for more general hyperbolic problems. The
algorithm applied to parabolic problems was first analyzed for the heat equation in
[GZ97, GZ02], for a semilinear model problem in [Gan98], and independently for con-
vection diffusion problems in [GK02]. Applied to parabolic problems, the algorithm
has the interesting property of having two different convergence regimes, depending
on the length of the time evolution on the subdomains before information is exchanged
with neighboring subdomains. The algorithm’s performance can be further improved
by using better transmission conditions; see, for example, [GHN99].

We analyze in this paper the convergence properties of overlapping Schwarz wave-
form relaxation applied to convection-dominated viscous conservation laws with non-
linear fluxes. Let T > 0 be the end of the time interval of interest, t ∈ [0, T ), and
Ω ⊆ R be the bounded or unbounded spatial domain. We analyze the overlapping
Schwarz waveform relaxation method to compute solutions u = u(x, t) : Ω× (0, T ) →
R of the corresponding initial and initial boundary value problems

∂u

∂t
+

∂

∂x
f(u) = ε

∂2u

∂x2
in Ω × (0, T ),(1.1)

where ε ≥ 0 and f ∈ C2(R) denotes a function which in general depends in a nonlinear
way on u.

The initial boundary value problem for (1.1) is a scalar model problem for the
physically important equations of viscous compressible flow: the compressible Navier–
Stokes equations. Flow problems impose considerable difficulties if the Reynolds
number becomes big. In our case we are therefore interested especially in the case
0 < ε << 1. To understand this case it is essential to consider also the singular hyper-
bolic limit problem with ε = 0. We start by collecting in section 2 all the analytical
background results we need in our analysis. In section 3 we analyze the behavior
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of the overlapping Schwarz waveform relaxation algorithm for two subdomains over
bounded time intervals, T < ∞ . For ε > 0 we prove convergence of the algorithm at
a superlinear rate. The analysis allows us to track exactly how the rate depends on
ε when ε tends to zero. In particular, we show the connection to the results of the
Schwarz waveform relaxation algorithm in the case ε = 0 which is analyzed separately.
The convergence rate of the Schwarz waveform relaxation algorithm depends on the
size of the overlap, the length of the time interval, and the viscosity term, and the
algorithm becomes faster as the viscosity term becomes smaller, which leads in the
limit to convergence in a finite number of steps. In section 4 we then generalize the
superlinear convergence result to I > 2 subdomains and show that the convergence
rate is independent of the number of subdomains. To understand the long-time be-
havior of the algorithm (T −→ ∞), we study in section 5 the overlapping Schwarz
algorithm for the steady Burgers equation, which can be considered as the long-time
behavior of the evolution case. We show that the algorithm converges linearly for
the two subdomain cases and that the convergence rate depends again on the size of
the overlap and the viscosity term. In this case, however, when there is a standing
shock in the overlap, we find that the smaller the viscosity is, the slower the conver-
gence becomes, and the dependence is exponential. Our analytical results agree with
the observations for long time computations for the Burgers equation that have been
reported in [GK97, GK00]. There, it is shown that the solution depends in a super-
sensitive way on the boundary conditions, if an internal layer is present. Moreover, an
asymptotic analysis is presented and a two-dimensional version of the Burgers prob-
lem is considered. General analytical results using the Cole–Hopf transformation can
be found in [LO95]. In section 6 we illustrate our results with numerical experiments.

2. Initial and initial boundary value problem. We consider for a given
function f ∈ C2(R) the scalar conservation law

∂uε

∂t
(x, t) +

∂

∂x
f(uε(x, t)) = ε

∂2uε

∂x2
(x, t), (x, t) ∈ Ω × (0, T ),(2.1)

where Ω ⊆ R is an open set, T > 0, and ε ≥ 0 is the viscosity parameter. We start with
a review of basic analytical results for the parabolic case, ε > 0, and the (singular)
hyperbolic case, ε = 0. In the first case we focus on the behavior of solutions for
0 < ε << 1, which is important for the analysis of the Schwarz waveform relaxation
algorithm later in section 3.

2.1. The parabolic case, ε > 0. In our analysis we need results both for the
initial value problem (2.1) on the infinite domain Ω = R with the initial condition

uε(x, 0) = u0(x), x ∈ Ω,(2.2)

where we assume that u0 ∈ C2(R)∩L∞(R), and for the initial boundary value problem
(2.1) on the half line Ω = (−∞, 0) with the initial and boundary conditions

u0(x, 0) = u0(x), x ∈ Ω, u0(0, t) = g(t), t ∈ [0, T ],(2.3)

where we suppose that u0 ∈ C2([−∞, 0]) ∩ L∞((−∞, 0]), g ∈ C2([0, T ]), and that
the appropriate compatibility condition holds for u0 and g at x = t = 0. For both
problems we consider classical solutions, i.e., functions that are smooth enough to
satisfy the conservation law and the constraints pointwise.
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Theorem 2.1. For ε > 0 we have the following two results.
(i) For the initial value problem (2.1), (2.2), let the numbers u = infx∈R{u0(x)}

and u = supx∈R{u0(x)} be given. Then there exists a unique classical solution
uε ∈ C1(0, T ;C2(R)) of (2.1), (2.2) that satisfies

u ≤ uε(x, t) ≤ u, (x, t) ∈ R × [0, T ], and ε‖uε
x‖L∞(R×[0,T ]) ≤ CIV P .

Furthermore, there exists a function u0 ∈ L∞(R × [0, T ]) such that for each
compact set Q ⊂ R we have

lim
ε→0

‖u0 − uε‖L1(Q×[0,T ]) = 0.

(ii) For the initial boundary value problem (2.1), (2.3), let

u = min{infx≤0{u0(x)}, inft∈[0,T ]{g(t)}},

u = max{supx≤0{u0(x)}, supt∈[0,T ]{g(t)}}.

Then there exists a unique classical solution uε ∈ C1(0, T ;C2((−∞, 0])) of
(2.1), (2.3) that satisfies

u ≤ uε(x, t) ≤ u, (x, t) ∈ (−∞, 0] × [0, T ]

and

ε‖uε
x‖L∞((−∞,0]×[0,T ]) ≤ CIBV P .

Furthermore, there exists a function u0 ∈ L∞((−∞, 0] × [0, T ]) such that for
each compact set Q ⊂ (−∞, 0] we have

lim
ε→0

‖u0 − uε‖L1(Q×[0,T ]) = 0.

The constants CIV P , CIBV P > 0 depend on f , u0, g, and T , but not on ε.
Proof. For the existence part in (i) and (ii) we refer the reader to, e.g., [LSU68].

The L∞-estimates follow from an application of the maximum principle.
For the proof of the vanishing viscosity limits we refer the reader to [MNRR96,

Chapter 2].

2.2. The hyperbolic limit ε = 0. We now consider for the limiting case
ε = 0 the initial value problem (2.1), (2.2) on Ω = R with u0 ∈ L∞(R) and the
initial boundary value problem (2.1), (2.3) on Ω = (−∞, 0) with u0 ∈ L∞((−∞, 0])
and g ∈ L∞([0, T ]). It is well known that initial (boundary) value problems for
nonlinear functions f do not have time-global classical solutions for arbitrary, even
smooth functions u0, g: within finite time singularities, i.e., shock waves, develop.
The well-posedness theory for the singular problems (2.1), (2.2) and (2.1), (2.3) relies
therefore on a weaker notion of a solution: the entropy solution. It can be proved
that in both cases there exists a unique entropy solution which satisfies the boundary
data in an appropriate sense. These are the solutions we consider throughout the
paper, although we do not introduce the precise definitions here, since they are not
needed in an essential way later. It is important that the vanishing viscosity limits
u0 from Theorem 2.1 coincide with the entropy solutions for (2.1), (2.2) and (2.1),
(2.3) in the case ε = 0. We refer the reader interested in the background on nonlinear
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conservation laws and the precise definition of entropy solutions to [MNRR96]. The
properties of the entropy solutions we need in our analysis are summarized in the
following theorem.

Theorem 2.2. For ε = 0 we have the following three results.
(i) For the initial value problem (2.1), (2.2), denote u = essinfx∈R{u0(x)} and

u = esssupx∈R{u0(x)}. Then the function u0 ∈ L∞(R × [0, T ]) from (i) in
Theorem 2.1 is the unique entropy solution of (2.1), (2.2). It satisfies for
almost all (x, t) ∈ R × [0, T ] the estimates

u ≤ u0(x, t) ≤ u.(2.4)

(ii) For the initial boundary value problem (2.1), (2.3), let the numbers

u = min
{

essinfx≤0{u0(x)}, essinft∈[0,T ]{g(t)}
}
,

u = max
{

esssupx≤0{u0(x)}, esssupt∈[0,T ]{g(t)}
}

be given. Then the function u0 ∈ L∞(R × [0, T ]) from (ii) in Theorem 2.1 is
the unique entropy solution of (2.1), (2.3). It satisfies for almost all (x, t) ∈
(−∞, 0] × [0, T ] the estimates

u ≤ u0(x, t) ≤ u.(2.5)

(iii) Let u01, u02 ∈ L∞(−∞, 0]), g1, g2 ∈ L∞([0, T ]), and let I = [a, b] ⊂ (−∞, 0] be
a bounded interval. Suppose that u0

1, u
0
2 ∈ L∞((−∞, 0]×[0, T ]) are the entropy

solutions of the initial boundary value problem (2.1), (2.3) with u0 = u01,
u0 = u02, g = g1, and g = g2, respectively. We then have for almost all
t ∈ [0, T ] the inequality∫ b

a

|u1(x, t) − u2(x, t)| dt

≤
∫ min{0,b+λt}

a−λt

|u01(x) − u02(x)| dx + λ

∫ b/λ+t

0

|g1(s) − g2(s)| ds.

The number λ > 0 is given by

λ = max
u≤v≤u

{|f ′(v)|},

where

u = min

{
ess inf
x≤0

{u01(x)}, ess inf
t∈[0,T ]

{g1(t)}, ess inf
x≤0

{u02(x)}, ess inf
t∈[0,T ]

{g2(t)}
}

and u is defined analogously.
Proof. All statements can be found in Chapter 2 of [MNRR96].
Theorem 2.1 gives the basic existence results for classical solutions and states that

uε converges for ε → 0 pointwise almost everywhere to the entropy solutions u0 of the
corresponding hyperbolic problems given in Theorem 2.2. Thus, in the particularly
interesting singularly perturbed cases 0 < ε << 1 we have to take into account the
viscous counterparts of shock waves, i.e., internal layers of width O(ε) and amplitude
O(1). Precisely the L∞-estimates on the derivative uε

x in Theorem 2.1 allow us to
compute the dependency on ε explicitly in all our estimates.

We note that statement (ii) in Theorem 2.1 and statements (ii), (iii) in Theo-
rem 2.2—appropriately adapted—hold true for more general domains, particularly
for all kinds of quarter spaces.
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3. Overlapping Schwarz waveform relaxation for two subdomains. We
analyze now the overlapping Schwarz waveform relaxation algorithm for the initial
value problem (2.1), (2.2) and two subdomains. We start with the parabolic case,
ε > 0, in subsection 3.1. We pay close attention in this analysis to the dependence of
the convergence results on ε, since we are also interested in the convergence behavior
of the algorithm in the limit when ε → 0. In section 3.2 we then analyze directly
the behavior of the algorithm in the hyperbolic limit when ε = 0, and we show how
nonlinear flux functions lead to convergence properties of the algorithm which are not
present when it is applied to linear problems. To simplify the notation we will skip
the index ε in uε in what follows.

3.1. The parabolic case, ε > 0. The overlapping Schwarz waveform relax-
ation algorithm applied to the initial value problem (2.1), (2.2) with the two subdo-
mains Ω1 = (−∞, L) and Ω2 = (0,∞), L > 0, is given for iteration index n ∈ N

by

∂un
1

∂t
+ f ′(un

1 )
∂un

1

∂x
= ε

∂2un
1

∂x2
in Ω1 × (0, T ),

un
1 (·, 0) = u0 in Ω1,

un
1 (L, ·) = un−1

2 (L, ·) on [0, T ],

(3.1)

and

∂un
2

∂t
+ f ′(un

2 )
∂un

2

∂x
= ε

∂2un
2

∂x2
in Ω2 × (0, T ),

un
2 (·, 0) = u0 in Ω2,

un
2 (0, ·) = un−1

1 (0, ·) on [0, T ].

(3.2)

There is also a more sequential variant of this algorithm, where the interface values
on the second domain are taken from the newer iterate un

1 on the first subdomain,
like in a Gauss–Seidel iteration, but we analyze only the Jacobi version given in (3.1)
and (3.2); the Gauss–Seidel case can be analyzed similarly. For the analysis we also
require that the iteration starts with the initial guess

u0
1(x, t) = inf

x′∈(−∞,L]
{u0(x

′)}, (x, t) ∈ Ω1 × (0, T ),

u0
2(x, t) = inf

x′∈[0,∞)
{u0(x

′)}, (x, t) ∈ Ω2 × (0, T ).
(3.3)

We define the errors in the Schwarz waveform relaxation iteration by en1 := u−un
1 on

the left subdomain and en2 := u− un
2 on the right subdomain for n ∈ N0. For n ∈ N,

we find with (3.1), (3.2) that the errors satisfy the equations

∂en1
∂t

+ f ′(u)
∂en1
∂x

+ θn1 e
n
1 = ε

∂2en1
∂x2

in Ω1 × (0, T ),

en1 (·, 0) = 0 in Ω1,
en1 (L, ·) = en−1

2 (L, ·) on [0, T ],

(3.4)

and

∂en2
∂t

+ f ′(u)
∂en2
∂x

+ θn2 e
n
2 = ε

∂2en2
∂x2

in Ω2 × (0, T ),

en2 (·, 0) = 0 in Ω2,
en2 (0, ·) = en−1

2 (0, ·) on [0, T ],

(3.5)
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where the functions θni : Ωi → R are given by

(3.6)

θni (x, t) =
∂

∂x
un
i (x, t)

∫ 1

0

f ′′
(
un
i (x, t) − s

(
u(x, t) − un

i (x, t)
))

ds, i = 1, 2.

For later use we also define here the functions K1,x, K2,x by

K1,x(x, t) = − 1

2
√
π

x− L

ε1/2t3/2
exp

(
− (x− L)2

4εt

)
,(3.7)

K2,x(x, t) =
1

2
√
π

x

ε1/2t3/2
exp

(
− x2

4εt

)
.(3.8)

Because of our particular choice of the starting values (3.3) and the comparison prin-
ciple for parabolic differential equations (see [Fri64]), the errors on both subdomains
stay nonnegative for all iterations n ∈ N0,

en1 (x, t) ≥ 0, (x, t) ∈ Ω1 × (0, T ), en2 (x, t) ≥ 0, (x, t) ∈ Ω2 × (0, T ).(3.9)

It suffices therefore to derive upper bounds for the errors to obtain a bound on the
convergence rate of the overlapping Schwarz waveform relaxation algorithm.

Lemma 3.1 (supersolutions). Let the families {en1}n∈N , {en2}n∈N be given by
(3.4), (3.5). Then for all n ∈ N we have

0 ≤ en1 (x, t) ≤ ēn1 (x, t) ∀ (x, t) ∈ Ω1 × (0, T ),

0 ≤ en2 (x, t) ≤ ēn2 (x, t) ∀ (x, t) ∈ Ω2 × (0, T ),

where the supersolution ēn1 is the solution of the linear, constant coefficient problem

∂ēn1
∂t

+ a1
∂ēn1
∂x

+ b1ē
n
1 = ε

∂2ēn1
∂x2

in Ω1 × (0, T ),

ēn1 (·, 0) = 0 in Ω1,

ēn1 (L, t) = exp(σ1t) sup
0≤τ≤t

en−1
2 (L, τ), t ∈ [0, T ],

(3.10)

with the constants a1, b1, σ1 ∈ R given by

a1 := inf
(x,t)∈Ω1

f ′(u(x, t)),

b1 := inf
(x,t)∈Ω2

{
θn1 (x, t) + (f ′(u(x, t)) − a1)

a1

2ε

}
,

σ1 :=

{
−a2

1

4ε − b1 if −a2
1

4ε − b1 ≥ 0,
0 otherwise,

and the supersolution ēn2 is the solution of the linear, constant coefficient problem

∂ēn2
∂t

+ a2
∂ēn2
∂x

+ b2ē
n
2 = ε

∂2ēn2
∂x2

in Ω2 × (0, T ),

ēn2 (x, 0) = 0 in Ω2,

ēn2 (0, t) = exp(σ2t) sup
0≤τ≤t

en1 (0, τ), t ∈ [0, T ],

(3.11)
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with the constants a2, b2, σ2 ∈ R given by

a2 := sup
(x,t)∈Ω1

f ′(u(x, t)),

b2 := inf
(x,t)∈Ω2

{
θn2 (x, t) + (f ′(u(x, t)) − a2)

a2

2ε

}
,

σ2 :=

{
−a2

2

4ε − b2 if −a2
2

4ε − b2 ≥ 0,
0 otherwise.

Note that the numbers σ1 and σ2 are finite but they can be of order O(ε−1) due to
result (ii) in Theorem 2.1.

Proof. The proof is constructive. We first define for i = 1, 2 the constants

pi =
ai
2ε

, qi = −a2
i

4ε
− bi,(3.12)

and the function

g1 = g1(t) = exp(−p1L + (σ1 − q1)t) sup
0≤τ≤t

en−1
2 (L, τ),

which is nonnegative due to (3.9), and monotonically increasing because of our choice
of σ1. For the linear, constant coefficient problem (3.10) satisfied by the supersolution
we have the closed form solution formula

ēn1 (x, t) = exp(p1x + q1t)

∫ t

0

K1,x(x, t− τ)g1(τ) dτ,(3.13)

where the kernel K1,x(x, t) is given in (3.7). To show that ēn1 is indeed a supersolution,
we have to show that

dn1 := ēn1 − en1 ≥ 0.(3.14)

Now the difference function dn1 satisfies the linear convection diffusion equation

∂dn1
∂t

+ f ′(u)
∂dn1
∂x

+ θn1 d
n
1 − ε

∂2dn1
∂x2

= Q1(x, t),(3.15)

where the source term Q1(x, t) is given by

Q1(x, t) = (f ′(u(x, t)) − a1)
∂ēn1
∂x

+ (θn1 (x, t) − b1) ē
n
1 (x, t)

= (f ′(u(x, t)) − a1)
e(p1x+q1t)

2
√
π

∫ t

0

e(− (x−L)2

4ε(t−τ) )

ε1/2(t− τ)3/2

[
(x− L)2

2ε(t− τ)
− 1

]
g1(τ) dτ

−
(
(f ′(u(x, t)) − a1)p1 + θn1 (x, t) − b1

)
(x− L)

×e(p1x+q1t)

2
√
π

∫ t

0

e(− (x−L)2

4ε(t−τ) )

ε1/2(t− τ)3/2
g1(τ) dτ

=: (f ′(u(x, t)) − a1)e
(p1x+q1t)Q11(x, t)

+ ((f ′(u(x, t)) − a1)p1 + θn1 (x, t) − b1) e
(p1x+q1t)(L− x)Q12(x, t).
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If we can show that Q11(x, t) and Q12(x, t) are nonnegative for all (x, t) ∈ Ω1× (0, T ),
we obtain Q1(x, t) ≥ 0 for all (x, t) ∈ Ω1 × (0, T ) by the definition of a1, b1 which
implies (3.14) by the maximum principle for (3.15) with zero initial and boundary
data. But Q12 is nonnegative since g1 from (3.13) is nonnegative by (3.9), and for
Q11 we observe that it is the x-derivative of the solution w of the heat equation
wt = εwxx in Ω1 × (0, T ) which satisfies w(L, ·) = g1 and w(·, 0) ≡ 0. Since g1

is nonnegative and monotonically increasing, Q11 must also be nonnegative, which
concludes the proof that ēn1 is a supersolution of en1 . Similarly one can also show that
ēn2 is a supersolution of en2 .

Theorem 3.2 (superlinear convergence). The overlapping Schwarz waveform
relaxation algorithm (3.1), (3.2) with two subdomains for the convection-dominated
nonlinear conservation law (2.1), (2.2) converges superlinearly. For each t > 0 we
have

sup
x∈Ω1,0≤τ≤t

{e2n
1 (x, τ)} ≤ e

C(t+L)
ε nerfc

(
nL√
εt

)
sup

0≤τ≤t
{e0

1(0, τ)},(3.16)

sup
x∈Ω2,0≤τ≤t

{e2n
2 (x, τ)} ≤ e

C(t+L)
ε nerfc

(
nL√
εt

)
sup

0≤τ≤t
{e0

2(0, τ)},(3.17)

where the constant C is independent of ε, L, t, and n.
Proof. Using Lemma 3.1 and the explicit formula for the supersolutions, we obtain

the estimates

en1 (x, t) ≤ ep1(x−L)+q1t

∫ t

0

K1,x(x, t− τ) sup
0≤s≤τ

{en−1
2 (L, s)}e(σ1−q1)τ dτ,

en2 (x, t) ≤ ep2x+q2t

∫ t

0

K2,x(x, t− τ) sup
0≤s≤τ

{en−1
1 (0, s)}e(σ2−q2)τ dτ,

(3.18)

where K1,x, K2,x are defined in (3.7), (3.8), respectively, and the constants p1, q1, p2,
and q2 are defined in (3.12). We evaluate the second inequality in (3.18) at x = L
and insert it into the first one to obtain

en1 (x, t) ≤ ep1(x−L)+q1t

∫ t

0

K1,x(x, t− τ)e(σ1−q1)τ

× sup
0≤s≤τ

{
ep2L+q2s

∫ s

0

K2,x(L, s− s̃) sup
0≤˜̃s≤s̃

{en−2
1 (0, ˜̃s)}e(σ2−q2)s̃ds̃

}
dτ.

Evaluating this inequality at x = 0 we get

en1 (0, t) ≤ e−p1L+q1t

∫ t

0

K1,x(0, t− τ)e(σ1−q1)τ

× sup
0≤s≤τ

{
ep2L+q2s

∫ s

0

K2,x(L, s− s̃) sup
0≤˜̃s≤s̃

{en−2
1 (0, ˜̃s)}e(σ2−q2)s̃ds̃

}
dτ

≤ C̃(t)

∫ t

0

K1,x(0, t− τ)

∫ τ

0

K2,x(L, τ − s̃) sup
0≤s̄≤s̃

{en−2
1 (0, s̄)} ds̃ dτ

= C̃(t)

∫ t

0

K2,x(L, t− τ)

∫ τ

0

K2,x(L, τ − s̃) sup
0≤s̄≤s̃

{en−2
1 (0, s̄)} ds̃ dτ,
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where we used that

K2,x(L, t) = K1,x(0, t) =
L

2
√
πε1/2t3/2

e−
L2

4εt

and the function C̃ given by

C̃(t) := max{1, eq2t, eq1t, e(q1+q2)t}e(σ1+σ2−q1−q2)te(p2−p1)L.

Note that σ1 +σ2−q1−q2 ≥ 0. The definition of p1, p2, q1, q2, σ1, σ2 and Theorem 2.1
imply that there is a constant C > 0 independent of ε, t, L such that

C̃(p1, p2, q1, q2, σ1, σ2, t) ≤ e
C(t+L)

ε , t > 0.(3.19)

By induction we obtain

sup
0≤τ≤t

e2n
1 (0, τ) ≤ e

C(t+L)
ε n sup

0≤τ≤t
{e0

1(0, τ)}K2n(t),

where K2n is the 2n-fold convolution of K2,x(L, .), that is, the integral term∫ t

0

K2,x(L, t− s1)

∫ s1

0

K2,x(L, s1 − s2)

· · ·
∫ s2n−2

0

K2,x(L, s2n−2 − s2n−1)

∫ s2n−1

0

K2,x(L, s2n−1 − s2n)ds2nds2n−1 · · · ds2ds1.

Since the Laplace transform L[K2,x(L, .)] is e−L
√

s/ε, we obtain for the 2n-fold con-
volution

L[K2n](s) =
1

s

(
L[K2,x(L, .)](s)

)2n

=
1

s
e−2nL

√
s/ε.

The inverse Laplace transformation then yields

sup
0≤τ≤t

e2n
1 (0, τ) ≤ e

C(t+L)
ε n sup

0≤τ≤t
{e0

1(0, τ)}
∫ t

0

K2,x(2nL, t− s) ds,

and the right-hand side of the last inequality can be simplified by a transform of
variables to

sup
0≤τ≤t

e2n
1 (0, τ) ≤ e

C(t+L)
ε n sup

0≤τ≤t
{e0

1(0, τ)}erfc
(

nL√
εt

)
,

where the error function complement erfc is defined by

erfc(x) =
1√
π

∫ ∞

x

e−y2

dy.

We thus have proved convergence of the algorithm on the interface x = 0 and
with a similar argument convergence also follows on the interface x = L. Ap-
plying the maximum principle for problem (3.4) then shows that the error e2n

1 in
the interior of the domain Ω1 × (0, t) is amplified at most by a factor exp(θ̄t) with
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θ̄ = sup(x,τ)∈(−∞,L)×(0,t){|θ1(x, τ)|}. Theorem 2.1, the definition of θ1 in (3.6), and
(3.19) show that there exists a constant C ≥ 0, independent of ε, n, t, and L, such
that (3.16) holds. The estimate (3.17) follows along the same lines when starting with
the second inequality in (3.18).

Note 3.3. If we apply the expansion
√
πerfc(z) = e−z2

(z−1 + O(z−3)) for large
values z > 0 in the estimate (3.16), we obtain

sup
0≤τ≤t

{e2n
1 (x, τ)} ≈ 1√

π
e

Cn(t+L)
ε −n2L2

εt

√
εt

nL
sup

0≤τ≤t
{e0

1(0, τ)}.(3.20)

For fixed T,L, ε > 0 we observe that the algorithm converges superlinearly for n →
∞ and t ≤ T . In other words, we obtain the same asymptotic result as for the
heat equation with linear convection and linear or nonlinear source terms; see [GZ97,
Gan98].

Note 3.4. Let n in (3.20) be fixed. Then there exists a T = T (n) such that (a)
the algorithm converges for ε → 0 and t < T (n), and (b) the estimate for the error
e2n
1 does not converge to 0 for ε → 0 and t > T (n). This scenario does not happen for

the heat equation with linear convection. In section 3.2 below we apply the Schwarz
waveform relaxation algorithm to the hyperbolic case, ε = 0, and we will see that in
this case it can happen that for all n > 0 there exists a time T ∗ = T ∗(n) > 0 such
that the error of the iteration vanishes for t < T ∗ and is nonzero for t > T ∗. It turns
out that this behavior can only occur for nonlinear convection. Thus the scenario
described in (a) and (b) is not an artifact of the proof.

3.2. The hyperbolic case ε = 0. The Jacobi version of the overlapping
Schwarz waveform relaxation algorithm with two subdomains Ω1 = (−∞, L) and
Ω2 = (0,∞) for the initial value problem (2.1), (2.2) in the hyperbolic limit, ε = 0, is
given by

∂un
1

∂t
+

∂

∂x
f(un

1 ) = 0 in Ω1 × (0, T ),

un
1 (·, 0) = u0 in Ω1,

un
1 (L, ·) = un−1

2 (L, ·) on [0, T ],

(3.21)

and

∂un
2

∂t
+

∂

∂x
f(un

2 ) = 0 in Ω2 × (0, T ),

un
2 (·, 0) = u0 in Ω2,

un
2 (0, ·) = un−1

1 (0, ·) on [0, T ],

(3.22)

for iteration index n ∈ N and we are denoting by un
i the entropy solution in each

iteration. The initial iterates u0
1 and u0

2 are chosen as in (3.3) taking the essential
infimum.

The iterative algorithm (3.21), (3.22) is a priori not well defined. Note that
problems (3.21), (3.22) are uniquely solvable by Theorem 2.2 for u0 ∈ L∞(R) and
un−1

2 (L, .), un−1
1 (0, .) ∈ L∞((0, T ]). However it is not clear whether the traces

un−1
2 (L, .) and un−1

1 (0, .) exist in an appropriate way as L∞-functions. This is as-
sumed subsequently. Note that the local regularity of entropy solutions is a delicate
issue which is out of the scope of this paper (cf. [Daf00, Chapter 11.3], for instance).
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x

t

0 L

Ω1 Ω2

slope 1
λ

characteristic

Fig. 1. Estimated region in space-time where the error vanishes in the first iteration on the
subdomain Ω1.

Finally we note that the definition of the trace is no problem after discretization of
the problem and that is how the algorithm is used in practice.

We define as in the viscous case the errors in the Schwarz iteration by en1 := u−un
1

on the left subdomain and en2 := u− un
2 on the right subdomain for n ∈ N0, where u

is the entropy solution of the initial value problem (2.1), (2.2) in the hyperbolic limit
ε = 0.

Theorem 3.5. Let u = essinfx∈R{u0(x)} and u = esssupx∈R{u0(x)}. For n ∈ N

let T ∗ = T ∗(n,L) = nL/λ with

λ = sup
u≤v≤u

{
|f ′(v)|

}
.

Then we have for t ∈ [0, T ] ∩ [0, T ∗(n,L)]

‖en+1
1 ‖L1((−∞,L]×[0,t]) = ‖en+1

2 ‖L1([0,∞)×[0,t]) = 0.(3.23)

Hence the algorithm converges in a finite number of steps.
Proof. The proof relies on the finite speed of propagation property of entropy

solutions which manifests itself in the statement (iii) of Theorem 2.2. To apply this
statement for n = 1 in Ω1 × (0, T ), we compare the subdomain solution at the first
iteration on Ω1 × (0, T ) with the exact solution restricted to Ω1 × (0, T ). With the
notation of Theorem 2.2, let

u01 = u02 = u0|(−∞,L], g1 = u0
2(., L), g2 = u(., L).

The unique entropy solutions of the corresponding initial boundary value problems
are u1

1 and u|Ω1×(0,T ). Using statement (iii) of Theorem 2.2 and varying the interval
I, we get in particular that e1

1 = u1
1 − u|Ω1×(0,T ) = 0 almost everywhere in C1

1 , where

Cn
1 = {(x, s) ∈ Ω1 × (0, T ) |λs ≤ nL− x}, n ∈ N;

see Figure 1. The analogous argument for Ω2 gives e1
2 = 0 almost everywhere in C1

2

given by

Cn
2 = {(x, s) ∈ Ω2 × (0, T ) |λs ≤ nL + x}, n ∈ N.
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Thus the errors e1
1 and e1

2 vanish on the interfaces in the time interval [0, L
λ ] (almost

everywhere). Doing the next iteration we find for t ≤ T ∗(1, L)

‖e2
1‖L1((−∞,L]×[0,t]) = ‖e2

2‖L1([0,∞),×[0,t]) = 0,

and the general result for arbitrary n ∈ N follows by induction.
Example 3.6. We consider the linear case, f(u) = au, for a convection speed

a > 0. Taking any initial data and any initial guess for the iterates u0
1 and u0

2, one
can easily see that the algorithm (3.21), (3.22) converges in two steps: for n = 1 the
error e1

1 vanishes in Ω1 × (0, T ) since the solution is completely determined by the
(correct) initial data, and no boundary data for x = L can be prescribed for a > 0.
Thus the third equation in (3.21) is ignored. On the second subdomain the error e1

2

will in general not vanish in the whole of Ω2 × (0, T ), since the boundary data u0
2

is not correct in general. For n = 2, again e2
1 vanishes in Ω1 × (0, T ), but now also

e2
2 vanishes in Ω2 × (0, T ), since u1

1(., L) provides the correct boundary data at the
interface. The same result also holds for all functions f with f ′(v) �= 0 for u ≤ v ≤ u.

Example 3.7. For L > 0 we consider the case f(u) = u2/2 together with the
initial condition

u0(x) =

{
1 : x < L/2,
−1 : x > L/2.

(3.24)

The entropy solution is given by the discontinuous time-independent function u(x, t) =
u0(x) for t ∈ [0, T ] and we do not have only one propagation direction in this case.
Starting the overlapping Schwarz waveform relaxation algorithm with the initial guess
u0

1 = a and u0
2 = −a for a > 1, we obtain the restriction of the entropy solution u

to (−∞, L] × [0, T ] or [0,∞) × [0, T ] when computing the first iterates u1
1 and u1

2 on
regions whose shape and size depend on a; a sketch of the iterates is displayed in
Figure 2. For example, on the left subdomain Ω1, the speed of the shock separating 1
from −a and −1 from −a increases when a increases. Thus the part of the boundary
x = 0 where the correct data is obtained for the next iteration decreases when a
increases and tends to zero when a → ∞. The same argument also holds for the
right subdomain (see Figure 2), which shows that the overlapping Schwarz waveform
relaxation algorithm becomes slower as a increases. Stationary shocks are a generically
nonlinear phenomenon which is not observed for linear equations and this example
shows that the performance of the overlapping Schwarz waveform relaxation algorithm
is affected by shocks.

One might argue that the choice for the initial guess does not agree with the
choice for the first iterates u0

1, u
0
2 as in (3.3). However, one can easily change the

initial data u0 far outside such that the solution in, say, [−L, 2L]× [0, T ] is not altered
due to finite propagation speeds and takes values less than −1. Then the flux function
outside [−1, 1] is altered such that the wave speeds f ′(u0

1) and f ′(u0
2) take the values

−a and a. This results in the same effect as described above. But the nonconvex
flux function would introduce complicated shock-rarefaction patterns, so we omit a
detailed construction here.

4. Overlapping Schwarz waveform relaxation for more than two sub-
domains. We now extend the results we obtained for two subdomains of Ω = R in
section 3 to the case of I > 2 subdomains, I ∈ N, of a bounded domain Ω = (0, 1).
Skipping the index ε, we search for the classical solution u of the initial boundary
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x

t

LL
20

Ω1

u1
1 = 1

u1
1 = −1

u1
1 = −a

x

t

LL
20

Ω2

u1
1 = 1

u1
1 = −1

u1
1 = a

Fig. 2. The top figure displays the entropy solution u1
1 in Ω1 taking the states 1, −1, and −a

separated by shock waves. The double arrow indicates the part of the line x = 0 where the correct
boundary data for the next iteration is obtained. The bottom figure displays the corresponding
situation for u1

2 in Ω2 and the part of the line x = L where the correct boundary data for the next
iteration is obtained.

value problem

∂u

∂t
+

∂

∂x
f(u) = ε

∂2u

∂x2
in Ω × (0, T ),

u(·, 0) = u0 in Ω,
u(0, ·) = g0 on [0, T ],
u(1, ·) = g1 on [0, T ].

(4.1)

Here u0 : Ω → R and g1, g2 : [0, T ] → R are given smooth functions. To represent the
subdomains, we introduce the numbers L1, . . . , LI ∈ R and R1, . . . , RI ∈ R such that

0 = L1 < L2 < R1 < L3 < · · · < LI < RI−1 < RI = 1,

which leads to a decomposition of Ω into overlapping subdomains Ωi = (Li, Ri),
i = 1, 2, . . . , I, as shown in Figure 3. The overlapping Schwarz waveform relaxation
algorithm is then given by solving for i = 1, . . . , I and n = 1, 2, . . . the problems

∂un
i

∂t
+

∂

∂x
f(un

i ) = ε
∂2un

i

∂x2
in Ωi × (0, T ),

un
i (·, 0) = u0 in Ωi,

un
i (Li, ·) = un−1

i−1 (Li, .) on [0, T ],
un
i (Ri, ·) = un−1

i+1 (Ri, .) on [0, T ],

(4.2)
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where we identify un−1
0 (L1, .) with g0 and un−1

I+1 (RI , .) with g1. In each Ωi the iteration
is started with the constant initial guess

u0
i (x, t) = min

{
inf
x′∈Ω

{u0(x
′)}, min

t′∈[0,T ]
{g0(t

′)}, min
t′∈[0,T ]

{g1(t
′)}

}
.(4.3)

For i = 1, . . . , I we define the error eni (x, t) := u(x, t) − un
i (x, t) in Ωi × (0, T ). Note

that en0 (0, t) = enI+1(1, t) = 0 and also eni (x, 0) = 0. The choice (4.3) ensures the
nonnegativity of the error for all iterations and all subdomains. We also introduce
the maximum error en defined by

en = max
i=1,...,I

{
sup

0≤t≤T
{eni+1(Ri, t)}, sup

0≤t≤T
{eni−1(Li, t)}

}
.

Theorem 4.1. Suppose that the minimum overlap between the subdomains is
given by L > 0,

L := min
i=1,...,I−1

(Ri − Li+1).(4.4)

Then the overlapping Schwarz waveform relaxation algorithm (4.2) with I > 2 subdo-
mains for the initial boundary value problem (4.1) converges superlinearly and inde-
pendently of the number I of subdomains: for each T > 0 we have

e2n ≤ e
Cn(T+L)

ε erfc

(
nL√
εT

)
e0.(4.5)

The constant C does not depend on ε, T , I, and n.
Proof. We first derive an explicit bound for the error by successive construction

of supersolutions. The error eni is a solution of the problem

∂eni
∂t

+ f ′(u)
∂eni
∂x

+ θni e
n
i = ε

∂2eni
∂x2

in Ωi × (0, T ),

eni (·, 0) = 0 in Ωi,
eni (Li, ·) = en−1

i−1 (Li, ·) on [0, T ],
eni (Ri, ·) = en−1

i+1 (Ri, ·) on [0, T ],

(4.6)

where the function θni is defined analogously to (3.6). One can check that eni =
eniL + eniR, where eniL satisfies

∂eniL
∂t

+ f ′(u)
∂eniL
∂x

+ θni e
n
iL = ε

∂2eniL
∂x2

in Ωi × (0, T ),

eniL(·, 0) = 0 in Ωi,
eniL(Li, ·) = 0 on [0, T ],
eniL(Ri, ·) = en−1

i+1 (Ri, ·) on [0, T ],

L1 = 0 L2 L3 LIR1 R2 RI−1 RI = 1

(L1, R1)
(L2, R2)

(LI , RI)

Fig. 3. Sketch of the multidomain decomposition for the interval (0, 1).
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and eniR satisfies

∂eniR
∂t

+ f ′(u)
∂eniR
∂x

+ θni e
n
iR = ε

∂2eniR
∂x2

in Ωi × (0, T ),

eniR(·, 0) = 0 in Ωi,
eniR(Li, ·) = en−1

i−1 (Li, ·) in [0, T ],
eniR(Ri, ·) = 0 in [0, T ].

Furthermore, the classical solution ẽniL : (−∞, Ri] × R → R of the quarter-space
problem

∂ẽniL
∂t

+ f ′(u)
∂ẽniL
∂x

+ θni ẽ
n
iL = ε

∂2ẽniL
∂x2

in (−∞, Ri] × (0, T ),

ẽniL(·, 0) = 0 in (−∞, Ri),
ẽniL(Ri, ·) = en−1

i+1 (Ri, t) on [0, T ],

(4.7)

with solutions decaying at infinity, limx→−∞ ẽniL(x, t) = 0 for t ∈ [0, T ], satisfies

ẽniL(x, t) ≥ eniL(x, t), x ∈ Ωi, t ∈ (0, T ).

The functions f(u) and θni are so far defined in Ω × (0, T ); outside this set f(u) and
θni in the quarter-plane problem (4.7) have to be understood as smooth extensions
taking only values from the range of f(u) and θni in [0, 1]×[0, T ]. Similarly we obtain a
function ẽniR with ẽniR ≥ eniR in Ωi. In Lemma 3.1 we have constructed supersolutions
for the classical solutions of quarter-space problems. Using the same technique here,
we obtain the function

ēniL(x, t) = exp(piLx + qiLt)

∫ t

0

KiL(x, t− τ)giL(τ) dτ,

which satisfies

ēniL(x, t) ≥ ẽniL(x, t), x ∈ Ωi, t ∈ (0, T ),(4.8)

and solves the constant coefficient problem

∂ēniL
∂t

+ aiL
∂ēniL
∂x

+ biLē
n
iL = ε

∂2ēniL
∂x2

in (−∞, Ri) × (0, T ),

ēniL(·, 0) = 0 in (−∞, Ri),
ēniR(Ri, t) = exp(σiLt) sup

0≤τ≤t
en−1
i+1 (Ri, τ), t ∈ [0, T ],

where the constants are defined as in Lemma 3.1 by

piL :=
aiL
2ε

, qi := −a2
iL

4ε
− biL,

aiL := inf
(x,t)∈Ωi

{
f ′(u(x, t))

}
, biL := inf

(x,t)∈Ωi

{
θni (x, t) + (f ′(u(x, t)) − aiL)

aiL
2ε

}
,

σiL :=

{
qiL : qiL ≥ 0,
0 : otherwise,

and the kernel function and giL in the integral are given by

KiL,x(x, t) := − 1

2
√
π

x−Ri

ε1/2t3/2
exp

(
− (x−Ri)

2

4εt

)
,

giL(t) := exp(−piLRi + (σiL − qiL)t) sup
0≤τ≤t

{en−1
i+1 (Ri, τ)}.



SCHWARZ WAVEFORM RELAXATION FOR CONSERVATION LAWS 431

With the analogous definitions for piR, qiR, aiR, biR, σiR, and

KiR,x(x, t) :=
1

2
√
π

x− Li

ε1/2t3/2
exp

(
− (x− Li)

2

4εt

)
,

giR(t) := exp(−piRLi + (σiR − qiR)t) sup
0≤τ≤t

{en−1
i−1 (Li, τ)},

we define the function

ēniR(x, t) = exp(piRx + qiRt)

∫ t

0

KiR(x, t− τ)giR(τ) dτ,

which is an upper bound on the quarter-plane problem solution,

ēniR(x, t) ≥ ẽniR(x, t), x ∈ Ωi, t ∈ (0, T ).(4.9)

From (4.8), (4.9), and the explicit formulas for the supersolutions we derive

eni (x, t) ≤ ēniL(x, t) + ēniR(x, t)

= exp(piLx + qiLt)

∫ t

0

KiL,x(x, t− τ)giL(τ)dτ

+ exp(piRx + qiRt)

∫ t

0

KiR,x(x, t− τ)giR(τ)dτ.

Then there exists a constant C̃ ≥ 0 that depends on piL/R, qiL/R, aiL/R, biL/R, σiL/R,
the time T , and the decomposition L1, R1, . . . , LI , RI such that

max{eni (Ri−1, t), e
n
i (Li+1, t)}

≤ C̃

(∫ t

0

KiL,x(Ri−1, t− τ) dτ +

∫ t

0

KiR,x(Ri−1, t− τ) dτ

+

∫ t

0

KiL,x(Li+1, t− τ) dτ +

∫ t

0

KiR,x(Li+1, t− τ) dτ

)
en−1

≤ 2C̃

(∫ t

0

KiR,x(Ri−1, t− τ) dτ +

∫ t

0

KiL,x(Li+1, t− τ) dτ

)
en−1.

The last inequality is a consequence of the fact that the integrals are solutions of
quarter-space problems for the heat equations where the boundary function is mono-
tonically increasing. Therefore the solutions decay monotonically in space if one
moves in the direction where the domain is unbounded. Thus the long-range error
contribution involving KiL,x(Ri−1, t− τ) and KiR,x(Li+1, t− τ) can be estimated by
the short-range error contributions. Similarly one can now also estimate the contri-
butions from the various overlap sizes using the minimum of the overlaps: letting

KL,x(t) := 1
2
√
π

L
ε1/2t3/2 exp(− L2

4εt ), we obtain

max{eni (Ri−1, t), e
n
i (Li+1, t)} ≤ 4C̃

∫ t

0

KL,x(t− τ)dτen−1.

As in the proof of Lemma 3.1 we denote now by K2n
L,x(t) the 2n-fold convolution of

the kernel KL,x(t) and obtain

e2n ≤ (4C̃)2nK2n
L,x(t)e0 ≤ (4C̃)2nerfc

(
nL√
εt

)
e0,

which is formula (4.5).
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5. Behavior of the algorithm over long time intervals. The superlinear
convergence estimates for the overlapping Schwarz waveform relaxation algorithm
derived in the previous sections depend on the time interval under consideration.
To get more insight into the behavior of the algorithm over long time intervals, we
study in this section the limiting case of a steady state solution and we apply an
overlapping Schwarz method to this steady state case. We study here only the Burgers
equation to illustrate that the convergence rate can be arbitrarily slow in this case,
and convergence can be lost if the viscosity goes to zero. Similar behavior has been
in fact observed for long time calculations for the Burgers equation in [GK00].

5.1. Boundary value problem. We consider the boundary value problem ob-
tained for the steady state case of the Burgers equation on the domain Ω = (−1, 1),

ε
∂2uε

∂x2
− 1

2

∂(uε)2

∂x
= 0, uε(−1) = 1, uε(1) = −1.(5.1)

The general solution for the differential equation (5.1) can be computed in closed
form,

uε(x) = −
√

2C tanh

(
C
x + D√

2ε

)
, C,D ∈ R.(5.2)

To satisfy the boundary conditions, the two constants C,D ∈ R have to satisfy the
nonlinear system of equations

−1√
2C

= tanh

(
C
D − 1√

2ε

)
,

1√
2C

= tanh

(
C
D + 1√

2ε

)
.

This implies in particular D = 0. In the limit as ε → 0 the constant C = C(ε)
converges to 1√

2
; thus in this regime it is bounded from above and below independently

of ε. Therefore, the solution uε contains an internal layer for ε small. This type of
solution is typical for nonlinear flux functions f with extrema. It does not exist for
linear advection-diffusion problems which allow for (ordinary) boundary layers only.
Note that we have for almost all x ∈ [−1, 1]

lim
ε→0

uε(x) = u0(x) ≡
{

1 : x < 0,
−1 : x > 0.

We consider now the corresponding singular boundary value problem

∂

∂x

(
1

2
u2

)
= 0, u(−1) = 1, u(1) = −1,(5.3)

where the function u0 satisfies the boundary conditions and is a distributional solution
of the differential equation (5.3). Such solutions are not unique; in fact all piecewise
constant functions taking only the values ±1 and satisfying the boundary conditions
at x = ±1 are solutions in that sense. This failure of uniqueness is crucial for the
behavior of the overlapping Schwarz algorithm for (5.1) that we will analyze now.

5.2. Overlapping Schwarz algorithm. We first investigate the influence of
the internal layer within the overlap for ε << 1. The overlapping Schwarz algorithm
with the two subdomains Ω1 = (−1, L) and Ω2 = (−L, 1) for problem (5.1) is given
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by

ε
∂un

1

∂x2
+ un

1

∂un
1

∂x
= 0 in Ω1,

un
1 (−1) = 1,
un

1 (L) = un−1
2 (L),

ε
∂un

2

∂x2
+ un

2

∂un
2

∂x
= 0 in Ω2,

un
2 (1) = −1,

un
2 (−L) = un−1

1 (−L),

(5.4)

where L > 0 is a constant that defines the overlap 2L. The iteration is started with
u0

1 = 1, u0
2 = −1, and we have skipped the index ε to simplify the notation.

Theorem 5.1 (linear convergence). The overlapping Schwarz algorithm defined
in (5.4) converges for 0 < L < 1 linearly to the solution of (5.1). The asymptotic
convergence rate as ε → 0 is

1 − 2e−
1−L

ε + o(e−
1
ε ).(5.5)

Proof. From (5.2) we obtain

un
1 (x) = −

√
2C1 tanh

(
C1

x+D1√
2ε

)
,

where the two constants of integration C1 and D1 are determined by the boundary
conditions. This leads to the system of nonlinear equations for C1 and D1,

D1 = 1 −
√

2ε
C1

arctanh
(

1√
2C1

)
,

un−1
2 (L) = −

√
2C1 tanh

(
C1

L+D1√
2ε

)
.

Inserting the first equation into the second one, we find the transcendental equation

un−1
2 (L) =

√
2C1 tanh

(
arctanh

(
1√
2C1

)
− C1(1+L)√

2ε

)
,(5.6)

which defines the constant C1 implicitly. Denoting its solution by C1(u
n−1
2 (L)), we

find over one iteration

un
1 (x) =

√
2C1(u

n−1
2 (L)) tanh

(
arctanh

(
1√

2C1(u
n−1
2 (L))

)
− C1(u

n−1
2 (L))(1+x)√

2ε

)
.(5.7)

Similarly we find for the solution on the second subdomain

un
2 (x) =

√
2C2(u

n−1
1 (−L)) tanh

(
arctanh

(
C2(u

n−1
1 (−L))(1−x)√

2ε
− 1√

2C2(u
n−1
1 (−L))

))
,

where the function C2(u
n−1
1 (−L)) is implicitly defined by the transcendental equation

un−1
1 (−L) = −

√
2C2 tanh

(
arctanh

(
1√
2C2

)
− C2(1+L)√

2ε

)
.(5.8)

We are interested in the asymptotic convergence of this fixed point iteration on the
interfaces x = −L and x = L. We could evaluate un−1

2 (x) at x = L and insert the
result into the relation for un

1 (x) to find directly a nonlinear relation between un
1 (−L)

and un−2
1 (−L) and analyze the fixed point of this iteration. But this would lead to
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formulas of twice the complexity of the formulas of the single iteration. To avoid this,
we define the two auxiliary functions g(C1) := un

1 (−L,C1) and h(C2) := un−1
2 (L,C2).

With those, the above double step can be written as

un
1 (−L) = g(C1(u

n−1
2 (L))) = g

(
C1(h(C2(u

n−2
1 (−L))))

)
.(5.9)

Now note that g(y) = −h(y) and C1(y) = C2(−y), which leads to

un
1 (−L) = g

(
C1(h(C2(u

n−2
1 (−L))))

)
= g

(
C1(−g(C2(u

n−2
1 (−L))))

)
= g

(
C2(g(C2(u

n−2
1 (−L))))

)
,

and hence it suffices to analyze the fixed point iteration

yn = G(yn) := g(C2(y
n)),(5.10)

where by (5.7) the function g(C2) is defined by

g(C2) =
√

2C2 tanh
(
arctanh

(
1√
2C2

)
− C2(1−L)√

2ε

)
,(5.11)

and the function C2(y) is defined implicitly by

y = −
√

2C2 tanh
(
arctanh

(
1√
2C2

)
− C2(1+L)√

2ε

)
;(5.12)

see (5.8). To analyze the convergence of this fixed point iteration, we need to study
the derivative

G′(y) =
d

dy
g(C2(y)) =

dg

dC2

dC2(y)

dy
=

dg

dC2

(
dy

dC2

)−1

=: G̃′(C2)(5.13)

at the fixed point y∗ on the left or for the expression on the right at the corresponding
C∗

2 . Note that the fixed point iteration depends on ε; we have G̃′(C2, ε), and we want
to study this function at the fixed point C∗

2 (ε) which also depends on ε. We thus

need to expand G̃′(C∗
2 (ε), ε) for small ε. Unfortunately the expression C∗

2 (ε) is not
available in closed form, but we have the inverse, ε(C∗

2 ) from the equation of the
solution u(−1, C∗

2 (ε)) = 1, which gives

1 = −
√

2C∗
2 tanh

(
arctanh

(
1√
2C∗

2

)
− 2C∗

2√
2ε

)
or

ε = ε(C∗
2 ) =

C∗
2√

2arctanh
(

1√
2C∗

2

) .(5.14)

Hence we expand G̃′(C∗
2 , ε(C

∗
2 )) about C∗

2 = 1√
2

which corresponds to ε = 0. To

simplify the expansion, we perform a further change of variables,

d = C∗
2 − 1/

√
2,(5.15)

with which we find, after simplifying, the expression

G̃′(d) =
2d(

√
2 + d)(T 2 − 1)(L− 1)A− (

√
2Td + T − 1)(T +

√
2d + 1)

2d(
√

2 + d)(T 2 − 1)(L + 1)A + (
√

2Td + T + 1)(T −
√

2d− 1)
,(5.16)
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where the functions A = A(d) and T = T (d, L) are given by

A(d) = arctanh

(
1√

2d + 1

)
, T (d, L) = tanh(LA(d)).(5.17)

The difficulty in the expansion process lies in the fact that L is an arbitrary real
number in the hyperbolic tangent in the function T (d, L). We first expand A(d) for
d small, taking into account the singularity,

A(d) = − ln

(√
d

2
1
4

)
+

1

2
√

2
d− 1

8
d2 + O(d3).(5.18)

Hence A(d) tends to infinity as d goes to zero. We now use an asymptotic expansion
of

tanh(ln(z)) = 1 − 2

z2
+

2

z4
− 2

z6
+ O

(
1

z8

)
and insert z := exp(LA) into this expansion. This leads to

T (d, L) = 1 − 21−L
2 dL + 21−Ld2L − 21− 3

2L d3L(5.19)

+ · · · + L2
1−L

2 d1+L + o(d1+L).

Using the structure of (5.16), we see that the numerator and the denominator contain
the same terms, but some with the sign changed. Denoting by p = 2d(

√
2+d)(T 2−1)

the factor in front of A and rearranging, we find

G̃′(d) = − (1 +
√

2d)(1 − T 2) − 2Td(
√

2 + d) + p(L− 1)A

(1 +
√

2d)(1 − T 2) + 2Td(
√

2 + d) − p(L + 1)A
,

where in both the numerator and the denominator the first term is O(dL), the second
is O(d), and the third is O(d1+L log(d)). Hence for d small, the last term can be
neglected. Inserting the expressions (5.19) of T and (5.18) of A and expanding again
for d small, we get for the leading order term

G̃′(d) ≈ −1 +
√

22L/2d1−L.

To find the asymptotic convergence rate as a function of ε, we expand the implicit
relation between d and ε given in (5.14) and (5.15), which leads to

ε =
1

ln(2) − ln(
√

2d)
+ O(d),

and thus d ≈
√

2e−
1
ε , which inserted into the asymptotic convergence rate gives the

result (5.5).
Theorem 5.1 shows that the convergence rate of the Schwarz algorithm applied

to this model problem tends exponentially fast to 1 in modulus as ε goes to zero.
This indicates that the overlapping Schwarz waveform relaxation algorithm applied
to nonlinear convection-dominated conservation laws over long time intervals can be
slow if there are steady shock waves in the overlap.



436 MARTIN J. GANDER AND CHRISTIAN ROHDE

     

1
2

1
2

1
2

1

1

1

−1
0

0

t

x

x

u

Fig. 4. The left picture displays the characteristics for the entropy solution u0 of (6.1) colliding
at (1/2, t) for t ≥ 1/2. The right graph shows u0 for t = 0, 1/4 and t ≥ 1/2.

6. Numerical experiments. We first illustrate the superlinear convergence
rate of the overlapping Schwarz waveform relaxation algorithm given in Theorem 3.2.
We solve the following initial boundary value problem for the Burgers equation with
ε ≥ 0 on the bounded domain Ω = (0, 1):

uε
t +

( (uε)2

2

)
x

= εuε
xx in Ω × (0, T ),

uε(·, 0) = 1 − 2x in Ω,
uε(0, ·) = 1 on [0, T ],
uε(1, ·) = −1 on [0, T ].

(6.1)

For the case ε = 0 we can compute the entropy solution of (6.1) explicitly: for
(x, t) ∈ [0, 1] × [0, 1/2) we find

u0(x, t) =

⎧⎪⎨⎪⎩
1 : x < t,

2

−1 + 2t

(
x− 1

2

)
: t ≤ x ≤ 1 − t,

−1 : x > 1 − t,

and for (x, t) ∈ [0, 1] × [1/2,∞) the entropy solution is

u0(x, t) =

{
1 : x < 1/2,
−1 : x > 1/2.

The solution is continuous (but not classical) up to t = 1/2 and then produces a sta-
tionary shock for all times; see Figure 4. We use the overlapping Schwarz waveform
relaxation algorithm with the two subdomains Ω1 = (0, 1

2 + L) and Ω2 = ( 1
2 − L, 1)

with the overlap parameter L = 0.1. We choose T = 0.6 and a centered finite differ-
ence scheme in space, explicit for the nonlinear term and implicit for the Laplacian.
The discretization parameters are Δx = 0.01 and Δt = 0.003. Figure 5 shows the
superlinear convergence behavior of the overlapping Schwarz waveform relaxation al-
gorithm for various values of the viscosity parameter ε. This numerical experiment
shows that the smaller the viscosity is, the faster the algorithm converges, as predicted
by the analysis, when the algorithm is in the superlinear convergence regime.

In the next numerical experiment, we solve the steady viscous Burgers equation
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on the domain Ω = (−1, 1), (
(uε)2

2

)
x

= εuxx in Ω,

u(−1) = 1,

u(1) = −1,

using an overlapping Schwarz method with the two subdomains Ω1 = (−1, L) and
Ω2 = (−L, 1) and the overlap parameter L = 0.2. The solution of this problem
consists of a shock centered at x = 0. We discretize the problem with the same
centered finite difference scheme as in the evolution case and solve the nonlinear
system of equations with iteration in time. Figure 6 shows the convergence behavior
of the overlapping Schwarz method for various values of the viscosity parameter ε.
This experiment shows that the overlapping Schwarz algorithm converges linearly, and
one can see that the smaller the viscosity parameter ε is, the slower the algorithm
becomes, as predicted by Theorem 5.1. Since the convergence rate is exponential in
the viscosity, already for a moderate value of the viscosity parameter ε, the algorithm
seems to stand still.

7. Conclusions. We have analyzed the performance of the overlapping Schwarz
waveform relaxation algorithm applied to convection-dominated nonlinear conserva-
tion laws. We have proved that the algorithm’s asymptotic convergence rate is super-
linear and independent of the number of subdomains. The convergence rate depends
strongly on the viscosity parameter: the smaller the viscosity is, the faster the algo-
rithm becomes. To learn more about the algorithm’s performance over long time in-
tervals, we have also analyzed the convergence rate of the overlapping Schwarz method
applied to a special steady case of the Burgers equation. This analysis revealed that
the asymptotic convergence rate is linear and depends exponentially on the viscosity
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Fig. 5. Superlinear convergence behavior of the overlapping Schwarz waveform relaxation al-
gorithm for the viscous Burgers equation with various values for the viscosity parameter ε.
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Fig. 6. Linear convergence behavior of the overlapping Schwarz method for the steady viscous
Burgers equation for various values of the viscosity parameter ε.

parameter. In contrast to the superlinear case, however, we showed that the smaller
the viscosity is, the slower the algorithm becomes.
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