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ABSTRACT

Medical imaging systems are commonly assessed and optimized by use of objective-measures of image quality
(IQ) that quantify the performance of an observer at specific tasks. Variation in the objects to-be-imaged is
an important source of variability that can significantly limit observer performance. This object variability
can be described by stochastic object models (SOMs). In order to establish SOMs that can accurately model
realistic object variability, it is desirable to use experimental data. To achieve this, an augmented generative
adversarial network (GAN) architecture called AmbientGAN has been developed and investigated. However,
AmbientGANs cannot be immediately trained by use of advanced GAN training methods such as the progressive
growing of GANs (ProGANs). Therefore, the ability of AmbientGANs to establish realistic object models is
limited. To circumvent this, a progressively-growing AmbientGAN (ProAmGAN) has been proposed. How-
ever, ProAmGANs are designed for generating two-dimensional (2D) images while medical imaging modalities
are commonly employed for imaging three-dimensional (3D) objects. Moreover, ProAmGANs that employ tra-
ditional generator architectures lack the ability to control specific image features such as fine-scale textures
that are frequently considered when optimizing imaging systems. In this study, we address these limitations by
proposing two advanced AmbientGAN architectures: 3D ProAmGANs and Style-AmbientGANs (StyAmGANs).
Stylized numerical studies involving magnetic resonance (MR) imaging systems are conducted. The ability of 3D
ProAmGANs to learn 3D SOMs from imaging measurements and the ability of StyAmGANs to control fine-scale
textures of synthesized objects are demonstrated.

Keywords: stochastic object model, generative adversarial networks, signal detection, objective assessment of
image quality

1. INTRODUCTION

It has been advocated that medical imaging systems should be assessed and optimized by use of objective
measures of image quality (IQ) that quantify the performance of an observer at specific tasks.1–4 To achieve
this, all sources of randomness in the imaging measurements should be accounted for.1 One important source of
randomness that can limit observer performance is the variation in the ensemble of objects to-be-imaged.1,5 To
describe this randomness, a stochastic object model (SOM) can be established that can generate an ensemble
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of objects that have prescribed statistical properties. In order to establish a SOM that can capture realistic
variations of object textures and anatomical structures, it is desirable to use experimental data.

Generative adversarial networks (GANs) hold great potential to learn SOMs. However, traditional GANs
that are typically trained by use of reconstructed images are influenced by the effects of the reconstruction
process and the measurement noise. To circumvent this, we investigated an augmented GAN architecture
called an AmbientGAN6 to establish a simple lumpy object model.7 However, AmbientGANs cannot be readily
implemented with advanced training procedures such as the progressive growing of GAN (ProGAN).8 Therefore,
the ability of conventional AmbientGANs to establish realistic SOMs is limited.

Recently, we proposed an AmbientGAN training method named progressively-growing AmbientGAN (ProAm-
GAN)9,10 by augmenting the original ProGAN with a measurement operator and a reconstruction operator.
However, ProAmGANs are designed for learning two-dimensional (2D) SOMs while medical imaging systems
are typically employed for imaging three-dimensional (3D) objects. Therefore, there is still a need to develop a
method for establishing realistic 3D SOMs.

Image textures are often considered in the design and optimization of imaging systems. For example, lumpy
background and clustered lumpy background models1 have been proposed. When fine-scale features are con-
sidered in the design and optimization of imaging systems, it may be useful to generate objects that have the
same large-scale structures but have different fine-scale features. Additionally, the ability to control scale-specific
image features can potentially benefit generative model-based reconstruction methods11,12 for dynamic imaging
because it enables image reconstruction under constraints on scale-specific image structures. However, ProAm-
GANs cannot achieve this because they employ traditional generator architectures that lack the ability to control
features of synthesized images.

In this study, we address these limitations by proposing two advanced AmbientGAN architectures: (1) a 3D
ProAmGAN that employs a 3D ProGAN architecture13 for learning 3D SOMs from imaging measurements and
(2) a novel Style-AmbientGAN (StyAmGAN) that employs a style-based generator14,15 for controlling styles and
features of the AmbientGAN-synthesized images. Stylized numerical studies involving magnetic resonance (MR)
imaging systems are conducted. It is demonstrated that the 3D ProAmGAN can successfully establish SOMs
for generating images that contain 128× 128× 128 voxels and the StyAmGAN can provide the ability to control
specific image features. Combining the two proposed AmbientGAN architectures, a 3D StyAmGAN can also be
developed to establish controllable 3D SOMs from imaging measurements.

2. BACKGROUND

This study considers linear imaging systems that can be described as: g = Hf + n. Here, g ∈ RN denotes the
measured image data, f ∈ RM denotes a finite-dimensional representation of objects to-be-imaged, H ∈ RN×M

denotes a discrete-to-discrete (D-D) imaging operator, and n ∈ RN denotes the measurement noise. Below,
previous work on AmbientGANs is reviewed and the 3D ProAmGAN and Style-AmbientGAN are developed.

2.1 AmbientGANs

An AmbientGAN6 comprises a generator and a discriminator that are both represented by a deep neural network.
The generator maps a latent vector z ∈ Rk to a generated image f̂ ∈ RM : f̂ = G(z; ΘG), where G(·; ΘG)
denotes the mapping function of the generator that are parameterized by a set of weight parameters ΘG. The
measurement operator Hn is subsequently employed to simulate the imaging measurement data ĝ: ĝ = Hn(f̂) ≡
H f̂ + n. The discriminator that is represented by another deep neural network having a mapping function D :
RN → R, which is parameterized by a set of parameters ΘD, maps the experimental imaging measurements g and
AmbientGAN-simulated imaging measurements ĝ to a real-valued scalar s. This value is employed to distinguish
the experimental and simulated imaging measurements. The AmbientGAN training can be represented by a
two-player minimax game:

min
ΘG

max
ΘD

Eg∼pg
[l (D(g; ΘD))] + Ez∼pz

[l(1−D (ĝ; ΘD))], (1)



where ĝ = Hn(G(z; ΘG)) and l(·) represents a loss function employed in the training process. Bora et al.
have shown that when the probability density function (pdf) pf uniquely induces the pdf pg, the pdf of the
AmbientGAN-generated images pf̂ is identical to the ground-truth pf when the global optimum of the two-player
minimax game is achieved.6

2.2 Progressively Growing AmbientGANs

In order to stably train AmbientGANs for establishing more realistic and complicated object models, more
recently, a progressively-growing AmbientGAN (ProAmGAN) was developed.9,10 The ProAmGAN architecture
augments the original Progressively-growing GAN (ProGAN) with the measurement operator Hn : RM → RN

and a reconstruction operator O : RN → RM . In the ProAmGAN training process, the generator is trained
to produce objects f̂ such that the corresponding reconstructed images f̂Recon ≡ O(Hn(f̂)) can mimic the
reconstructed images fRecon = O(g) corresponding to the experimental imaging measurements g. Numerical
studies considering a variety of stylized medical imaging systems in combination with different object ensembles
were conducted previously to demonstrate the ability of the ProAmGAN to learn 2D SOMs.10

3. 3D PRO-AMBIENTGANS AND STYLE-AMBIENTGANS

Recently, a 3D ProGAN was developed by Eklund based on the original 2D ProGAN.13 In this study, we
implement this 3D ProGAN and augment it to the 3D ProAmGAN by use of the same strategy employed in the
2D ProAmGAN. The training process of the 3D ProAmGAN is illustrated in Fig. 1.

Figure 1: 3D ProAmGAN training process. The training starts with the resolution of 4× 4× 4. The resolution
is doubled gradually by adding more layers to the generator and the discriminator until the final resolution is
achieved.

Karras et al. recently developed a StyleGAN architecture14,15 that can disentangle the latent factors of the
object variation and subsequently enables the control of specific image styles and features of the synthesized
images. Accordingly, it may provide a way to generate objects that have the same large-scale structures but
different fine-scale features. Details on the StyleGAN architecture and its improved version, i.e., StyleGAN2, can
be found in the literature.14,15 In this study, we propose a Style-AmbientGAN (StyAmGAN) by augmenting the
StyleGAN or StyleGAN2 architecture with the measurement operator Hn and the reconstruction operator O. As
with the ProAmGAN, the generator in the StyAmGAN learns to generate images f̂ such that the corresponding
reconstructed images f̂Recon ≡ O(Hn(f̂)) can mimic the reconstructed images fRecon ≡ O(g) corresponding to
the training measurement data g. After training the StyAmGAN, the style-based generator can be employed to
produce images and control specific image styles and features.

4. NUMERICAL STUDIES

4.1 3D ProAmGAN

A stylized 3D MR imaging system that fully samples k-space data was considered. A 3D brain dataset from
Alzheimer’s Disease Neuroimaging Initiative (ADNI) (http://adni.loni.usc.edu/data-samples/) was em-
ployed to serve as a set of ground-truth objects. Six hundred 3D volumes were selected from this dataset and
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resized to the dimension of 128× 128× 128. A set of 600 measurement data was simulated by adding complex
Gaussian noise to the 3D discrete Fourier transform (DFT) of the object f . The reconstruction operator O(·)
was a 3D inverse DFT to be used for computing the reconstructed image fRecon and f̂Recon. The 3D ProGAN
code (https://github.com/wanderine/ProgressiveGAN3D) was implemented and modified according to the
architecture illustrated in Fig. 1. The training started with a resolution of 4 × 4 × 4, and the resolution along
each dimension was doubled during the training process until the final resolution of 128×128×128 was achieved.
The training of the 3D ProAmGAN took about 15 days by use of 4 Nvidia Quadro RTX 8000 GPUs.

The Fréchet Inception Distance (FID) score was employed to evaluate the performance of the 3D ProAmGAN.
Smaller FID score indicates better quality of the generative model. Three different FID scores were computed
by use of sagittal slices, coronal slices and axial slices, respectively. In addition, a task-based validation study
considering a signal detection task was conducted. The imaging processes under the signal-absent hypothesis
(H0) and the signal-present hypothesis (H1) can be described as:

H0 : g = f + n, (2a)

H1 : g = f + s + n, (2b)

where f denotes the object to-be-imaged, s is a 3D sphere signal having the radius of 2 voxels, and n is independent
and identically distributed (i.i.d.) Gaussian noise. The signal detection performance was quantified by the signal-
to-noise ratio of the Hotelling observer (SNRHO):1

SNRHO =
√
sTK−1s, (3)

where K denotes the covariance matrix of g. The SNRHO was evaluated on a region of interest (ROI) of
dimension 8× 8× 8 centered at the signal.

As a comparison, the original 3D ProGAN13 was trained by use of the reconstructed volumes fRecon. The
generator in the 3D ProGAN was trained to learn the distribution of the noisy reconstructed volume fRecon

instead of establishing the SOM that describes the distribution of the object f .

4.2 Style-AmbientGANs

A stylized 2D MR imaging system was considered. A collection of 30,000 sagittal slices was extracted from
ADNI dataset and resized to the dimension of 128 × 128 to serve as the ground-truth objects. The imaging
measurements were simulated by computing the 2D DFT and adding a complex Gaussian noise. The recon-
struction operator O(·) was a 2D inverse DFT. The Ambient-StyleGAN was implemented by modifying the code
of StyleGAN2 (https://github.com/NVlabs/stylegan2) by adding the corresponding measurement operator
Hn(·) and reconstruction operator O(·) to the original StyleGAN2 architecture.

5. RESULTS

5.1 3D ProAmGAN

Sagittal, coronal, and axial slices of a reconstructed volume fRecon corresponding to the training measurement
data g are shown in the top row of Fig. 2. Examples of sagittal, coronal, and axial slices produced by the
3D ProGAN and 3D ProAmGAN are shown in the middle row and bottom row of Fig. 2, respectively. The
volumes produced by the ProGAN that was trained on the noisy reconstructed volumes fRecon are significantly
affected by the measurement noise; while the ProAmGAN-generated volumes f̂ are clean. This is because the
ProAmGAN was trained to learn the SOM from the measurement data and a known measurement model; while
the ProGAN was trained to learn the distribution of the noisy reconstructed volumes. The results demonstrate
the ability of ProAmGANs to mitigate the measurement noise when establishing 3D SOMs.

https://github.com/wanderine/ProgressiveGAN3D
https://github.com/NVlabs/stylegan2


Figure 2: Top row: a noisy reconstructed volume fRecon of the training data g; Middle row: a ProGAN-generated
volume; Bottom row: a ProAmGAN-generated volume. Images from left to right correspond to a sagittal slice,
a coronal slice, and an axial slice of the 3D volume, respectively.

Three-dimensional visualizations of three ProAmGAN-generated volumes are shown in Fig. 3. In this figure,
each row plots axial slices from a ProAmGAN-generated 3D volume with the corresponding isosurfaces that
depict the shape of the 3D volume. The ProAmGAN-generated 3D volumes are visually promising.



Figure 3: 3D visualization of three ProAmGAN-generated 3D volumes. Each row corresponds to a ProAmGAN-
generated 3D volume.

The FID scores evaluated on axial, coronal, and sagittal slices are summarized in Table. 1. The ProAmGAN-
generated volumes produced smaller FID scores than those produced by the ProGAN. This indicates that the
ProAmGAN outperformed the ProGAN in terms of generating high-quality 3D volumes. The signal detection
performance that is quantified by SNRHO is also shown in Table. 1. It is observed that the ProAmGAN can
estimate the ground truth SNRHO more accurately than the ProGAN for the considered signal detection task.

FID:
Axial

FID:
Coronal

FID:
Sagittal

SNRHO:
Reference 1.7039

3D ProGAN 86.9011 66.0846 77.6631 1.4720
3D ProAmGAN 32.7899 32.0720 39.8564 1.8101

Table 1: FID scores and SNRHO computed by use of 3D ProGAN and 3D ProAmGAN-produced volumes.

5.2 Style-AmbientGAN

Examples of the noisy reconstructed images corresponding to the training measured data are shown in the top
row of Fig. 4 and examples of StyAmGAN-generated images are shown in the bottom row of Fig. 4. The
StyAmGAN that is learned from noisy images can produce clean images, which demonstrates the ability of
StyAmGAN to mitigate the measurement noise when establishing SOMs.



Figure 4: Top row: inverse DFT of the noisy measured data g. Bottom row: StyAmGAN-generated images
corresponding to different latent vectors.

We investigated the ability of the StyAmGAN to control scale-specific features in the synthesized objects.
The use of style-based generator to manipulate fine-scale image textures while maintain the coarse-scale image
structures was demonstrated. Specifically, to generate images having the same large-scale structure but different
fine-scale textures, the same latent vector and different noise maps were input to the style-based generator. More
details of the latent vector and the noise maps that form the input to the style-based generator can be found
in the literature.14,15 Four images generated by the StyAmGAN with the same latent vector but different noise
maps are shown in Fig. 5.

Figure 5: StyAmGAN-generated images with the same latent vector but different noise maps. Images in the
bottom row are zoom-in regions of images in the top row.



6. CONCLUSION

This study provides two important advances in training AmbientGANs for learning SOMs from imaging mea-
surements: a 3D ProAmGAN for establishing 3D SOMs and a Style-AmbientGAN for controlling styles and
features in the synthesized objects. Numerical studies considering stylized MR imaging systems were conducted.
It was demonstrated that the 3D ProAmGAN can be successfully trained to produce high-quality 3D objects of
128× 128× 128 voxels and the Style-AmbientGAN can provide ability to control specific styles and features in
the synthesized objects.
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