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Abstract

Safe and effective planning for robotic surgery that involves cutting or ablation of tissue must 

consider all potential sources of error when determining how close the tool may come to vital 

anatomy. A pre-operative plan that does not adequately consider potential deviations from ideal 

system behavior may lead to patient injury. Conversely, a plan that is overly conservative may 

result in ineffective or incomplete performance of the task. Thus, enforcing simple, uniform-

thickness safety margins around vital anatomy is insufficient in the presence of spatially varying, 

anisotropic error. Prior work has used registration error to determine a variable-thickness safety 

margin around vital structures that must be approached during mastoidectomy but ultimately 

preserved. In this paper, these methods are extended to incorporate image distortion and physical 

robot errors, including kinematic errors and deflections of the robot. These additional sources of 

error are discussed and stochastic models for a bone-attached robot for otologic surgery are 

developed. An algorithm for generating appropriate safety margins based on a desired probability 

of preserving the underlying anatomical structure is presented. Simulations are performed on a CT 

scan of a cadaver head and safety margins are calculated around several critical structures for 

planning of a robotic mastoidectomy.
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1. INTRODUCTION

Robot-assisted surgical systems can be beneficial for a variety of procedures due to their 

high accuracy and repeatability, ability to access and work in confined spaces, and capacity 

to integrate various imaging and sensing modalities into the execution of the surgical task. A 

subset of medical robots, called surgical CAD/CAM systems, help to execute a plan based 

on pre-operative imaging and modeling in a manner analogous to computer-integrated 
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manufacturing.1 Examples include orthopedic bone milling systems2, 3 and needle 

placement systems.4 However, the field of otologic surgery has lagged behind other surgical 

fields in the incorporation of robots into the operating room, to date. This is likely due to the 

presence of complex and delicate anatomy in close proximity to the bone that must be 

removed (see Figure 1a,b). Thus, many otologic surgeries require high accuracy to avoid 

potentially serious complications. These stringent accuracy requirements make otologic 

surgery particularly well-suited for robotic assistance, provided that the robot can be made 

sufficiently accurate. Such a robotic system can use pre-operative imaging and registration to 

localize delicate bone-embedded structures before the procedure begins, and plan 

accordingly.

Several research groups have developed systems for image-guided otologic surgery. 

Federspil et al. used an industrial robot to mill a pocket for a cochlear implant bed.5 Labadie 

et al. developed customized, microstereotactic frames for minimally-invasive cochlear 

implantation (CI),6 performed the first robotic mastoidectomy in a cadaver using an 

industrial robot,7 and developed bone-attached robots for CI surgery8 and mastoidectomy.9 

Bell et al. developed a robotic system for drilling a narrow path for minimally invasive CI 

surgery10 and have achieved high accuracy in vitro.11 Kobler et al. have developed a 

minimally invasive CI system, in which a passive parallel mechanism is manually adjusted 

to align the drill with the desired trajectory and mounted to the patient.12 Xia et al.13 and 

Olds et al.14 developed cooperatively-controlled robotic systems that enforce virtual fixtures 

around vital anatomy for skull base surgery. All of the above systems are intended to reduce 

the invasiveness and increase the safety of otologic surgery.

The purpose of the present work is to provide a statistical method to enhance the safety of 

image-guided surgical robots that must manipulate instruments in close proximity to delicate 

anatomical structures without damaging them. The method is applicable to any robot and 

procedure in which there is some anatomical structure to be preserved and system error that 

can be characterized. The algorithm described in this paper uses this information to produce 

a patient-specific, statistically-driven, variable-thickness safety margins around anatomical 

structures that preserve the underlying anatomy with probability levels specified by the 

surgeon.

Prior work toward developing statistically-informed planning methods of this type has 

incorporated target registration error (TRE) at the tip of an image-guided cutting tool for 

linear15 and three-dimensional trajectories.16, 17 However, these algorithms have not directly 

accounted for the physical hardware error in the surgical system or distortion in the images 

used to plan the procedure. Here, the framework of [16] (which considered only registration 

error) is extended to account for uncertainties arising from physical robot attachment, 

kinematic errors, and deflection during surgery as well as geometric uncertainty in the 

image. The algorithm is applied to a bone-attached robot for mastoidectomy (see [9] for 

system description) to generate safety margins around several vital structures. 

Mastoidectomy involves the removal of bone using a high-speed surgical drill to gain access 

to the middle and inner ear for a variety of surgical procedures. The requirement that bone 

must be removed close to vital anatomy makes mastoidectomy an excellent case study to 

demonstrate the use of this algorithm.
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2. ALGORITHM OVERVIEW

The inputs to the algorithm are the pre-operative images, segmentations of any vital 

structures that must be avoided during surgery (sensitive anatomical features such as the 

facial nerve), and a desired preservation rate for each vital structure (e.g. the surgeon can 

specify, “I want to be 99.9% sure that the facial nerve is not damaged”). The algorithm 

outputs safety margins unique to each vital structure. The safety margin thicknesses vary 

spatially, and combined with the underlying structure, define the set of points that must not 

be targeted by the robot to ensure that the vital anatomy is preserved at the rate specified 

pre-operatively. Thus, any portion of the original target volume that overlaps with the safety 

margins is removed from the planned volume to be drilled. Figure 2 shows a flow chart of 

the overall procedure planning process, showing how the safety algorithm fits into the work 

flow.

Starting with the original segmentation of the vital structure, the algorithm iteratively builds 

the safety margin until it is large enough to ensure the vital structure’s desired preservation 

rate. The image, vital structure, and safety margin are all considered as voxelized, i.e. a 

volumetric discretization, and the algorithm builds the safety margin by adding to it in units 

of voxels. For each iteration of the algorithm, the probability of preservation of the vital 

structure with the current safety margin is first estimated using a Monte Carlo simulation. 

This simulation considers the shell of all voxels surrounding the safety margin as targeted 

points. Note that the actual targeted volume of bone to be removed does not necessarily 

include these points; however, since the safety margin is independent of the target volume, 

all of the surrounding points are included as targets in the simulation. If the preservation rate 

predicted by the simulation is lower than the desired rate, the safety margin’s volume must 

be increased. The surrounding voxels are then ranked according to the probability that the 

vital structure would be damaged if the drill bit attempted to remove that voxel of bone. The 

highest risk voxels are then added to the safety margin. This process is then repeated by 

analyzing a new shell of voxels surrounding the updated safety margin (see Figure 3). Once 

the vital structure’s preservation rate is at or above the desired level, the algorithm stops and 

outputs the final safety margin. Since the errors used in estimating the probability of damage 

are spatially varying and anisotropic, the margins vary in thickness and are generally non-

uniform.

3. ERROR ANALYSIS AND MODELING

As discussed in Section 2, the preservation rate is calculated via Monte Carlo simulation at 

the beginning of each iteration of the algorithm. The various error sources are modeled as 

separate probability distributions. For each voxel in the shell surrounding the vital structure 

and safety margin, an error value from each probability distribution is sampled. These errors 

are combined to form an overall relative positioning error at the drill tip, for the point under 

consideration. If the positioning error at any point in the shell would cause the drill to hit the 

underlying vital structure, the structure is considered to be damaged for that calculation. The 

calculation is repeated N times with new values sampled from the error distributions for 

each calculation. The percentage of sample calculations in which the structure is not violated 

is the preservation rate for the current safety margin. When ranking the highest risk voxels to 
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determine which ones to add to the safety margin, each voxel is subjected to a separate 

Monte Carlo simulation to determine the probability of damage to the vital structure if that 

particular voxel were to be targeted. The voxels with the highest damage probabilities are 

added to the safety margin. In this paper, imaging, registration, robot positioning and 

deflection errors are considered. These error sources are outlined in the following sections 

and model parameters are developed for the bone-attached robotic system for 

mastoidectomy described in [9] and shown in Figure 1c. All numeric error distribution 

values for this robot are listed in Table 1.

3.1 Image Distortion

Targeting based on pre- or intra-operative imaging is fundamentally limited by the geometric 

accuracy of the image. Inaccuracy leads to distortion, or non-rigid mapping, of points in the 

image relative to their true position in physical space. While any non-rigid distortion is, in 

principle, possible, it is assumed that components of second or higher degree are negligible. 

Therefore, the transformation between physical space and the image is assumed to be strictly 

affine, i.e. y = Tx + t, where x is a point in physical space and y is that point in the image 

after distortion. The translation vector, t, has no effect on the rigidness of the transformation, 

which is determined entirely by T. Thus, any measure of image distortion is a measure of the 

non-rigidness of T. To calculate the distortion of a particular scanner, it is necessary to first 

determine T and then calculate the non-rigid component of T.

Computed tomography (CT) is the primary modality used in otologic surgery. Thus, a 

method was developed to quantify the geometric distortion in CT scanners (see Appendix A 

for details). Briey, a precise phantom with titanium spheres embedded at known locations 

(Figure 4a) was scanned multiple times. The locations of the titanium spheres in the image 

(Y) were determined for each scan and the points in physical space (X) are known from the 

phantom dimensions. Both sets of points were de-meaned to obtain X̃ and Ỹ, respectively, 

and the affine transformation, T, that maps X̃ to Ỹ was calculated in a least-squares sense. 

This transformation includes the image distortion as well as the rigid rotation between the 

image and physical space.18

To isolate the distortion, T is factored into rigid and non-rigid components using the polar 

decomposition, T = AR, where A is a positive-semidefinite Hermitian matrix and R is a 

rotation matrix (RtR = I). Figure 4b provides a schematic of this decomposition. The 

registration errors associated with calculating R are covered in the next section. A represents 

the stretching, or distortion, of the image and is given by

(1)

where the columns of U are the eigenvectors of TTt and Λ is a diagonal matrix of the 

singular values of T. A is calculated for each scan acquired of the geometric phantom. The 

mean of the A matrices for all scans is the characteristic transformation of the scanner, Ac.

The image distortion could be incorporated into the safety algorithm in two different ways. 

If no prior knowledge of the distortion of a particular scanner is known, a random 
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characteristic transformation, Ac can be generated for each calculation of the Monte Carlo 

simulation based on known estimates of other similar scanners (see Appendix A for results 

from testing several commercially available scanners). The distorted point location, , 

can then be calculated using Ac as

(2)

where I is the identity matrix, and Imp̃i is the true location of the point relative to the 

centroid of the fiducial markers expressed in the image coordinate system.

Alternatively, if we have an estimate of the characteristic transformation for a particular 

scanner (Âc), the distorted image can be rectified by multiplying points in the image by . 

The error associated with image distortion is then reduced to the uncertainty in Âc. This 

uncertainty is the variance between the elements of A for each of the phantom scans. These 

distributions are sampled and added to I to construct Ai for each calculation in the 

simulation and the distorted point location is calculated by

(3)

3.2 Registration Error

Registration error can be estimated based on the method of registration and image quality. 

For the case of point-based registration, as is used in this application, it is possible to 

determine the distribution of target registration error (TRE) at a given point based on the 

locations of the fiducial markers and associated distributions of fiducial localization error 

(FLE).19 As was done in [16], a value from the TRE distribution for a particular point is 

sampled to determine the error associated with a “mis-registration” (i.e. a registration 

containing error due to imperfect fiducial localization). This error is added to the overall 

uncertainty of the system for a given calculation.

Knowledge of the FLE and the nominal fiducial marker locations with respect to the target 

positions is required to calculate the TRE. The FLE was computed using the same scans 

with the phantom described in Section 3.1 (see Figure 4). First, for each image, the 

demeaned points in image space were “rectified”, . Next, a rigid point-based 

registration of Yr to the demeaned phantom model X̃ was performed and the FRE for the 

registration was calculated. Finally, Eq. 8.25 from [18] was used to estimate the Root Mean 

Squared (RMS) FLE from the FRE.

Prior work by Kobler et al. characterized FLE for various sphere localization algorithms, 

marker materials, and image interpolation approaches.20 The values obtained in that work 

for titanium spheres using the cross correlation and least squares algorithms with image 

interpolation factors greater than 1 yielded FLE values similar to the value calculated for the 

Xoran xCAT. The data in [20] can be used as a reference to estimate FLE if the value for a 

particular setup is unknown.
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3.3 Robot Kinematic Errors

Robot error analysis and modeling has been a significant area of research for many years 

(e.g. [21]) and has been studied within the context of medical robotics.22, 23 Thus, the 

various sources of kinematic error are well understood and can be applied to the robot 

analyzed here. This error arises from uncertainties in joint positioning and geometric 

parameters in the robot’s kinematic model.

More specifically, the joint positioning errors considered in this model are: (1) joint 

transmission backlash, (2) joint initialization inaccuracies, (3) joint sensing discretization, 

and (4) asynchronous control of joint positions. The joint transmission errors were 

calculated based on hardware specifications and transmission ratios. The linear joints have 

planetary gearboxes which result in slight backlash, although it is mitigated by a high 

reduction ratio of the lead screw. This error is modeled as a discrete distribution with two 

possible values (plus or minus the backlash value from the manufacturer’s specifications, 

multiplied by the gear ratio). The harmonic gearbox used in the rotational joint has 

negligible backlash, but the compliance of the flexible spline factors into the joint stiffness 

value. Inconsistent joint initialization (or homing) each time the robot is powered on results 

in a slightly different baseline from which all joint values are then calculated. This error was 

quantified by performing the initialization process, in which the joints are run to their end 

stops and zeroed, several times and analyzing the differences in zero positions. The sensor 

discretization error is a function of the encoder resolution and transmission gear ratios. The 

discretization error is modeled as a uniform distribution with bounds of plus or minus half of 

the joint discretization value. Given the high gear reduction ratios used, this error is low. 

Finally, since the controller cannot bring each joint to its desired position at exactly the same 

time, there is some error associated with this asynchronous joint movement. To quantify this, 

the maximum allowed positioning error defined in the control software (system shuts down 

if this is exceeded) is considered. This maximum error is then used to bound a random, 

uniform error distribution.

The geometric errors come from imperfect calibration of various robot dimensions and axes 

about which the robot joints move. To determine the geometric calibration errors, the full 

calibration procedure was performed ten times and the results for each model parameter 

were analyzed. This procedure involves moving the robot to a series of points, measuring 

these locations with a coordinate measurement machine (CMM), and fitting the data to the 

kinematic model of the robot. The variance in the resulting calibrated parameter values were 

used to select appropriate error distributions for each value in the kinematic model. Linear 

dimension errors (e.g. link lengths and position vectors between relevant coordinate frames) 

are simply added to the nominal value when calculating the error. Joint axis unit vectors and 

coordinate transformation errors are incorporated by multiplying the nominal value by a 

rotation matrix that represents a small rotation based on the range of calibration data.

3.4 Robot Deflection

Additional error is caused by deflection of the robot under loads during the surgical 

procedure, which result in a positioning error of the drill tip. All robots have some 

compliance in their joints and structural members. Bone-attached robots have additional 
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compliance in the attachment interface between the bone and the anchoring screws. The 

analysis of the robot deflection is divided between these two modes and then combined to 

determine the total deflection under a given load.

3.4.1 Robot Compliance—A common method for computing the compliance of a robot 

is to assume quasi-static loading and infinitely stiff links relative to the joints.24 This enables 

a task space compliance matrix for the entire robot to be computed based on the individual 

joint stiffness values (acting about the joint motion axes) and the configuration of the robot.

(4)

where χ = Diag([k1, k2, …, kn]) represents the joint stiffness matrix, J is the robot Jacobian, 

and kj is the stiffness value along the motion of the jth joint (qj). kj is a linear stiffness 

coefficient for prismatic joints and torsional stiffness coefficient for rotational joints. The 

assumption of infinitely stiff structural members connecting the joints depends on the size 

and material selected for the links compared to the expected loads. This assumption is valid 

for the robot considered here as the robot is constructed from aluminum and stainless steel 

and the links were sized sufficiently large for the range of forces at the drill tip.

However, additional compliance can exist at the link-joint interfaces in off-axis directions, 

i.e. directions other than the joint motion axis. For example, a rotational joint can have some 

angular compliance perpendicular to the rotating shaft axis and/or linear compliance in one 

or more directions. Any additional compliance must be considered in an accurate model. 

Thus, experiments were performed on each joint of the robot to measure compliance in all 

directions. Forces and moments were applied in each orthogonal direction and the associated 

linear or angular deflection was measured. The data was then analyzed to determine which 

additional displacements must be included in the model and a stiffness coefficient was 

calculated for each direction of motion. The prismatic joints for this robot have angular 

compliance in all three directions but negligible linear compliance in the off-axis directions. 

The rotational joint has angular compliance perpendicular to the joint axis (specifically, 

about the vector that is orthogonal to the joint axis and the drill spindle axis). Figure 5 shows 

the directions of these relevant off-axis compliances for the prismatic and rotational joints of 

the robot. The stiffness coefficients along the joint motion directions (ki) were also measured 

in this manner. Note that both axis and off-axis stiffness values are assumed here to be 

constant throughout the range of motion of the joint.

To account for the off-axis stiffness and generate a compliance matrix similar to Eq. (4), the 

kinematic model is augmented with additional “virtual joints” which represent motion about 

the additional directions of compliance that must be considered.25 When determining the 

position of the drill tip in the kinematic model, these additional joint values are set to zero; 

however, their contribution to the robot Jacobian enables them to contribute to the total robot 

compliance matrix. The full sets of joint displacements for the prismatic and rotational joints 

are given by
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(5)

(6)

where αj, βj, and γj are the angular compliance displacements associated with the x-, y-, and 

z-axes of the prismatic joint coordinate frame (see Figure 5). ϕj is the angular compliance 

displacement about the axis perpendicular to the rotational joint axis and the drill spindle 

axis (ûj,ϕ). The columns of the linear velocity Jacobian for the full sets of prismatic and 

rotational joint displacements are

(7)

(8)

where ûj is the jth joint axis unit vector, rj is the position vector of the drill tip relative to the 

jth joint. Thus, the full set of displacements and the linear velocity Jacobian for the robot, 

including off-axis motions are

(9)

(10)

where q1, q2 and q3 are the displacement sets for the prismatic joints and q4 is the 

displacement set for the rotational joint. The compliance matrix for the entire robot, 

including the off-axis displacements is

(11)

where χFull is a 14×14 diagonal matrix that contains the joint axis and off-axis stiffness 

values.

3.4.2 Compliance of Attachment to Skull—For a bone-attached robot, further 

deflection occurs at the interface of the bone anchor screws and the skull. To analyze and 

model this deflection, a finite element analysis (FEA) model of the robot attachment frame 

and bone anchor screws was developed. First, a structural model of the bone attachment 
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frame was developed using the FEA software package ANSYS (ANSYS Inc., Canonsburg, 

PA, USA). However, since the deformation calculation must be performed many times and 

must be part of the overall error calculation, it was necessary to create a custom, simplified 

model in MATLAB (The Mathworks, Inc., Natick, MA, USA). The simplified FEA model 

treats the attachment frame as a structure with 18 nodes and 18 space frame elements (see 

[26] for MATLAB code and explanation of element types). Deflections at key points in the 

simplified model were compared to the full ANSYS model. The simplified model 

deflections averaged within 0.01 mm of the full model when tested under a range of 

simulated loads.

The bone anchoring screws (see Figure 6b) are also modeled as space frame elements with 

the matrix elements determined from experimental data. Data was used from experiments 

performed by Kobler et al. on cadaver temporal bones and phantom material in [27], which 

determined an axial stiffness coefficient of the anchor. Additional experiments were 

performed on fresh cadaver bones, which determined a torsional stiffness coefficient. Both 

of these stiffness coefficients were determined from experiments in ex vivo bones in 

controlled laboratory conditions and attachment in the operating room on a real patient 

would likely be more challenging, and perhaps result in less rigid fixation. To account for 

this imperfect attachment in practice, the stiffness values are randomly varied between 75% 

and 100% of the nominal values in the error model. For a given set of stiffness values, a 

three-dimensional space frame element is fit to this data and the compliance matrix 

associated with bone attachment, Cattach, is calculated.

4. COMBINING ERROR SOURCES

The various error sources are combined to estimate the total system error at a given point. 

Points are analyzed according to their proximity to the vital structures near the surgical site 

and discretized based on the voxel size of the image (can be down or up sampled as 

necessary). For each calculation, the point in the image, relative to the centroid of the 

fiducial markers, Imp̃i, is first transformed according to Eq. (3) to obtain . The elements 

of Ai are selected from the associated error distributions.  is then converted to the robot 

base coordinate system, . Note that the error in this transformation is not 

considered here since the registration error between image and robot coordinate systems is 

considered separately below. The superscript indicating the frame of reference is dropped for 

brevity from this point forward and it is assumed that all positions are in the robot’s base 

coordinate frame (Frame {0}). Next, a nominal corresponding set of joint values, qi, is 

calculated using the inverse kinematics of the robot. A new set of joint values, , which 

includes additional joint positioning errors sampled from the error distributions described in 

Section 3.3, is then calculated as follows:

(12)

where the joint error values are sampled from the associated distributions. Geometric 

calibration errors (dimensions and joint axes) are also selected randomly from the 
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probability distributions and combined with the calibrated geometry data to determine new 

values that include error. The set of joint axis unit vectors including error is defined as 

and the set of geometric parameters including error is defined as G*. Using this data, along 

with the joint values calculated above, the associated drill tip position, including kinematic 

error, is calculated as , where ep,ctrl is the error due to 

asynchronous joint control and interpolation.

The robot Jacobian and compliance matrix are also calculated using , G*, and . The 

overall system deflection is then computed based on the force at the drill tip (f) and weight 

of the robot. This force is estimated using prior research in evaluating the forces during 

mastoidectomy as guidance.28 Since the safety margin calculation is independent of the final 

robot trajectory, factors that influence the force magnitude and direction are not known at 

this stage of the planning process (e.g. cutting velocity, depth, drill angle at the specific 

voxel). Thus, forces associated with more aggressive cutting parameters (e.g. velocity of 

, depth of 1.6 mm) are used and applied in random directions at the drill tip. An 

additional factor of safety is applied to these values to account for lower spindle speeds 

compared to the value of 80,000 RPM used for all trials in [28]. The tip deflection due to 

milling forces and robot compliance is given by

(13)

The deflection of the positioning frame is caused by the same tip force as well as the weight 

of the robot, which depends on the orientation of the patient’s head in surgery.

(14)

where fweight = mrobotg and  is equal to fweight except it is zero in the direction toward 

the skull since the tips of the legs cannot move downward into the skull. mrobot is the mass 

of the robot and g is the gravity vector. Since the robot is in series with the attachment 

frame, the deflections are added and

(15)

The drill tip position including error is then calculated from the kinematic error and tip 

deflection, , and the associated error relative to the true point location is 

. To determine the overall error for this target point, this value is 

combined with the registration error, ei,reg, which is calculated by sampling the TRE 

distribution at the given point. This overall error is given by:

(16)
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The error is added to the corresponding point location. The calculation is repeated many 

times in the simulation, with the error distributions re-sampled for each calculation. Note 

that the registration and positioning errors are added at the end of the process rather than 

calculating a “mis-registration” (as described in Section 3.2) and using the mis-registered 

point location for subsequent calculations. This approach reduces the computation time by 

using the results of [19] to directly estimate the TRE distribution from the FLE.

It is also important to note that some of the error sources are coupled among target points, 

e.g. a rigid registration will apply the same transformation to all points and robot calibration 

error will affect the kinematic model that is used for all points. For this type of error, a single 

value is sampled from the error distribution and applied to each target point for that 

particular calculation. For error sources that are considered independent among target point 

locations, (e.g. joint backlash error and forces at the drill tip), a unique value is sampled 

from the error distributions for each point.

5. SIMULATION OF ROBOTIC MASTOIDECTOMY PLANNING

The algorithm was tested on a scan of a human cadaver skull that was used for prior 

experiments with the robot. Automatic segmentations of the facial nerve, chorda tympani, 

and external auditory canal were performed using the algorithms described in [29] and 

segmentations of the sigmoid sinus and internal auditory canal were performed manually. 

The segmentation boundaries were confirmed by a surgeon. These structures were provided 

as inputs to the algorithm along with their associated preservation probability values. The 

parameter values used for each error source, as outlined in Section 3, are provided in Table 

1.

Results of the simulation are given in Table 2. The desired safety threshold for each structure 

is listed along with the volume of the associated safety margin. The targeted volume 

segmented by a surgeon was compared with the safety margins to determine how much (if 

any) overlap occurred. There was overlap into the target volume for the facial nerve safety 

margin and the sigmoid sinus safety margin. The facial nerve has the highest safety 

threshold (99.9%) and thus is most likely to impact the permissible workspace of the robot. 

The sigmoid sinus is not considered to be as critical of a structure so the desired preservation 

probability is lower. However, the large size of the sigmoid sinus increases the likelihood 

that there will be some overlap with its safety margin and the desired volume since there are 

so many nearby voxels that could potentially cause damage if targeted.

Figure 7 shows the resulting safety margins of several structures and cross-sectional views of 

the facial nerve. The red voxels in Figure 7a are the voxels that were removed from the 

planned volume to be removed with the drill. Figure 7b shows the dimensions of the facial 

nerve safety margin at a single iteration of the algorithm. The risk levels of the voxels 

surrounding the safety margin are indicated by shading. The anisotropic error sources result 

in the safety margin having an elliptical cross-section.
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6. CONCLUSIONS AND FUTURE WORK

This paper provides an algorithm for generating statistically-driven safety margins around 

vital structures based on estimates of imaging, registration, and robot errors. Prior work is 

expanded upon by incorporating a range error sources present in any image-guided, surgical 

robotic system and providing a method for combining various error distributions. The 

algorithm was applied to a bone-attached robotic system for mastoidectomy and generated 

variable-thickness safety margins around several vital anatomical structures. These safety 

margins were used to modify a segmented target volume so that it meets the desired 

preservation rates for each of the vital structures. The algorithm, however, can be applied to 

any surgical procedure in which a robot is moving through a planned path or region near 

vital anatomical structures that must be avoided. If stochastic estimates of the error sources 

are known, the formulation laid out in this paper can be followed to develop a safety 

algorithm for any such procedure. Additionally, this approach allows for analysis of system 

error in a way that is very specific for the intended use. By adjusting the different error 

distribution parameters and observing the effects on the size of the necessary safety margins 

for given preservation thresholds, the system components that cause meaningful error are 

apparent and system improvements can focus on these components.

Future work on this project should focus on additional improvements to the error modeling. 

Incorporating milling force estimates based on density and porosity of the bone near the 

vital structures would improve the accuracy of the force and deflection estimation. 

Additionally, a source of error that is not covered in this work is segmentation error. The 

errors at the boundaries of the critical structures should be analyzed and quantified since 

uncertainty in these locations impacts any margin that is built upon the structure. Using the 

framework described in this paper, these additional error sources, and any others, can be 

easily integrated into the algorithm once they are characterized as probability distributions.
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APPENDIX A

GEOMETRIC DISTORTION OF CT SCANNERS

The geometric fidelity, or capability of a scanner to produce geometrically accurate images, 

was determined through a series of experiments using a custom manufactured, highly 

accurate phantom (see Figure 8). The phantom consists of 4 mm diameter titanium fiducial 

markers embedded in layers of Plexiglass. A total of 64 spheres are arranged in a 4 × 4 × 4 

grid, with separation distances of 59.27 mm in the x- and y-directions and 50.8 mm in the z-

direction. The array of spheres provides a three-dimensional grid of regularly spaced points 

that spans a volume large enough to encompass a human head. The material and shape of the 

spheres were chosen for ease of fiducial marker localization.

Holes for the spheres were created by a computer numeric controlled (CNC) milling 

machine (Ameritech Exact Junior, Broussard Enterprises, Inc, Santa Fe Springs, CA). The 

Plexiglas portion consists of four slabs glued together. Before gluing, the first slab was fixed 

to the CNC vise, sixteen holes were milled in the upper surface with a diameter appropriate 

for a press fit of the spheres, and the spheres were pressed into the holes and glued. Then, 

without disturbing the first slab, a second slab was glued to the first and allowed to set. 

Sixteen new holes were milled, and the process was continued until 64 spheres were placed. 

The accuracy of the CNC is 0.0002 inch (0.005 mm) absolute with a 0.0001 inch (0.0025 

mm) repeatability. The placement error of the press fit of the spheres is estimated to be less 

than 0.001 inch (0.025 mm).

The phantom was imaged, and then a three-dimensional fiducial-localization algorithm was 

used to estimate the locations of the centers of the spheres in each image volume. As 

described in Section 3.1, it is assumed that the scanners distortion transformation is strictly 

affine, i.e. the second or higher degree components within the field of view of a calibrated 

instrument are negligible. As such, an affine registration is performed to calculate the matrix 

T, and the characteristic affine transformation for the scanner, Ac, is computed using the 

polar decomposition of T (see Section 3.1).
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Figure 8. 
Photo of custom phantom used to quantify the geometric accuracy of CT scanners; titanium 

spheres were embedded in layers of acrylic sheets using a CNC machine.

Additionally, a simple metric to provide an overall quantification of the geometric distortion 

of the scanner was calculated. A fundamental definition of a rigid transformation is that it 

preserves distances between points. This definition is used to define a measure of geometric 

distortion as the largest possible percentage change in distance, pd, between points. This 

Dillon et al. Page 15

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2017 November 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



change can be an expansion or contraction in any direction and is calculated using the 

singular value decomposition of T:

(17)

where Λi are the the singular values of T and |․| is the absolute value.

Five scanners were tested in this analysis. Image matrix sizes, voxel dimensions, peak 

voltages, and charge for each scanner are listed in Table 3. For each scanner three to four 

scans were acquired with the pose of the phantom changed for each scan. The Xoran xCAT, 

Siemens, and Medtronic O-Arm scans were acquired at Vanderbilt University Medical 

Center (Nashville, TN). The BodyTom scans were acquired by NeuroLogica (Danvers, MA, 

USA) and the Airo Mobile scans were acquired by Brainlab (Westchester, IL, USA). For 

each scan, the center of the phantom was roughly centered and the field of view covered as 

much of the phantom as possible.

Table 3

Specifications of CT scanners tested

Scanner Image Matrix
Size (X × Y × Z)

Voxel
Dimensions

Peak
Voltage

Charge

Xoran xCAT ENT 640 × 640 × 355 x=y=z=0.4 mm 120 kV 120 mAs

Neurologica BodyTom (in Helical Mode) 512 × 512 × 176 x=y=1.16 mm, z=1.25 mm 100 kV 50 mAs

Siemens SOMATOM Definition AS 512 × 512 × 333 x=y=0.74 mm, z=0.75 mm 120 kV 300 mAs

Brainlab Airo Mobile 512 × 512 × 249 x=y=0.59 mm, z=1.0 mm 120 kV 270 mAs

Medtronic O-Arm 640 × 640 × 640 x=y=0.42 mm, z=0.83 mm 110 kV 230 mAs

The results are summarized in Table 4. The FLE values and mean and standard deviation of 

the maximum distortion percentage are provided. These accuracies are far above any level 

needed for visual inspection of CT images for diagnosis or interventional planning. 

However, they may affect applications in which fixtures and/or fiducial markers are used for 

sub-millimetric targeting. If, for example, the distance between the centroid of the fiducial 

markers and the target is on the order of 100 mm, then each 1 percent of scaling error causes 

1 mm of targeting error. The numbers in the table show that in this worst case, each of these 

scanners would produce a maximum geometrical targeting error of less than 0.234 mm.

Table 4

Geometric fidelity of various commercially available CT scanners

Scanner FLE
Characteristic Transformation (Ac)a

Maximum
Distortion (pd)c

Diagonal Elements Off-Diag. Elementsb

Xoran xCAT ENT 0.091

A11 = 1.0001 (0.0003) A12 = 0.0002 (0.0001)

0.125 (0.027)A22 = 1.0012 (0.0002) A13 = −0.0003 (0.0003)

A33 = 1.0004 (0.0001) A23 = 0.0000 (0.0002)
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Scanner FLE
Characteristic Transformation (Ac)a

Maximum
Distortion (pd)c

Diagonal Elements Off-Diag. Elementsb

Neurologica BodyTom 0.135

A11 = 0.9993 (0.0001) A12 = 0.0000 (0.0001)

0.156 (0.040)A22 = 0.9994 (0.0002) A13 = −0.0003 (0.0002)

A33 = 0.9988 (0.0006) A23 = −0.0003 (0.0001)

Siemens SOMATOM Definition AS 0.138

A11 = 1.0004 (0.0001) A12 = 0.0001 (< 0.0001)

0.193 (0.104)A22 = 1.0005 (0.0001) A13 = −0.0015 (0.0011)

A33 = 0.9990 (0.0001) A23 = −0.0002 (0.0001)

Brainlab Airo Mobile 0.124

A11 = 0.9985 (0.0001) A12 = −0.0000 (0.0002)

0.198 (0.009)A22 = 0.9985 (0.0002) A13 = 0.0002 (0.0005)

A33 = 1.0001 (0.0001) A23 = 0.0007 (0.0002)

Medtronic O-Arm 0.197

A11 = 0.9981 (0.0003) A12 = 0.0003 (0.0003)

0.234 (0.023)A22 = 0.9989 (0.0003) A13 = 0.0000 (0.0002)

A33 = 0.9989 (0.0013) A23 = 0.0001 (0.0004)

a
Mean (Std. Dev.) of A matrix data from all scans for the given scanner.

b
Note that Aij = Aji.

c
pd calculated for each scan per Eq. (17).
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Figure 1. 
(a) A computed tomography (CT) scan of a temporal bone showing several vital anatomical 

structures in the surgical field, (b) a 3D schematic of anatomy and the mastoidectomy 

volume, and (c) a bone-attached robot for mastoidectomy mounted on a cadaveric specimen 

before an experimental trial (the robot pictured is a revised version of the prototype 

described in [9]).
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Figure 2. 
Flow chart of surgical planning process including the proposed probabilistic safety 

algorithm. In this figure, processes are outlined in solid lines and data are outlined in dashed 

lines.
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Figure 3. 
A schematic of the proposed safety algorithm. For each iteration, the probability of 

preserving the vital structure is calculated, given the current safety margin. If this probability 

is lower than the specified rate, then the highest risk voxels are added to the safety margin. 

The calculation is repeated until the calculated preservation rate is greater than the specified 

rate.
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Figure 4. 
(a) A rendering of the custom phantom used to quantify the geometric accuracy of CT 

scanners. (b) A schematic of the decomposition of scanner affine transformation into 

rotation, R, and distortion, A. (c) A visualization of the localization of a titanium spherical 

fiducial marker in a CT scan.
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Figure 5. 
An Illustration of the off-axis deflection directions of robot joints considered in this paper. 

These are in addition to compliance model compliance about/along each joint axis, which 

were also modeled. (a) For linear joints, angular deflections resulting from moments in all 

three directions were considered. (b) For rotational joints, angular deflection resulting from a 

moment perpendicular to the joint axis was considered.
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Figure 6. 
(a) A simplified Finite Element model of the robot positioning frame and the bone anchoring 

screws. The screw stiffnesses are based on experimental data. (b) A CT image of a bone 

anchoring screw inserted through positioning frame leg and into skull surface of cadaver.
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Figure 7. 
(a) The final safety margins for several critical structures. Portions of the original target 

volume (in red) are removed where the safety margins overlap the volume originally 

identified for removal by the surgeon. (b) A schematic of the risk of drilling points 

surrounding the facial nerve and its current safety margin at one iteration of the algorithm. 

At each iteration, a percentage of the highest risk voxels are added to the safety margin to 

bring the probability of preserving the structure closer to the desired threshold.
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Table 1

Parameter values used in simulation of safety algorithm described in this paper.

Error Source Parameter Simulation Model Values

Image distortion (affine transformation 
matrix)

A σA(i=j) (diagonal terms) = 0.03%, σA(i≠j) (off-diag terms) = 0.03%

Registration (fiducial localization error) FLE RMS FLE = 0.091 mm

Joint initialization eq,init σq,init(Prism) < 0.01 mm, σq,init(Rot) = 3.4 × 10−4 rad

Joint transmission backlash and clearance eq,trans σq,trans(Prism) = ±0.017 mm, σq,trans(Rot) ≈ 0 rad

Joint sensing eq,sens eq,sens(Prism) ≈ 0 mm, eq,sens(Rot) < 1 × 10−4 rad

Joint motion control and interpolation ep,ctrl |ep,ctrl| = rand([−0.05, 0.05]) mm

Robot geometry calibration G σG(Length) = 0.08 mm, σG(Ang) = 5.24 × 10−4 rad,

ûq,i σu,ϕ = 1.1 × 10−3 rad

Prismatic joint compliance ki (Prism) = [kqi, kα,i, 
kβ,i, kγ,i]

Rotational joint compliance ki (Rot) = [kqi, kϕ,i]

Bone-attachment compliance kanchor = [kaxial, krot]

Forces at drill tip ftip |ftip| (RMS) = 6 N
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Table 2

Simulation results

Structure Specified
Preservation

Rate

Original Size
(cm3)

Safety Margin
Size (cm3)

Target
Removed

(cm3)

Facial Nerve 99.9% 0.117 1.118 0.063

Chorda Tympani 95.0% 0.019 0.290 0.000

External Auditory Canal 95.0% 0.693 1.337 0.000

Sigmoid Sinus 95.0% 1.051 2.709 0.169

Internal Auditory Canal 99.0% 0.235 0.824 < 0.001
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