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ABSTRACT 

In our daily activities we perform prediction or anticipation when interacting with other humans or with objects. 

Prediction of human activity made by computers has several potential applications: surveillance systems, human 

computer interfaces, sports video analysis, human-robot-collaboration, games and health-care. We propose a system 

capable of recognizing and predicting human actions using supervised classifiers trained with automatically labeled data 

evaluated in our human activity RGB-D dataset (recorded with a Kinect sensor) and using only the position of the main 

skeleton joints to extract features. Using conditional random fields (CRFs) to model the sequential nature of actions in a 

sequence has been used before, but where other approaches try to predict an outcome or anticipate ahead in time 

(seconds), we try to predict what will be the next action of a subject. Our results show an activity prediction accuracy of 

89.9% using an automatically labeled dataset. 
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1. INTRODUCTION 

The ability to recognize what a human is currently doing is useful in several applications fields like, surveillance 

systems, human computer interfaces, sports video analysis, digital shopping assistants, video retrieval, gaming and 

health-care  [13, 3, 12, 15, 6]. Human activity recognition (HAR) has become one of the most active research topics in 

image processing and pattern recognition [Error! Reference source not found.] and has grown dramatically in the past 

years and recently has evolved into anticipation or forecasting of future human actions. This paper addresses the problem 

of recognizing and predicting high-level human activities using supervised classifiers trained with automatically labeled 

data. Given the current recognized action in a sequence of actions, our approach proves that it is possible to predict the 

next most likely action or behavior that will occur. 

1.1 Action Recognition 

The initial approaches used computer vision (CV) techniques to extract meaningful features from 2D video data. 

Motion capture data (MOCAP) has also been used in this field [19] where Zhou et al. were able to achieve competitive 

detection performances (77\%) for human actions in a completely unsupervised fashion. Using MOCAP data has several 

advantages mainly the accuracy of the extracted features but the cost of the sensor and the required setup to obtain the 

data is often prohibitive. With cost in mind Microsoft released a sensor called Kinect, which captures RGB-D data and is 

also capable of providing joint level information. A previous study using Kinect [8] consider the problem of extracting a 

descriptive labeling of the sequence of sub-activities being performed by a human, and more importantly, of their 

interactions with the objects in the form of associated affordances. Their method obtained an accuracy of 79.4\% for 

affordance, 63.4\% for sub-activity and 75.0\% for high-level activity labeling. There are some approaches which 

combine motion information and object properties [16, 18]. In [16] the authors abstract the problem in two stages. First, 

by recognizing general motions such as moving, not moving or tool used. Second, by reasoning about more specific 

activities (Reach, Take, etc.) given the current context, i.e. using the identified motions and the objects of interest as 

input information. They've obtained an accuracy classification of 92\%. More directly related to our research, [12] 

developed a system called Kintense which is a real-time system for detecting aggressive actions from streaming 3D 

skeleton joint coordinates obtained from Kinect sensors. In two multi-person households it achieves up to 90\% accuracy 

in action detection. 



 

 
 

 

1.2 Action Prediction 

Anticipation or forecasting future human actions has been the focus of few recent works. In [17] the authors tried to 

construct an intelligent system which will perform early recognition from live video streams in real-time, introducing 

two new human activity prediction approaches which are able to cope with videos from unfinished activities. In [7] the 

authors address the task of inferring the future actions of people while modeling the effect of the physical environment 

on the choice of human actions with prior knowledge of goals. Li et al. [11] propose a framework for long-duration, 

complex activity, prediction by discovering the causal relationships between constituent actions and the predictable 

characteristics of activities. This approach uses the observed action units as context to predict the next possible action 

unit, or predict the intension and effect of the whole activity. The efficiency of their method was tested on the complex 

activity of playing a tennis game and predicting who will win the game (0.65 of certainty with 60% of observed game). 

Recently [9] developed a framework where their goal is to enable robots to predict the future activities as well as the 

details of how a human is going to perform them in short-term (e.g., 1-10 seconds). With an anticipatory temporal 

conditional random field (ATCRF), they start modeling the past with a standard CRF but augmented with the trajectories 

and with nodes/edges representing the object affordances, sub-activities, and trajectories in the future. Their algorithm 

obtains an activity anticipation accuracy of 84.1%, 74.4% and 62.2% for 1, 3 and 10 seconds.  

2. PROPOSED PIPELINE 

A modular framework was built with several task-oriented modules organized in a workflow (Figure 1) as follows:  

 
Figure 1 - Proposed pipeline of our modular framework responsible for segmentation; recognition and prediction of human activity 

2.1 Feature Extraction 

Kinect is capable of tracking 20 joints of a subject's skeleton. Skeleton frames are generated at the rate of 30 frames 

per second, and each frame consists of the 3D coordinates of 20 body joints along with their tracking states (tracked, 

inferred, or not tracked). We perform feature extraction from 4 main joints (wrist-right, wrist-left, ankle-right and ankle-

left) as shown in Figure 2. Several features were calculated for the selected joints: relative velocity in X, Y, Z; total 

relative distance traveled in X, Y, Z and angles of the elbows and knee joints. The 3D coordinates are with respect to a 

frame of reference centered at Kinect. Frames from the camera are converted into feature vectors which are invariant to 

relative position of the body. We achieved this by re-calculating all the joints positions relative to the hip joint. 

 

Figure 2 - Visual representation of body relative features used in our system where the green joints were selected for feature extraction 

along with the angles of the elbows and knees 

2.2 Action Classification 

In our previous research [4] we proved that given a sequence of contiguous actions it is possible to automatically 

divide the sequence into what we called temporal segments that correspond to individual actions. With a hierarchical 

clustering algorithm, we were able to automatically assign a label to an action. This allowed us to create an automatically 

labeled training set. Our next contribution [5] would be to compare the performance of our action recognition framework 

trained with data automatically labeled versus data manually labeled. The results proved that, for a dataset of simple 

combat actions, obtained with a standard Kinect camera with no special acquisition conditions, a temporal segmentation 



 

 
 

 

and clustering algorithm can be used to label identical actions performed by different users. Also, we have established 

that this labeling can be used to train supervised classifiers that will be capable of identifying specific actions in a RGB-

D video feed, with a minor loss of precision relative to training with data manually labeled. 

2.3 Action Prediction 

There are several activities were a human subject perform certain actions as a sequence of actions. With that premise 

we would like to prove that given the observations of a scene containing a human performing an action a for time t, it is 

possible to predict the possible action a+1 in a sequence of actions. Our framework is capable of recognizing the current 

action that it is being performed by a subject. Prediction is performed based on that information and the history of 

previous recognized actions. Instead of using manually labeled data to create our prediction training set, we used our 

binary classifiers trained with automatically labeled data to perform action recognition and reconstruct the sequences of 

actions that compose our dataset. We propose two approaches in a parallelism with computational linguistics where a 

sequence of actions can be seen as a sequence of text and each action seen as a word: 

 We train several supervised classifiers: Multilayer Perceptron (MLP) as in [10]; Support Vector Machines 

(SVM) using pairwise classification [14], Random Forests (RF) [2] with n-grams of variable size.  

 Conditional Random Fields (CRFs) [1] suited for labeling structured data they model rich contextual 

relations and are capable of learning and inferring a small and discrete label space such as our sequences of 

actions. 

3. EXPERIMENTS 

3.1 Data 

We use PRECOG dataset1 which has 72 RGB-D videos of 12 different subjects performing sequences of combat 

movements. The data is annotated with action labels within each sequence. The set of actions are: right-punch; left-

punch; elbow-strike; back-fist; right-front-kick; left-front-kick; right-side-kick; left-side-kick. Using combinations of 

those 8 actions we created 6 distinct sequences (each sequence contains 5 actions). Of the 12 subjects recorded, each 

subject performed 6 different sequences. 

3.2 Action Recognition Results 

 Given a temporal segment from a sequence of actions and several features extracted from the position of the 

skeleton joints we perform action recognition per segment. We report the results obtained by a 10-fold cross validation. 

Using MLP, SVM and RF classifiers trained with automatically labeled data we achieved an average performance of 

85,5%, 90,0% and 91,0% respectively in recognizing the occurring action in a temporal segment extracted from a 

sequence of actions. These results can be examined in more detail in [5]. 

3.3 Action Prediction Results 

In this section we explain our experimental results using our dataset to two different approaches. Several classifiers 

were trained to compare the results. These classifiers were trained to predict an action based on the previous history of 

recognized actions. All the experiments were performed using k-fold cross validation of 10 folds. 

3.3.1 N-Gram Action Prediction 

An n-gram is an n-character slice of a longer string. In our case the string represents a sequence of actions. The n-

grams are composed by combinations of the actions of the sequence where the last action is the attribute to be used as the 

class. For example, the sequence “right-punch, left-punch, side-right-kick, side-left-kick, front-left-kick” would compose 

the following n-grams: 

 tri-grams: “right-punch, left-punch, side-right-kick” 

 quad-grams: “right-punch, left-punch, side-right-kick, side-left-kick” 

 penta-grams: “right-punch, left-punch, side-right-kick, side-left-kick, front-left-kick” 

n-gram Ground-Truth SMO RF MLP 

                                                 
1 https://github.com/DavidJardim/precog_dataset_16 



 

 
 

 

3 83,3% 77,7% 79,2% 77,7% 

4 91,7% 86,8% 88,8% 89,6% 

5 100% 95,8% 95,8% 95,8% 

Table 1 - Prediction results of future action with different classifiers and different number of actions as input 

To perform action prediction with this method, we require knowledge of at least the two previous actions. The 

second column of Table 1 shows the probability of accurately predicting the next action using the Bayes’ theorem with 

noiseless data. The following columns show the performance of our approach using several classifiers trained with data 

automatically labeled. The results are very similar between columns 3-5 and as expected the accuracy improves as we 

add more actions as input. Compared with column 2 we notice a loss of performance. Since our recognition algorithm at 

its best has a 91,0% of accuracy some of the actions are mislabeled. For example, we might have a re-constructed 

sequence as follows: “right-punch, left-punch, NONE, side-left-kick, front-left-kick” where the third action of the 

sequence labeled as NONE would affect negatively the training. 

3.3.2 CRF Action Prediction 

CRFs model rich contextual relations conditioned on several features as input. It is widely used in Natural Language 

Process (NLP) tasks like: word breaker, POS tagging, named entity recognized, etc. Our approach is to use CRFs for 

labeling the next action given the current action performed and the history of actions performed. To create the training 

data, we gather all the existing sequences of actions and for each sequence, we perform all the possible combinations of 

current action – history of actions – next action, computing a distribution over the possible future actions. Each record of 

the training corpus represents a sequence of actions (like a matrix) and each row describes an action to be predicted. The 

first N-1 columns are used as input data to generate the binary features and train the model. The Nth column is the action 

that the model should predict. As our application recognizes a new action we ask what is the most likely action that will 

occur next? 

Method Manually labeled data Automatically labeled data 

CRF 91,7% 89.9% 

Table 2 - Prediction results of future action using CRFs 

We used manually labeled data and automatically labeled data to train two classifiers. From the results in Table 2 and 

as expected the classifier trained with data manually labeled performs better, using the data automatically labeled 

resulted in a decrease of performance of 1,8%. This loss in performance is acceptable if we take into account that with 

this approach we are able of building a framework capable of recognizing and predicting actions in a fully unsupervised 

fashion. 

4. CONCLUSION 

In this paper, we described a framework capable of labeling, recognizing and predicting human actions using several 

supervised classifiers and CRFs to label structured data such as sequences. We have recorded a dataset of sequences of 

actions with Kinect since most datasets have only isolated actions. Unlike other approaches that take into account the 

context of the scene or object affordances in order to obtain more information, our approach relies solely on the features 

extracted from the movement of the joints of the subject’s skeleton. Assuming that patterns of sequences of actions exist 

in our daily activities, this approach could have several applications. Our results proved that, for a dataset of simple 

sequences of combat actions, obtained with a standard Kinect camera with no special acquisition conditions, we are 

capable of recognizing the current action performed and predict the future action. 

Also, we have established that data automatically labelled can be used to train our prediction classifiers with a minor loss 

of precision relative to training with human labeled data. We would like to replicate these results using other existing 

datasets and explore if action prediction can be used to improve action recognition with objects and scene information. 
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