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Abstract

The Gleason grading system used to render prostate cancer diagnosis has recently been updated to 

allow more accurate grade stratification and higher prognostic discrimination when compared to 

the traditional grading system. In spite of progress made in trying to standardize the grading 

process, there still remains approximately a 30% grading discrepancy between the score rendered 

by general pathologists and those provided by experts while reviewing needle biopsies for Gleason 

pattern 3 and 4, which accounts for more than 70% of daily prostate tissue slides at most 

institutions. We propose a new computational imaging method for Gleason pattern 3 and 4 

classification, which better matches the newly established prostate cancer grading system. The 

computer-aided analysis method includes two phases. First, the boundary of each glandular region 

is automatically segmented using a deep convolutional neural network. Second, color, shape and 

texture features are extracted from superpixels corresponding to the outer and inner glandular 

regions and are subsequently forwarded to a random forest classifier to give a gradient score 

between 3 and 4 for each delineated glandular region. The F1 score for glandular segmentation is 

0.8460 and the classification accuracy is 0.83±0.03.
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1 Introduction

With the rapid development and adoption of whole-slide microscopic imaging and the 

corresponding advances being made in terms of available computing power, the potential for 

developing a reliable, automated computer-aided diagnosis (CAD) system capable of 

performing objective, reproducible Gleason scoring while avoiding intra- and inter-observer 

variability is now technically feasible. The newly established prostate cancer grading system 

which has been developed by experts in the field, features a five-grade group system (group 

1 to 5 as Gleason score ≤6, 3+4, 4+3, 8 and 9–10 respectively). This methodology offers 

more accurate grade stratification than traditional systems and provides the highest 

prognostic discrimination for all cohorts on both univariate and multivariate analysis[14]. 

This paper describes a computational imaging decision support framework which is 
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investigated as a deployable tool to allow accurate discrimination among even the most 

challenging Gleason patterns 3 and 4 in prostate cancer diagnoses.

There have been many studies on computer-aided Gleason grading, however most of them 

are not focused analyzing intact glandular regions. In general there are four approaches on 

prostate Gleason pattern grading including color-statistical based[20], texture-based[9][11], 

structure-based[16] and tissue-component-based[4][15][19][6]. To achieve significant 

improvements in discriminating between Gleason score 3 and 4, it is essential to first 

perform accurate segmentation of individual glandular regions.

There are several prostate glandular segmentation methods for histopathology images using 

co-occurrence of lumen and nuclei or whole image texture information. These methods may 

work well for images with Gleason pattern 3 because the Gleason pattern 3 has a relative 

stable glandular shape while the Gleason pattern 4 consists of a range of glandular patterns 

including glomeruloid glands, cribriform glands, poorly formed and fused glands and 

irregular cribriform glands[18][17]. Recently, convolutional neural networks have been 

investigate for their capacity to perform quick, reliable segmentation in medical images[13]. 

Ciresan et. al has proposed a convolutional neural network (CNN) to segment neuronal 

membranes using sliding-window approach[3]. The method predicts the class of each pixel 

by using its surrounding region, which makes the training and testing process slow because 

each pixel with its surrounding region needs to be run individually. Meanwhile subjective 

choices regarding the patch size can affect the segmentation accuracy significantly.

In this paper, we propose a two-phase gland classification method. The classification of each 

gland is based on the accurate segmentation of glandular regions on Hematoxylin and Eosin 

(H&E) stained images. First, each image is delineated by the segmentation network to 

generate an image mask. We use semantic pixel-wise classification to get the binary mask of 

input RGB image. The segmentation networks includes encoding the image and then 

decoding it. Next, the features abstracted from each segmented gland are subsequently used 

as the inputs for a random forest and a score between 3 and 4 is given for each gland. 

Experimental results show that the two-phase classification approach developed by our team 

achieves improved prostate glandular segmentation and classification results on H&E 

stained images compared to state-of-the-art.

2 Methology

2.1 Prostate image segmentation

The segmentation network that we have developed is based on a convolution neural network 

which can be trained end-to-end with stochastic gradient descent to give the semantic pixel-

wise segmentation of the original input RGB images. As shown in Figure 1, CNN consists 

of encoding and decoding module but does not contain a fully connected layer. Both the 

encoding portion of the network and the decoding component contain 10 convolutional 

layers. The encoding part includes the typical convolutional network and the convolutional 

layers are composed of kernel size 3×3 and padding size 1 and are followed by a rectified 

linear unit (ReLU) max(0, x), batch normalization (BN) layer[8] and 2×2 max pooling layer 

with stride 2. The max pooling layer is replaced by the upsampling layer[2] in the decoding 
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component of the network. The upsampling layer uses the location from the max pooling 

layer to reverse operation of max pooling with stride 2. The final layer is the soft-max 

classifier for the binary classification with the cross-entropy loss function as the objective 

function to train the network.

In order to retain the boundary information during the test phase, each image is mirrored by 

the four boundaries as shown in Figure 2. In this manner, the center of each output image 

can be utilized to form the seamless segmentation mask and the mask has the same size as 

the test image. Morphological operations are used as a post-processing step to remove 

artifacts.

2.2 Gland Grading based on segmentaion

Superpixel Segmentation—For the Gleason pattern 3 glands, the lumen is typically 

surrounded by nuclei. While glands begin to merge or fuse together in the Gleason pattern 4 

glands, the lumen may not be surrounded by nuclei and their spatial co-localization could be 

an arbitrary pattern. Therefore we take advantage of the spatial structure pattern to 

differentiate Gleason pattern 3 and 4. Using superpixel segmentation method[1], the 

segmented glands from above step is then segmented into two sub-images: (1) the outer 

boundary image and (2) the inner center image. The segmented region Si is classified to the 

boundary image if they are adjacent to the background. Suppose the number of segmented 

regions in the boundary image is m. Then the center of the original image is extracted from 

the distance map. If there are m nearest superpixel regions adjacent to the center, those m 
nearest regions form the center image. If the left superpixel regions are less than m, all of 

them form the center image. An illustration of segmentation of outer boundary image and 

inner center image is shown in Figure 3.

Feature Extraction—Texture, shape and color features are extracted from the boundary 

images and the center images to train the random forest classifier. The texture features are 

calculated by using Bag-Of-Word on SIFT features. SIFT texture features are extracted from 

2/3 of training images and clustered by K-means algorithm. Using Bag-of-Word paradigm, 

each image has k-bins of spatial histogram of K-means cluster centers as its texture features. 

Here we use K equals 300 in our experiments after different K value testing. The shape 

descriptor in each image is represented by HOG features. And we use mean, standard 

deviation and the 5-bin histograms of intensities for each R, G, B channel to represent the 

color feature. All the texture, shape and color features are consolidated together. Suppose the 

set of features from the boundary image is represented by f i
b and the set of features from the 

center image is represented by f i
c. To enhance the difference between the boundary image 

and center image, we use f i =
w × f i

b

(1 − w) × f i
c  to represent the features of the original gland 

image. w is is a weight parameter, varing from 0.1 to 0.9.

Random Forest Regression—The grading of each gland between 3 and 4 is based on 

random forest regression. A random forest is an ensemble of a number of decision trees, 

with each tree trained using a randomly selected training sets. The output of a decision tree 
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is produced by branching an input left or right down the tree recursively until meet any leaf 

node. The decision forest combines the predictions from individual tree using an ensemble 

model and gives the regression output by averaging. The output score of the test image 

should be in the range of 3 to 4.

3 Experiment Results

Our experiments consist of 22 H&E stained prostate images from 22 difference patients. 

Using 5-fold cross-validation, each time randomly 17 images are selected as training images 

and the remaining 5 images are used as testing images for the segmentation network. The 

images are under 20× magnification with a size of 2400×1800. 25 images are cropped from 

each image and the size of the cropped image is 480×360. Each cropped image is horizontal 

flip and vertical flip, so 1275 images are used to train the image segmentation network. 

Precision (P), recall (R) and F1 score are used to measure the segmentation quantitatively. P 
is denoted as the intersection between the segmentation results and the manually annotation 

results divided by the segmentation results while R is divided by the manually annotation 

results. So we can have F1 = 2 × P × R
P + R  We achieve F1 score as 0.8460 which outperforms 

state-of-the-art methods[18][17]. Table 1 shows the segmentation performance comparison 

for different methods. Our method achieves the best performance compared to state-of-the-

art methods. The segmentation network is implemented by using Caffe[10] on NVIDIA 

Quadro K5200 GPU with cuDNN acceleration.

After the each gland is segmented, we use the 634 labeled glands to train the random forest 

classifier. All these glands are obtained from the 22 H&E stained images. Each gland image 

is resized as 360×360. The weight parameter w for the feature exaction equals to 0.7 for the 

best classification accuracy and the number of trees in the random forest is 160 for a stable 

regression score. We use 10-cross validation to perform the training. The sensitivity, 

specificity and accuracy for the classification are 0.70±0.15, 0.89±0.04 and 0.83±0.03 

respectively. Figure 4 shows the segmentation results for different methods and the scores 

given for each gland after the segmentation.

4 Conclusion

In this paper, we propose a new method for quantitatively analyzing histopathology prostate 

cancer images representative of Gleason pattern 3 and 4. The computer-aided analysis 

framework that our team developed for performing prostate Gleason grading achieves a 

better segmentation result compared to the state-of-the-art approaches[17][18]. Meanwhile it 

provides a quick reliable means for grading glandular regions especially those types more 

often found in Gleason pattern 4. Based on these results, the methods described in the paper 

may lead to a more reliable approach to assist pathologists in performing stratification of 

prostate cancer patients and improves therapy planning. In future investigations, we will 

expand the size and scope of the studies to train a deeper network and gauge performance 

over a wider set of staining characteristics. Further by using the score distribution of each 

segmented glandular region, it would help pathologists make a better grading matching the 

new Gleason grading system.
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Fig. 1. 
The architecture of the semantic segmentation network
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Fig. 2. 
Each test image is mirrored by four boundary sub-images in order to retain the boundary 

information. And each test image is cropped into several sub-images. Only the center of 

each predicted sub-image mask is kept to form the preliminary mask
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Fig. 3. 
(a) original image; (b) superpixel segmentation on the original image; (c) distance map of 

the original image; (d) image contains boundary information; (e) image contains center 

information
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Fig. 4. 
Results are shown for different methods. The approach in this article performs better than 

segment using structure and context[17] and segment using region-based nuclei 

approach[18]. A score is given for each gland after segmentation

Ren et al. Page 10

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2019 February 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ren et al. Page 11

Table 1

Segmentation Performance Comparison for Different Methods

Precision Recall F1 Score

Segment Using Structure and Context[17] 0.4748 0.9530 0.6224

Segment Using Region-based Nuclei Approach[18] 0.8103 0.6703 0.7175

Segment Using CNN without post-processing 0.8823 0.8235 0.8453

Segment Using CNN with post-processing 0.8921 0.8123 0.8460
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