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Abstract

Modeling subject-specific shape change is one of the most important challenges in longitudinal 

shape analysis of disease progression. Whereas anatomical change over time can be a function of 

normal aging; anatomy can also be impacted by disease related degeneration. Shape changes to 

anatomy may also be affected by external structural changes from neighboring structures, which 

may cause non-linear pose variations. In this paper, we propose a framework to analyze disease 

related shape changes by coupling extrinsic modeling of the ambient anatomical space via 

spatiotemporal deformations with intrinsic shape properties from medial surface analysis. We 

compare intrinsic shape properties of a subject-specific shape trajectory to a normative 4D shape 

atlas representing normal aging to separately quantify shape changes related to disease. The 

spatiotemporal shape modeling establishes inter/intra subject anatomical correspondence, which in 

turn enables comparisons between subjects and the 4D shape atlas, and also quantitative analysis 

of disease related shape change. The medial surface analysis captures intrinsic shape properties 

related to local patterns of deformation. The proposed framework simultaneously models extrinsic 

longitudinal shape changes in the ambient anatomical space, as well as intrinsic shape properties 

to give localized measurements of degeneration. Six high risk subjects and six controls are 

randomly sampled from a Huntington’s disease image database for quantitative and qualitative 

comparison.

1. INTRODUCTION

Modeling subject-specific shape change is becoming possible through increased availability 

of repeated longitudinal scans of individual subjects.1 In many clinical applications, 

longitudinal shape changes are not entirely explained by degeneration due to disease; 

changes are also impacted by normal aging. As an illustration, Figure 1 shows that high risk 

subjects of Huntington’s disease(HD) have larger caudate degeneration rates across a large 

range of ages compared to controls. Shape changes of anatomy may not only be intrinsic but 

may also be affected by external structural changes from neighboring anatomies. For 

example, caudate and putamen of the basal ganglia are pushed outward by the expansion of 

the ventricles. Such external effects from other objects can cause non-linear variations of 

shapes in the pose of an anatomical structure, which can be coupled with intrinsic shape 

changes and thus complicate statistical analysis. Purely geometric shape changes are of 
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critical importance to measure atrophy or to localize degeneration. In this paper, we propose 

a framework to analyze disease related shape changes by coupling extrinsic modeling of the 

ambient anatomical space via spatiotemporal deformations2 with intrinsic shape properties 

from medial surface analysis.3

Styner et al.4 have estimated medial properties using a mesh of medial samples (m-reps) 

with fixed graph topology. Medial representations have thus far offered only an indirect 

method for 3D surface shape analysis since the correspondences are established between 

medial samples. Fishbaugh et al.5 have analyzed shape variability over time by deformation 

on an ambient space. The intrinsic statistics of the deformation are computed in the ambient 

space which alleviates the need for explicit point correspondence between anatomical 

structures. However, the intrinsic shape change cannot be explicitly analyzed because it is 

coupled with pose variations. Younes et al.6 have shown shape differences between risk 

groups of HD based on deformation to a template shape, but without considering 

longitudinal information.

We propose to determine subject-specific trajectories via spatiotemporal modeling, which 

establishes anatomical correspondence on the surface of the anatomical structures. This 4D 

deformation includes local deformation information and positional changes influenced by 

neighboring structures. We isolate local deformation properties with a medial surface 

representation, which provides an intrinsic measure of thickness which can be mapped to the 

structure’s surface. We leverage the anatomical correspondence between shapes to make 

comparisons between subjects and a 4D atlas representing normal aging and to quantify 

shape changes related to disease. In this manner we capture extrinsic longitudinal shape 

changes which account for the interactions between multiple shapes, as well as intrinsic 

shape properties which give localized measurements of degeneration. Qualitative and 

quantitative assessments of subject-specific shape trajectories of six randomly sampled HD 

subjects and six controls demonstrate the potential of our method to capture longitudinal 

shape changes and disease related degeneration.

2. METHODS

We combine spatiotemporal modeling to capture subject-specific shape trajectories and a 4D 

normative shape atlas built from a normal aging population with medial surface analysis via 

Hamilton-Jacobi skeletonization. Intrinsic shape features, including medial surface radii, are 

assigned to the corresponding points on the structure’s surface. We compare subject-specific 

shape trajectories to a 4D normative shape atlas to analyze disease related shape changes 

which are not explained by normal aging effects.

2.1 Shape Trajectory Comparison to 4D Normative Atlas

Rather than modeling each shape independently, we consider a single time-varying 

deformation of the ambient 3D space, with multiple shapes of interest embedded into the 

shared space. Each continuous and smooth subject-specific shape trajectory is estimated for 

each individual subject in the ambient 3D shape space over a time axis by utilizing an initial 

baseline shape and a few intermittent follow-up observations. The subject-specific shape 

trajectory represents a continuous time-varying deformation of shapes from the series of 

Hong et al. Page 2

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2017 September 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



observations over time in a range from an initial observation time-point to the last follow-up 

observation. Thus, shape changes associated with normal aging cannot be ignored because 

of the distribution of ages in our patient population (see Fig 1), a problem well described by 

Lorenzi et al.7 To neutralize shape changes caused by normal aging and to analyze shape 

changes solely related to disease progression, we compare the subject-specific shape 

trajectories to a normative 4D shape atlas. We estimate a normative 4D shape atlas utilizing 

243 observations of healthy subjects without risk of the disease from 23 to 88 years of age. 

The atlas provides a normative reference used to make meaningful comparisons between the 

subject-specific shape trajectories in the HD and control groups.

Both the normative 4D shape atlas and the subject-specific shape trajectories are estimated 

via a geodesic shape regression method2 which will be elaborated in the following section. 

For both subject-specific models and atlas estimation, we start from a common 

parameterization for the baseline shape configuration. This allows us to define the number of 

shape points as well as connectivity, and importantly, provides correspondence assuming an 

appropriately dense sampling and that the shapes are anatomically similar. As illustrated in 

Figure 2, we compare a subject-specific shape trajectory to a part of the normative 4D shape 

atlas at a corresponding time range with given correspondence on shapes. For example, if a 

subject-specific shape trajectory is estimated by observations from age 63 to age 65, we 

compare the subject-specific shape trajectory to the part of the normative 4D shape atlas 

from age 63 to 65. Thus, by comparing the subject-specific shape trajectory to the 

corresponding part of the normative 4D shape atlas, shape changes caused by normal aging 

are taken out so that changes only caused by disease can be analyzed within each subject-

specific shape trajectory.

2.2 Spatiotemporal Modeling

The time-varying deformation of both subject-specific shape trajectories and a normative 4D 

shape atlas is modeled as a geodesic flow of diffeomorphisms, which are smooth and 

invertible transformations of 3D space.2 The geodesic shape regression model estimates a 

continuous shape trajectory by a single time-varying deformation of 3D ambient space from 

a set of observed shapes , a set of intermittent time-indexed shape observations 

(consisting of multiple shapes per time point). An initial baseline shape X0 of each 

individual subject is estimated by matching a smooth ellipsoid to an initial observation of 

each subject, . The geodesic flow of diffeomorphic deformation ϕt for a continuous shape 

trajectory is estimated by optimizing the energy function which matches the deformation ϕt 

to follow-up observations  with viscosity regularizer.

(1)

where  represents the squared distance defined on currents8 and Reg(ϕt) is the measure 

of regularity term of ϕt. By optimizing Eq. 1, the baseline shape X0 smoothly deforms over 

time t by ϕt by the regularization which enforces diffeomorphism. Correspondence of 
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landmark points for different subjects are determined by the matching in an embedding 

space, assuming that the shapes are anatomically similar. Shapes in the estimated shape 

trajectories and a normative atlas are spatially and temporally smooth by the diffeomorphic 

transformation. With the continuous 4D normative atlas, we can extract the part of the 

normative atlas which is within a same time range of an individual subject-specific shape 

trajectory for analysis as described in the previous section.

2.3 Hamilton-Jacobi Medial Surface Estimation

The medial surface of a shape in the estimated shape trajectory is computed by detecting 

shocks in Blum’s grassfire flow9 by combining a measure of the average outward flux of the 

vector field underlying the Hamiltonian system with a homotopy preserving thinning 

process.3 The detected shocks are classified into medial surface points and non-medial 

surface points by the average of outward flux at points, see3 for more details.

The medial surfaces are estimated independently for each single shape in a shape trajectory. 

With inter/intra subject landmark correspondences already established during the 

spatiotemporal model estimation, we can project the correspondences of the landmark points 

of the shape boundary to the medial surface. Therefore, even though there is no direct 

calculation of an explicit relationship between medial surfaces of a shape trajectory, we can 

obtain correpondences on medial surfaces projected from the correspondences of object 

boundaries. A shape in a shape trajectory at time ti can be deformed to match a shape at time 

tj by the deformation  from geodesic shooting. A medial surface of each shape in a 

shape trajectory is estimated by Hamilton-Jacobi skeletonization  at a time point . With 

the spatio-temporal analysis providing correspondences on the structure’s surface, these can 

be transferred to the associated medial surface points. The correspondences are visualized 

via local patch labels having the same color and medial surface radii are assigned to their 

corresponding structure surface points. Figure 3 shows structures from the 4D normative 

shape atlas smoothly deformed over e by diffeomoec deforeions ψ0,T from time 0 to T with 

correspondences between structures at different time points and correspondences to their 

medial surfaes colored from red to blue by the indices of landmark points. The initial 

baseline shape and its corresponding medial surface at the first column of Figure 3 are 

overlayed in following subfigures as transparent grey to show how shape boundaries and 

their corresponding medial surfaces changes with increasing age.

3. EXPERIMENTAL RESULTS

In this section, we present qualitative and quantitative comparisons of subjects in the high 

risk HD group and a control group. For this feasibility study, we randomly sample six 

subjects from each group out of 102 subjects in a control group and 106 subjects in a high 

risk HD group, for a total of 12 subjects, and compare distribution of radii, extracted from 

respective skeletons of left caudates.

Figure 4 visualizes radii difference of a subject in each group on the caudate surface. Radii 

differences are measured by subtracting radii at landmark points of the subject from a 

normative shape sampled from the 4D atlas at the same time point. The figure shows that an 

HD subject’s shape is generally thinner (red) than a healthy subject of corresponding age, 
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especially at the middle part of the caudate. We can observe local radii difference in Figure 4 

which cannot be represented by global measurements, such as volumes. Figure 5 shows 

histograms of radii on each subject’s surface (red) and the corresponding shape of the 4D 

shape atlas at the same time point (blue). Histograms are fit with a gamma distribution to 

highlight differences in radii distributions. A control subject in Figure 5(a) shows similar 

radii distribution to an age matched shape from the normative 4D atlas, with similar peak 

and variance but small contribution from individual differences to the norm, while a subject 

in high risk HD group in Figure 5(b) shows substantial difference in radii distributions with 

a larger proportion of thin parts. Figure 5(c) summarizes closeness of each group to the 

normative atlas, displaying a whisker box plot of earth mover’s distances (EMD)10 between 

histograms of subjects and age matched shapes from the 4D shape atlas. Results show that 

control group subjects have more similar distribution to the 4D shape atlas while high risk 

HD subjects depict much larger differences. Longitudinal EMD changes of all subjects are 

plotted in Figure 5(d). The plot illurstrates that EMD of high risk group subjects increases as 

subjects get older while EMD of control group subjects do not show a strong trend within 

the time intervals. The residual differences of EMD of control subjects can be explained by 

subject-wise differences to the normative 4D shape atlas but temporal courses do not exhibit 

a specific change pattern. On the other hand, the increase of EMD over time of high risk 

group HD subjects seems to indicate that, in addition to differences at the initial 

measurements, there are disease related temporal shape changes far beyond normal aging 

effects.

4. CONCLUSIONS

The proposed methodology makes use of an extrinsic longitudinal shape regression to 

capture shape evolution which properly accounts for interactions between neighboring 

structures, as well as intrinsic shape properties of individual objects captured by medial 

surface analysis. The combination of the spatio-temporal modeling of shapes to estimate a 

continuous trajectory of shapes from intermittent observations and the Hamilton-Jacobi 

skeletonization reveals analysis of shape properties of time-series longitudinal shape data 

which to our knowledge have not been reported. Qualitative and quantitative assessments of 

longitudinal HD subject data demonstrate the feasibility of the proposed shape analysis 

framework. There are limitations of the proposed method which has to be stated. Since we 

estimate medial surfaces independently from each single shape in a shape trajectory, there is 

no direct relationship between medial surfaces across time. Here, we establish this 

correspondence indirectly via geodesic regression of shape boundaries. In the future, we will 

investigate a joint 4D regression of object boundaries and associated skeletal surfaces. In 

addition to the current summary measures of radii distributions, we will develop statistics of 

localized shape changes. The proposed scheme will be tested on large cohort of longitudinal 

HD data with different risk status to explore the relationship between longitudinal shape 

change and disease progression.
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Figure 1. 
Left caudate volume observations of subjects in a control group (blue) and a high risk group 

of Huntington’s disease (red). The blue line shows linear regression of control group. HD 

subjects, regardless of age, show more rapid caudate degeneration.

Hong et al. Page 7

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2017 September 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
An illustrative graph of shape comparison between a 4D normative shape atlas and subject-

specific shape trajectories. Shape trajectories and a 4D atlas are estimated as a time-varying 

deformation of an ambient 3D shape space. Shapes in subject-specific shape trajectories 

either in HD (High risk) or control groups and the 4D atlas are in correspondence which 

enables to measure the shape difference in corresponding landmark points.
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Figure 3. 
Snapshots from the normative 4D shape atlas (top) and their medial surfaces with coloring 

of correspondence labels at 23, 44, 65 and 80 years of age. The 4D normative atlas is a 

continuous shape trajectory represented by the deformation ϕ0,T. Object boundaries in the 

atlas are diffeomorphic to each other by the spatiotemporal modeling bt . A medial 

surface at each time point is estimated independently from its object boundary at time point 

ti via Hamilton-Jacobin skeletonization . Medial surfaces are enhanced for a visualization 

purpose. The strcuture’s surface at the initial time point (age 23) is overlayed in grey to 

show how the structures deform and are pushed outwards by normal aging over time.
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Figure 4. 
Radii differences for the left caudate between an individual and the 4D shape atlas, projected 

from skeletons back to the object surfaces, of (a) a subject in a control group and (b) a 

subject in a high risk HD group. Red indicates regions that are thinner than a corresponding 

shape in the 4D shape atlas at the same time point while blue indicates regions that are 

thicker. Color bars on the right depict the range of radii differences (in mm units).
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Figure 5. 
Rows show different time points of a shape trajectory. (a,b) Histograms of radii distributions 

of subject-specific shape trajectories (red) of (a) a subject in a control group, (b) a subject in 

a high risk HD group compared to shapes of the 4D shape atlas at corresponding time points 

(blue) with fitted gamma distributions. (c) A whisker box plot of earth mover’s distances 

(EMD) of all control group histograms and high risk HD group histograms to the 4D atlas. 

(d) Longitudinal EMD plots of subjects in a control group(blue) and a high risk HD group 

(red).

Hong et al. Page 11

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2017 September 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	1. INTRODUCTION
	2. METHODS
	2.1 Shape Trajectory Comparison to 4D Normative Atlas
	2.2 Spatiotemporal Modeling
	2.3 Hamilton-Jacobi Medial Surface Estimation

	3. EXPERIMENTAL RESULTS
	4. CONCLUSIONS
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5

