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Abstract—
One of the most promising approaches for unsupervised

learning is combining deep representation learning and deep
clustering. Recent studies propose to simultaneously learn repre-
sentation using deep neural networks and perform clustering by
defining a clustering loss on top of embedded features. Unsuper-
vised image clustering naturally requires good feature represen-
tations to capture the distribution of the data and subsequently
differentiate data points from one another. Among existing deep
learning models, the generative variational autoencoder explicitly
learns data generating distribution in a latent space. We propose a
Deep Variational Clustering (DVC) framework for unsupervised
representation learning and clustering of large-scale medical
images. DVC simultaneously learns the multivariate Gaussian
posterior through the probabilistic convolutional encoder, and
the likelihood distribution with the probabilistic convolutional
decoder; and optimizes cluster labels assignment. Here, the
learned multivariate Gaussian posterior captures the latent
distribution of a large set of unlabeled images. Then, we perform
unsupervised clustering on top of the variational latent space
using a clustering loss. In this approach, the probabilistic decoder
helps to prevent the distortion of data points in the latent space,
and to preserve local structure of data generating distribution.
The training process can be considered as a self-training process
to refine the latent space and simultaneously optimizing cluster
assignments iteratively. We evaluated our proposed framework on
three public datasets that represented different medical imaging
modalities. Our experimental results show that our proposed
framework generalizes better across different datasets. It achieves
compelling results on several medical imaging benchmarks. Thus,
our approach offers potential advantages over conventional deep
unsupervised learning in real-world applications. The source code
of the method and of all the experiments are available publicly
at: https://github.com/csfarzin/DVC

I. INTRODUCTION

Deep learning algorithms have made outstanding results
in many domains such as computer vision, natural language
processing, recommendation systems, and medical image anal-
ysis. However, the outcome of current methods depends on a
huge amount of training labeled data, and in many real-world
problems such as medical image analysis and autonomous
driving, it is not possible to create such an amount of training
data. Learning from unlabeled data can reduce the deployment
cost of deep learning algorithms where it requires annotations
from experts such as medical professionals and doctors.

Clustering is a fundamental and challenging task of unsuper-
vised learning that aims to group similar data points together
without supervision. Unsupervised cluster algorithms were re-
searched widely in terms of density-based modeling, centroid-
based modeling, self-organization maps, and grouping algo-
rithms. In recent years, several approaches have performed
image clustering on top of features extracted by a deep neural
network (DNN) [1]–[3]. Learning deep representation from
data helps to improve cluster analysis compared to traditional
centroid-based clustering such as K-means [4]. Deep embed-
ded clustering (DEC) methods train an autoencoder to map a
high-dimensional data space into a lower-dimensional feature
space and define centroid-based clustering loss such as K-
means and K-median [5] on top of the embedded layer [3],
[6], [7]. However, DEC is not able to model the generative
process of data.

We propose a novel deep generative variational autoencoder
framework for simultaneously learning unsupervised represen-
tation and perform image clustering. Our proposed DVC is
able to model data generative process by multivariate Gaussian
model and deep convolutional neural network. In order to
perform deep embedded clustering on large-scale medical
images, we develop the pipeline with a deep convolutional
neural networks which results in a better quality of feature
maps, reducing the number of parameters, and preserving
locality since weights are shared among all locations in the
input.

In summary, the convolutional autoencoder is utilized to
learn representations in an unsupervised way where the learned
features can preserve essential local structure in data. Our
probabilistic encoder utilizes the multivariate Gaussian and
captures the latent distribution of a large set of unlabeled im-
ages. The clustering loss is applied on top of encoder features
and helps to scatter embedded points. However, training with
only clustering loss causes the corruption of latent space and
results in inaccurate performance. Therefore, we propose a
probabilistic decoder to prevent the corruption of data points
in the latent space. The proposed decoder network modifies
embedded space and helps to separate the clusters accurately.
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II. RELATED WORKS AND BACKGROUND

Deep Clustering In recent years, several approaches perform
clustering on top of features extracted by deep neural network
(DNN) [3], [8], [9]. Tian et al. [10] proposed a two-stage
framework that runs K-means clustering on the feature space
extracted by a DNN in the first stage. The proposed frame-
work by Peng et al. [11] includes a sparse autoencoder that
learns representations in nonlinear latent space, followed by
conventional clustering algorithms to fulfill label assignment.

Deep embedded clustering [6] trains an autoencoder with
a reconstruction loss paired with a cluster assignment loss. It
then defines a soft cluster assignment distribution by using
k-means on top of the learned latent representations. The
algorithm was later improved by an additional reconstruction
loss [7](to preserve local structure), an adversarial loss [12],
and data augmentation [13]. JULE [14] is an end-to-end deep
clustering framework that jointly learns Convnet features and
clusters within a recurrent framework. Bise et al. [8] proposed
a soft-constrained clustering method on top of CNN’s features
and applied it for clustering of endoscopy images.
Deep Generative Clustering Deep generative models are the
powerful class of machine learning which are able to capture
the data distribution of the training data and generate artificial
samples. This makes it suitable for bioinformatics use cases
with limited labeled or unlabeled samples [15]–[17]. Genera-
tive adversarial networks (GANs) and variational autoencoders
(VAEs) are the most popular and efficient approaches among
generative models. In the context of image clustering, Clus-
terGAN [18] performs clustering with GAN framework and
additional deep clustering network which trained with three
players in an adversarial fashion.

Jiang et al. [19] introduce variational deep embedding
(VaDE) and use Gaussian Mixture and VAE together for
building the inference model. Similarly, DGG [20] and GM-
VAE [21] exploit VAE and GMM to minimize the graph
distances between embedding data points. The mentioned
methods and also other previous studies such as [18]–[20] do
not address problems arising due to local preservation. Here,
DVC can simultaneously optimize cluster labels assignment
and learn features that are suitable for clustering with local
structure preservation by combining the clustering loss, KL
loss, and autoencoder’s reconstruction loss.
Variational Autoencoder VAEs are a probabilistic twist of
autoencoders that approximate data distributions by optimizing
evidence lower bound loss (ELBO) [22]:

Ln(θ, φ;x, z) = −Eqφ(z|x)[log pθ(x|z)]+DKL(qφ(z|x)‖p(z))
(1)

where the first term is a reconstruction loss and the second is
a regularization term, φ and θ are the parameters of encoder
and decoder network respectively. The p(z) is a fixed prior
distribution on latent distribution with a common choice of
normal Gaussian:

p(z) = N (µ = 0, σ2 = I) (2)

The qφ(z|x) and pθ(x|z) in Eq.(1) are diagonal normal dis-
tributions parameterized by neural networks can be computed
from:

qφ(z|x) = N (z;µ, σ2 ∗ I) (3)

pθ(x|z) = N (x;µ, σ2 ∗ I) or Ber(x; pθ(z)) (4)

However, VAEs performance influenced by the design of
network architecture and choosing hyperparameters such as
the size of latent variables, input and output dimension, and
standard deviation of p(x|z). Considering a pretrained model,
sufficiently powerful neural networks, a large enough latent
space, VAEs with Gaussian encoders and decoders can approx-
imate the true data distribution. Therefore, after optimization,
LELBO is often used as a proxy for the likelihood of a data
sample.

III. METHOD

Our goal is to cluster N samples {xi}Ni=1 from the input
space X = Rdx , dx ∈ N into K clusters, represented by
centroids m1, . . . ,mK ∈ Rdx . The proposed framework is
composed of two networks (see Fig 1). The encoder network
q with parameters of φ computes qφ(z|x) : xi → zi. The
encoder maps an input image xi ∈ X to its latent embedding
zi ∈ Z in a lower dimensionality space compared to the
input space X . The decoder network p parametrizes by θ,
pθ : zi → x′i, and reconstructs xi from its latent embedding zi.
The autoencoder network is first pre-trained, with the network
loss Ln = Lr+DKL(qφ(z|x)‖p(z)), where Lr = LCE(x, x′),
to initialize latent variable zi. After convergence, the clustering
loss Lc = DKL(P (q)‖Q(z,m)) is introduced into the objec-
tive function, and the network’s training is continued to jointly
perform clustering in the embedded space while preserving
reconstruction capabilities. This is done by using a convex
combination of the two losses. The relative weight of each of
the two losses is indicated by λ ∈ (0, 1), which controls the
degree of distortion introduced in the embedded space:

L = λLc + (1− λ)Lr. (5)

In other word, the training procedure of the proposed
DVC is end-to-end in two-phase; In the first phase, we
initialize the VAE parameters with a multivariate Gaussian
samples. At the second phase, the parameters are optimized by
training simultaneously deep variational embedded clustering
and deep probabilistic reconstruction network. Therefore, we
iterate between: computing an auxiliary target distribution and
minimizing KL divergence to the computed auxiliary target
distribution.

A. Deep Variational Clustering and Parameter Initialization

After convergence of the first training step of our network,
yielding a good embedding representation of each training
sample in the first step, our method performs clustering in the



Fig. 1: Illustration of the proposed deep variation clustering network. The large-scale clustering is performed on top of deep
features extracted by the convolutional neural network, variational embedded layer, and by minimizing the KL divergence loss
between a prior distribution and extracted features by the encoder network.

latent space Z . We use the Kullback-Leibler (KL) divergence
as clustering loss:

Lc = KL(P‖Q) =
∑
i

∑
j

pij ln
pij
qij

(6)

where Q is a soft labeling distribution with elements qij . P is
an auxiliary target distribution derived from Q with elements
pij . More specifically, pij are the elements of the target
distribution while qij is the distance between the embedded zi
and the center mj of the j-th cluster. This distance is measured
by a Student’s t-distribution (cf. [23]):

qij =
(1 +

∥∥zi −mj

∥∥2 /α)−α+1
2∑

k(1 +‖zi −mk‖2 /α)−
α+1
2

(7)

where α is the degrees of freedom of the Student’s t-
distribution (we here only consider α = 1).

In order to address problems associated with small disjuncts,
we modify the target distribution P by pushing data points
that are similar in the original space closer together in the
latent space. Thereby samples from less-frequent classes can
be identified as a cluster. Then, pij is computed as follows:

pij =
q2ij/(uj + vj)∑

k q
2
ik/vk

(8)

where uj =
∑
i qij are soft cluster frequencies while vj

normalize the frequency of samples per cluster:

vj = −
∑
i

∑
j

√∑
kNk
Nj

(1− qij)γ log(qij). (9)

Here, Nj is the estimated cardinality of cluster j, γ is a
relaxation parameter in laymen’s terms and set to 2. Note
that, to prevent instability in the training procedure, we do not
update P at every iteration. P is only updated if changes in
the label assignments between two consecutive updates of the
target distribution are less than a threshold δ. This tolerance
threshold and its empirical property are discussed in more
detail in Section IV.

For parameter initialization, we follow the standard proce-
dure by [6] and [7]: the autoencoder is pre-trained separately,
and the centroids m1, . . . ,mK are initialized by performing
standard K-means clustering on the latent embeddings of the
training samples.

Both probabilistic encoder and decoder build by convolu-
tional neural network architecture which brings the following
advantages: 1) suitable for large-scale medical images, 2)
better quality of feature maps in which results in better
representation 3) fewer parameters and hyperparameter needed
to be tuned.
Self-labeling and Optimization We perform multi-objective
optimization to jointly optimize the cluster loss and the re-
construction loss (ELBO) using mini-batch stochastic gradient
variational Bayes (SGVB). In each iteration, the probabilistic
encoder network’s weights φ, cluster centers, probabilistic
decoder’s weights θ, and target distribution P are updated and
optimized on the basis of (5). The target distribution P plays
as the ground-truth of the soft label. By iterating these updates,
the label assigned of x is obtained using:

yi = argmax
j

qij , (10)

The overall training process is repeated until a convergence



Algorithm 1: Deep Variational Clustering Algorithm

Input : input data X = Rdx , initial number of
clusters K, convergence threshold δ

Output: cluster label yi of xi ∈ X
1 initialize θ, φ as described in III;
2 initialize m1, . . . ,mK using K-means;
3 for itr ∈ {0, 1,. . . , Itrmax} do
4 if not converged then
5 if itr%update interval==0 then
6 calculate all embedded points

{zi = fθ(xi)}ni=1;
7 calculate student’s t-distribution

Q, qik = (1+‖zi−mk‖2)−1∑
k(1+‖zi−mk‖

2)−1 (Eq. 7);
8 update target distribution

P, pij =
q2ij/(uj+vj)∑

k q
2
ik/vk

(Eq. 8);
9 do soft label assignment (Eq. 10) ;

10 else
11 select a mini-batch of samples ;
12 calculate zi and qi for each mini-batch;
13 calculate x′i = fφ(zi) ;
14 compute Lr and Lc;
15 update m1, . . . ,mK , θ, φ;
16 end
17 else
18 Stop training.
19 end
20 end

criterion based on the KL loss is met. Algorithm 1 summarizes
the training procedure.

IV. EXPERIMENTS

In this section, we conduct experiments to examine our
proposed framework. First, we compare the results of our
method with several of the related state-of-the-art methods on
various clustering task.

Datasets The proposed method is evaluated on MNIST [24],
BRATS 2018 [25]–[28] and REFUGE-2 [29] image datasets.
MNIST consists of 60,000 images for training and 10,000
for testing, each image has a size of 28 × 28 pixels and is
from one of 10 classes. We train on the full training set and
report as well as compare the results to other methods on
the test set. BRATS 2018 [25]–[28] consists of two different
brain diseases; high and low-grade glioma (HGG/LGG) brain
tumour(s). All brains in the dataset have the same orientation.
The dataset composed of 1156 magnetic resonance images
in four modalities T2, Flair, T1, and T1c from 724 HGG
patients and 432 LGG patients.
REFUGE-2 [29] is an active challenge on classification of
clinical Glaucoma and part of the MICCAI-2020 conference.
The organizers released 1,200 microscopy retinal scans with
size of 2124 × 2056 pixels from two different machines and

scanned by two clinics. The dataset is imbalanced with a
ratio of 1:30.

Evaluation Metrics As unsupervised evaluation metric,
we use the clustering Accuracy (ACC), Normalized Mutual
Information (NMI) and Adjusted Rand Index (ARI) for
evaluations. These measures range in [0, 1], higher scores
show more accurate clustering results.
Compared Method We compare and show the efficacy of
our proposed algorithm by comparing with unsupervised
DEC [6], IDEC [7], DEPICT [30], VaDE [19], variational
clustering [31], and VDEC [32], which can be viewed as
a variant of our method when the reconstruction loss and
network architecture are different. Note that the reported
results for DEC and IDEC is based on our implementation
code in pytorch.

Experimental Setting We evaluate two architectural
choices for our proposed framework by modifying different
types of auto-encoders. In the first experiment (DVC-1), we
study the impact of convolutional neural network architecture
and combination of KL-loss and binary cross-entropy loss for
large scale image clustering. Both probabilistic encoder and
decoder build by convolutional neural network architecture.
We use convolutional layers with kernel size 5 × 5 and
stride 2 in the encoder part. In the decoder part, we perform
up-sampling by image re-size layers with a factor of 2 and
a convolutional layer with kernel size 3 × 3 and stride 1.
The input size for images from REFUGE and BRATS is
128 × 128. Using convolutional encoder and decoder are
beneficial for medical images which are usually large-scale
and high-dimensional, and also can bring feature maps and
representations. Moreover, with convolutional layers, fewer
parameters and hyperparameter are required to be considered.

The second experiment DVC-2, includes a fully-connected
multilayer perceptron (MLP) with dimensions dx-500-
500-1000-10 as encoder for all datasets. Here, dx is the
dimension of the input data. The decoder network is also a
fully-connected MLP with dimensions 10-1000-500-500-dx.
Each layer is pre-trained for 100,000 iterations with dropout.
The entire deep autoencoder is further fine-tuned for 200,000
iterations without dropout for both layer-wise pre-training
and end-to-end tuning. The mini-batch size is set to 256
for MNIST, 64 for BRATS , and 8 for REFUGE. We use a
learning rate of 0.01 which is divided by 10 every 20,000
iterations and set weight decay to zero. After pretraining, the
coefficient λ of clustering loss is set to 0.1. The convergence
threshold δ is set to 0.001 while the update intervals for target
distribution are 70, 80, 100 iterations for REFUGE, BRATS,
and MNIST respectively.

Image Clustering We include the quantitative clustering
results of these clustering methods in Table I. Based on
columns 4-9, our proposed DVC-1 outperforms the other
methods with significant margins on all three clustering
quality measures. Other points that can be also observed



from Table I are: (1) The performance of convolutional-based
methods (DVC-1) is much better than those fully connected
MLP methods (DVC-2 and VAE [22]). The reason is the
quality of the feature map and fewer parameters that need
to be tuned. (2) The performance of representation-based
clustering algorithms (DAC [33]) is much better than the
conventional clustering algorithms (i.e. K-means [34]). It
shows that representation learning acts a crucial role in image
clustering. The qualitative results are shown in Figure 2
includes the cluster distributions and several generated image
samples. Figure 2 shows promising abilities of the proposed
method.

V. CONCLUSION

We proposed end-to-end CNN-based VAEs with multivari-
ate Gaussian priors to perform unsupervised image clustering.
We performed clustering on top of strong latent representation
made with both prior and posterior distribution. In comparison
with the existing approaches, the proposed method achieves
superior performance on two real patient medical imaging
datasets and competitive results on the MNIST and CIFAR-10
datasets. It shows that our method can deal with large-scale
medical images in different image modalities and is not limited
to simple image datasets. We presented the application of
our proposed method for the task of unsupervised clustering.
However, the synthesized samples look realistic with high-
resolution therefore they can tackle some DL challenges such
as class imbalance and data augmentation.
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