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Abstract—Differential repetitive processes are a subclass of 2D systems that arise in modeling
physical processes with identical repetitions of the same task and in the analysis of other
control problems such as the design of iterative learning control laws. These models have
proved to be efficient within the framework of linear dynamics, where control laws designed in
this setting have been verified experimentally, but there are few results for nonlinear dynamics.
This paper develops new results on the stability, stabilization and disturbance attenuation,
using an H∞ norm measure, for nonlinear differential repetitive processes. These results are
then applied to design iterative learning control algorithms under model uncertainty and sensor
failures described by a homogeneous Markov chain with a finite set of states. The resulting
design algorithms can be computed using linear matrix inequalities.
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1. INTRODUCTION

Many industrial processes make a series of sweeps, termed passes, through a set of dynamics
defined over a fixed finite duration known as the pass length [1]. Once each pass is complete, the
process resets to the starting location ready for the start of the next pass. The output on each
pass is termed the pass profile, which acts as a forcing function on, and hence contributes to, the
dynamics of the next pass profile. An industrial example described in [1] with references to the
original modeling work, is long-wall coal cutting, where the pass profile represents the height of
the stone/coal interface above some datum line and the objective lies in extracting the maximum
amount of coal without penetrating the stone/coal boundary. The cutting machine rests on this
profile during the production of the next pass and therefore the previous pass profile explicitly
contributes to the dynamics of the next pass profile, with the result that oscillations that increase
in amplitude from pass-to-pass can occur.

If these oscillations occur in a particular mining operation, then productive work must halt in
order to enable their manual removal. The alternative is to use control action to prevent their
appearance; however, the stabilization problem for these processes cannot be solved via standard,
or 1D, systems theory/algorithms, since this ignores their inherent 2D systems structure. In par-
ticular, information propagation takes place in two directions: from pass-to-pass and along a given
pass. Stability analysis of these processes in the case of linear models proceeds from the rigorous
theory [1] based on exploring the properties of a certain linear operator in an appropriate Banach
space.

Repetitive processes belong to the class of 2D systems, which date back to the 1970s in con-
trol theory and circuit design. The most widespread models include the Roesser model [2], the
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Fornasini–Marchesini model [3] and the repetitive process model [1]. The Roesser model originates
from image processing problems, where the state vector is partitioned into two sub-vectors, termed
horizontal and vertical, respectively. In the Fornasini–Marchesini model (a doubly indexed dynam-
ical system in the initial terminology of [3]) deals with a single state vector. A repetitive process
differs from the Roesser model in the finite duration of one of the independent variables.

A new application area for 2D systems research and, in particular, repetitive processes can
be traced in [4], where iterative learning control (ILC) was introduced. According to the survey
papers [5, 6], iterative learning control (ILC) has many applications and research in this general
area continues to grow, both in terms of theory and applications. The generic application area for
ILC is systems consisting of multiple repetition of homogeneous operations, e.g., a portal robot
moving goods from one location point to another along a given path. The novelty of such control
lies in using information from the previous execution, or pass, to design the control signal for the
next one. Consequently, there is information propagation in two independent variables, from pass
to pass and also over a finite time interval, i.e., the duration of the pass, termed the pass length.
Hence, 2D systems and, in particular, repetitive process theory is applicable.

In [7] an ILC law designed using linear repetitive process theory was verified experimentally.
Another interesting example is an autonomous surveillance system [8] composed of an unmanned
aerial vehicle (UAV) and autonomous ground sensors. This system detects infiltrators, captures a
required target and transmits information on its location to an operator. Here the pass profile is
the closed surveillance path. During a surveillance pass, a UAV flies over each autonomous ground
sensor and a major control objective is to reduce possible deviations from a given path, which may
increase from pass-to-pass. In the presence of such deviations, it is necessary to correct the path
in order to maintain the surveillance. In [8] this problem was considered in an ILC setting, where
control at a current flight pass is corrected on the basis of information acquired on the previous
pass.

A very large volume of 2D control systems research (including the case of uncertain parameter
systems) deals with linear stationary dynamics. Although the linear theory gives the necessary and
sufficient stability conditions, their reduction to computable expressions can be problematic. One
approach is to construct a polynomial positive definite matrix satisfying a Lyapunov-like inequality
in complex variables. The recent work [9] developed a solution of this problem via linear matrix
inequalities; however, the authors noted that the resulting computational complexity is high and
even increases in the case of stabilization based on the necessary and sufficient conditions. An
alternative proceeds from sufficient conditions in the Lyapunov equation setting with constraints
imposed on the solution structure (the so-called 2D Lyapunov equation [1]).

Recent years have seen the appearance of research focused on 2D nonlinear systems. For in-
stance, the stability of nonlinear Fornasini–Marchesini systems was analyzed in [10] and the pub-
lications [11, 12] considered different types of stability in nonlinear discrete-time Roesser systems.
In [13, 14], the stability of discrete and differential nonlinear repetitive processes was considered
and there is a need to extend this work to allow control law design. Among recent possible ap-
plications for repetitive process control theory in the nonlinear model setting are metal deposition
processes [15] and wind turbine control [16].

This paper starts from the results in [17] and establishes new results on the stabilization of
nonlinear differential repetitive processes by a nonstandard application of vector Lyapunov func-
tions. The analysis is then extended to stabilization and disturbance attenuation as measured by
an H∞ norm. The case with possible failures in operation is also considered, where the failures
are modeled as random switching, i.e., by a state-space model with jumps in the parameter values
and/or structure governed by a Markov chain with a finite set of states. Such models are termed
Markovian jump systems or systems with random structure [18, 19]. Note that the problem was
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solved in [20] for discrete repetitive processes. Finally, the new theory is applied to the ILC problem
for a linear system with model uncertainty and sensor failures.

2. SYSTEM DESCRIPTION AND PROBLEM STATEMENT

Consider a linear repetitive process with a pass length T described over 0 � t � T by the state-
space model

ẋk+1(t) = f1(xk+1(t), yk(t), uk+1(t), wk(t)),
yk+1(t) = f2(xk+1(t), yk(t), uk+1(t), wk(t)),

(2.1)

where on pass k xk(t) ∈ R
nx is the state vector, yk(t) ∈ R

ny denotes the pass profile vector,
uk(t) ∈ R

nu stands for the input vector, wk(t) ∈ R
nw means a disturbance vector; f1 and f2 are

nonlinear functions such that f1(0, 0, 0, 0) = 0 and f2(0, 0, 0, 0) = 0. By assumption, the boundary
conditions, i.e., the pass state initial vector sequence and the initial pass profile, are of the form

xk+1(0) = dk+1, k � 0,
y0(t) = f(t), 0 � t � T,

(2.2)

where the vector dk+1 ∈ R
nx has known constant entries for each k, f(t) ∈ R

ny is a vector whose
entries represent known functions of t, 0 � t � T . Moreover, it is assumed that f(t) and dk+1

satisfy the inequalities

|f(t)|2 � Mf ,

|dk+1|2 � κdz
k
d , k = 0, 1, . . . ,

(2.3)

where Mf and κd are positive real scalars and 0 < zd < 1 determines the rate of convergence of the
pass state initial vector sequence. Throughout the paper, the boundary conditions are supposed to
satisfy (2.3).

In the systems theory developed for linear repetitive processes, the stability along the pass is the
basic property in control law design and experimental verification [1, 7]. This property proceeds
from linear operator theory in a Banach space setting. Hence, it cannot be directly transferred
to the nonlinear case. The definitions introduced below form the basis of a stability theory for
nonlinear repetitive processes.

Definition 1. A nonlinear differential repetitive process described by (2.1) with the boundary
conditions (2.2) is said to be exponentially stable if, with wk(t) = 0,

|xk(t)|2 + |yk(t)|2 � κ exp(−λt)ζk, λ > 0, 0 < ζ < 1, (2.4)

where ζ and λ do not depend on T .

Assume that wk(t) ∈ L2([0,∞), [0,∞)), and consider

||w||2 =

√
√
√
√
√

∞∑

k=0

∞∫

0

|wk(t)|2dt < ∞.

Definition 2. A nonlinear differential repetitive process described by (2.1) with the boundary
conditions (2.2) is said to be exponentially stable with a prescribed H∞ disturbance attenuation
level γ if it is exponentially stable and for f(t) ≡ 0 and dk ≡ 0:

||y||2 < γ||w||2. (2.5)
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Let x̄k+1(t) = [xk+1(t)
T yk(t)T]T and write u ∈ Φ if u = ϕ(x̄), where ϕ is a nonlinear function

such that ϕ(0) = 0. The stabilization problem lies in constructing a control law u ∈ Φ so that the
process (2.1) is exponentially stable. Similarly, the H∞-stabilization problem is to design a control
law u ∈ Φ such that the process (2.1) is exponentially stable with a prescribed H∞ disturbance
attenuation level γ.

3. STABILIZATION AND H∞-STABILIZATION

3.1. General Stabilization Conditions

To obtain stabilization conditions for a process (2.1) with the boundary conditions (2.2), we
employ the divergence approach developed in the papers [11, 13, 14, 20] and consider the candidate
vector Lyapunov function

V (x, y) =

[

V1(xk+1(t))
V2(yk(t))

]

, (3.1)

V1(x) > 0, x �= 0, V2(y) > 0, y �= 0, V1(0) = 0, V2(0) = 0. The divergence operator of this function
along the paths of the process (2.1) is defined as

divV (xu,k+1(t), yu,k(t)) =
dV1(xu,k+1(t))

dt
+ ΔkV2(yu,k(t)), (3.2)

where ΔkV2(yu,k(t)) = V2(yu,k+1(t)) − V2(yu,k(t)) and subscript u indicates that the repetitive pro-
cess (2.1) and (2.2) is considered for a given control uk+1(t). For brevity, this subscript will be
omitted whenever no confusion occurs. Let L(x, u) be a nonlinear function such that

L(x̄, u) � c(|x̄|2 + |u|2) (3.3)

for some c > 0.

Theorem 1. Assume that for some u = ϕ(x̄) ∈ Φ the inequality

divV (xϕ,k+1(t), yϕ,k(t)) + L(x̄ϕ,k+1, ϕ(x̄ϕ,k+1)) � 0 (3.4)

has a solution V (x, y) = [V1(x) V2(y)]T satisfying the conditions

c1|x|2 � V1(x) � c2|x|2, (3.5)

c1|y|2 � V2(y) � c2|y|2, (3.6)

where c1 > 0, c2 > 0. Then the controlled nonlinear differential repetitive process obtained by ap-
plying u = ϕ(x̄) to (2.1) and (2.2) is exponentially stable.

The proof of this result is given in the Appendix.

3.2. Linear Process Stabilization

In this subsection, we demonstrate possible application of Theorem 1 to a special case of a
process (2.1) described by the state-space equations

ẋk+1(t) = A11xk+1(t) + A12yk(t) + B1uk+1(t), (3.7)

yk+1(t) = A21xk+1(t) + A22yk(t) + B2uk+1(t),
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where Aij (i, j = 1, 2) and Bi (i = 1, 2) are constant matrices of appropriate dimensions, the rest
notation is that for (2.1) and the boundary conditions are again of the form (2.2). Choose the
function L and the components of the vector Lyapunov function V as the quadratic forms

L(x̄k+1(t), uk+1(t)) = x̄k+1(t)
TQx̄k+1(t) + uk+1(t)

TRuk+1(t),

V1(xk+1(t)) = xk+1(t)
TP1xk+1(t),

V2(yk(t)) = yk(t)TP1yk(t),

(3.8)

where Q = QT is a nonnegative definite matrix, P1 = PT
1 , P2 = PT

2 , R = RT are positive definite
matrices, all with compatible dimensions. Set

A =

[

A11 A12

A21 A22

]

, B =

[

B1

B2

]

, P =

[

P1 0
0 P2

]

, I1,0 =

[

I 0
0 0

]

, I0,1 =

[

0 0
0 I

]

and consider the problem of finding the control law u = ϕ(x̄) from the condition

min
u∈Rnu

{divV (x̄) + L(x̄, u)} < 0. (3.9)

According to (3.9), this control satisfies (3.4) and, by application of Theorem 1, stabilizes the linear
process. Moreover, minimization of the left-hand side of (3.9) gives

uk+1(t) = −Kx̄k+1(t),

where the gain matrix K is defined by the formula

K = [R + BTI0,1PB]−1BT[I1,0P + I0,1PA],

and the matrix P satisfies the inequality

ATI1,0P + PI1,0A− [I1,0PB + ATI0,1PB][R + BTI0,1PB]−1[BTI1,0P + BTI0,1PA]

+ATI0,1PA− I0,1P + Q < 0. (3.10)

The nonstandard square matrix inequality (3.10) can be solved by the progressive approximation
method, but the construction of more efficient solution methods is an open question for future
research together with the feasibility conditions of this inequality.

3.3. H∞-stabilization

Consider the nonlinear repetitive process (2.1) with the boundary conditions (2.2) and an arbi-
trary function wk(t) ∈ L2([0,∞), [0,∞)). Then the following result can be established.

Theorem 2. Assume that for some u = ϕ(x̄) ∈ Φ the inequality

divV (xϕ,k+1(t), yϕ,k(t)) + ε(|xϕ,k+1(t)|2 + |yϕ,k(t)|2 − γ2|wk(t)|2) � 0, (3.11)

where ε is a positive scalar, has a solution V (x, y) satisfying (3.5) and (3.6). Then the nonlinear
differential repetitive process obtained by applying u = ϕ(x̄) to (2.1) and (2.2) is exponentially
stable with the prescribed H∞ disturbance attenuation level γ.

Proof. Let the pair (V (x, y), ϕ(x̄)) be a solution of inequality (3.11). If w ≡ 0, it follows
from (3.11) that

divV (xϕ,k+1(t), yϕ,k(t)) � −ε(|xϕ,k+1(t)|2 + |yϕ,k(t)|2) (3.12)
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and the process described by (2.1) and (2.2) is exponentially stable by Theorem 1. Consider
wk(t) ∈ L2([0,∞), [0,∞)) with f(t) ≡ 0 and dk ≡ 0. In this case, inequality (3.12) can be rewritten
as

dV1(xϕ,k+1(t))

dt
+ V2(yϕ,k+1(t)) − V2(yϕ,k(t))

� −ε(|xϕ,k+1(t)|2 + |yϕ,k(t)|2 − γ2|wk(t)|2)

� −ε(|yϕ,k(t)|2 − γ2|wk(t)|2). (3.13)

Integrating and summing both sides of (3.13) and rearranging the summands (taking into ac-
count the zero boundary conditions) yields

ε
n∑

k=0

t∫

0

|yϕ,k(s)|2ds � ε
n∑

k=0

t∫

0

γ2|wk(s)|2ds

−
n∑

k=0

V1(xϕ,k+1(t)) −
t∫

0

V2(yϕ,k(s))ds � ε
n∑

k=0

t∫

0

γ2|wk(s)|2ds. (3.14)

Finally, as n → ∞ and t → ∞ in (3.14), the inequality (2.5) is obtained. This concludes the proof.

4. NONLINEAR DIFFERENTIAL REPETITIVE PROCESSES WITH FAILURES

This section extends the results of the previous section to nonlinear differential repetitive pro-
cesses in the presence of failures. The failures are modeled by a state-space model with jumps in
the parameter values and/or structure governed by a Markov chain with a finite set of states, often
termed Markovian jump systems or systems with random structure [18, 19].

The differential nonlinear repetitive processes under consideration are described by the state-
space model

ẋk+1(t) = g1(xk+1(t), yk(t), uk+1(t), wk(t), r(t)),

yk+1(t) = g2(xk+1(t), yk(t), uk+1(t), wk(t), r(t)),
(4.1)

where r(t) (t � 0) denotes a Markov chain with a finite set of states N = {1, . . . , ν} and transition
probabilities given by

P(r(t + τ) = j | r(t) = i) =

{

πijτ + o(τ), if j �= i
1 + πiiτ + o(τ), if j = i,

(4.2)

i, j = 1, . . . , ν, πij > 0, πii = −∑ν
i�=j πij; g1 and g2 represent nonlinear functions such that for all

r ∈ N: g1(0, 0, 0, 0, r) = 0, g2(0, 0, 0, 0, r) = 0. The rest of the notation is the same as in (2.1) and
the boundary conditions again have the form (2.2).

The following are definitions of exponential stability and H∞ disturbance attenuation for the
repetitive processes considered in this section.

Definition 3. A nonlinear differential repetitive process described by (4.1), (2.2) with wk(t) = 0
is said to be exponentially stable in the mean square if

E[|xk(t)|2 + |yk(t)|2] � κ exp(−λt)ζk, λ > 0, 0 < ζ < 1, (4.3)

where E denotes the expectation operator and the constants ζ, λ do not depend on T .
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Assume that wk(t) ∈ L2([0,∞), [0,∞)) and define

||w||E =

√
√
√
√
√E

⎡

⎣

∞∑

k=0

∞∫

0

|wk(t)|2dt
⎤

⎦ < ∞.

Definition 4. A differential nonlinear repetitive process described by (4.1) and (2.2) is said to
be exponentially stable in the mean square with a prescribed H∞ disturbance attenuation level γ
if it is exponentially stable and for all wk(t) ∈ L2([0,∞), [0,∞)) �= 0 with f(t) ≡ 0 and dk ≡ 0:

||y||E < γ||w||E. (4.4)

Suppose that u = ϕ(x̄) ∈ Φ. To derive the conditions for exponential stability in the mean
square for a process (4.1) and (2.2), consider the candidate vector Lyapunov function

V (xk+1(t), yk(t), r(t)) =

[

V1(xk+1(t), r(t))

V2(yk(t), r(t))

]

, (4.5)

where V1(x, r) > 0, x �= 0, V2(y, r) > 0, y �= 0, V1(0, r) = 0, V2(0, r) = 0.

Also introduce the operators D1 and D2 defined along the paths of (4.1):

D1V (ξ, η, i) = lim
Δt→0

1

Δt
E[V1(xk+1(t + Δt), r(t + Δt) − V1(xk+1(t), r(t)) | xk+1(t)

= ξ, yk(t) = η, r(t) = i],

D2V (ξ, η, i) = E[V2(yk+1(t), r(t)) − V2(yk(t), r(t)) | xk+1(t) = ξ, yk(t) = η, r(t) = i].

Let V1(ξ, i) be differentiable in ξ for each i ∈ N. Hence, using (4.1) and (4.2), it follows immediately
that

D1V (ξ, η, i) = gT1 (ξ, η, ϕ(ξ̄), w, i)
∂V1(ξ, i)

∂ξ
+

ν∑

j=1

πi,jV1(ξ, j), (4.6)

where ξ̄ = [ξT ηT]T. Introduce the operator D as the stochastic counterpart of the divergence
operator from the previous section:

DV (ξ, η, i) = D1V (ξ, η, i) + D2V (ξ, η, i). (4.7)

Theorem 3. Consider a nonlinear differential repetitive process described by (4.1) and (2.2) with
u = ϕ(x̄) ∈ Φ. Assume that the inequality

DV (ξ, η, i) + L(ξ̄, ϕ(ξ̄)) � 0, i ∈ N (4.8)

has a solution V (ξ, η, i) = [V1(ξ, i) V2(η, i)]
T satisfying

c1|ξ|2 � V1(ξ, i) � c2|ξ|2, (4.9)

c1|η|2 � V2(η, i) � c2|η|2, (4.10)

c1 > 0, c2 > 0. Then this process is exponentially stable in the mean square.

The proof of this result is given in the Appendix.

A nonlinear differential repetitive process described by (4.1) and (2.2) with wk(t) ∈
L2([0,∞), [0,∞)) possesses the following property.
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Theorem 4. Assume that for some u = ϕ(x̄) ∈ Φ the inequality

DV (ξ, η, i) + ε(|ξ|2 + |η|2 − γ2|w|2) � 0, (4.11)

where ε is a positive scalar, has a solution V (ξ, η, r) meeting the conditions (4.9) and (4.10). Then
the nonlinear differential repetitive process obtained by applying u = ϕ(x̄) to (4.1) and (2.2) is
exponentially stable in the mean square with the prescribed H∞ disturbance attenuation level γ.

Proof. Let the pair (V (ξ, η, r), ϕ(x̄)) be a solution of (4.11). If w ≡ 0, inequality (4.11) gives
that

DV (ξ, η, i) � −ε(|ξ|2 + |η|2) (4.12)

and by Theorem 3 a repetitive process described by (4.1) and (2.2) is exponentially stable in the
mean square. Suppose that wk(t) ∈ L2([0,∞), [0,∞)), f(t) ≡ 0 and dk ≡ 0. Then (4.12) leads to

E[D1V (xk+1(t), r(t))] + E[V2(yk+1(t), r(t)) − V2(yk(t), r(t))]

� −εE[(|xk+1(t)|2 + |yk(t)|2] − γ2E[|wk(t)|2)] � −εE[|yϕ,k(t)|2 − γ2|wk(t)|2]. (4.13)

Integrating and summing both sides of (4.13) and rearranging the summands gives

εE

⎡

⎣

n∑

k=0

t∫

0

|yϕ,k(s)|2ds
⎤

⎦ � εE

⎡

⎣

n∑

k=0

t∫

0

γ2|wk(s)|2ds
⎤

⎦

− E

[
n∑

k=0

V1(xk+1(t), r(t))

]

− E

⎡

⎣

t∫

0

V2(yk(s), r(s))ds

⎤

⎦ � εE

⎡

⎣

n∑

k=0

t∫

0

γ2|wk(s)|2ds
⎤

⎦ . (4.14)

As n → ∞ and t → ∞ in inequality (4.14), we obtain (4.4). This completes the proof.

5. ITERATIVE LEARNING CONTROL UNDER UNCERTAINTY AND FAILURES

In this section the stability results of the previous section are applied to ILC design under
parameter uncertainty and possible sensors faults for linear systems described by the state-space
model

ẋ(t) = Ax(t) + Bu(t),

y(t) = C(δ(t), r(t))x(t),
(5.1)

where x ∈ R
n denotes the state vector, u ∈ R

m is the input vector, y ∈ R
p is the output vector,

δ ∈ R
N is the vector of uncertain parameters in the sensors, r(t) represents a Markov chain with a

finite set of states N = {1, . . . , ν} corresponding to the number of possible failures with transition
probabilities given by (4.2).

The uncertainty associated with the system dynamics has the affine parallelotopic model

C(δ(t), r) = C +
N∑

j=1

δj(t)Cj(r), r ∈ N, (5.2)

where δj(t), j = 1, . . . , N , are the components of the uncertainty vector δ(t), N denotes its di-
mension and C, Cj(r), j = 1, . . . , N , r ∈ N indicate matrices of appropriate dimensions. Each
component δj(t) of the uncertainty vector in (5.2) is assumed to be bounded in an interval

δj(t) � δj(t) � δj(t). (5.3)

AUTOMATION AND REMOTE CONTROL Vol. 76 No. 5 2015



794 EMELIANOV et al.

Designate by Δ the set of uncertainties δ(t):

Δ = { δ(t) = [ δ1(t) . . . δN (t) ]T : δj(t) ∈ [δj , δj], j = 1, . . . , N}.
And the finite set of extremal values (vertices) of the set Δ is defined by

Δv = { δ(t) = [ δ1(t) . . . δN (t) ]T : δj(t) ∈ {δj , δj}, j = 1, . . . , N }. (5.4)

The process (5.1) evolves in the repetitive mode with a pass length T with resetting to the
initial state after each pass is complete. Moreover, within the time interval 0 � t � T, the output
signal y(t) must follow a reference signal yref (t) with a given accuracy ε. An illustrative example
is a portal robot with multiple repetition of homogeneous operations in a production conveyor. In
such an operational mode, it seems natural to design control laws using information not only from
a current pass, but also from one or several previous passes. The ILC problem lies in constructing
feedback control correction algorithms based on the above information to achieve the required
accuracy. To formulate the ILC problem, let the integer k denote the pass (also termed trial in
some literature) and uk(t), xk(t) and yk(t) stand for the input, state and output vectors, respectively,
on this pass and have the same dimensions as their counterparts in (5.1). Then the dynamics of
the uncontrolled process are described by

ẋk(t) = Axk(t) + Buk(t),

yk(t) = C(δ(t), r(t))xk(t)
(5.5)

with the boundary conditions

y0(t) = 0, 0 � t � T, xk(0) = x0, k = 0, 1, . . . , (5.6)

where T is the pass length.

Suppose that the components of the reference signal yref (t) are differentiable on the inter-
val [0, T ]. Then ek(t) = yref (t) − yk(t) is the error on pass k and the aim of ILC is to construct a
sequence of inputs such that the error decreases with each pass. In the absence of failures, this can
be expressed as the convergence condition on the input and error:

lim
k→∞

|ek(t)| = 0, lim
k→∞

|uk(t) − u∞(t)| = 0, (5.7)

where u∞ is termed the learned control.

A commonly used ILC law is to select the input on the current pass as that used on the previous
pass plus a correction, i.e., the ILC law on pass k + 1 is of the form

uk+1(t) = uk(t) + Δuk+1(t), (5.8)

where Δuk+1(t) is the correction term whose design can involve information generated over the
complete previous pass, in contrast to standard feedback laws.

Returning to the case of failures, the stochastic nature of r(t) requires the following modified
definition of ILC convergence.

Definition 5. A system described by (5.5) is said to be ILC convergent if for all 0 � t � T :

E[|ek(t)|2] = E[|yref(t) − yk(t)|2], E[|uk(t) − u∞(t)|2] → 0, k → ∞. (5.9)

To write the ILC dynamics as a linear differential repetitive process, introduce the auxiliary
vector υk(t) defined by

υ̇k+1(t) = xk+1(t) − xk(t). (5.10)
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Then, given (5.5),

ek+1(t) − ek(t) = −C(δ(t), r(t))A

t∫

0

(xk+1(τ) − xk(τ))dτ

− C(δ(t), r(t))B

t∫

0

(uk+1(τ) − uk(τ))dτ. (5.11)

Also by (5.10), (5.11), the ILC dynamics can be described by a linear differential repetitive process
with uncertainty of the form

υ̇k+1(t) = Aυk+1(t) + B

t∫

0

Δuk+1(τ)dτ, (5.12)

ek+1(t) = ek(t) − C(δ(t), r(t))Aυk+1(t) − C(δ(t), r(t))B

t∫

0

Δuk+1(τ)dτek(t).

Consider also the case when

Δuk+1(t) = F1(i)υ̇k+1(t) + F2(i)ėk(t), if r(t) = i. (5.13)

Then if (5.13) guarantees exponential stability in the mean square of (5.12), then by Definition 5
the ILC law (5.8) is convergent.

To construct the stabilizing control law matrices F1(i) and F2(i), i ∈ N, the stability condi-
tions of Theorem 3 can be applied. Choose the candidate vector Lyapunov function as (4.5) with
V1(υk+1(t), r(t)) = υTk+1(t)P1(r(t))υk+1(t), V2(ek(t), r(t)) = eTk (t)P2(r(t))ek(t), P1 > 0, P2 > 0. In
this case, the stochastic divergence operator D of the function (4.5) must satisfy the condition (4.8).
By calculating this operator along the paths of the system described by (5.12), (5.13), the following
are sufficient conditions for the exponential stability in the mean square:

P (i) = diag{P1(i) P2(i)} > 0,

AT
c1(δ, i)P (i) + P (i)Ac1(δ, i) +

ν∑

j=1

πijI
1,0P (j) (5.14)

−I0,1P (i) + AT
c2(δ, i)P (i)Ac2(δ, i) < 0, i ∈ N, δ ∈ Δ,

where

I1,0 =

[

I 0
0 0

]

, I0,1 =

[

0 0
0 I

]

,

Ac2(δ, i) =

[

0 0

−C(δ, i)A − C(δ, i)BF1(i) I − C(δ, i)BF2(i)

]

,

Ac1(i) =

[

A + BF1(i) BF2(i)

0 0

]

.

Introduce the new variables X(i) = P−1(i), Y1(i) = F1(i)X1(i), Y2(i) = F2(i)X2(i). Then using
the Schur complement lemma, routine calculations and convexity properties, the inequalities (5.14)
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are reduced to the following coupled set of linear matrix inequalities (LMIs) with respect to these
variables:

⎡

⎢
⎢
⎣

S11(δ, i) S12(δ, i) S13(i)

ST
12(δ, i) −X(i) 0

ST
13(i) 0 S33(i)

⎤

⎥
⎥
⎦
< 0,

X(i) > 0, δ ∈ Δ, i ∈ N,

(5.15)

where

S11(δ, i) =

[

Ac11(i) BY2(i)

(BY2(i))
T −X2(i)

]

, S12(δ, i) =

[

0 0

Ac12(δ, i) Ac22](δ, i)

]T

,

Ac11(i) = AX1(i) + BY1(i) + (AX1(i) + BY1(i))
T + πiiX1(i),

Ac12(δ, i) = −C(δ, i)AX1(i) − C(δ, i)BY1(i),

Ac22(δ, i) = X2(i) − C(δ, i)BY2(i),

S13(i) =

[

π
1
2
i1X(i)I1,0 . . . π

1
2
i i−1X(i)I1,0π

1
2
i i+1X(i)I1,0 . . . π

1
2
iνX(i)I1,0

]

,

S33(i) = diag[−X(1) . . . −X(i − 1) −X(i + 1) . . . −X(ν)].

The inequalities (5.15) are convex and, by the well-known theorem of inequalities on convex
hulls, it is necessary and sufficient that they hold true on the set Δv and the following result has
been established.

Theorem 5. Consider the ILC dynamics described by (5.12). Suppose that the LMIs (5.15) with
δ ∈ Δv and i ∈ N are feasible and set F1(i) = Y1(i)X

−1
1 (i), F2(i) = Y2(i)X

−1
2 (i), i ∈ N. Then the

ILC scheme defined by (5.8) and (5.13) is convergent.

6. CONCLUSION

This paper has developed new results on the stability of nonlinear differential repetitive processes
with potential applications. To demonstrate their role for the latter purpose, they have been applied
to ILC design, including the case when failures in implementation may arise. These results provide
a basis for further research to fully evaluate the potential of a systems theory for nonlinear repetitive
processes.
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APPENDIX

Proof of Theorem 1. If the pair (V (x, y), ϕ(x̄)) satisfies (3.4), the controlled nonlinear differential
repetitive process (in the absence of the disturbance terms) can be rewritten as

ẋk+1(t) = f̄1(xk+1(t), yk(t), ϕ(xk+1(t), yk(t))),

yk+1(t) = f̄2(xk+1(t), yk(t), ϕ(xk+1(t), yk(t))),
(A.1)
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where f̄1 and f̄2 represent nonlinear functions such that f̄1(0, 0, 0) = 0 and f̄2(0, 0, 0) = 0. Moreover,
it follows from (3.3) and (3.4) that

divV (xϕ,k+1(t), yϕ,k(t)) � −c(|xϕ,k+1|2 + |yϕ,k(t)|2). (A.2)

Hence, it is required to show that the controlled process (A.1) is exponentially stable under (3.5),
(3.6) and (A.2).

Given (A.2), there exists a number c3 < c such that c3 < c2 and z
1
2
d < 1 − c3

c2
< 1. Next, the

inequalities (3.5), (3.6) and (A.2) give

dV1(xk+1(t))

dt
+ λV1(xk+1(t)) + V2(yk+1(t)) − ζV2(yk(t)) � 0, (A.3)

where λ = c3
c2
, ζ = 1 − c3

c2
∈ (0, 1). Solving inequality (A.3) with respect to V1(xk+1(t)) yields

V1(xk+1(t)) � V1(xk+1(0))e−λt −
t∫

0

e−λ(t−s)[V2(yk+1(s)) − ζV2(yk(s))]ds. (A.4)

Introducing

Wk+1(t) = V1(xk+1(0))e−λt − V1(xk+1(t)),

Hk(t) =

t∫

0

e−λ(t−s)V2(yk(s))ds,

enables (A.4) to be rewritten as

Hk+1(t) � ζHk(t) + Wk+1(t). (A.5)

Solving (A.5) with respect to H gives

Hn(t) � ζnH0(t) +
n∑

k=1

Wk(t)ζn−k, (A.6)

or

n∑

k=1

V1(xk(t))ζn−k +

t∫

0

e−λ(t−s)V2(yn(s))ds

� e−λt
n∑

k=1

V1(xk(0))ζn−k + ζn
t∫

0

e−λ(t−s)V2(y0(s))ds.

The last inequality is equivalent to

eλt
n∑

k=1

V1(xk(t))ζ−k + ζ−n

t∫

0

eλsV2(yn(s))ds

� ζ−n
n∑

k=1

V1(xk(0))ζn−k + eλt
t∫

0

e−λ(t−s)V2(y0(s))ds. (A.7)
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Estimating the right-hand side of (A.7) in combination with the boundary conditions (2.2) gives

ζ−n
n∑

k=1

V1(xk(0))ζn−k + eλt
t∫

0

e−λ(t−s)V2(y0(s))ds

� c2Mf (eλT − 1)

λ
+ c2κd

∞∑

k=1

ζk =
c2Mf (eλT − 1)

λ
+

c2κd
1 − ζ

= C, (A.8)

and it follows from (A.7) and (A.8) that

c1|xn(t)|2ζ−neλt � C for all t ∈ [0,∞], n = 0, 1, . . . , (A.9)

t∫

0

c1ζ
−neλs|yn(s)|2ds � C for all t ∈ [0,∞], n = 0, 1, . . . .

The last inequality means that the function c1ζ
−neλs|yn(s)|2 is integrable for all s ∈ [0,∞], n =

0, 1, . . . , and necessarily bounded, i.e.,

c1|yn(s)|2ζ−neλs � C̄ < ∞ for all s ∈ [0,∞], n = 0, 1, . . . . (A.10)

Finally, (A.9) and (A.10) directly imply (2.4) and the proof is complete.

Proof of Theorem 3. It follows from (3.3) and (4.8) that

DV (ξ, η, i) � −c(|ξ|2 + |η|2), (A.11)

and by (A.11), there exists c3 < c such that c3 < c2 and z
1
2
d < 1 − c3

c2
< 1. Conversely, (4.9), (4.10)

and (A.11) give that

E[D1V (xk+1(t), yk(t), r(t))] + λE[V1(xk+1(t), r(t))]

+ E[V2(yk+1(t), r(t))] − ζE[V2(yk(t), r(t))] � 0, (A.12)

where λ = c3
c2

, ζ = 1 − c3
c2

∈ (0, 1). Solving (A.12) with respect to V1(xk+1(t)) gives

E[V1(xk+1(t), r(t))] � E[V1(xk+1(0), r(0))]e−λt

−
t∫

0

e−λ(t−s)E[V2(yk+1(s), r(s)) − ζV2(yk(s), r(s))]ds. (A.13)

Introduce

Wk+1(t) = E[V1(xk+1(0), r(0))e−λt − V1(xk+1(t), r(t))],

Hk(t) =

t∫

0

e−λ(t−s)E[V2(yk(s), r(s))]ds

and rewrite (A.13) as
Hk+1(t) � ζHk(t) + Wk+1(t). (A.14)

Solving (A.14) with respect to H yields

Hn(t) � ζnH0(t) +
n∑

k=1

Wk(t)ζn−k, (A.15)
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or

n∑

k=1

E[V1(xk(t), r(t))]ζn−k +

t∫

0

e−λ(t−s)E[V2(yn(s), r(s))]ds

� e−λt
n∑

k=1

E[V1(xk(0), r(0))]ζn−k + ζn
t∫

0

e−λ(t−s)E[V2(y0(s), r(s))]ds.

This last inequality is equivalent to

eλt
n∑

k=1

E[V1(xk(t), r(t))]ζ−k + ζ−n

t∫

0

eλsE[V2(yn(s), r(s))]ds

� ζ−n
n∑

k=1

E[V1(xk(0), r(0))]ζn−k + eλt
t∫

0

e−λ(t−s)E[V2(y0(s), r(s))]ds,

and the remainder of the proof follows identical steps to that of Theorem 1 with obvious modifica-
tions to the notation.
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