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Abstract

Images of the endothelial cell layer of the cornea can be used to evaluate corneal health. 

Quantitative biomarkers extracted from these images such as cell density, coefficient of variation 

of cell area, and cell hexagonality are commonly used to evaluate the status of the endothelium. 

Currently, fully-automated endothelial image analysis systems in use often give inaccurate results, 

while semi-automated methods, requiring trained image analysis readers to identify cells 

manually, are both challenging and time-consuming. We are investigating two deep learning 

methods to automatically segment cells in such images. We compare the performance of two deep 

neural networks, namely U-Net and SegNet. To train and test the classifiers, a dataset of 130 

images was collected, with expert reader annotated cell borders in each image. We applied 

standard training and testing techniques to evaluate pixel-wise segmentation performance, and 

report corresponding metrics such as the Dice and Jaccard coefficients. Visual evaluation of results 

showed that most pixel-wise errors in the U-Net were rather non-consequential. Results from the 

U-Net approach are being applied to create endothelial cell segmentations and quantify important 

morphological measurements for evaluating cornea health.
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1. INTRODUCTION

Corneal transplants are commonly performed in the United States with over 47,000 in 1917 

alone [1]. The rate of allograft rejection has declined over the past two decades from 

penetrating keratoplasty (PK, 15–20%), to Descemet Stripping Automated Endothelial 

Keratoplasty (DSAEK, 6–9% in series of over 100 eyes and greater in smaller series) to 

Descemet Membrane Endothelial Keratoplasty (DMEK, 1–6%) [2]–[12]. With PK and 
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DSAEK still the predominant keratoplasty procedures, the detection and management of 

allograft rejection remains a significant problem resulting in endothelial damage and 

subsequent graft failure [1]. A single layer of hexagonally arranged ECs contain fluid-

coupled ion channels which regulate fluid in the cornea and help maintain a clear cornea. 

Dysfunctional endothelium and ultimate loss results in the cornea swelling and blurring of 

vision [13] [14]. These cells are not replaced, but rather have their gaps filled by the 

remaining cells in the layer. As a result, the density of the endothelial cells decreased and 

their hexagonal shape transforms into irregular, non-hexagonal cells [14].

The detection of allograft rejection following keratoplasty has been primarily detected by slit 

lamp biomicroscopy. However an intriguing report suggested morphologic changes in the 

endothelium detected by examination of the endothelium at standardized time intervals 

using specular microscopy in DMEK patients showed that morphological characteristics of 

ECs were indicative of a future graft failure [15]. This study has stimulated interest in the 

application of machine learning techniques in detecting subclinical allograft rejection events.

Specular and confocal microscopy techniques clearly identify individual ECs, enabling a 

host of quantitative and morphological assessments of these cells. Common quantitative 

assessments include endothelial cell density (ECD), coefficient of variation (CV), and 

percentage of hexagonal cells or hexagonality (HEX). Briefly, ECD is the number of cells 

per total sample area of cells in the image, CV is the standard deviation of cell area divided 

by the mean cell area within the image, and HEX is the percentage of cells that have six 

sides [14][16]. In order to measure these values, endothelial cells in a specular microscopic 

image must be identified. One can identify cells by detecting the dark regions between cells 

(cell borders) [18]. Manual identification of cell borders, while potentially the most accurate 

approach, is too time consuming to be used in common practice. The fully automated cell 

analysis available in some instrumentation software is often inaccurate. Semi-automated 

analysis where trained image readers manually identify the centers of cells, and software 

calculates estimated cell morphology based on those centers [19] is still labor intensive, 

although much less than manually identifying cell borders. Other semi-automatic 

segmentation methods involve automatic segmentation followed up by manual adjustments 

to the identified borders [17]. This still involves evaluation by an expert and may require 

more time to adjust than analysis by the center method above. Hence, there is a need to 

make this process more efficient via accurate automatic segmentation.

There have been reports of other automatic segmentation methods, with advantages and 

disadvantages. Some approaches include watershed algorithms [13][14][20][21], genetic 

algorithms [18], and region-contour and mosaic recognition algorithms [14][22]. However, 

some of these segmentation processes still require manual editing because they overestimate 

cell borders [17]. Another limitation of such segmentation methods is that they can fail in 

the case of poor image quality. Poor quality images with low contrast or illumination 

shading due to specular microscopy optics and light scattering within the cornea hinder the 

ability of a traditional processing algorithm to learn adequately from these images [23] [24]. 

Previously, U-Net has shown promising results of cell segmentation via delineation of the 

cell borders [6]. However, these studies were conducted on a small set of 30 images, 15 

training images and 15 test images, taken by a specular microscope. To the best of our 
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knowledge, these images included varying cell densities of non-diseased endothelial cells 

[25]. In this report, we have applied learning system convolutional neural networks to 

segment 130 specular-microscope, clinical-quality, post-endothelial keratoplasty EC images 

acquired in the Cornea Preservation Time Study (CPTS). We compare two convolution 

neural networks for deep learning, semantic segmentation: U-Net and SegNet. We 

quantitatively assess results by calculating Dice coefficient and Jaccard index between the 

automatic and reader segmentations. In this paper, we compare the two networks to 

automatically segment endothelial cells, thereby offering an initial assessment to the readers 

and reducing overall segmentation time.

2. IMAGE PROCESSING AND ANALYSIS

Image processing methods and deep learning techniques such as U-Net and SegNet are 

employed to classify each pixel in the EC image into one of two classes, namely, cell border 

or other. Probability outputs from the classifier at each pixel location in the image are 

converted to binary labels using a set of thresholding and morphological operations. The 

algorithm can thus be broken down into three main steps: (1) preprocessing to correct for 

shading/illumination artifacts, (2) learning algorithm that generates class probabilities for 

each pixel; and (3) thresholding and morphological processing to generate the final binary 

segmentation maps.

2.1 Image preprocessing

EC images are commonly associated with varying illumination across the imaging area. 

Light from the specular microscope is refracted as it enters the cornea and then is reflected 

by the endothelial cell layer back to the corneal epithelium before exiting the eye. The 

illumination light rays and reflection light rays overlap in a region near the EC layer. Within 

this region, inner layers of the cornea scatter the incoming light, and this scattered light 

interferes with light reflected from the EC layer. This causes a reduction in the contrast on 

the right side of EC images because the overlapping region increases in size from left to 

right. As a result, one can see a brightness increase in the image going from left to right as 

depicted in Figure 1.

Although such changes can be compensated using flatfield correction techniques, these 

methods require a bias image input in which the object is absent from the imaging area. 

Since such a bias image is not available in our dataset, we use two alternate techniques. 

First, we generate a low-pass background image using a Gaussian blur and divide the 

original image by the background image to create a flattened image. We use a normalized 

Gaussian filter with standard deviation σ and a kernel size (κ x κ), where κ is given by the 

relation: κ = 2σ + 1. Second, we use a normalization technique specifically designed to 

enhance EC images, as described by Piorkowski et al. [26]. In this method, one normalizes 

brightness along the vertical and horizontal directions by adding the difference between the 

average image brightness and the average brightness in the corresponding row/column at 

each pixel. New pixel values are given by Equation 1,
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p’ x, y  = p x, y  +  L − ∑jp x, j /H  +  L − ∑i p i, y /W (1)

where p’(x, y) is the new pixel value, p(x, y) is the original pixel value, L is the average 

brightness in the image, H is the height of the image and W is the width of the image.

2.2 Deep Learning Architectures

We used U-Net, a popular neural network architecture proposed by Ronneberger et al. [27] 

that has been shown to work better than the conventional sliding window based 

convolutional neural network (CNN) approach for image segmentation. The original paper 

showed that the network could segment neuronal structures in electron microscopy (EM) 

stacks with low pixel errors. Such images are visually similar to EC images (both contain 

dark cell border regions between brighter cell regions), leading us to believe that this 

approach would be applicable. Recent work by Fabijańska [17] has demonstrated further 

proof regarding the high performance and accuracy of a U-Net based learning approach in 

specular EC images. The network architecture of the U-Net used in this work is shown in 

Figure 2. The network uses skip connections to recover full spatial resolution in its decoding 

layers, allowing one to train such deep fully convolutional networks for semantic 

segmentation [28]. Training and testing experiments are described below.

SegNet is also an autoencoder style network, originally proposed by Badrinarayan et al. 

[29]. The network is a 26-layer convolutional neural network with encoding and decoding 

steps. The SegNet used in this work differs from the U-Net in two aspects. First, SegNet 

does not contain skip connections between the encoding and decoding structures in the 

network, unlike the U-Net. Second, SegNet performs up-sampling in the decoding layers 

using the pooling indices from the downsampling layers, whereas the U-Net simply 

performs a transposed convolution operation in its 2×2 upsampling layer. The SegNet has a 

receptive field size of (309, 250) compared to the receptive field size of (93, 93) for the U-

Net. Finally, the SegNet architecture contains 26 convolutional layers as compared to 16 

layers in the U-Net, thereby containing nearly 4 times more parameters to train. Details of 

the SegNet architecture are shown in Figure 3 and training/testing experiments are given 

below.

2.3 Binarization and postprocessing

The 2D probability arrays from the networks are binarized via two methods: using a tunable 

hard thresholding value and using simple sliding window approach initially proposed by 

Savuola et al. [30] [17]. In the hard thresholding process, the probability maps’ contrast was 

first adjusted to span the full 8-bit dynamic range (0–255) before optimizing the threshold 

value. The adaptive threshold is calculated within a sliding window at each pixel location 

using the following equation: T = m[1 + k(σ/σdyn – 1)], where T is adaptive threshold value, 

m is the mean intensity in the pixel neighborhood, σ is the standard deviation in the same 

neighborhood, σdyn is the difference between the maximum and minimum standard 

deviation across the image and k is a tunable parameter of the thresholding algorithm. The 

binarized image was inversed so the end product is white cell borders with black cells and 

surrounding area.
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In the binarized results, a bounding box operation was performed to create an ROI which 

includes only the image area that was manually segmented in the ground truth images. This 

helped to exclude cells automatically segmented outside this region. Four consecutive 

morphological operations were used to create thin strokes between cells and to clean the 

result. First, we performed a morphological closing operation with a structuring element 

consisting of a disk with radius 4 to close cell borders with gaps from the binarization 

process. Second, we processed the result with a thinning operation. Thinning results in 1-

pixel wide cell borders, thereby matching the width in the ground truth labels. Third, a 

flood-fill operation was applied, delineating all cells and borders white, and the surrounding 

area black. This process left small erroneous cell border segmentations outside the primary 

segmentation regions. We performed a morphological area opening operation that identified 

and removed 4-connected pixels or any connected components less than 50 pixels. Finally, 

this image was multiplied by the inverse of the image produced after the second 

manipulation. The result was a binary image with only the cell border areas colored black 

and other pixels colored white.

2.4 Performance metrics: Dice Coefficient and Jaccard Index

The Dice Coefficient and Jaccard Index were calculated with regards to sample cell area 

using Equations 2 and 3 below.

Dice Coefficient  =  2 X ∩ Y
X + Y (2)

Jaccard Index  =  X ∩ Y
X ∪ Y (3)

The values of X and Y in the equations above were the locations of the white pixels, or the 

pixels representing cells, in the manual segmentations and automatic segmentations, 

respectively.

3. EXPERIMENTAL METHODS

3.1 Labeled dataset

EC images were collected retrospectively from the Cornea Image Analysis Reading Center 

along with their corresponding corner analysis performed in HAI CAS/EB Cell Analysis 

System software (HAI Laboratories, Lexington, MA). A subset of 130 images from the 

Cornea Preservation Time Study (CPTS) were used [31]. The study was performed to 

determine the effect of preservation time on endothelial cell loss following DSAEK. All 

images were of size (446, 304) with a pixel area of 0.65 μm2.

All images were analyzed using the HAI corners method by a trained reader. The HAI 

CAS/EB software allows readers to mark corners for each cell and then generates cell 

borders connecting the same. Additionally, common morphometrics such as ECD, CV, and 

HEX are computed in this software. Sample images with the manual cell border 

segmentations overlaid in green is shown in Figure 4.
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3.2 Classifier training and testing

The dataset of 130 images was split into a training/validation set and a held-out test set with 

100 and 30 images, respectively. A ten-fold cross validation approach was applied on the 

first set of 100 images, with 80 images in the training set, 10 images in the validation set and 

the remaining 10 images in the testing set for each iteration. The validation set was used 

when training the neural network. Training was stopped when performance in the validation 

set did not improve. Tunable parameters in our thresholding algorithm were optimized using 

a grid search approach over the cross-validation results and were held constant when testing 

the algorithm on the independent test set. The three best performing models (out of 10) from 

the cross-validation procedure were used to form an ensemble to predict on the held-out test 

set.

Details of training follow. Images were initially padded in a symmetric fashion to ensure that 

convolutions were valid at the edges. The neural networks were trained using binary cross 

entropy as the loss function. Class imbalance was accounted for by weighting the loss 

function by the inverse of the observed class proportions. In this manner, samples of a class 

that occur at a lower frequency (such as the cell border class in our case) will have a larger 

weight in the computation of the loss function. The network was optimized using the Adam 

optimizer with an initial learning rate of 1e-4. Finally, data augmentation was performed to 

allow the network to achieve good generalization performance. Briefly, the augmentations 

used were in the range of +/− 5% translations in height and width across the image, +/− 5% 

zoom, +/− 3° shear, and random horizontal flips. A batch size of 20 images was used to train 

the networks. The Adam optimizer was used to compute the changes to the weights and was 

initialized with a learning rate of 1 × 10−4.

Software for image preprocessing and binarizing the network predictions were implemented 

using MATLAB R2016a. U-Net and SegNet were implemented using the Keras API (with 

Tensorflow as backend) the Python programming language. Neural network training was 

performed using two NVIDIA Tesla P100 graphics processing unit (GPU) cards with 11 GB 

RAM on each card.

The Dice Coefficient and Jaccard Index were calculated for every image and averaged across 

each training fold. The three models with the best Dice Coefficient and Jaccard Index 

averages were utilized to predict on the held-out test set. Finally, the Dice Coefficient and 

Jaccard Index was calculated per image of the held-out test set probability maps.

4. RESULTS

As previously mentioned, one of the motivations for this research is that quality of the 

corneal EC layer is observable via specular microscopy, and we hope to accurately quantify 

these images. In Figure 5, we show serial specular microscopic images following DSAEK. It 

is worthwhile to note that there is significant variation in cell size and irregular non-

hexagonal arrangement even at 6 months post DSAEK.

Both illumination correction methods flattened the image and enabled images to be 

displayed with increased image contrast. This resulted in the appearance of “new” cells, 

Kolluru et al. Page 6

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2019 November 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



which were previously not deemed analyzable by the analysts without manually adjusting 

brightness and contrast in the analysis software. The unevenly illuminated images viewed by 

analysts leads to additional labor and analysis confounds as described later. We show results 

of both preprocessing techniques on an example EC image in Figure 6. Qualitatively, we 

found that the horizontal and vertical normalization method maintained the average 

brightness across the image better. This technique is used in the remainder of this report.

Probability maps from both networks are shown for a representative image in Figure 7. We 

found that the U-Net produced cleaner maps, with fewer mistaken cell splits as compared to 

SegNet. The tunable hard threshold parameter was found to be dependent on the original 

contrast range of the probability map. For probability maps with a full 0 to 255 contrast 

range, the optimal threshold value was 110. Probability maps with a shorter contrast range 

had an optimal hard threshold of 70. The tunable parameter k of the thresholding algorithm 

was found to be 0.01 for U-Net and 0.001 for SegNet. Using these values for the parameter 

k, thresholding and morphological operations as described previously were performed to 

generate the final binary maps. Dice coefficient and Jaccard Index for both networks and 

both binarization processes on the test set were calculated considering only the region 

segmented by the analyst. Quantitative metrics are tabulated in Table 1.

5. DISCUSSION

U-Net proved to be far superior to SegNet for segmenting ECs in specular microscopic 

images. SegNet often over-segmented cells with additional curve segments splitting cells 

(Figure 7). Quantitative assessments bore out this observation. We achieve a mean dice 

coefficient of 0.86 ± 0.03 with the U-Net approach and sliding threshold binarization, which 

indicates good correspondence between the network predictions and the ground truth labels. 

The SegNet also achieved a reasonable dice coefficient of 0.78 ± 0.04, indicating a need for 

further improvements in the training process. Dropout and batch normalization techniques 

are used in both networks to improve classifier performance on the held-out test set. It is 

interesting to note that the U-Net performed better than the SegNet architecture at this task, 

given the smaller number of trainable parameters (7 million vs. 30 million). This improved 

performance can be attributed to the presence of skip connections in the U-Net architecture 

that relay information from the upper encoding layers down the network to the decoding 

layers. It would be of interest to measure performance of a SegNet architecture with added 

skip connections against a regular SegNet. There has also been a recent paper detailing the 

importance of skip connections in biomedical image segmentation by Drozdzal et al. [28].

The sliding threshold binarization process proved to be better than the hard threshold 

binarization process. The dice coefficient of U-Net applied images after sliding threshold 

post-processing was 0.86, whereas when a hard threshold binarization was applied to the 

same images, the average dice coefficient was 0.83. This could be due to the imperfect 

normalization and lingering bright or dark regions in the original images before 

segmentation via U-Net and SegNet. Processing time per image was close to 1 second per 

image. Specifically, the algorithm took 0.8 seconds for preprocessing, 0.2 seconds for 

segmentation by the trained neural network and 0.03 seconds for the postprocessing steps.
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Further work will involve the computation of common morphometric parameters such as 

ECD, CV and HEX and comparing results from our segmentation algorithm to those 

generated by the HAI CAS/EB software package. This step will ensure the validity of our 

segmentations from a clinical standpoint. EC segmentation will lay the groundwork for our 

ultimate goal, which is to predict donor corneas at risk for allograft rejection and subsequent 

transplant failure.
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Figure 1. 
Images (a-c) are examples of specular microscopy images with varying contrast from left to 

right across the image area.
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Figure 2. 
U-Net architecture. Numbers on top and the left bottom corner of each tensor indicate 

number of channels/filters and its height and width respectively. The network consists of 

multiple encoding and decoding steps with three skip connections between the layers (white 

arrows).
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Figure 3. 
SegNet architecture. Numbers on top and the left bottom corner of each tensor indicate 

number of channels/filters and its height and width respectively. Although this network is 

similar to the U-Net described previously, the network does not contain any skip connections 

which copy tensors from the encoding steps to the decoding steps. Arrows are color-coded 

as follows: blue: convolution with (3, 3) filter size, ReLU activation, green: up-convolution 

with a (2, 2) kernel using max pooling indices from the encoding layers, red: max pooling 

with a (2, 2) kernel, pink: (1, 1) convolution with sigmoid activation.
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Figure 4. 
(a) Sample EC image with cells of various shapes and sizes; (b) segmentation overlay (in 

green) obtained from the HAI CAS software; (c) binary segmentation map used as the 

ground truth labels.
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Figure 5. 
Serial specular microscopy images post DSAEK. Images (a-e) are taken at 6 months, 1 year, 

2 years and 3 years, 4 years, respectively, following surgery. Images show a continuing 

decrease (2215, 2125, 1812, 1446, 1192 cells/mm2, respectively) in cell density.
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Figure 6. 
Shading correction for a representative EC image using two techniques. (a) Original EC 

image; (b) Image after high pass filtering; and (c) Image after horizontal and vertical 

normalization.
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Figure 7. 
Probability output from the networks and corresponding binary segmentations. (a) Example 

EC image from the independent test set; (b) manual ground truth annotations using the 

corners method; (c) & (d) probability output and binary segmentation result from U-Net; (e) 

& (f) probability output and binary segmentation result from SegNet.
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Table 1.

Segmentation metrics of the two networks when tested on the independent held-out test set images using a 

fixed threshold (top) and an adaptive threshold (bottom) methods.

Fixed Threshold Binarization

Dice Coefficient Jaccard Index

Minimum Average Maximum Std. Dev. Minimum Average Maximum Std. Dev.

U-net 0.63 0.83 0.90 0.06 0.46 0.71 0.82 0.08

SegNet 0.14 0.59 0.86 0.18 0.07 0.44 0.75 0.17

Adaptive Threshold Binarization

Dice Coefficient Jaccard Index

Minimum Average Maximum Std. Dev. Minimum Average Maximum Std. Dev.

U-Net 0.78 0.86 0.90 0.03 0.64 0.75 0.82 0.05

SegNet 0.70 0.78 0.84 0.04 0.54 0.64 0.73 0.06
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