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Abstract

The ubiquity of commodity-level optical scan devices and reconstruction technologies has enabled 

the general public to monitor their body shape related health status anywhere, anytime, without 

assistance from professionals. Commercial optical body scan systems extract anthropometries 

from the virtual body shapes, from which body compositions are estimated. However, in most 

cases, these estimations are limited to the quantity of fat in the whole body instead of a fine-

granularity voxel-level fat distribution estimation. To bridge the gap between the 3D body shape 

and fine-granularity voxel-level fat distribution, we present an innovative shape-based voxel-level 

body composition extrapolation method using multimodality registration. First, we optimize shape 

compliance between a generic body composition template and the 3D body shape. Then, we 

optimize data compliance between the shape-optimized body composition template and a body 

composition reference from the DXA pixel-level body composition assessment. We evaluate the 

performance of our method with different subjects. On average, the Root Mean Square Error 

(RMSE) of our body composition extrapolation is 1.19%, and the R-squared value between our 

estimation and the ground truth is 0.985. The experimental result shows that our algorithm can 

robustly estimate voxel-level body composition for 3D body shapes with a high degree of 

accuracy.
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1. INTRODUCTION

The ubiquity of optical body scan systems has enabled large-scale automatic digitalized 

anthropometry data collection for research institutes as well as daily fitness tracking for the 

general public. High-end 3D body scanners, such as 3dMDbody®,1 [TC]2®,2 and TELMAT 

SYMC-AD®,3 based on high-end optical sensors and sophisticated calibration4,5 reconstruct 

sub-millimeter level highly accurate 3D human body shapes. This type of body scanner has 

been widely used in digitalized anthropometry surveys with large population cohorts.6–13 

Light-weight consumer-level sensor based optical body scanners such as Fit3D®,14 

Styku®,15 and ShapeScale®16 scan and reconstruct 3D body shapes from a static pose based 
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on KinectFusion17 algorithm. This type of body scanner is typically used by people in the 

gym or at home to track body shape changes over time. Non-rigid registration based body 

surface scan and reconstruction systems such as Cui et al.,18 Li et al.,19 Dou et al.,20 and Lu 

et al.21 have enhanced the system flexibility by eliminating the need for auxiliary equipment, 

such as turntable, and arm supporters, which enables users to rotate freely during scan. Full 

circumference multiple RGB-D sensor systems have also been proposed for 3D body surface 

reconstruction by Dou et al.22 and Li et al.23

Large-scale body shape datasets have made it possible to parameterize human body shape 

space using statistical models. Principal Component Analysis (PCA) has been widely 

explored for shape parameterization.8,24–26 Body shape variations associated with 

phenotypes like Body Mass Index (BMI), weight and age have been modeled in the work of 

Allen et al.24 and Park et al.8,27 Digital anthropometries, as summarizations of 3D body 

shape characteristics, have been explored by Löffler et al. to cluster different body types in a 

large population cohort.28 Beyond the traditional anthropometries derived directly from 3D 

body shape geometries, Lu et al.29 proposed utilizing high-order shape descriptors, such as 

surface curvature, for body type classification.

Studies investigating the linkage between 3D body shapes and the underlying health data, 

such as body fat percentage or fine-granularity fat distribution, are rare since medical-level 

body composition assessment equipment, such as the BOD POD, Dual-energy X-ray 

Absorptiometry (DXA), Magnetic Resonance Imaging (MRI) or Computed Tomography 

(CT), is not readily available for large-scale data collection. Ng et al.30 studied the 

relationship between anthropometry features and body fat percentage. Lu et al.29 explored 

body shape geometry features in multiple levels for body fat percentage prediction. Lu et al.
21 and Piel31 further proposed to infer pixel-level DXA-like body composition based on 3D 

geometry data.

In this work, we propose a highly innovative shape-based 3D voxel-level body composition 

extrapolation model (Fig. 1-d) using multimodality registration based on 3D body shape 

(Fig. 1-c) derived from a commodity-level optical body scan system,21 2D pixel-level body 

composition reference (Fig. 1-a) derived from DXA body composition assessment, and a 

generic 3D body composition template with anatomically accurate human skin, muscle and 

skeleton system (Fig. 1-b). The 3D body shape can be viewed as a boundary constraint for 

3D body composition extrapolation, but no information beneath the surface is provided. 

DXA generates pixel-specific fat distribution and is considered a gold standard for body 

composition assessment. However, DXA imaging encodes body composition into a 2D 

orthogonal projection of the subject, and thus, loses information along the depth direction. In 

other words, we cannot generate a 3D body composition directly based on the fat 

distribution provided by the DXA and the boundary constraint provided by the 3D body 

shape due to a lack of shape prior knowledge of the body composition structure in 3D. 

Therefore, we introduce a generic body composition template as the shape prior.
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2. METHOD

Our voxel-level body composition extrapolation framework (Fig. 2) consists of two steps. 

First, we register the 3D generic body composition template to 3D body shapes for shape 

compliance optimization. We propose a three-fold method to gradually refine the shape 

registration condition. In gender-specific body composition initialization, we specify the 3D 

body composition template for different genders. In conditional anthropometries transfer, we 

conditionally pre-adjust the template surface layer according to the 3D body shape 

anthropometries. This step is critical for the obese since the amount of subcutaneous fat 

tends to be much higher than the gender-specific body composition template. Directly 

optimizing the shape compliance can lead to muscle over-stretching. In 3D-3D body 
composition template registration, we register the initialized 3D body composition template 

to the 3D body shape to optimize the shape compliance. Second, we optimize data 

compliance between the shape-optimized template and the 2D pixel-level body composition 

reference from DXA imaging. We parameterize the deformation of the muscle layer, and 

then seek the optimal set of deformation parameters that align local fat distributions in 3D to 

the local fat distributions assessed by the DXA (3D-2D data compliance optimization).

2.1 Shape compliance optimization

2.1.1 Gender-specific body composition initialization—To facilitate shape 

compliance optimization, we create gender-specific body composition templates for males 

and females. For each gender, we calculate an average lean body shape. We register the 

surface layer using non-rigid ICP21 to each 3D body shape whose body density is larger than 

a lean density threshold. We set the threshold to 1.05 kg/L for females, which corresponds to 

the body fat percentage of 21.4%, and 1.07 kg/L for males, which corresponds to the body 

fat percentage of 12.6% according to the Siri Equation.32 We consider the body fat 

percentage of 21.4% for females and 12.6% for males are reasonable thresholds for lean 

body shapes selection. We calculate an average shape of the registered surface layers as the 

gender-specific average lean body shape. The next step is to deform body composition 

template inner layers (fascia, muscle, skeleton) using linear subspace deformation model33 

according to the gender-specific body shape. We generate the tetrahedral mesh34 from the 

surface layer to define a deformation space. We register inner layers of the body composition 

template into this space using barycentric coordinates. We deform the tetrahedral mesh 

towards the average lean body shape using the linear subspace deformation, treating surface 

layer correspondences as boundary conditions. The inner body compositions are then 

deformed accordingly. The female gender-specific body composition template is shown in 

Fig. 3. We define an abstract skeletal structure Fig. 3-(a) based on the gender-specific body 

composition template for further shape registrations.

2.1.2 Conditional anthropometries transfer—To achieve a better initial condition 

for shape compliance optimization, we propose to conditionally deform template skin layers 

according to anthropometries extracted from 3D body shapes. We have defined the template 

abstract skeletal structure in Fig. 3-(a). Correspondingly, we define the abstract skeletal 

structure on the 3D body shape with heuristically estimated skeletal joints. We sample level 

circumferences along each bone direction of the abstract skeletal structure (Fig. 3-(a) cyan). 
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We grow the skin layer regionally using skeletal B-spline skinning if the local level 

circumference on the template is smaller than the one on the 3D body shape. In the B-spline 

skinning deformation model, we paint skinning weights of the bones on the surface mesh. 

We set up multiple key points along each bone to parameterize the surface morph. Each key 

point is associated with an in-plane scale factor to grow or shrink the surface on its planar 

direction orthogonal to the bone. In between control points, the in-plane scale factor is 

interpolated using B-spline interpolation. This step is critical to prevent muscle over-

stretching during shape compliance optimization, especially for the obese. Fig. 4 shows 

examples of the conditional anthropometries transfer of the skin layers, compared with the 

corresponding 3D body shapes.

2.1.3 3D-3D body composition template registration—We have a relatively good 

initial condition for shape compliance optimization after first generating a gender-specific 

body composition template and then conditionally transferring anthropometries to the 

gender-specific template skin layer. We recalculate the tetrahedral mesh under the surface 

layer after the anthropometries transfer and update the braycentric coordinates for the body 

composition template inner layers accordingly. To optimize the shape compliance, we first 

register the template surface layer to the 3D body shape uisng non-rigid ICP.21 Then, we 

deform the tetrahedral mesh accordingly using linear subspace deformation,33 treating the 

surface layer correspondences as boundary conditions. Body composition template inner 

layers are then deformed with the new barycentric coordinates calculated inside the new 

tetrahedral mesh.

2.2 3D-2D data compliance optimization

So far, we have registered the 3D body composition template into a specific 3D body shape 

by minimizing the shape compliance error. However, fat distribution reflected by current 3D 

body composition template does not agree with the ground truth fat distribution assessed by 

the DXA. To align the 3D body composition to the DXA imaging, we propose a data 

compliance optimization. We parameterize local fat distributions in 3D using B-spline 

skinning deformation model and quantify the ground truth local fat distributions from the 

DXA imaging. Then, we minimize the data compliance error.

2.2.1 3D local fat distribution parameterization—To approximate local fat 

distributions, we uniformly sample level areas on the fascia layer and 3D body shape (Fig. 5) 

along the bone direction of the abstract skeletal structure (in Fig. 3-(a) cyan). We 

approximate each level intersection stack as a right cylinder and the height of each stack is 

identical because of the uniform sampling. Hence, estimating the stack volume is equivalent 

to estimating the level area. We denote the fat-free stack volume as VFFM
l , which 

corresponds to the level area of the fascia layer (Fig. 5, area of the red region), and denote 

the total stack volume as V l, which corresponds to the level area extracted from the 3D body 

shape (Fig. 5, yellow + red region), where l is the stack sample index. The 3D local fat 

distribution Fat3D
l % can be approximated as a function of VFFM

l  and Vl, as shown in Eq. (1), 

where we approximate the fat tissue density as ρFM = 0.9kg / L and the fat-free tissue 

density as ρFFM = 1.1kg/L.32
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Fat3D
l % =

(V l − VFFM
l ) × ρFM

ρFM × V l + (ρFFM − ρFM) × VFFM
l (1)

To control 3D local fat distribution Fat3D
l %, we parameterize the deformation of the fascia 

layer using B-spline skinning. We define multiple control points along each bone with 

scaling parameter α. Thus, we rewrite the fat-free stack volume as VFFM
l (α).

2.2.2 2D local fat distribution estimation—For each of the 3D local fat distribution 

parameterized previously, we estimate a corresponding ground truth local fat distribution 

from the 2D pixel-level body composition assessment of the DXA. First, we register the 

DXA imaging (Fig. 1-a) to the 2D orthogonal projection of the 3D body shape using free-

form deformation21 to derive the aligned DXA imaging. Second, we estimate local fat 

percentage FatGT
l % on the aligned DXA imaging corresponding to the local fat distribution 

in 3D. Third, we convert each local ground truth fat percentage FatGT
l % to the target fat-free 

stack volume VFFM
l  through Eq. (2).

VFFM
l =

ρFM × (1 − FatGT
l % ) × V l

FatGT
l % × (ρFFM − ρFM) + ρFM

(2)

2.2.3 Data compliance optimization—We formulate the objective function as Eq. (3) 

to minimize data compliance error. We search for deformation parameter α such that the fat-

free stack volume VFFM
l (α) derived from the morphed fascia layer aligns with the target 

stack volume VFFM
l  estimated by the ground truth local fat distribution derived from the 

DXA imaging.

arg min
α

∑
l

‖VFFM
l − VFFM

l (α)‖ (3)

3. RESULTS

To evaluate the performance of our method, we test the method on six different data sets, 

corresponding to six different subjects. The Body Mass Index (BMI) and Body Fat 

Percentage (BFP) distributions of the subjects are illustrated in Tab. 1. Each data set contains 

a 3D body shape derived from the commodity-level optical body scan system by Lu et al.,21 

and the corresponding pixel-level body composition reference derived from the DXA. The 

gender-specific body composition template has been generated by registering the 3D body 
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composition template into the average lean body shape. We register the reference image to 

the 2D orthogonal projection of the 3D body shape to derive the aligned reference image. 

For implementation detail, we refer to the work of Lu et al.21 We define an abstract skeleton 

system on the 3D body shape, where we drop the value in z-dimension to unify the skeleton 

systems of the 2D aligned reference image and the 3D body shape. We extract local fat 

percentages FatGT
l % from the aligned pixel-level body composition reference image. We 

extract the corresponding level total stack volumes Vl from the 3D body shape. We take 9 

key points per bone (Fig. 3-(a) cyan) for local fat estimation and B-spline skinning. We 

calculate the target fat-free level stack volumes VFFM
l  through Eq. (2). We search for the 

deformation parameter α such that level stack volumes of the morphed fascia layer VFFM
l (α)

minimize the data compliance error in Eq. (3). Finally, we deform the muscle system 

according to the deformation of the fascia layer. The body composition extrapolation results 

for the six test subjects are illustrated in Fig. 6.

To evaluate the accuracy of our method, we densely sample the local fat distribution of the 

extrapolated 3D body composition for each subject with 99 samples on each body part (i.e., 

the trunk, left leg, right leg). Correspondingly, we calculate the local fat distribution from the 

aligned pixel-level body composition reference as the ground truth. In Fig. 7, we 

demonstrate the estimated local fat distribution versus the ground truth fat distribution for 

each validation sample point. As shown in Tab. 2, the average R-squared value for the 

different body parts is 0.985, which indicates there is a good agreement between the 

extrapolated local fat distribution and the ground truth local fat distribution. The average 

Root Mean Square Error (RMSE) is 1.19% and the average Mean Absolute Error (MAE) is 

0.81%, from which we conclude that our 3D body composition extrapolation method has a 

high degree of accuracy.

4. CONCLUSIONS

We present an innovative method to extrapolate 3D voxel-level body composition with a 

high degree of accuracy based on the 3D body shape and 2D pixel-level body composition 

reference. Our work provides a practical solution to assess the voxel-level body composition, 

which would typically be generated with CT or MRI, using easy-to-access, cost-effective 

equipment such as the Kinect. The work of Lu et al.21 has shown the feasibility of predicting 

the DXA-like 2D pixel-level body composition image based on the 3D body shape. 

Therefore, our method can be totally DXA independent by adopting the inferred 2D pixel-

level body composition. There are several limitations of our work that provide opportunities 

for further research. First, the 3D body composition template is generated by the artist 

modeling rather than by the real data derived from the CT or MRI scans. Second, there are 

small artifacts during registration such as the mesh penetration among different body 

compositions. Third, we do not model the visceral fat distribution in our 3D body 

composition extrapolation method. Quantifying and locating the visceral adipose tissue are 

extremely important since this type of fat has been considered a significant factor for the 

etiology of various metabolic and cardiovascular diseases.
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Figure 1. 
Schematic of multimodality registration for 3D body composition extrapolation.
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Figure 2. 
3D body composition extrapolation pipeline.
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Figure 3. 
The gender-specific body composition template of females. (a) The skeleton system and 

abstract skeletal structure. (b) The muscle system. (c) The fascia layer. (d) The skin layer.
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Figure 4. 
The 3D body shapes (a, c) and corresponding measurements-transferred skin layers (b, d).
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Figure 5. 
The mechanism for fat-free volume estimation.
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Figure 6. 
Visualization of 3D body composition extrapolation results.
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Figure 7. 
Estimated local fat distribution versus the ground truth fat distribution for the trunk, left leg 

and right leg.

Lu and Hahn Page 15

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2019 May 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Lu and Hahn Page 16

Table 1.

The Body Mass Index (BMI) and Body Fat Percentage (BFP) distributions of the subjects.

Subject A Subject B Subject C Subject D Subject E Subject F

BMI 21.5 28.2 21.9 31.0 29.0 29.9

BFP 24.8% 41.2% 15.1% 42.7% 33.0% 38.1%

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2019 May 28.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Lu and Hahn Page 17

Table 2.

3D body composition extrapolation accuracy evaluation.

Trunk Left Leg Right Leg Mean

R-squared 0.981 0.988 0.986 0.985

Root Mean Square Error 1.307% 1.086% 1.189% 1.19%

Mean Absolute Error 0.853% 0.799% 0.792% 0.81%
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