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ABSTRACT
Background Accurate knowledge of a patient’s medical
problems is critical for clinical decision making, quality
measurement, research, billing and clinical decision
support. Common structured sources of problem
information include the patient problem list and billing
data; however, these sources are often inaccurate or
incomplete.
Objective To develop and validate methods of
automatically inferring patient problems from clinical and
billing data, and to provide a knowledge base for inferring
problems.
Study design and methods We identified 17 target
conditions and designed and validated a set of rules for
identifying patient problems based on medications,
laboratory results, billing codes, and vital signs. A panel
of physicians provided input on a preliminary set of rules.
Based on this input, we tested candidate rules on
a sample of 100 000 patient records to assess their
performance compared to gold standard manual chart
review. The physician panel selected a final rule for each
condition, which was validated on an independent
sample of 100 000 records to assess its accuracy.
Results Seventeen rules were developed for inferring
patient problems. Analysis using a validation set of
100 000 randomly selected patients showed high
sensitivity (range: 62.8e100.0%) and positive predictive
value (range: 79.8e99.6%) for most rules. Overall, the
inference rules performed better than using either the
problem list or billing data alone.
Conclusion We developed and validated a set of rules
for inferring patient problems. These rules have a variety
of applications, including clinical decision support, care
improvement, augmentation of the problem list, and
identification of patients for research cohorts.

INTRODUCTION AND BACKGROUND
Having a clear picture of a patient’s problems and
diagnoses is critical for a variety of reasons. First and
foremost, knowledge of a patient’s problems facili-
tates optimal clinical decision makingdwithout
understanding the full scope of patients’ clinical
issues, it is very difficult to take good care of them.
However, knowledge of problems is also critical for
a variety of other activities, such as clinical decision
support,1 quality improvement and measurement,
and research.
The most obvious source of information about

a patient’s problems is the clinical problem list. The
concept of a problem list, the central component of
the problem-oriented medical record, was first

described by Lawrence Weed, MD, in 1968.2 Weed
proposed a new method of organizing medical
records with problems at the center and data
organized around the problems. Clinical problem
lists serve a variety of purposes in facilitating care
including: promoting continuity of care, describing
active diseases, recording patient risk factor
assessments, facilitating diagnostic workups and
treatment, and helping providers generate care
plans and manage preventive care, among
others.3e5

Computerized problem lists offer additional
advantages over a paper-based list, allowing other
patient data such as laboratory results, imaging
studies, medications, and allergies to be linked
electronically to central problem concepts.2 6 Elec-
tronic patient problem lists can also be coded using
standard terminologies.7e9 Today, many institu-
tions with electronic health record (EHR) systems
utilize either ICD-9, SNOMED, or subsets thereof,
as their structured problem vocabulary; and such
mappings facilitate automated interpretation of
problem data, interoperability, and billing.10e13

Problem lists in modern EHRs are generally main-
tained manually; however some methods of
augmenting the electronic problem list with clinical
knowledge and improving its structure, accuracy,
and utility have also been proposed,9 14e17 partic-
ularly in the area of problem-oriented record
visualization and automated knowledge-based
linking of problems and data.
An accurate and up-to-date electronic problem

list represents the ideal cornerstone of the modern
EHR. It provides a succinct clinical picture of the
patient, facilitates communication, and enables the
electronic record to deliver the appropriate clinical
decision support. Clinicians may use the problem
list to familiarize themselves with the needs of
a patient they are treating for the first time or are
covering, as an inventory of conditions that might
require management on a particular visit, or as
a marker of contraindications for particular thera-
pies. However, despite their importance, patient
problem lists are often inaccurate, incomplete, and
poorly maintained.18e20 In addition, inaccurate
problem lists have been shown to be associated
with lower quality of patient care.21 22

The problem list is perhaps even more important
for clinical decision support and quality measure-
ment. For example, at Partners Healthcare, a large
integrated academic clinical care network, 22% of
clinical decision support rules depend on coded
problems in the patient problem list.1 In many
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cases, accurately documented patient problems trigger reminders
that help clinicians manage chronic diseases, which account for
a large proportion of all costs. Consider, for example, a patient
with diabetes. If his diabetes is properly documented, his
clinician will receive appropriate alerts and reminders to guide
care, the patient will be flagged as eligible for special care
management programs, and the quality of care provided to him
will be measured and tracked. Without diabetes on the problem
list, he might receive none of these benefits.

Given that problem lists are often incomplete, researchers and
implementers of clinical information systems have turned to
a variety of alternative sources for problem information. Several
systems have been reported using natural language processing to
infer clinical problems.23e25 Researchers have also used data
mining techniques to identify clinical data which can be used as
a proxy for problems.26e28 These proxy methods have been
especially fruitful in the case of medications: Carpenter and
Gorman used medication information to identify possible
problem mismatches22 and Poissant et al employ a combination
of billing codes, single-indication drugs, and prescription indi-
cations to infer problems in an electronic prescribing system.29 30

In addition, the eMerge group has developed natural language
processing, proxy and mixed problem inference methods for the
purpose of identifying patient phenotypes and selecting cases
and controls for genome-wide association studies.31e34

These techniques for inferring patient problems are promising
and several have demonstrated positive early results; however,
each of the reported systems has one or more limitations. Most
use only a single type of data (medications, billing codes, or
narrative text) to make their inference, focus on only one clinical
problem, or focus on identifying cases (patients who certainly
have the disease) and controls (patients who certainly do not
have the disease) but leave many patients unclassified. Further,
many rely on time consuming manual techniques for generation
of their knowledge bases, and none, to our knowledge, have
provided their full knowledge base for use or validation by
others.

The goal of our project is to describe, in detail, a replicable
method for developing problem inference rules, and also to
provide a reference knowledge base of these rules for use or
validation by other sites.

METHODS
The methods we used in this project were designed to be easily
replicable by other sites interested in developing their own
problem inference rules. We describe a six-step process for rule
development designed to yield high quality rules with known
performance characteristics. The six steps are:
1. Automated identification of problem associations with other

structured data
2. Selection of problems of interest
3. Development of preliminary rules
4. Characterization of preliminary rules and alternatives
5. Selection of a final rule
6. Validation of the final rule.

In the following sections, we present the six steps of this
process in detail.

Step 1: Automated identification of problem associations with
other structured data
To build inference rules, it is critical to determine what clinical
data elements might be useful for predicting problems. Our
current project builds on previous work we conducted to iden-
tify medication-problem associations and laboratory-problem

associations using data mining and co-occurrence statistics.28

The goal of the Automated Patient Problem List Enhancement
(APPLE) project was to develop a database of associations using
automated data mining tools. In the APPLE study, we performed
association rule mining on coded EHR data for a sample of
100 000 patients who received care at the Brigham and Women’s
Hospital (BWH), Boston, Massachusetts, USA. This dataset
included 272 749 coded problems, 442 658 medications, and
11801068 laboratory results for the sample of 100000 patients.
In the previous study, candidate associations were evaluated

using five co-occurrence statistics (support, confidence, c2,
interest, and conviction). High scoring medication-problem
and laboratory-problem associations (the top 500) were then
compared to a gold standard clinical reference (Mosby’s
Diagnostic and Laboratory Test Reference for laboratory results
and Lexi-Comp drug reference database for medications). For
medication-problem associations, c2 was found to be the best
performing statistic and for laboratory-problem associations, the
highest performing statistic was interest. For medication-
problem associations, 89.2% were found to be clinically accurate
when compared with the gold standard, as were 55.6% of
laboratory-problem associations.
The design, implementation, and results of the APPLE project

are discussed in detail in a previous publication.28 The end result
of the project was a database of several thousand medication-
problem and laboratory-problem associations characterized by
multiple co-occurrence statistics. This database was used in the
preliminary stages of the current project in the design of
inference rules, as described below.

Step 2: Selection of problems of interest
Given our methods and available resources, we wanted to
constrain our knowledge base to no more than 20 problems. In
order to identify a final set of conditions for inclusion in this
project, we assessed a set of 78 potential ‘candidate’ problems.
This preliminary list of problems was chosen on the basis of
several criteria including: (a) recent related pay-for-performance
initiatives at BWH, (b) the existence of relevant problem-
dependent clinical decision support rules in the hospital’s elec-
tronic medical records system (LMR), and (c) the strength of
related medication-problem and laboratory-problem associations
identified during the APPLE project. To guide the selection
process, we developed a simple ranking metric which assigned
points for each of the three criteria listed. A final list of 17 study
problems (box 1) was chosen based on both the results of this
analysis and clinician input. Each of the 17 problems was
relevant to at least two of the three criteria described above.

Step 3: Development of preliminary rules
Once the list of problems was finalized, we built a preliminary
set of inference rules for initial testing. In order to accomplish
this task, we first conducted research on each of the selected
problems. We began by reviewing the APPLE database to locate
all related medication-problem and laboratory-problem associa-
tions. Using these automatically-generated inferences as
a starting point, we then conducted a thorough review of
medical textbooks and online clinical resources, including
Harrison’s Principles of Internal Medicine, eMedicine, and UpToDate,
identifying a list of all laboratory tests and medications relevant
to each problem. We also identified all related ICD-9 billing
codes for each of the conditions and coded problem list concepts
relevant to the problem. Finally, because our EHR system allows
for free-text problem entries in addition to coded entries, we also
carried out a search for common related free-text entries. We
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identified all free-text (uncoded) problem phrases appearing five
or more times in our sample (2441 in all) and manually reviewed
each to determine if it matched a coded term for one of our 17
conditions. In the case of diabetes, for example, related free-text
entries we found included ‘diabetes’ (users can enter free-text
entries even if they match a coded concept exactly), ‘NIDDM,’
‘AODM,’ ‘diabetic nephropathy,’ ‘diabetic retinopathy,’ ‘insulin
resistance,’ ‘diabetes type II,’ ‘diabetic neuropathy,’ ‘type 2 dia-
betes,’ ‘type II diabetes,’ ‘diabetes mellitus,’ ‘diet controlled DM,’
‘IDDM,’ ‘diabetic gastroparesis,’ ‘adult onset diabetes,’ and
‘diabetic complications.’ Many of the benefits of an accurate
problem list can only be achieved through the use of coded
problem entries. Thus, it was important in the design of our
problem inference rules that they be able to identify patients
with related free-text problem entries so that a coded entry
could be added.

For each of the conditions, we developed a draft condition
‘abstract’ detailing the relevant information identified from the
data sources above (a combination of laboratory-problem and
medication-problem associations, literature review, ICD-9 codes,
and free-text problem entries), and also developed an initial
straw man rule. Each rule is comprised of a series of logic
statements such as ‘coded or uncoded ADHD entry on problem
list OR 1 or more ADHD billing codes OR 1 or more ADHD
billing codes AND at least one ADHD medication.’

We presented this set of initial recommendations to an expert
panel consisting of three internal medicine physicians (DWB,
LIS, HZR). After reviewing the preliminary rules, the committee
then recommended changes and proposed alternate rules (eg,
additional classes of medications, additional combinations, or
modification of thresholds).

In certain cases, the committee had difficulty developing rules
that were highly specific for a single condition in our set of
interest, particularly when our set of interest contained clinically
similar or related diseases. For example, it was feasible to develop

a rule that identified patients with either asthma or chronic
obstructive pulmonary disease (COPD), but it was difficult to
discriminate accurately between the two because of numerous
medication overlaps, so the conditions were merged into a rule
that predicts asthma or COPD. This strategy was applied in the
following final rules: asthma/COPD, osteoporosis/osteopenia,
renal insufficiency/renal failure, and hemophilia/congenital
factor XI deficiency/von Willebrand disease.

Step 4: Characterization of preliminary rules and alternatives
Up to this point in the design process, the expert panel was
working based on APPLE findings, reference information, and
their own expertise, but without the benefit of specific charac-
terization of the candidate rules they developed. In order to
further inform their deliberations, we then tested each of the
preliminary rules they proposed in step 3 as well as several
alternate versions of each rule by applying them to a training set
of patient records. The training set consisted of a random sample
of 100 000 patient records drawn from a population of 839 300
patients with a progress note recorded in the last 2 years in the
electronic medical record system at BWH. For each patient
record, rules were automatically checked against coded data
present in the electronic medical record system and submitted
claims from the BWH inpatient and outpatient billing systems.
Our method of evaluating each rule is summarized in figure 1.

Our gold standard, in each case, was the patient having the
problem documented by a clinician in their recorddwe did not
attempt to formulate new diagnoses for patients, or to verify the
accuracy of existing diagnoses.
Because we had limited resources for chart review, we also

made two assumptions to focus our review. First, we considered
the presence of a particular condition on the problem list as a gold
standard indicator that the patient had a given problem, and thus
these patients were counted among the true positives (group III),
since they met the criteria for our rules (by having the problem
on their problem list) and since we assumed that the problem list
assertion was correct. Our second assumption pertained to
a subset of patients who had no relevant data in their record for
a given condition. This was assessed by checking for the existence
of any data that would inform a rule for a particular condition
(but not, of course, checked by using the actual rule). For
example, for diabetes, if we encountered a patient where no
HbA1c test was ever performed, no diabetes-related billing codes
were ever submitted, no related problems were on the problem
list, and no related medications were on medication list, we
assumed that patient did not have diabetes, and these patients
were classified as true negatives (group I). Due to the absence of
any relevant data, we determined that there would be extremely
low yield in reviewing their charts, and instead focused resources
on other groups of patients where there was a more reasonable
likelihood of a given patient having the problem.
It is almost certainly the case that some patients with

a problem on their problem list do not actually have that
problem (despite it having been manually added by a clinician)
and that some patients with no documented clinical evidence of
a particular problem actually do have the problem. However, we
believe that these eventualities are rare and that our assump-
tions are, thus, reasonable. Indeed, to verify or refute them, we
would likely need to bring patients in for additional testing and
workup, which would be expensive and likely low yield.
The remaining patients (group II) had at least some indication

of the condition in their record (eg, any related laboratory
investigation ever performed, any related medication prescribed,
any related billing code recorded), but did not have the condition

Box 1 Target conditions for creation of problem inference
rules

Conditions (n[17)
1. ADHD
2. Asthma/COPD*
3. Breast cancer
4. CAD
5. CHF
6. Diabetes
7. Glaucoma
8. Hemophilia/congenital factor XI/von Willebrand disorder*
9. Hypertension
10. Hyperthyroidism
11. Hypothyroidism
12. Myasthenia gravis
13. Osteoporosis/osteopenia*
14. Renal insufficiency/renal failure*
15. Rheumatoid arthritis
16. Sickle cell disease
17. Stroke
*Multi-condition rules.
ADHD, attention deficit hyperactivity disorder; CAD, coronary
artery disease; CHF, congestive heart failure; COPD, chronic
obstructive pulmonary disease.
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documented on their problem list. To be included in this group,
a patient needed to have only a single coded laboratory test,
medication, billing code or vital sign entry in their record related
to the problem in question. For each of these patients, we
applied the candidate rule from step 3 of our process, classifying
each patient as either having the problem (rule-positive) or not
having the problem (rule-negative).

For each condition, we randomly selected 100 rule-positive
patients and 100 rule-negative patients from group II for manual
chart review. This review was conducted by a team of research
assistants under the supervision of the principal investigator,
and included complete review of all data in the record, including
problems, with a particular focus on free-text components such
as progress notes, admission notes, discharge summaries, and
consult notes and letters. If a clinician indicated anywhere in the
record that the patient had the relevant condition, they were
coded as positive for the condition (chart-positive). If there was
no mention of the condition, or if the clinician had affirmatively

ruled it out, the patient was counted as negative for the
condition (chart-negative).
For the sample of 200 patients, this process left us with two

data points: rule inference (rule-positive or rule-negative) and
gold standard chart interpretation (chart-positive or chart-
negative). Patients who were rule- and chart-positive were
counted as true positives. Patients who were rule-positive and
chart-negative were counted as false positives. Patients who
were rule-negative and chart-negative were counted as true
negatives. Patients who were rule-negative and chart-positive
were counted as false-negatives (figure 1).
After completion of the manual chart review, each of the

100 000 patients was classified as a true-positive, false-positive,
true-negative, or false-negative for each of the 17 conditions and
associated candidate rules. We used these classifications to
compute the sensitivity, specificity, positive predictive value
(PPV), and negative predictive value (NPV) for each rule
according to the standard formulas. Because not all charts were

Figure 1 Patient flow.
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manually reviewed, we used inverse probability weights to
adjust for our sampling strategy (patients in groups I and III
were assigned weights of 1, while patients in group II were
divided into rule-positive and rule-negative strata and assigned
weights corresponding to the inverse of the stratum sampling
fraction).

After computing these quantities for each of the 17 candidate
rules, we then evaluated several alternative rules (by varying, for
example, laboratory result thresholds, drugs, counts, etc) to
determine the performance of each alternative version. For each
rule, all versions were tested against the same 200-case set
described above.

Step 5: Selection of a final rule
After multiple iterations of each rule were analyzed in this
manner against the training set, several versions of each rule
(ranging from 3 to 8) were then presented to the expert
physician panel for a second time along with the sensitivity,
specificity, and positive and negative predictive values for each
version. The rule versions presented to the panel represented
permutations of the original rule. For example, we might modify
various thresholds (looking at HbA1c levels of 7% or 9%, or at 1
vs 2 related medications). The rules were selected to cover
a variety of performance characteristics, ranging from rules with
high sensitivity and lower PPV to rules with high PPVand lower
sensitivity. The panel then chose a final rule from the presented
options. In designing these rules, we attempted to maximize
sensitivity and PPV overall and the options presented to our
expert panel reflected this goal. Due to low overall prevalence of
each disease, specificities were consistently very high, making it
difficult to discriminate between different versions of each rule
using this statistic. As a result, we chose to emphasize PPV over
specificity in our analysis. In addition, in order to minimize
erroneous inferences, we prioritized PPV while accepting some
resultant trade-offs in sensitivity.

For example, five separate versions of the diabetes rule were
presented to the expert panel with results from training set
analysis (figure 2). The rules presented were as follows:
< Rule 1

– max A1c $9 OR
– at least 3 A1c’s recorded $7 OR
– billing codes $7 OR
– metformin and billing codes $2 OR
– any insulin OR
– any oral anti-diabetic drug OR
– diabetes on problem list

< Rule 2
– max A1c $9 OR
– at least 3 A1c’s recorded $7 OR
– billing codes $7 OR
– any insulin OR
– any oral anti-diabetic drug OR
– diabetes on problem list

< Rule 3
– max A1c $9 OR
– at least 3 A1c’s recorded $7 OR
– billing codes $2 OR
– any insulin OR
– any oral anti-diabetic drug OR
– diabetes on problem list

< Rule 4 (final rule)
– max A1c $7 OR
– billing codes $2 OR
– any insulin OR

– any oral anti-diabetic drug OR
– diabetes on problem list

< Rule 5
– max A1c $5 OR
– billing codes $2 OR
– any insulin OR
– any oral anti-diabetic drug OR
– diabetes on problem list.
In the case of diabetes, option 1 (the most conservative and

complex rule) achieved a high PPV (>95%) but had lower
sensitivity (<85%). At the opposite end of the spectrum, option
5 (the most inclusive and simplest rule) achieved a sensitivity of
>95% but a PPV of <80%. On the basis of these trade-offs and
after confirmation of the clinical accuracy of each version, the
panel recommended option 4 as the final rule in the case of
diabetes based on a sensitivity of 94.6% and a PPVof 90.1%. This
procedure was repeated for each of the 17 rules.

Step 6: Validation of the final rule
To validate the final version of each rule and to guard against
over-fitting of the rules against the training set, we repeated the
analysis of step 4 on an independent validation set. For this
analysis, we drew a second random sample of 100 000 patients
from the same population as the initial sample, but excluding
patients in the initial sample. For each of the final rules, the
same classification and chart review process was carried out, and
sensitivity, specificity, and positive and negative predictive
values were calculated using the same procedure described in the
above section.

Additional analysis
After completing the six-step method described here for each
problem, we had 17 fully characterized rules. In order to place
these rules in context, we also carried out two additional anal-
yses. First, we computed the sensitivity, specificity, PPV, and
NPV of using coded problem list entries only using the method
and data of step 6 (we did not conduct an additional chart
review, but instead retained the results of the step 6 validation
chart review). Because we assumed that all patients with
a problem on their problem list had the related condition, the
PPV of all such rules was necessarily 100%, but the sensitivity
varied. We also computed the sensitivity, specificity, PPV, and
NPV of using billing data alone to identify patients with the 17
conditions of interest, again using the methods and data of step 6
(and again retaining the step 6 validation chart review results).
In order to more fully characterize the performance of the

rules, we also computed F measures according to the method of

Figure 2 Performance statistics for multiple versions of diabetes rule.
NPV, negative predictive value; PPV, positive predictive value.
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van Rijsbergen.35 The F measure is a generalized harmonic mean
of the sensitivity and PPV whose parameters can be adjusted to
prioritize either variable. We chose to use F0.5 because our goal in
developing the rules was to prioritize PPV over sensitivity. The
F0.5 measure weights PPV twice as heavily as sensitivity (ie,
favoring false negatives over false positives).

RESULTS
A total of 17 problem inference rules were developed (13 single-
problem rules and 4 combined-problem rules). The complete list
and description of these rules is provided in online appendix A
(available as an online data supplement at www.jamia.org). The
number of logic statements comprising each rule ranged from
two (hemophilia) to five (hypertension, osteopenia/osteopo-
rosis). Final rules used coded and free-text problem recognition
and one or more of the following to infer patient problems: (a)
related billing codes, (b) related medications, and/or (c) related
laboratory data or vital signs.

The results of analysis on the training set for each rule,
including sensitivity, specificity, and positive and negative
predictive values, are presented on the left side of table 1. When
applied to the training set, the average sensitivity and PPV for all
17 rules were 86.4% and 91.1%, respectively. Twelve of the 17
rules had a PPV of over 90% and all were over 65%. For sensi-
tivity, 14 of the 17 rules were over 75% and all were over 65%.

The results of validation for each rule, including sensitivity,
specificity, and positive and negative predictive values, are
presented on the right side of table 1. When applied to the
validation set, the average sensitivity and PPV for all 17 rules
were 83.9% and 91.7%, respectively. Overall, 12 of the 17 rules
had a PPVof over 90% and all were over 75%. Of the 17 rules, 11
had a sensitivity of over 80% and all were greater than 60%.

For each problem, we also assessed the accuracy of two
simpler classes of rules including (a) problem list-only rules and
(b) related billing code-only rules. The results of this analysis
(table 2) showed that our inference rules were more sensitive
than the problem list alone, and had better PPV than billing

codes alone. Notably, all 17 of our rules had better sensitivity
than the problem list (ranging from 12.8% better for hemophilia
and related disorders to 95.6% better for renal insufficiency/
failure). Fifteen of the 17 rules had better PPV than billing codes
alone (glaucoma and renal insufficiency/failure had slightly lower
PPV), with the greatest improvements being for relatively rare
conditions including hyperthyroidism, myasthenia gravis, and
sickle cell disease. For those billing-code only rules with a higher
PPV, a significant trade-off was observed with disproportionately
lower sensitivities.
For each rule, we also computed the F0.5 measure as described

in the Methods section. Using F0.5, our inference rules outper-
formed the problem list alone for all 17 conditions and billing
codes alone for 12 of the 17 conditions (table 3).

DISCUSSION
In this study, we successfully developed and validated a set of
rules that identifies patients who are likely to have a particular
problem. These rules were shown to have a high sensitivity and
specificity and, in our population, a high positive and negative
predictive value.
We found that we were able to generate and validate a large

number of rules for important conditions with a relatively small
team over a period of several months. The rules generally
performed quite well, with high sensitivity and PPV. They also
withstood validation on an independent sample of records,
suggesting that our rules are not over-fitted to our training data.
Thus, these methods appear to be both scalable to more condi-
tions and replicable at other sites. Assessing their generaliz-
ability, however, will require additional independent validation
at other sites.
The performance of the rules varied depending on the condi-

tion, and the performance of the renal insufficiency/failure rules
deserves special comment. The National Kidney Foundation
defines chronic kidney disease as kidney damage or a glomerular
filtration rate of less than 60 for at least 3 months.36 During the
chart review, we found many patients meeting these criteria

Table 1 Performance analysis of problem inference rules (training and validation)

Training set Validation set

Sens Spec PPV NPV Sens Spec PPV NPV

ADHD 67.8 100.0* 99.1 99.7 62.8 100.0* 96.6 99.6

Asthma/COPD 78.1 99.2 92.7 97.0 79.5 99.6 96.7 97.3

Breast cancer 95.1 99.9 99.0 99.7 95.8 100.0* 99.6 99.7

CAD 83.0 99.6 95.7 98.3 86.4 99.9 98.5 98.6

CHF 71.7 99.4 79.1 99.1 70.8 99.4 79.8 99.0

Diabetes 94.6 98.8 90.1 99.4 91.3 99.3 94.9 98.8

Glaucoma 93.8 99.9 95.0 99.9 94.4 99.9 96.2 99.9

Hemophilia 89.7 100.0* 97.7 100.0* 86.5 100.0* 97.8 100.0*

Hypertension 80.6 96.9 92.9 90.8 81.0 96.2 89.0 93.1

Hyperthyroidism 83.6 99.9 87.7 99.9 86.3 99.9 88.1 99.9

Hypothyroidism 91.9 99.8 97.5 99.3 91.0 99.5 93.5 99.3

Myasthenia gravis 87.4 100.0* 89.4 100.0* 82.4 100.0* 85.9 100.0*

Osteoporosis/osteopenia 73.9 99.4 94.0 96.8 70.8 99.2 90.7 97.0

Renal insuf/renal fail 100.0 98.3 69.2 100.0 100.0 99.1 77.5 100.0

Rheumatoid arthritis 94.8 99.8 88.2 99.9 66.5 99.9 91.7 99.3

Sickle cell disease 95.6 100.0* 90.3 100.0* 96.8 100.0* 91.0 100.0*

Stroke 85.8 100.0* 97.4 99.7 87.3 99.9 97.9 99.7

*Actual value slightly less than 100%.
Note: CIs were small for each parameter and are thus omitted from the reported results. For example, the CIs for the diabetes rule
parameters described above were 86.8% to 94.5% (sensitivity), 98.8% to 99.6% (specificity), 91.0% to 97.3% (PPV), and 98.1% to
99.2% (NPV).
ADHD, attention deficit hyperactivity disorder; CAD, coronary artery disease; CHF, congestive heart failure; COPD, chronic obstructive
pulmonary disease; fail, failure; insuf, insufficiency; NPV, negative predictive value; PPV, positive predictive value; Sens, sensitivity;
Spec, specificity.
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who had no mention of kidney disease anywhere in their record.
These patients may have unappreciated renal insufficiency or
failure, but were necessarily marked as condition-negative in our
analysis (leading to potentially artificially low PPV and
specificity). This has two important implications: first, were
a different gold standard chosen (eg, evaluation by a nephrolo-
gist rather than chart review), the performance of the rules
might have been different, although this is more of an issue for
some rules like this one than others. Second, although these
rules were initially designed to identify problems which are
known to providers, they may, in certain instances, also have
diagnostic utility in the case of an unappreciated condition.
Similar results were reported in another study focusing on renal
failure using different methods.25

Comparison to other methods
The problem list and billing data are often used to infer
a patient’s problems. However, our analysis indicated that each
method had shortcomings. The problem list was extremely
accurate (ie, one could have a high degree of confidence that
a patient has a problem if it appears on the problem list), but it
had very low, and variable, sensitivity. In fact, for most prob-
lems, the sensitivity was around 50%, meaning that only about
half of patients with the problem had it documented on their
problem list. This was higher for some chronic conditions, but
was extremely low for renal failure (possibly due to the reasons
discussed above) and was also quite low for congestive heart
failure (CHF). The CHF finding was surprising; however, it
seemed that, in many cases, the patient’s CHF was so central to
their clinical picture that all providers were aware of it but had
simply omitted it from the problem list.
Conversely, billing codes were found to have a considerably

lower PPV but a high degree of sensitivity, indicating that in
some cases patients are billed for problems that they do not have.
A review of these data suggests that, in many cases, patients
are billed for screening tests under the related problem code
(eg, billing with ICD-9 code 250.00 for a diabetes screening)
rather than a screening code, which is not an ideal practice,37

although the reasons for it are understandable.
Our research shows that the integration of laboratory,

medication, billing, problem, and vital sign data can result in
robust rules for inferring patient problems, and that such rules,
which take advantage of multiple classes of coded data available
in the electronic medical record, have superior performance to
single-faceted rules.

Applications
Our methods and validated knowledge base have a variety of
applications. First and foremost, they could be used to alert
clinicians to potential gaps in the problem list, and could provide
clinicians the opportunity to correct these gaps. Additionally,
the rules could be used for any application where it is important
to know a patient’s diagnoses, such as identification of research
cohorts, calculation of quality measures, selection of patients for

Table 2 Performance of coded problem-only and billing-only rules

Problem-only Billing-only

Sens Spec PPV NPV Sens Spec PPV NPV

ADHD 45.0 100.0 100.0 99.4 73.7 99.9 91.3 99.7

Asthma/COPD 44.8 100.0 100.0 92.4 91.5 98.6 89.8 98.8

Breast cancer 78.5 100.0 100.0 98.6 97.9 99.9 97.7 99.9

CAD 58.9 100.0 100.0 95.7 99.2 97.9 83.5 99.9

CHF 9.9 100.0 100.0 91.9 83.3 98.3 70.2 99.2

Diabetes 61.9 100.0 100.0 94.5 89.4 98.5 89.8 98.4

Glaucoma 73.4 100.0 100.0 99.4 90.0 99.9 96.7 99.8

Hemophilia 73.7 100.0 100.0 99.9 100 100.0* 87.2 100

Hypertension 50.7 100.0 100.0 83.2 86.7 95.0 87.5 94.7

Hyperthyroidism 59.3 100.0 100.0 99.5 95.7 99.4 64.4 100.0*

Hypothyroidism 51.8 100.0 100.0 96.7 81.6 98.2 76.4 98.7

Myasthenia gravis 48.6 100.0 100.0 100.0* 97.3 99.9 53.3 100.0*

Osteoporosis/osteopenia 45.1 100.0 100.0 94.2 80.5 98.7 87.4 97.9

Renal insuf/renal fail 4.7 100.0 100.0 83.5 43.3 99.6 86.7 96.4

Rheumatoid arthritis 23.8 100.0 100.0 97.3 90.5 99.6 84.1 99.8

Sickle cell disease 76.2 100.0 100.0 100.0* 98.4 100.0* 67.4 100.0*

Stroke 72.4 100.0 100.0 99.2 100.0 99.6 86.8 100.0

*Actual value slightly less than 100%.
ADHD, attention deficit hyperactivity disorder; CAD, coronary artery disease; CHF, congestive heart failure; COPD, chronic obstructive
pulmonary disease; fail, failure; insuf, insufficiency; NPV, negative predictive value; PPV, positive predictive value; Sens, sensitivity;
Spec, specificity.

Table 3 Comparison of problem-only, billing-only, and problem
inference rule performance

F0.5

Billing (b) Rules (r) Problems (p) r>b r>p

ADHD 84.6 81.9 71.1 N Y

Asthma/COPD 90.4 90.2 70.9 N Y

Breast cancer 97.8 98.3 91.6 Y Y

CAD 88.2 94.1 81.1 Y Y

CHF 74.1 76.6 24.8 Y Y

Diabetes 89.7 93.7 83.0 Y Y

Glaucoma 94.4 95.6 89.2 Y Y

Hemophilia 91.1 93.7 89.4 Y Y

Hypertension 87.2 86.2 75.5 N Y

Hyperthyroidism 72.3 87.5 81.4 Y Y

Hypothyroidism 78.1 92.7 76.3 Y Y

Myasthenia gravis 62.8 84.7 73.9 Y Y

Osteoporosis/osteopenia 85.0 82.9 71.1 N Y

Renal insuf/renal fail 65.0 83.8 12.9 Y Y

Rheumatoid arthritis 86.1 81.4 48.4 N Y

Sickle cell disease 75.3 92.9 90.6 Y Y

Stroke 90.8 94.1 88.7 Y Y

ADHD, attention deficit hyperactivity disorder; CAD, coronary artery disease; CHF,
congestive heart failure; COPD, chronic obstructive pulmonary disease; fail, failure; insuf,
insufficiency.
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care management programs, and clinical decision support. To
apply the rules, developers of such systems would simply modify
their inclusion criteria, replacing their current mechanism of
problem identification (problem list or billing data) with infer-
ence rules such as these. The use of inference rules for identifying
patient problems is also of potential value for meeting mean-
ingful use requirements. The Stage 1 goal requires that providers
‘maintain an up-to-date problem list of current and active
diagnoses,’ with an ambitious 80% of patients having at least
one problem recorded or an indication of no known problems.38

A reliable automated method of increasing problem list use could
dramatically improve providers’ ability to reach this goal.

One important question for potential users of such rules at
other institutions is how to proceed. Ideally, outside sites would
utilize our methods to develop and validate their own rules
using their own clinical data (and then report the results).
However, sites without sufficient clinical data or resources
might, instead, choose to use these inference rules (potentially
with local modifications). We have provided the complete set of
rules in online appendix A. We encourage any site choosing to
apply the inference rules to report on their own experience so
additional knowledge of the rules’ generalizability can be
developed.

Limitations
This investigation has several potential limitations. First, it is
possible that our sampling assumptions may have introduced
a small amount of bias into our results. As discussed in the
Methods section, it is possible that a small proportion of
patients in group I or group III, whose charts were not reviewed,
may have been incorrectly classified as true negatives and true
positives, respectively (because they had a problem on their
problem list that they do not actually have, or because they have
an undiagnosed problem, or a diagnosed problem without any
correlated clinical data). It is important to note that provider
awareness of a problem (or lack thereof) was our gold standard,
rather than the patient’s actual pathophysiologic statedin other
words, we did not seek to make new diagnoses. We believe that
these assumptions are reasonable given that these rules are
designed to infer patient problems based on documented clinical
data rather than to yield new diagnoses. Given this gold stan-
dard, we suspect that the misclassification rate into groups I and
III was low; however, to test this assumption it would be
necessary to bring patients in for workups to confirm their
diagnoses (or lack thereof)dthese workups would likely be
expensive and low yield. That said, any misclassification in these
groups would introduce a small bias in calculated sensitivity and
PPV values (systematically increasing them); however, we
believe this potential effect to be very small. Additionally, this
bias would have the same effect on the statistics for our
comparison groups (the problem-only and billing-only
measures) in addition to our rules. As such, our comparison
between these rule classes is likely unaffected by any bias
introduced (and the magnitude of this bias is still likely to be
very small).

Second, problems were selected in part based on the strength
of laboratory-problem and medication-problem associations.
This potentially limits the generalizability of our results with
respect to other conditions that have weaker connections to
medications and laboratory results. However, in many cases
other data (eg, billing codes) may be available to help with
prediction, and there are also a number of data types which we
have not yet considered (particularly unstructured data such as
images and text, as well as patient-reported data).

Third, as described in the Methods section, for each disease we
conducted a chart review of a random sample of 100 rule-posi-
tive and 100 rule-negative patients to determine the rule’s
performance. We then tested a number of alternate versions of
each inference rule against the same 200-patient sample for each
condition. This may have introduced some bias into the
performance characterization of the alternative rules, since their
sample was influenced by the initial rule. To mitigate this bias,
we attempted to select a ‘centrist’ initial rule, and then varied
the parameters of the initial rule to create the alternatives,
hopefully minimizing bias. Further, and more definitively, once
the final rule was chosen for each condition (which could have
been the initial rule or one of the alternative rules), the final rule
was independently validated on a new randomly selected sample
of 200 patient charts (100 rule-positive and 100 rule-negative).
As such, the performance measures from the validation set were
free from this potential bias.
Fourth, we developed and validated the rules at only a single

sitedas we mentioned above, we believe that the rules are likely
generalizable to other sites, but we encourage other researchers
to validate them before use, and also to extend them and report
on their results.
Finally, because we included all patients with at least a single

note in a 2-year period, a small number of patients in our
sample had very little data recorded because they had only
a single visit or a low number of visits. We chose to include
these patients in order to form a more representative sample;
however, our rules fired less frequently for these patients
because they were less likely to have sufficient data to meet the
rule thresholds (eg, multiple visits with a single billing code).
Methods for adjusting inference thresholds based on the
volume of data available for a patient merit further study.

CONCLUSIONS
We developed and validated a set of problem inference rules. Our
findings show that by using laboratory, medication, problem,
billing, and vital sign data, patient problems can be accurately
inferred, and that the performance of such multi-source rules
exceeds the performance of standard sources, such as the
problem list or billing codes, alone. Building an improved
problem list has a number of downstream potential benefits for
delivering good clinical care, improving quality, and conducting
research.
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