
ar
X

iv
:2

00
5.

10
78

6v
2

 [
cs

.C
R

]
 2

2
M

ay
 2

02
0

SafeComp: Protocol For Certifying

Cloud Computations Integrity

Evgeny Shishkin1

Evgeny Kislitsyn1,2

1InfoTeCS, Advanced Research Department, Russia
2Moscow State University, Department of Mathematics and Mechanics, Russia

evgeny.shishkin@infotecs.ru

evgeny.kislitsyn@infotecs.ru

Abstract

We define a problem of certifying computation integrity performed by some remote
party we do not necessarily trust. We present a multi-party interactive protocol called
SafeComp that solves this problem under specified constraints. Comparing to the near-
est related work, our protocol reduces a proof construction complexity from O(n log n)
to O(n), turning a communication complexity to exactly one round using a certificate
of a comparable length.

Keywords: computation integrity; interactive proofs; computation certificates

1 Introduction

Suppose, a user needs to compute some complex heavyweight function C(x). It might
be necessary to possess a non-trivial computational resource to do that, for example, a
cluster of computational nodes. Chances are, the user does not have it. To compute
this function, the user asks some cloud service - a provider - to compute it for him. The
user supplies the provider with the function C(x) and some initial data d, asking to
compute C(d), and some time later the provider gives the result r. How can the user
be sure that the provided result r is correct?

There are many cases when a computation result can be verified easily. Consider
a sorting function that maps an arbitrary list of integers to a sorted list of the same
integers. We can check that the output list is sorted using a simple one-way scanning
function that ensures the sameness of input/ output list elements and their expected
order.

On the contrary, there are cases when it is hard or maybe even impossible to verify
a computation result without redoing the whole computation from scratch. Take a
problem of checking that there are no Hamiltonian cycles within a given graph. 1 If

1 Hamiltonian cycle is a cycle in a graph that traverse each vertex exactly once.

1

http://arxiv.org/abs/2005.10786v2

the provider gives you a founded Hamiltonian cycle, it is easy to check its correctness.
But what if the provider tells you that there are no such cycles: how would you ensure
that it tells you the truth?

Consider yet another problem: a model-checking of computer programs - the well-
known computationally hard problem. Suppose, the user supplies the provider with a
program and a list of properties it must respect, and asks if this really holds. Some time
later, the provider tells the user that a checking procedure did not find any deviations
from the specified properties. How would you check that: 1) the result is correct 2) the
result was not simply guessed (i.e. the computation was not halted until the result was
obtained)?

In modern practice, a user has to trust in provider’s integrity, rely on its market
authority. A computation result is signed with a public key of the provider linking
that trust to the obtained result. In this article, we present SafeComp: a multi-party
interactive protocol that solves the described problem technically, removing the necessity
to trust the authority of a cloud provider.

We still rely on a so-called trusted weak computing device, say, a smart-contract
residing on a public blockchain. This device plays a role of autonomous transparent
arbiter that is able to decide who is right and who is wrong in case of a dispute regarding
published computation results, and do that performing only a tiny fraction of the whole
computation.

Comparing to the nearest related work - TrueBit protocol - our protocol reduces proof
construction complexity from O(n log n) to O(n) and turning communication complexity
from O(log n) to exactly one round. This result is achieved by using a different proof
construction and verification procedure, while the proof length stays effectively the
same: O(n).

The article is structured in the following way: in Section 2 we define the problem
that our protocol is aiming to solve. In Section 3, we give a high-level overview of
SafeComp protocol. Section 4 describes a way of presenting user computation function
in a form that is appropriate to be used in the protocol. Section 5 contains a formal
description of SafeComp protocol. Section 6 is devoted to a security analysis of some
aspects of the protocol under clearly stated threat model. In Section 7, we discuss some
of the known attack vectors and features of the protocol. Our first experimental results
are discussed in Section 8. Section 9 contains the overview of related works in the field,
and comparison of SafeComp with other known protocols.

2 Problem Statement

We are looking for an efficient verification procedure that allows us to check computa-
tion integrity giving that the computation was performed by some not necessarily fully
trusted computing provider (or, simply, provider). Along with a computation result,
the provider constructs a certificate whose size reasonably correlates with computation
complexity. Using the certificate, we should be able to unambiguously check correctness
of the performed computation, and do that much faster than a full recomputation.

Definition 2.1. (Computation Certification Problem)
For an arbitrary function C : N → Result computable at a point d ∈ N, define com-
putable functions:

proof(C, d) → Result× Proofs

2

verify(C, d, r, prf) → {True, False}

where r ∈ Result is a result of computation under question, that is r
?
= C(d),

prf ∈ Proofs - a proof of computation integrity, also called certificate.

The following must hold:

1. verify(C, d, r, prf) = True ⇐⇒ C(d) = r

2. Computation complexity of proof(C, d) dependents on complexity of C linearly.

3. Computation complexity of verify is essentially smaller than complexity of proof
for any given function C, that is

lim
n→∞

vC(n)

eC(n)
= 0

where vC(n), eC(n) - asymptotic estimates of computation complexity of functions
verify and proof for the function C with input size n.

4. As complexity eC(n) increases, the size of prf grows linearly, that is

∃k∀n . |prf(n)| ≤ k · eC(n)

Probabilistic Certificate Verification

In our case, the requirement 1 turns out to be overly rigorous. We will use a weaker
requirement instead.

Definition 2.2. (Probabilistic Certificate Verification Criteria)
Consider the following events:

E0(λ) : proofλ(C, d) = 〈r, prfλ〉

E1(λ) : verifyλ(C, d, r, prfλ) = True

E2 : C(d) = r

If functions proofλ, verifyλ satisfy:

lim
λ→∞

Pr[E0(λ) · E1(λ) · E2] = 1

where λ is a parameter that can affect computational complexity of functions and the
size of a certificate, then we say that algorithms described above meet probabilistic
certificate verification criteria.

In other words, we are depicting not deterministic, but probabilistic method of
solving the defined problem, where some special parameter regulates the probability of
the desired outcome.

Interactivity

Some approaches aiming to solve the defined problem require a so-called interactiv-
ity, that is, a verification procedure is performed in several rounds of message passing
between a computing provider and a user. An upper bound on the number of message-
passing rounds is called communication complexity of a protocol. An interactive ap-
proach for solving the depicted problem is also called protocol for certifying outsourced
computations, or, cloud computations.

3

Trusted Weak Computing Device

Some certification protocols rely on a presence of some trusted party which is able to
perform simple computations in a verifiable way, but definitely not able to perform the
whole computation C(d).

For instance, such device may not be able to compute a factorial of some big number,
but still it could perform an addition of any two natural numbers, providing some kind
of proof of the result. If, say, we divide the whole computation of a factorial function
into smaller operations of addition, we could carry out the entire computation in a
verifiable manner.

Definition 2.1. (Trusted Weak Computing Device)
A device that is capable of certifying computations 2.1 for computable functions f
such that computational complexity of f(n) grows linearly with the size of input, i.e.
f(n) ∈ O(n), is called trusted weak computing device.

Secure enclaves [12] and blockchain smart-contracts [5] are examples of such devices.

Multi-party Protocol

A classical interpretation of the computation certification problem assumes that a com-
puting provider proves correctness of an obtained result to a user in some way, and the
user examines this proof. An interaction between two parties happens directly.

Our model of interaction is different: a user and the set of computing providers (or,
simply, providers) interact with each other using a Trusted Weak Computing Device
(TWCD) as a trusted verifiable intermediary. Several providers can run a computation
task in parallel on their own computing resources. A computation result and a proof
are then published within TWCD by some provider who has found a solution. Other
providers are able to re-check the result. If a disagreement arises, other providers would
be able to convince other parties that the result written in TWCD is faulty. Otherwise,
after a period of time, the published result is considered to be correct and a user receives
the solution to the published computation task. Such interaction model is called multi-
party protocol.

Problem Statement

In this article, we present a multi-party protocol for certifying cloud computations with
a probabilistic certificate verification criteria and a reliance on a trusted weak computing
device that is able to authenticate its users.

For ease of presentation, we consider a public blockchain smart-contract to play a
role of a trusted weak computing device. But one can imagine other devices being used.

3 Protocol Overview

In this section, we give a high-level overview of the protocol. Here we presume that a
user would like to compute the function C(x) in the point d, but do not have an ability
to do the whole computation.

1. A user transforms his computable function C into another function f such that
applying f to d n times, the result converges to C(d).

4

2. User publishes the function f and the point d in a smart contract. We assume
that the smart contract is accessible for multiple computing providers.

3. Once a provider receives the computation task f and the point d, he starts per-
forming the computation r = f(f(...f(d))) until the result converges to a fixpoint.
At the end of each iteration f(x), he also computes a hash ci := H(x◦ci−1). These
ci values form a sequence cert := 〈c1, ..., cn〉 This sequence is called a certificate
sequence (or, simply, a certificate).

The provider computes a certificate fingerprint hc := H(H(cert)) and a certificate
projection cp := 〈π(c1), π(c2), ..., π(cn)〉. The main idea behind introducing the
fingerprint is to give other providers ability to check their own certificates against
the computed one without publishing a certificate sequence in pure.

A certificate projection is needed to let other providers find the very first divergent
step of a computation in case of a fingerprint disagreement, and do that without
disclosing the certificate sequence in pure.

A certificate sequence plays a role of a secret value used in a later stage of the
protocol to establish a list of all fair providers that performed the verification of a
published result and a certificate, this is why we do not want to publish it in pure.

4. After finding a solution, one of the providers - we call him the solver - publishes the
solution r, the certificate fingerprint hc and the projection cp in a smart-contract.

5. Other providers that performed the computation, but found the solution later
than the solver, are able to check the published solution and the computation
work integrity by comparing certificate fingerprints. This group of providers is
called auditors.

6. In case of a disagreement, an auditor sends the number of a certificate part i from
which the divergence starts, the partial value ri−1 and certificate parts ci−1, ci.

7. Using the provided values i, ri−1, ci−1, ci the smart-contract arbiter ensures that
the published result or computation certificate is indeed wrong by performing only
a single computation step (details are in Section 5).

8. After some period of time, if no proofs of computation disintegrity has been pro-
vided, the published solution r is considered correct.

9. Each auditor sends the value H(H(cert) ◦ id) into the smart-contract. Here id
is a unique identifier of an auditor. This value plays a role of a proof that the
computation work has been done.

10. Finally, the solver sends the value s such that hc = H(s) into the smart-contract.
The list of fair auditors is then evaluated.

4 Iterative Computation

The protocol requires the computation to be prepared in an iterative form. An example
is shown on Fig.1: factorial function is implemented in two different ways: the standard
recursive form 1a and iterative form 1b.

If you consecutively compute the function factFP , starting at the point {N, 1} and
passing the evaluated result as a next point iteratively, then, after N iterations, the
function will converge to the value {0, N !}.

5

f a c t (0) −>
1 ;

f a c t (N) when N > 0 −>
N ∗ f a c t (N−1).

(a) Recursive implementation

factFP ({0 , Acc}) −>
{0 , Acc} ;

factFP ({N, Acc}) when N > 0 −>
{N − 1 , Acc ∗ N} .

(b) Iterative implementation

Fig. 1: Recursive vs. Iterative factorial implementation (Erlang)

The main difference between two implementations is that the first one (Fig.1a) com-
putes the result at once, while the second (Fig.1b) computes only a part of the whole
computation and returns that partial result. The computation can be continued by pass-
ing the partial result into the function again, and so on, until a fixpoint - the solution -
is found.

One can start feeling doubt whether it is always possible to transform an arbitrary
computable function C(x) into such form. The next theorem shows that not only it is
always possible, but can be done in several ways.

Theorem 1. For all functions C : N → N computable at some point d there exist
computable functions

inj : N → T, proj : T → N, F : T → T

such that
proj(fix F inj(d)) = C(d)

where fix : (T → T) × N → T - an operator that calculates fixed point of a function
starting at a given point. That is,

fixF p = F (fixF p)

T - a finite set.

Proof. The proof is moved into Appendix 10. �

5 Protocol Specification

SafeComp protocol rely on availability of a trusted weak computing device. We take a
smart-contract as a practically viable form of such device. Parties - a user and providers
- communicate with each other by sending transactions into the smart-contract.

Lets us define a smart-contract state to be a set of its internal variables of some
type. Any transaction into a smart-contract can potentially change its state. Within
our specification effort, we use a concept of a current state and a next state of a variable
denoting the variable value before and after transaction processing respectively.

Notation

Np = {0 ... 2p − 1} - a set of natural numbers with a given upper bound
X,X ′ - a value of variable X before and after transaction processing

6

Variables Denotation

Id ∈ 2N ∪ {0} - a set of user identifiers. We use 0 to denote an undefined identifier.
r ∈ N - a computation result
s ∈ N - a certificate fingerprint
solver ∈ Id - an identifier of a provider who published a solution for the user’s task
V ∈ 2Id - a set of provider identifiers that managed to prove their verification work.
L ∈ 2Id - a set of participant identifiers that tried to compromise the protocol in

any way
P ⊆ Id × N - A set of pairs - identifier × proof - sent by parties pretending to be

considered as verifiers.

Input: User’s task f : N → N and an input data d ∈ N.
Output: 〈r, s, solver, V, L〉

Preliminary Setup

1. The User defines the function f and the initial point d. We discussed requirements
for C and f and their relation earlier.

2. Parties agree on some cryptographically secure hash function H : N → Nq, where
parameter q is taken according to recommendations for the hash-function.

3. The User constructs a computable function

F (〈x, c〉) := IF x == f(x) THEN 〈x, c〉ELSE 〈f(x),H(x ◦ c)〉

Here ◦ : N × N → N - some non-constant binary operation. Computation must
start at the point 〈d,H(d)〉

4. Parties agree on a function family πk : Nk → N
k
p, for k ≥ 1, such that

π1 : N → Np − some arbitrary hash-function (not required to be equal to H(x))

πk(〈c1, ..., ck〉) := 〈π1(c1), ..., π1(ck)〉, for k > 1

Henceforth, we omit k index because its value is clear from a context: it is a length
of a tuple argument.

5. A smart-contract must be published on a blockchain. The smart-contract should
give its users ability to:

• Publish a computational task F , initial data point d; the user request status
is set to “published”. For every new user request, the smart-contract allocates
a new set of state variables: 〈r, s, solver, V, L, P 〉, initially empty.

• For any published user request, receive a user request status and a computa-
tional task 〈F, d〉. If a request status is set to “completed”, then also receive a
certificate projection cp and a solution r. If a request status is set to “verified”,
then also receive values 〈r, s, solver, V, L〉

• For requests with status “published”, provide the solution rn, cn, cp, hc , such
that

F (〈rn, cn〉) = 〈rn, cn〉

cp := π(〈c1, ..., cn〉)

hc := H(H(〈c1, ..., cn〉))

7

Let u be an identifier of a provider that sent a solution - the solver. The
smart-contract checks that the pair 〈rn, cn〉 is indeed a fixpoint of F , in this
case the user request status is changed to “completed” and

solver′ = u ∧ r′ = rn

If the point 〈rn, cn〉 is not a fixpoint of F , the solution is declined, the user
request status does not change. In this case,

L′ = L ∪ {u}

• For user requests with status “completed”, refute the published solution by
providing the refutation data i, ci−1, ci, ri−1, such that

π(ci−1) = cp[i− 1]∧F (〈ri−1, ci−1〉) = 〈ri, ci〉 ∧ π(ci) = cp[i] (1)

ci+1 := H(ri ◦ ci) (2)

π(ci+1) 6= cp[i+ 1] (3)

Here cp[i] denotes an element of a tuple cp, residing on the position i.
Let u be an identifier of a provider that has sent a refutation. If the smart-
contract establishes the fact of refutation correctness, the user request status
is changed back to “published”. In this case,

L′ = L ∪ {solver} ∧ V ′ = V ∪ {u} ∧ solver′ = 0

• For user requests with status “completed”, provide a proof of computation
prf , such that:

prf := H(H(〈c1, ..., cn〉) ◦ id)

where id - a unique identifier of a provider. In this case,

P ′ = P ∪ {(id, prf)}

• For user requests with status “completed”, after verification period T has
elapsed, provide a secret s from a user with identifier solver, such that:

hc = H(s)

If the above does not hold, then the status is changed to “published” and

L′ = L ∪ {solver}

solver′ = 0

Otherwise, the status is changed to “verified”. In this case,

V ′ = V ∪ {x : (x, p) ∈ P ∧H(hc ◦ x) = p}

L′ = L ∪ {x : (x, p) ∈ P ∧H(hc ◦ x) 6= p}

Protocol Steps

1. A user publishes a computation request, providing F , d

8

2. Potential computing providers read computation requests with the status “pub-
lished” from the smart-contract and possibly start to compute F from the point
〈d,H(d)〉

3. A provider publishes a computed solution rn, cn, cp, hc in the smart-contract. We
call this provider the solver.

4. Other providers that were also performing computation, verify the published result
by comparing the value cp to their own.

• If values are different, then send a refutation data into the smart-contract.

• If values are the same, after verification period, send the proof of computation
into the smart-contract.

5. Last of all, the solver sends s, the hash of a certificate, into the smart-contract,
making it possible to find out all fair providers.

• In case of successful secret validation, the smart-contract constructs an out-
put: 〈r, s, solver, V, L〉

• Otherwise, the user request status is changed back to “published” and the
protocol goes back to step 2.

6 Protocol Security Analysis

Any participant of the protocol trying to break its functional properties is called in-
truder. We measure protocol security degree as a probability value of any undesirable
event - that is when functional properties of the protocol gets broken - within a given
intruder model.

Definition 6.1. (Intruder model M1)

• Finding a pre-image of a chosen hash-function H(x) is considered a computa-
tionally difficult task for an intruder.

• Intruder’s knowledge regarding user’s function f(x) implementation details is consi-
dered to be the same as of a user itself.

Definition 6.2. (Protocol Security Threats)

• Event E1 : Refutation of a correct solution.

• Event E2 : False proof of a solution verification.

Theorem 2. A refutation of a correct published solution (Event E1) is a computation-
ally difficult task for an intruder from M1.

Proof. To refute a published solution, the protocol requires providing such i, ci−1, ci,
ri−1 that

π(ci−1) = cp[i− 1] ∧ π(ci) = cp[i] ∧H(ri−1 ◦ ci−1) = ci (4)

F (〈ri, ci〉) = (ri+1, ci+1) ∧ π(ci+1) 6= cp[i+ 1] (5)

Suppose, F is a total function N × Nq → N - in practice, this is almost always not the
case, but let us take this assumption to simplify work for an intruder in our analysis.

9

In this case, it is easy to satisfy 5. The requirement could be fulfilled for almost any
point 〈r, c〉. Therefore, the main burden falls on the predicate 4.

Suppose that hash-functions have the following signatures: H : N → Nq, π : Nq →
Np. We also require H to be cryptographically secure. Then, a problem of finding values
satisfying the predicate 4 is reduced to the known problem of finding a pre-image by a
given image of a cryptographically secure hash-function, and is considered to be hard
for an intruder in M1 with appropriately chosen p, q values. �

Theorem 3. Submitting of false proof of verification for a published solution (event
E2) is computationally difficult task for any intruder from M1.

Proof. To prove a published solution verification work, the protocol requires a partici-
pant to provide the following value:

prf = H(s ◦ id)

Here, id is a unique identifier of a participant. Every unique id is allowed to publish
only a single prf as a proof. Additionally, we consider an intruder to know the following
values:

hc = H(s) (6)

prf i = H(s ◦ idi), for i = 1, 2, 3, ... (7)

Identifiers idi are also known to the intruder. Here, s = H(〈c1, c2, ...cn〉) is a fingerprint
of the certificate. A probability of finding the desired pre-image of s is:

Ps =
1

2q·n
, где , q ≥ 64, n ≫ 103

Here, values for q - a hash-function image size, and n - a number of computation steps,
are specified according to practical considerations. So, in this case, an event E2 can be
considered to be highly improbable.

An intruder could make an attempt to find a collision in 6: find s′ such that
H(s′) = hc. But, in this case, with carefully selected operation ◦, a probability of
finding satisfying values for 7 with the founded collision s′ is also insignificant. �

Economic Incentives

Earlier, we have discussed some aspects of the protocol security relying on an assumption
that the protocol’s cryptographic components is secure enough. It is possible to enhance
reliability of the protocol even further by exploring the immanent feature of smart-
contracts: economic incentives for its users - a powerful tool for stimulating rational
parties strictly follow protocol rules.

In this paradigm, a stability of a protocol depends not only on security of crypto-
graphic mechanisms, but also on an incentive scheme consisting of penalties and pre-
miums for participants. We are not going to discuss this in deep, but give a high level
overview of such scheme in form of an extension to protocol steps.

1. User publishes a computation request in a smart-contract, supplying the request
with F , d and a cryptocurrency deposit Dr.

10

2. Providers read the request and start seeking a solution.

3. A provider who computed the solution first, publish his result in the smart-
contract, supplying the transaction with a cryptocurrency deposit Ds

4. Other providers verify the published result.

• If a divergence is found, one publishes a refutation in the smart-contract,
supplying the transaction with a cryptocurrency deposit Dp

• If no divergence is found, one sends a proof of computation in the smart-
contract, supplying the transaction with a cryptocurrency deposit Dw

At the end, when a solution is found and verified, a smart-contract has an amount
of cryptocurrency on its account equal to s = Dr + Ds + m · Dp + n · Dw where n
- number of participants successfully proved the computational work, m - number of
refuted solutions. The protocol output is a tuple: 〈r, s, solver, V, L〉, so the smart-
contract is able to redistribute funds s between a solver and fair auditors V , penalizing
bad actors from L.

7 Protocol Features

Some aspects of SafeComp protocol may cause difficulties in a practical implementation,
or even present attack vectors. Here, we discuss some of those issues and ways to
overcome them.

Transforming computation into iterative form. In theorem 1, it was shown that
a computation could be always presented in an iterative form and there are multiple
ways to do the transformation.

For example, in the work [19] the following approach is used: a user’s program is
compiled from high-level language into a byte-code of some virtual machine. Then, n
elementary steps of interpreter is taken as a single computation step. A state of the
interpreter - registers and memory - is then taken as a computation state. The next
step is executed starting from that interpreter state, and so on, until the solution is
computed.

We use a different approach: the user’s program is written in a so-called Continuation
Passing Style (CPS) [14], but instead of a tail call, the argument together with a tail
call function tag is returned as an intermediary result. Such representation achieves the
same technical result while may sometimes lead to more compact state representations
and does not rely on a special interpreter. A program’s source code can be automatically
transformed into CPS-style form [1], but we did not investigate this question in deep.

Divergent function F . Suppose someone places a divergent computation task in a
smart-contract. A computational provider will spend its computing resource, but will
never find a solution: an obvious loss for a provider.

There are some ways to overcome this difficulty:

• Implement a computational algorithm in a programming language that guarantees
termination. For example, any primitive recursive language gives such guarantee
by construction, and is expressive enough to develop nearly all practically inter-
esting algorithms [17].

11

In this case, a user sends not a byte-code, but a program source code P , written
in one of those languages. A provider then compiles P into f . If compilation is
successful, the provider is guaranteed that the computation is finite and can be
taken into work.

• Extend the protocol to support certification of partial computation results, i.e.
results that have not converged to a fixpoint, but is correct from a certificate
point of view. In this case, the longest result respecting the certificate integrity
check is considered to be a correct solution.

Bytecode size of F . It might be the case that the size of a function F or a point d is
greater than a maximum size of data unit of chosen blockchain platform.

Unfortunately, it is a fundamental limitation of the protocol. The following inequa-
tion must hold: |F |+ |d| ≤ Tmax, where Tmax - maximum size of data unit for a chosen
TWCD. In case of smart-contracts, if this condition does not hold, such transaction will
be declined.

Size of refutation. If a dispute against a published solution arises, a provider must
send a refutation data ci−1, ci, ri−1 into the smart-contract.

The point ri−1 represents an intermediary computing state. It might be the case
that the size of ri−1 is too big to be sent into the smart-contract. Unfortunately, it is
a fundamental limitation of the protocol. The following must hold: ∀r, |f(r)| ≤ Tmax,
where Tmax - maximum size of data unit for a chosen TWCD.

Certificate projection size. It might be the case that a certificate projection is
too big to be placed directly into a smart-contract or other chosen TWCD. At least
in case of smart-contracts, it is possible to use an external immutable storage to store
the projection there. For example, IPFS distributed file system may be used [3]. A
smart-contract could use an oracle technology to access the corresponding data [10].

8 Experimental Evaluation

In order to evaluate SafeComp protocol, we have implemented its logic and one user
computation task.

Due to time constraints, we have chosen not implement the protocol logic on a real
blockchain. We implemented the protocol using Erlang programming language and its
BEAM virtual machine instead. 2

As for the user task, we took UNSAT problem: the problem of determining that
there is no satisfying assignment for a Boolean formula. UNSAT problem is conjugated
to a famous NP-complete problem SAT [6], but unlike SAT, its solution can not be
checked in polynomial time in general case. Our choice is justified by the fact that an
algorithm for solving UNSAT problem has a direct practical application - a symbolic
model-checking of computer algorithms.

There are many algorithms for solving SAT/UNSAT problem, and it is known that
no one of them guarantees a working time better, than O(2n), where n - the number of
boolean variables in Boolean formula. Still, they are quite good in practice.

2 Our first attempts to implement the user task in Solidity (Ethereum blockchain) turned out to be highly
cumbersome activity due to limited expressive power of the language and limitations of a virtual machine.

12

We have chosen to implement one of the simplest such algorithms - DPLL [7]. There
are many DPLL implementations available, but in our case, we had to implement it in
an iterative form discussed in Section 4.

As for the input, passed into DPLL algorithm, we took an program equivalence
checking problem. Particulary, we check equivalence of programs where each program
implement a FIFO queue, but in different way (the problem is taken from [4]).

The problem is encoded in a Conjunctive Normal Form (CNF)formula d, such that
if DPLL(d) = Unsat, it means an equivalence of programs. Otherwise the algorithm
outputs a counter-example.

In this experiment, we were interested in the following:

1. How much the computation time of the function f will change between the usual
recursive form (T1) and its iterative form (T2).

2. How much a bytecode size of the function f will change between the usual recursive
(S1) and iterative (S2) forms.

3. What will be a number of iterations needed to get from the initial point to a
fixpoint of f (denoted as n); what will be a certificate size (Cf)?

4. What will be the greatest size of an intermediary function result f i(d) (denoted
as dmax), and the size of initial point d0?

Experiments were carried out on a computing node Intel Xeon Gold 6254 CPU
3.10GHz x 4 Cores, 16GB RAM; Execution environment: Erlang 20, ERTS 9.3.3.11,
running under Linux Fedora 29 OS.

d0 S1 S2 T1 T2 dmax Cf n

QueueInvar2 5703 2064 2272 0.1 0.4 42028 52992 1656

QueueInvar4 13707 2064 2272 193 423 170758 13145664 410802

Here T1, T2 is measured in seconds, d0, dmax, S1, S2, Cf - in bytes, n - number of itera-
tions.

Besides, we implemented the solution refutation step scenario consisting of the fol-
lowing steps:

1. The user task DPLL(x) presented in an iterative form is published together with
the initial data d.

The size of a user task S2 and its data d0 permits to send it into TWCD - the
smart-contract.

2. Some participant sends intentionally incorrect solution, consisting of values rn, cp, hc.
It might be the case that the size of cp (measured as a fraction of Cf) is larger
than smart-contract is able to process. In this case, cp is published on an external
immutable storage, for example IPFS. Instead of cp, it sends a link to the data
object residing on IPFS. It is a responsibility of the solution provider to make this
link alive and available.

3. Some other participant, after checking the published solution and detecting the
error, constructs a refutation. The refutation i, ci−1, ci, ri−1 is sent into the
smart-contract.

13

inter(n) proof(n) verify(n) cert(n)
Libra Non-ZKP 3 O(d(n) · log s(n)) O(s(n)) O(d(n) · log s(n)) O(d(n) · log s(n))

TrueBit O(logn) O(n logn) O(1) O(n)

SafeComp 1 O(n) O(1) O(n)

Fig. 2: Asymptotic estimates for several certification algorithms. Denotation:
proof(n) - complexity of proof construction, verify(n) - complexity of proof verifi-
cation, inter(n) - number of interaction rounds, cert(n) - size of certificate,
s(n) - size of functional element circuit as a function of task input size, d(n) - depth of
a circuit, i.e. a maximum path length in the circuit.

4. The smart-contract checks the provided refutation by applying rules 1, 2, 3 from
Section 5. If the link to IPFS is published instead of pure cp value, then the
smart-contract asks a trusted oracle to provide data locating at i− 1 and i offset,
receiving ci−1, ci. If the IPFS link is unavailable, the solution is declined.

A Proof-of-Concept implementation of the protocol together with described scenario
and the user task program is available at the repository [18].

All IPFS and Oracle-related functionality is modelled using a usual program code,
without making any external service calls.

9 Related Works

Certification of computation integrity performed by some party we do not fully trust is
considered a classic problem in modern cryptography. Several solutions to this problem
have been proposed, each solution with its own set of compromises. One set of methods
rely on a so-called Probabilistically Checkable Proofs (PCP) theorem for computations
in class NP.

A reminder: NP class consists of decision problems such that there exists a verifica-
tion procedure able to check its solutions in polynomial time.

PCP theorem states that any solution for an NP problem could be checked by a
polynomial time algorithm using a fixed number of randomly chosen structural elements
of a solution [2].

Methods belonging to this family could be characterized by the following pattern
of interaction: 1) A user defines his computation task in a form of a boolean circuit
(or functional elements circuit [11]); constructs a special polynomial - Algebraic Normal
Form (ANF; amount of terms in ANF depends on the number of functional elements in
the circuit [21]); sends the circuit and the input data to the provider 2) The provider
derives corresponding boolean function; using this function, he gets the ANF and en-
codes the output of each of the circuit nodes in ANF; computes both the result of a
computation and a certificate. The certificate can be stored on the provider’s part, in
the cloud or transmitted with the result to the user 3) To verity the certificate, the user
utilizes one of approaches shown below. Generally, in order to verify a certificate, it is
enough to randomly chose a limited number of circuit nodes for each approach, as PCP
theorem implies.

3Libra is a Zero-Knowledge (ZK) protocol: it hides the user function input from the prover, and this is

14

There are known approaches to certificate verification: 1) Interactive approach with-
out commitments: Query a certificate (residing on a provider’s part or in a cloud) at a
different nodes until the user is satisfied [8] [22] [20] 2) Interactive approach with com-
mitments: form commitments with cryptographic protocols that verifies the integrity of
a certificate. The key difference from the previous approach is a significant extension of
the class of verification tasks [15] [16] [13]

PCP-inspired approaches impose considerable limitations on verifiable computations.
For instance, accurate upper estimates for the number of loop iterations and the size of
data structure ought to be known in advance.

Protocol Libra [22] belongs to those methods relying on PCP theorem, and is one
of the latest methods known from the literature. It cannot be directly matched with
our protocol because it has a number of limitations, for example, on the structure of
user’s computations. Nevertheless, in some cases it can be applied to obtain the same
technical result. Therefore, we also give bounds for it.

In the table 2, we compare the nearest known analogues in terms of their asymptotic
behaviour.

Comparision with TrueBit

With the advent of blockchains equipped with smart-contracts programming capability,
another approach for solving the computation certification problem has emerged. In this
setting, a smart-contract is used as a transparent autonomous arbiter able to resolve
computation disputes among parties.

The first protocol to explore this idea was TrueBit [19]. We now give a brief compari-
son, highlighting the main differences between TrueBit and SafeComp.
Solution refutation procedure. If a dispute against a solution arises, TrueBit entails
an interactive game between two computation providers with the aim of finding the very
first incorrect computation step and convincing the smart-contract that this step is
indeed wrong. The game is played in several rounds. The number of rounds is bounded
by O(log n), where n is the number of computation steps. On each round, a solver and
another provider compute several Merkle tree roots: the computation states are taken
for the leafs. Those values are needed to find the source of disagreement. Complexity
of computing one such root is bounded by O(n). Total computation complexity for
constructing a refutation, for all rounds, is bounded by O(n log n). The advantage of
such approach is that it allows parties to optimize the data volume sent into a smart-
contract, but with an extra cost of computing Merkle Tree roots, several times.

In SafeComp, we use another approach: a solver publishes both a solution to a task
and a certificate projection - a partially disclosed certificate sequence (Section 3, p.3) -
that allows other parties to find a divergent part of a certificate fast, in O(log n) steps
using binary search. Both the size and computation complexity for a certificate has a
bound O(n). If a certificate projection is large, we use an external immutable storage,
IPFS for example, using an oracle technology to move data into a smart-contract in case
it is needed. The solution refutation procedure in our case is, thereby, done in 1 round,
lowering the complexity of the procedure from O(n log n) to O(n + log n) = O(n), but
at the expense of writing extra O(n) data, i.e. a certificate projection, into the network.

not what we would like to compare with, because, both SafeComp and TrueBit do not hide user input. If we
omit ZK property, Libra inherits communication complexity of GKP protocol [8] with some modifications.

15

Form of Computational Task. In case of TrueBit, a user task must be compiled into
a bytecode of some virtual machine. One have to place an interpreter for the bytecode
in the blockchain, so a smart-contract will be able to resolve disputes. In our case, one
needs to present its computation in a special - iterative - form, meaning that it may
entail program rewriting in a different style. This may cause inconvenience, but maybe
soften by the fact that one does not need to place an interpreter on the blockchain. We
are unsure if a suitable interpreter exists at the moment.

10 Conclusion and Future Work

In this article, we presented a protocol called SafeComp aiming to solve a cloud com-
putation integrity certification problem in a specified context.

We have given a formal specification of the protocol, proved some of its security
properties within a specified threat model.

Comparing to the nearest related work, SafeComp lowers the refutation procedure
complexity considerably, and communication complexity becomes exactly one round.

We evaluated the protocol and made some measures that convinces us in viability
of the protocol in practice. For the future work, we would like to do the following:

1) Propose a provably reliable economic incentives model for participants. As for
now, we almost completely omitted the subject.

2) Implement SafeComp protocol within some public blockchain, and perform a
computation certification for some practically interesting computations.

3) Investigate a relation between an iterative representation of a user program and
its intermediary state size, comparing to the virtual machine byte-code representation.

Acknowledgements

We would like to thank Andrey Rybkin and Mikhail Borodin for their constructive
critics of the protocol: during one of discussions a vulnerability in the protocol logic
was found and fixed. We also thank Jason Teutsch for his thoughtful comments and
suggestions on this work, together with clarification on TrueBit internals.

References

[1] Andrew W Appel and Trevor Jim. Continuation-passing, closure-passing style.
In Proceedings of the 16th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 293–302, 1989.

[2] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario
Szegedy. Proof verification and the hardness of approximation problems. J. ACM,
45(3):501–555, May 1998.

[3] Juan Benet. Ipfs-content addressed, versioned, p2p file system. arXiv preprint
arXiv:1407.3561, 2014.

[4] Armin Biere, Alessandro Cimatti, Edmund Clarke, and Yunshan Zhu. Symbolic
model checking without bdds. In International conference on tools and algorithms
for the construction and analysis of systems, pages 193–207. Springer, 1999.

16

[5] Vitalik Buterin. What is ethereum? Ethereum Official webpage. Available:
http://www. ethdocs. org/en/latest/introduction/what-is-ethereum. html. Accessed,
14, 2018.

[6] Stephen A Cook. The complexity of theorem-proving procedures. In Proceedings
of the third annual ACM symposium on Theory of computing, pages 151–158, 1971.

[7] Martin Davis, George Logemann, and Donald Loveland. A machine program for
theorem-proving. Communications of the ACM, 5(7):394–397, 1962.

[8] Shafi Goldwasser, Yael Tauman Kalai, and Guy N Rothblum. Delegating compu-
tation: interactive proofs for muggles. Journal of the ACM (JACM), 62(4):1–64,
2015.

[9] John E Hopcroft, Rajeev Motwani, and Jeffrey D Ullman. Introduction to Au-
tomata Theory, Languages, and Computation: Pearson New International Edition.
Pearson Higher Ed, 2013.

[10] Petar Kochovski, Sandi Gec, Vlado Stankovski, Marko Bajec, and Pavel D Drobint-
sev. Trust management in a blockchain based fog computing platform with trustless
smart oracles. Future Generation Computer Systems, 101:747–759, 2019.

[11] Sergey Andreevich Lozhkin. Lecture notes on cybernetics foundations (in Russian).
Lomonosov MSU, CMS deparment, 2004.

[12] Tarjei Mandt, Mathew Solnik, and David Wang. Demystifying the secure enclave
processor, 2016.

[13] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio: Nearly
practical verifiable computation. In 2013 IEEE Symposium on Security and Pri-
vacy, pages 238–252. IEEE, 2013.

[14] John C Reynolds. The discoveries of continuations. Lisp and symbolic computation,
6(3-4):233–247, 1993.

[15] Srinath Setty, Benjamin Braun, Victor Vu, Andrew J Blumberg, Bryan Parno,
and Michael Walfish. Resolving the conflict between generality and plausibility
in verified computation. In Proceedings of the 8th ACM European Conference on
Computer Systems, pages 71–84, 2013.

[16] Srinath Setty, Victor Vu, Nikhil Panpalia, Benjamin Braun, Andrew J Blumberg,
and Michael Walfish. Taking proof-based verified computation a few steps closer
to practicality. In Presented as part of the 21st {USENIX} Security Symposium
({USENIX} Security 12), pages 253–268, 2012.

[17] Alexander Shen, Nikolai Konstantinovich Vereshchagin, and Neal Noah Madras.
Computable functions, volume 19. American Mathematical Soc., 2003.

[18] Evgeny Shishkin. Safecomp proof-of-concept source code.
"https://bitbucket.org/unboxed_type/safecomp/src", 2020. Accessed:
2020-05-20.

[19] Jason Teutsch and Christian Reitwießner. A scalable verification solution for
blockchains. arXiv preprint arXiv:1908.04756, 2019.

[20] Justin Thaler. Time-optimal interactive proofs for circuit evaluation. In Annual
Cryptology Conference, pages 71–89. Springer, 2013.

17

"https://bitbucket.org/unboxed_type/safecomp/src"

[21] Heribert Vollmer. Introduction to circuit complexity: a uniform approach. Springer
Science & Business Media, 2013.

[22] Tiacheng Xie, Jiaheng Zhang, Yupeng Zhang, Charalampos Papamanthou, and
Dawn Song. Libra: Succinct zero-knowledge proofs with optimal prover compu-
tation. In Annual International Cryptology Conference, pages 733–764. Springer,
2019.

Appendix 1

Theorem. For all functions C : N → N computable at some point d there exist com-
putable functions

inj : N → T, proj : T → N, F : T → T

such that
proj(fix F inj(d)) = C(d)

where fix : (T → T) × N → T - an operator that calculates fixed point of a function
starting from a given point. That is,

fixF p = F (fixF p)

T - a finite set.

Proof. Let
inj(d) = 〈d, 0〉 proj(〈x, y〉) = x

F (〈x, 0〉) = 〈C(x), 1〉 F (〈x, 1〉) = 〈x, 1〉

Selected functions satisfy conditions of the theorem. Such representation of F could be
called trivial : it does not help to divide function C(x) into composite elementary units.
But is it possible to represent F in any non-trivial way? Yes, we can. The following
argument proofs this fact in a constructive way.

According to Turing thesis, every function C(x), computable at a point, can be
represented as a Turing machine. Let M be a machine corresponding to the function
C(x), that is

M = (Q,Σ,Γ, δ, q0, B,Qf)

Q− non-empty set of states,Γ− non-empty set of tape alphabet symbols

Σ ⊆ Γ− set of input symbols, Qf ⊆ Q− set of possible states

q0 ∈ Q− initial state

δ : Q× Γ → Q× Γ× {L,R} − transition function

Lets define the function F as:

F (〈M, I, q, p〉) =

{

〈M, I ′, q′, p′〉, if q /∈ Qf

〈M, I, q, p〉, otherwise

where

(q′,X, p′) = δ(q, Ip), where Ip is a content of the tape’s cell at the position p

18

I ′ = I[X/p]

Starting from the position p and the state q, the machine M changes state of the tape
from I to I ′ (replacing content of p with X) and the position of its head p′. If it reaches
an accepting state (i.e. a member of Qf) it wouldn’t do any steps further, so a fixpoint
of F is obtained.

Theorem statement suggests that a function C is computable at a point d, so, after
some number of iterations, the machine will necessarily reach an accepting state.

Notice that elements 〈M, I, q, p〉 can be encoded, for instance, by a finite number of
natural numbers. An example of such an encoding can be found in [9].

The function F is computable because it relies on a few computable functions: a
transition function δ(q,X), a function of checking whether an element belongs to a set,
i.e q ∈ Qf , and a choice function if − then − else. All these functions are computable
if sets Q and Γ are finite.

Let inj(d) := 〈M, I0, q0, 1〉, where I0 is an initial state of the tape that contains d
among other things. Let proj(〈M, I, q, p〉) be a function that extracts the value C(d)
from the tape I. Such functions could be constructed because it is always possible to
allocate space for an initial value and for an answer. The answer C(d) is presented as
a finite number of cells on the tape since computability of the function at the point
guarantees a finite number of steps of the machine.

If a size of an answer can not be known in advance, we could always fix the initial
cell and introduce a unique mark denoting an end of area reserved for an answer.

The described representation of functions F, inj, proj satisfies requirements of the
theorem and is not trivial. �

19

	1 Introduction
	2 Problem Statement
	3 Protocol Overview
	4 Iterative Computation
	5 Protocol Specification
	6 Protocol Security Analysis
	7 Protocol Features
	8 Experimental Evaluation
	9 Related Works
	10 Conclusion and Future Work

